COMMUTATIVE ZEROPOTENT SEMIGROUPS WITH FEW PRIME IDEALS

J. JEŽEK, T. KEPKA AND P. NĚMEC

Abstract. We construct an infinite commutative zeropotent semigroup with only two prime ideals.

The following remarkable problem has been standing open for some time: Does there exist an infinite commutative semigroup with only finitely many endomorphisms? We conjecture that if there is an example, then it can be found among commutative zeropotent semigroups. In this paper we construct a commutative zeropotent semigroup with only two prime ideals. Although this does not solve the problem, we hope that an example of an infinite commutative semigroup with only two endomorphisms could be possibly obtained by means of a similar, more complicated construction.

We adopt the additive notation for commutative semigroups. By a commutative zeropotent semigroup, shortly $c z p$-semigroup, we mean a commutative semigroup A satisfying $x+x=y+y+y$ for all $x, y \in A$. Then $x+x=y+y$ for all $x, y \in A$, the element $x+x$ (for any $x \in A$) is denoted by o_{A} (or just by o) and $x+x=o, x+o=o$ for all $x \in A$.

Natural examples of czp-semigroups can be obtained in the following way: Take an arbitrary set X and let A be the set of all subsets of X; for $a, b \in A$ put $a+b=a \cup b$ if a, b are nonempty and disjoint; in all other cases put $a+b=\emptyset$. Subsemigroups embeddable into such semigroups A are called representable.

By an ideal of a czp-semigroup A we mean a subset I of A such that $o \in I$ and $x+y \in I$ whenever $x \in I$ and $y \in A$. By a prime ideal of A we mean an ideal I of A such that whenever $x+y \in I$ then either $x+y=o$ or $x \in I$ or $y \in I$.

If I is a prime ideal of a czp-semigroup A then the mapping $\phi_{I}: A \rightarrow A$ defined by $\phi_{I}(x)=o$ for $x \in I$ and $\phi_{I}(x)=x$ for $x \notin I$, is an endomorphism of A. Thus if A has only finitely many endomorphisms then it has only finitely many prime ideals. It is easy to see that an infinite representable czp-semigroup has always infinitely many endomorphisms.

[^0]The aim of this note is to construct an infinite czp-semigroup with only two prime ideals. The problem whether there is an infinite czp-semigroup with only finitely many endomorphisms, remains open.

Denote by X the absolutely free algebra with four unary operations $\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}$ and one binary operation γ, over an infinite countable set of variables. Elements of X will be called terms. Finite (non necessarily nonempty) sequences of elements of $\left\{\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}\right\}$ will be called words. For a term x, the terms $w x$ (where w is any word) are called x-based. Every x-based term other than x can be uniquely expressed as νy for some x-based term y and some $\nu \in\left\{\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}\right\}$; the term y is called the chief subterm of νy.

Denote by T the free czp-semigroup over (the underlying set of) X; its elements are all finite subsets of X (we identify elements x of X with $\{x\}$), $o=\emptyset$, and

$$
u+v=\left\{\begin{array}{l}
u \cup v \text { if } u, v \text { are nonempty and disjoint } \\
o \text { otherwise }
\end{array}\right.
$$

Denote by R_{1} the set of the pairs $\left\langle x, \alpha_{1} x+\beta_{1} x\right\rangle$, by R_{2} the set of the pairs $\left\langle x, \alpha_{2} x+\beta_{2} x\right\rangle$, and by R_{3} the set of the pairs $\left\langle\alpha_{1} x+\alpha_{2} x, y+\gamma(x, y)\right\rangle$ for $x, y \in X, x \neq y$.

For $u, v \in T \backslash\{o\}$ and $j=1,2,3$ write $u \rightarrow_{j} v$ if there is a pair $\langle p, q\rangle \in R_{j}$ such that $p \subseteq u, q$ is disjoint with u and $v=(u \backslash p) \cup q$. Write $u \equiv_{j} v$ if either $u \rightarrow_{j} v$ or $v \rightarrow_{j} u$. Thus \equiv_{j} is a symmetric relation on $T \backslash\{o\}$. Clearly, $u \equiv_{j} v$ if and only if there is a pair $\langle p, q\rangle \in R_{j} \cup R_{j}^{-1}$ such that $p \subseteq u, q$ is disjoint with u and $v=(u \backslash p) \cup q$.

By a derivation we mean a finite sequence $u_{0}, \ldots, u_{n}(n \geq 0)$ of elements of $T \backslash\{o\}$ such that for any $i=1, \ldots, n, u_{i-1} \equiv_{j} u_{i}$ for some $j \in\{1,2,3\}$. By a derivation from u to v we mean a derivation, the first member of which is u and the last member of which is v. Clearly, if u_{0}, \ldots, u_{n} is a derivation then $u_{n}, u_{n-1}, \ldots, u_{0}$ is also a derivation.

Denote by U_{0} the set of the elements u of $T \backslash\{o\}$ for which there are $j \in\{1,2,3\}$ and a pair $\langle p, q\rangle \in R_{j} \cup R_{j}^{-1}$ such that $p \subseteq u$ and q is not disjoint with u. Denote by U the set of the elements $u \in T \backslash\{o\}$ such that there exists a derivation from u to an element of U_{0}. Thus if one member of a derivation belongs to U then all members belong to U.

Define a binary relation \sim on T as follows: $u \sim v$ if and only if either $u, v \in U \cup\{o\}$ or there is a derivation from u to v. It is easy to check that \sim is an equivalence on T.

Lemma 1. Let $u, v \in T \backslash\{o\}, x \in X$ and $j \in\{1,2,3\}$. If $u \equiv_{j} v$ then either $u+x \equiv_{j} v+x$ or both $u+x$ and $v+x$ belong to $U \cup\{o\}$. If $u \in U$ then $u+x \in U \cup\{o\}$.

Proof. Let $u \equiv_{j} v$. We have $v=(u \backslash p) \cup q$ for some $\langle p, q\rangle \in R_{j} \cup R_{j}^{-1}$ with $p \subseteq u$ and $q \cap u=\emptyset$. If $x \notin u \cup q$ then evidently $p \subseteq u \cup\{x\}, q \cap(v \cup\{x\})=\emptyset$
and $v \cup\{x\}=((u \cup\{x\}) \backslash p) \cup q$, so that $u+x=u \cup\{x\} \equiv_{j} v \cup\{x\}=v+x$. If $x \in u \backslash p$ then $u+x=v+x=o$. If $x \in p$ then $u+x=o$ and $v+x=v \cup\{x\} \in U$. If $x \in q$ then $u+x=u \cup\{x\} \in U$ and $v+x=o$. The second statement is also easy to see.

Lemma 2. \sim is the congruence of T generated by $R_{1} \cup R_{2} \cup R_{3}$.
Proof. Using Lemma 1 one can easily check that \sim is a congruence. Clearly, $R_{1} \cup R_{2} \cup R_{3}$ is contained in \sim and if a congruence contains $R_{1} \cup R_{2} \cup R_{3}$ then it contains \sim.

By a simple derivation we mean a derivation u_{0}, \ldots, u_{n} such that $u_{0} \in X$ and for all $i \in\{1, \ldots, n\}$ either $u_{i-1} \rightarrow_{1} u_{i}$ or $u_{i-1} \rightarrow_{2} u_{i}$. Clearly, u_{1}, \ldots, u_{n} are then sets of at at least two u_{0}-based terms different from u_{0}.

Lemma 3. Let u_{0}, \ldots, u_{n} be a simple derivation; let $\{x, w x\} \subseteq u_{i}$ for some $i \in\{0, \ldots, n\}$, some term x and some word w. Then w is empty.

Proof. Suppose that some u_{i} contains both x and $w \nu x$ where w is a word and $\nu \in\left\{\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}\right\}$, and take the least index i with this property. We have $i>0$, since u_{0} contains only one term. By the minimality of i, either x or $w \nu x$ does not belong to u_{i-1}. Since u_{i} results from u_{i-1} by removing one term and adding two other terms of the same length, precisely one of the terms x and $w \nu x$ does not belong to u_{i-1}.

Case 1: $x \notin u_{i-1}$ and $w \nu x \in u_{i-1}$. Since x belongs to u_{i} but not to u_{i-1}, the chief subterm of x belongs to u_{i-1}. But then u_{i-1} contains both this chief subterm and its proper extension $w \nu x$, a contradiction with the minimality of i.

Case 2: $x \in u_{i-1}$ and $w \nu x \notin u_{i-1}$. Since $w \nu x$ belongs to u_{i} but not to u_{i-1}, the chief subterm of $w \nu x$ belongs to u_{i-1}. By the minimality of i, w is empty and the chief subterm is x. Thus $x \in u_{i-1}$, a contradiction.

Lemma 4. Let u_{0}, \ldots, u_{n} be a simple derivation and $i \in\{0, \ldots, n\}$. Then neither $\left\{w \alpha_{1} x, w^{\prime} \alpha_{2} x\right\} \subseteq u_{i}$ nor $\left\{w \beta_{1} x, w^{\prime} \beta_{2} x\right\} \subseteq u_{i}$ for any $x \in X$ and any words w, w^{\prime}.

Proof. Suppose that i is the least index for which this is not true. It is sufficient to consider the case when $\left\{w \alpha_{1} x, w^{\prime} \alpha_{2} x\right\} \subseteq u_{i}$. At least one of these two elements does not belong to u_{i-1}. Without loss of generality, $w^{\prime} \alpha_{2} x \notin u_{i-1}$. Since u_{i} results from u_{i-1} by removing one term and adding two other ones, the removed term is the chief subterm of $w^{\prime} \alpha_{2} x$. The other added element cannot be $w \alpha_{1} x$, so $w \alpha_{1} x \in u_{i-1}$. Thus if w^{\prime} is nonempty then u_{i-1} contains two terms contradicting the minimality of i. We get that w^{\prime} is empty. Thus u_{i-1} contains the terms x and $w \alpha_{1} x$, a contradiction with Lemma 3.

Lemma 5. No member of a simple derivation belongs to U_{0}.
Proof. Let u_{0}, \ldots, u_{n} be a simple derivation and suppose that $u_{n} \in U_{0}$. There are $j \in\{1,2,3\}$ and $\langle p, q\rangle \in R_{j} \cup R_{j}^{-1}$ such that $p \subseteq u_{n}$ and q has
a common element with u_{n}. If $p=\left\{\alpha_{1} x, \alpha_{2} x\right\}$, we get a contradiction by Lemma 4. We cannot have $p=\{y, \gamma(x, y)\}$, since u_{n} does not contain a term starting with γ (unless $n=0$, but this is not the case since u_{0} contains only one term). Thus $j \neq 3$. If $p=\{x\}$ and $q=\left\{\alpha_{j} x, \beta_{j} x\right\}$ then u_{n} contains x and one of the terms $\alpha_{j} x, \beta_{j} x$, a contradiction by Lemma 3. Finally, if $p=\left\{\alpha_{j} x, \beta_{j} x\right\}$ and $q=\{x\}$ then u_{n} contains all these three terms, again a contradiction by Lemma 3 .
Lemma 6. Let u_{0}, \ldots, u_{n} be a derivation such that $u_{0} \in X$. Then $u_{n} \notin U_{0}$ and if u_{n} is a singleton then $u_{n}=u_{0}$.
Proof. Suppose that there is a derivation contradicting this assertion, and let u_{0}, \ldots, u_{n} be one with the least possible n. Clearly, $n>0$. Let i be the largest index such that u_{0}, \ldots, u_{i} is a simple derivation.

Suppose that $i=n$, so that u_{0}, \ldots, u_{n} is a simple derivation. If $u_{n} \in U_{0}$, we get a contradiction by Lemma 5 . Clearly, u_{n} cannot be a singleton if $n>0$, and for $n=0$ we have $u_{n}=u_{0}$. Thus $i<n$.

If $u_{i} \rightarrow{ }_{3} u_{i+1}$ then u_{i} contains both $\alpha_{1} x$ and $\alpha_{2} x$ for some $x \in X$, a contradiction with Lemma 4.

If $u_{i+1} \rightarrow_{3} u_{i}$ then u_{i} has more than one element and contains a term starting with γ, which is evidently not possible since u_{0}, \ldots, u_{i} is simple.

If $u_{i} \rightarrow_{j} u_{i+1}$ for some $j \in\{1,2\}$ then u_{0}, \ldots, u_{i+1} is a simple derivation, a contradiction with the maximality of i.

Thus $u_{i+1} \rightarrow_{j} u_{i}$ for some $j \in\{1,2\}$. We have $u_{i}=\left(u_{i+1} \backslash\{x\}\right) \cup$ $\left\{\alpha_{j} x, \beta_{j} x\right\}$ for some $x \in u_{i+1}$ and $\left\{\alpha_{j} x, \beta_{j} x\right\} \cap u_{i+1}=\emptyset$. Let k be the least index such that either $\alpha_{j} x$ or $\beta_{j} x$ belongs to u_{k}; thus $k \leq i$. Clearly, $k>0$. It follows that $x \in u_{k-1}$ and both $\alpha_{j} x$ and $\beta_{j} x$ belong to u_{k}. Now it is easy to see that the sequence

$$
u_{0}, \ldots, u_{k-1}, v_{k+1}, \ldots, v_{i}, u_{i+2}, \ldots, u_{n}
$$

where $v_{l}=\left(u_{l} \backslash\left\{\alpha_{j} x, \beta_{j} x\right\}\right) \cup\{x\}$ for $l=k+1, \ldots, i$ is a derivation from u_{0} to u_{n}, a contradiction with the minimality of n.
Theorem. T / \sim is an infinite czp-semigroup with only two prime ideals. (The two prime ideals are T / \sim and $\left\{o_{T / \sim}\right\}$).
Proof. It follows easily from Lemma 6 that the elements x / \sim of T / \sim, with x running over X, are pairwise different and different from $o^{\prime}=o_{T / \sim}$. (We have $o^{\prime}=U \cup\{o\}$.) Let I be a prime ideal of $T / \sim \operatorname{different}$ from T / \sim. Clearly, there is an element x of X such that $x / \sim \notin I$. Take any element y of X different from x. Since $x \sim \alpha_{1} x+\beta_{1} x$, we have $\alpha_{1} x / \sim \notin I$. Since $x \sim \alpha_{2} x+\beta_{2} x$, we have $\alpha_{2} x / \sim \notin I$. Thus $\left(\alpha_{1} x+\alpha_{2} x\right) / \sim \notin I$. Since $\alpha_{1} x+\alpha_{2} x \sim y+\gamma(x, y)$, we have $y / \sim \notin I$. Thus the complement of I contains all elements z / \sim with $z \in X$ and $I=\left\{o^{\prime}\right\}$.

References

[1] R. El Bashir and T. Kepka, Commutative zeropotent semigroups with few invariant congruences. Czechoslovak Math. J. 58 (2008), 865-885.
[2] V. Flaška, A. Jančařík, V. Kala and T. Kepka, Trees in commutative nil-semigroups of index two. Acta Univ. Carolinae 48 (2007), 81-101.
[3] V. Flaška and T. Kepka, Commutative zeropotent semigroups. Acta Univ. Carolinae 47 (2006), 3-14.

Jaroslav Ježek, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 18600 Praha 8, Czech Republic

E-mail address: jezek@karlin.mff.cuni.cz
Tomáś Kepka, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 18600 Praha 8, Czech Republic

E-mail address: kepka@karlin.mff.cuni.cz
Petr Němec, Faculty of Engineering, Czech University of Life Sciences, Kamýcká 129, 16521 Praha 6 - Suchdol, Czech Republic

E-mail address: nemec@tf.czu.cz

[^0]: 1991 Mathematics Subject Classification. 20M14.
 Key words and phrases. semigroup, zeropotent, prime ideal.
 The work is a part of the research project MSM0021620839, financed by MŠMT and partly supported by the Grant Agency of the Czech Republic, grant \#201/09/0296.

