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COMMUTATIVE GROUPOIDS

J. JEŽEK

Abstract. We find several large classes of equations with the prop-
erty that every automorphism of the lattice of equational theories of
commutative groupoids fixes any equational theory generated by such
equations, and every equational theory generated by finitely many such
equations is a definable element of the lattice. We conjecture that the
lattice has no non-identical automorphisms.

0. Introduction

The study of definability in lattices of equational theories was started
in the papers [2], [3], [4] and [5] that all together represent a proof of the
conjecture formulated in the paper [10]. In the four papers it is proved that
for any signature σ (containing either at least one binary or at least two
unary operation symbols), the following are true:

(1) The lattice L of equational theories of signature σ has no automor-
phisms other than the obvious, syntactically defined ones;

(2) Every finitely based equational theory of signature σ is definable in
L up to these automorphisms;

(3) The equational theory of any finite σ-algebra is definable in L up to
these automorphisms;

(4) The set of finitely based equational theories, the set of one-based
equational theories and the set of the equational theories correspond-
ing to finitely generated varieties of signature σ are definable subsets
of the lattice L.

The result does not imply that the same would be true for the lattice of
equational theories corresponding to subvarieties of a given variety, but it
suggests that the same technique could be used in the cases when the vari-
ety is defined by linear equations (equations containing the same variables
at the left as at the right, and containing each variable only twice). The
most significant varieties of this kind are those of semigroups, commutative
semigroups and commutative groupoids.
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An attempt to imitate the results of [2] through [5] to obtain the defin-
ability for equational theories of semigroups was done in the paper [7]. At
first it seemed that everything would go through smoothly. We succeeded to
translate (or modify) the papers [2], [3], [5] and also a half of the paper [4].
But then we got stuck; the paper brings only partial results. We still do
not know if the lattice of equational theories of semigroups has only the two
obvious automorphisms. (See [11] for some more recent development.)

A similar attempt was done for commutative semigroups in the paper [8].
Again, the author got stuck at a place corresponding to the middle of [4].
Proceeding further, the author succeeded to prove that the desired aim
cannot be achieved: there are non-obvious automorphisms of the lattice
(and even uncountably many). For more information on definability in the
lattice of equational theories of commutative semigroups see the paper [1].

These two circumstances naturally turn the attention to the equational
theories of commutative groupoids. It seemed at first that in this case
everything would be easy, since commutative groupoids do not differ so much
from general groupoids as semigroups do. The investigation was already
started in the paper [6], which is a commutative modification of [3]. (We do
not need to fully describe modular elements of the lattice, as in the paper [2],
since in [7] we found a way how to avoid it, and the same can be aplied to
commutative groupoids.) Also, a half of [4] was translated all right. But
then, again, one gets stuck.

After several vain attempts to overcome the difficulties, I give it up and the
present paper is the summary of the partial results. We obtain definability
for some broad classes of equational theories.

We did not succeed to prove that the lattice of equational theories of com-
mutative groupoids has no non-identical automorphisms. We just conjecture
it. (There are no other obvious automorphisms in the commutative case.)
However, it is also possible that the situation will turn out to be similar to
that of commutative semigroups.

1. Preliminaries

This paper is a continuation of [6]. The terminology and notation intro-
duced in that paper remains without change; for more general topics see [9].
Let us recall that X is a fixed infinite countable set, the elements of which
are called variables, and F is the free commutative groupoid over X; the
elements of F are called terms. The length of a term t is denoted by λ(t),
or also by |t|. The depth of a term t is denoted by δ(t). If b is a subterm
of a term a, i.e., if a = bc1 . . . cn for some terms c1, . . . , cn (n ≥ 0), we
write b ⊆ a. The set of variables occurring in a term a is denoted by S(a).
The number of occurrences of a variable x in a term a is denoted by νx(a).
A term a is linear if νx(a) ≤ 1 for all variables x. A term a is unary if
CardS(a) = 1. We write b ∼ lh(a) if b is the linear hull of a and b ∼ uh(a)
if b is the unary hull of a. By a substitution we mean an endomorphism
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of F . By a substitution instance of a term a we mean any term f(a) where
f is a substitution. Given a variable x and a term a, we denote by σx

a the
substitution f such that f(x) = a and f(y) = y for every variable y 6= x.
For two terms a, b we write a ≤ b if a substitution instance of a is a subterm
of b. We write a < b if a ≤ b and b � a. We write a || b if neither a ≤ b nor
b ≤ a. We write a ∼ b (and say that the two terms are similar) if a ≤ b and
b ≤ a. The block a/∼ is called the pattern of a term a.

A term b is said to be a wonderful extension of a term a if b = ax1 . . . xn

for some n ≥ 0 and some pairwise distinct variables x1, . . . , xn not belonging
to S(a).

For two terms a, b we write a ⊑ b if νx(a) ≤ νx(b) for all variables x.
If a ⊑ b and b 6⊑ a, we say that b is essentially longer than a. Observe
that if b is essentially longer than a, then f(b) is longer than f(a) for any
substitution f .

By an equation we mean an ordered pair of terms. By an (equational)
theory we mean a congruence E of the groupoid F such that (a, b) ∈ E
implies (f(a), f(b)) ∈ E for any substitution f . The set of all theories is
a complete lattice under inclusion. This lattice will be denoted by L. The
least element 0L of L is the set of trivial equations (equations (a, a) for
a ∈ F ) and the greatest element 1L of L is the set of all equations.

An equation (c, d) is said to be an immediate consequence of an equation
(a, b) if there exists a substitution f such that d can be obtained from c by
replacing one occurrence of f(a) with f(b). (I.e., if there are terms u1, . . . , un

for some n ≥ 0 such that c = f(a)u1 . . . un and d = f(b)u1 . . . un.) An
equation is said to be an immediate consequence of a set of equations E if
it is an immediate consequence of at least one equation from E.

Let E be a set of equations. By an E-derivation of an equation (a, b) we
mean a finite sequence u0, . . . , un (with n ≥ 0) of elements of F such that
u0 = a, un = b and for any i ∈ {1, . . . , n}, either (ui−1, ui) or (ui, ui−1) is
an immediate consequence of E. An equation is said to be derivable from
E if it has at least one E-derivation. It is easy to prove that the set of the
equations that are derivable from E is just the least theory containing E.
It will be denoted by Cn(E) and called the theory generated by E, or the
theory based on E, and its elements will be called consequences of E. For
an equation (u, v) put Cn(u, v) = Cn({(u, v)}); such theories are called
one-based.

By a minimal E-derivation of an equation (a, b) we mean an E-derivation
u0, . . . , un of (a, b) such that n ≤ m for any other E-derivation v0, . . . , vm

of that equation. Clearly, every equation from Cn(E) has a minimal E-
derivation.

By a full set we mean a set J ⊆ F such that a ∈ J and a ≤ b imply
b ∈ J . If J is a full set, we define IJ = 0L ∪ J2. Clearly, this is a theory.
Theories obtained from full sets in this way will be called ideal theories.
The mapping J → IJ is an isomorphism of the distributive lattice of full
sets onto the lattice of ideal theories, which is a complete sublattice of L.
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For a term a put Ia = IJ where J = {t : t ≥ a}. The theories Ia (for
a ∈ F ) will be called principal ideal theories.

We denote by Es the theory of semilattices. It consists of the equations
(a, b) such that S(a) = S(b).

A set E of equations is said to be good if there exists a first-order formula
ϕ(x1, x2) with two free variables x1, x2 in the language of ordered sets such
that for any pair T1, T2 of theories, ϕ(T1, T2) is satisfied in L if and only if
T1 = IH(a,b) and T2 = Cn(a, b) for some equation (a, b) ∈ E. (The code-
terms H(a, b) were introduced in [6].)

1.1. Proposition. Let E be a good set of equations. Then:

(1) The set of the theories based on an equation from E is definable.
(2) The set of the theories based on a finite set of equations from E is

definable.
(3) For every (a, b) ∈ E, the theory Cn(a, b) is a definable element of L.
(4) Every automorphism of L coincides with the identity on all the ele-

ments of L that are theories based on a subset of E.

Proof. It is easy. (The results of [6] can be used.) �

Clearly, the union of a finite collection of good sets of equations is good.
Every good set of equations is closed under similarity. (Two equations (a, b)
and (c, d) are called similar if α(a) = c and α(b) = d for an automorphism
α of F .)

Suppose that K1 is a good set of equations and K2 is another set of equa-
tions, perhaps larger than K1, for which we prove that whenever (a, b) ∈ K2

then Cn(a, b) is the greatest (or perhaps the smallest, or the only) theory
T satisfying, together with some more simple, first-order expressible condi-
tions, the following condition: for any (c, d) ∈ K1, (c, d) ∈ T if and only
if (c, d) is a consequence of (a, b). Then, if K2 has been defined syntacti-
cally in a reasonable way, it follows from the results of [6] that K2 is also
good. (By saying that K2 has been defined in a reasonable way we mean
that the techniques explained in [6] can be used to show that the set of the
code-terms H(a, b) with (a, b) ∈ K2 is definable in the ordered set of term
patterns.)

We will prove in section 3 that the set of strictly parallel equations is good
and then continue to build larger good sets of equations in this way. We
would get the complete decidability result if this process can lead in finitely
many steps to obtain the set of all equations as a good set, similarly as it
has been done in [4] for equational theories of universal algebras. In the
present paper we will not get so far.

According to a folklore result (every non-regular equational theory is gen-
erated by its regular equations together with any one of its non-regular equa-
tions), it is sufficient to restrict ourselves to regular equations — equations
(a, b) such that S(a) = S(b).
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2. Definability of ideal theories

2.1. Theorem. Let J be a full set. Then IJ and IJ∩Es are modular elements
of L.

Proof. Let T be either IJ or IJ ∩ Es. Let A, B be two theories such that
A ⊆ B, B ⊆ A∨T and B ∩T ⊆ A. In order to prove that T is modular, we
need to show that A = B.

Consider first the case when either T = IJ or A ⊆ Es. Let (a, b) ∈ B.
There exists an (A∪T )-derivation a0, . . . , an of (a, b). We will prove (a, b) ∈
A by induction on n. If n = 0 then (a, b) = (a, a) ∈ A. Let n > 0. If
(a, a1) ∈ A then a1, . . . , an is a shorter (A ∪ T )-derivation of (a1, b) ∈ B,
so (a1, b) ∈ A by induction and we get (a, b) ∈ A. If (an−1, b) ∈ A, we get
(a, b) ∈ A similarly. If (a, a1) ∈ T − A and (an−1, b) ∈ T − A then both a
and b belong to J . So, if T = IJ , we get (a, b) ∈ B ∩ T ⊆ A; if T = IJ ∩Es,
then B ⊆ A ∨ T ⊆ Es, and again (a, b) ∈ B ∩ T ⊆ A.

It remains to consider the case when T = IJ ∩ Es and A 6⊆ Es.
Claim 1. If (a, b) ∈ B where a, b ∈ J and S(a) ⊆ S(b), then (a, b) ∈ A.

It is easy to see that since A 6⊆ Es, there exists a term s = s(x, y) with
S(s) = {x, y} (for two distinct variables x, y) such that (s(x, y), s(x, x)) ∈
A. Choose a variable x0 ∈ S(a). Define two substitutions f, g by f(z) =
g(z) = z for z ∈ S(a) and f(z) = s(x0, z) and g(z) = s(x0, x0) for the
variables z not belonging to S(a). Since (f(z), g(z)) ∈ A for all variables z,
we have (f(b), g(b)) ∈ A. Now (a, g(b)) ∈ B ∩ T ⊆ A, (g(b), f(b)) ∈ A,
(f(b), b)) ∈ B ∩ T ⊆ A, so that (a, b) ∈ A.

Claim 2. If (a, b) ∈ B and there is no term c ∈ J with (a, c) ∈ A, then
(a, b) ∈ A. Let a0, . . . , an be an (A ∪ T )-derivation of (a, b). By induction
on i = 0, . . . , n one can easily prove that (a, ai) ∈ A.

Let (a, b) ∈ B. We need to prove that (a, b) ∈ A. By Claim 2 (and
its symmetric version) we can assume that there exist terms c, d ∈ J with
(a, c) ∈ A and (b, d) ∈ A. If S(c) = S(d), then (c, d) ∈ B ∩T ⊆ A and hence
(a, b) ∈ A. So, without loss of generality we can suppose that S(c) 6⊆ S(d).
Define a substitution f by f(x) = cd for x ∈ S(c)−S(d) and f(x) = x for all
the other variables x. We have (c, d) ∈ B, (f(c), f(d)) ∈ B where f(d) = d,
so (c, f(c)) ∈ B. But c, f(c) ∈ J and S(c) ⊆ S(f(c)), so (c, f(c)) ∈ A by
Claim 1. Also, (f(c), d) ∈ B together with f(c), d ∈ J and S(d) ⊆ S(f(c))
imply (f(c), d) ∈ A by Claim 1. Hence (c, d) ∈ A and we get (a, b) ∈ A. �

2.2. Theorem. Let T be a modular element of L. Denote by U the set of
the terms a for which there exists a term b such that (a, b) ∈ T and b 6= p(a)
for any permutation p of S(a). Then U is a full set and (U × U) ∩Es ⊆ T .
If T 6= 0L, then U is nonempty.

Proof. Claim 1. For every a ∈ U there exists a term b such that (a, b) ∈ T ,
b � a and S(a) = S(b). We have (a, c) ∈ T for some c such that c 6= p(a) for
any permutation p of S(a). If there exists a variable x ∈ S(a)−S(c), we can
take b = f(a) where f is the substitution with f(x) = aa and f(y) = y for all
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variables y 6= x. If S(a) ⊆ S(c) and there exists a variable x ∈ S(c) − S(a),
take b = f(c) where f is the substitution mapping the variables from S(a)
onto themselves and mapping all other variables onto a. Now let S(a) =
S(c). If c � a, take b = c. If c ≤ a, then c < a, a = f(c)a1 . . . ak for a
substitution f and some terms a1, . . . , ak, and we can take b = f(a)a1 . . . ak.

Claim 2. For every a ∈ U there exists a term b such that (a, b) ∈ T , a ⊂ b
and S(a) = S(b). By Claim 1 there exists a term c such that (a, c) ∈ T ,
c � a and S(a) = S(c). Denote by A the theory generated by (c, cc) and
by B the theory generated by (a, aa) and (c, cc). We have A ⊆ B and
(a, aa) ∈ (A ∨ T ) ∩ B = A ∨ (T ∩ B). So, there exists an (A ∪ (T ∩ B))-
derivation of (a, aa). In particular, there exists a term b 6= a such that either
(a, b) ∈ A or (a, b) ∈ T ∩ B. Since c � a, we cannot have (a, b) ∈ A. Hence
(a, b) ∈ T ∩B and there exists a B-derivation u0, . . . , uk of (a, b). Easily by
induction on i = 0, . . . , k, a ⊆ ui. Hence a ⊂ b. Since (a, b) ∈ B, we have
S(a) = S(b).

Claim 3. If p, q, r, s are terms such that p � r, q � r, p � s, q � s,
r||s, S(r) = S(s) and T ∪ {(p, q)} |= (r, s), then (r, s) ∈ T . Denote by
A the theory generated by (p, q) and by B the theory generated by (p, q)
and (r, s). We have A ⊆ B and (r, s) ∈ (A ∨ T ) ∩ B = A ∨ (T ∩ B). Let
u0, . . . , uk be a minimal A ∪ (T ∩ B)-derivation of (r, s). Let us prove by
induction on i that ui can be obtained by a permutation of variables from
either r or s, and (r, ui) ∈ T ∩ B. This is clear for i = 0. Let i > 0 and
let ui−1 be either α(r) or α(s) for a permutation α of S(r). Then p � ui−1,
q � ui−1 and so (since ui−1 6= ui) (ui−1, ui) /∈ A. Hence (ui−1, ui) ∈ T ∩ B.
Since (r, ui−1) ∈ T ∩ B by induction, we get (r, ui) ∈ T ∩ B. There is a
{(p, q), (r, s)}-derivation v0, . . . , vm of (ui−1, ui). Now v0 can be obtained by
a permutation of variables from either r or s. Since r||s, it is easy to prove
by induction on j that also vj can be obtained by a permutation of variables
from either r or s. In particular, this is true for ui and we are done with
the induction. We get (r, s) ∈ T ∩ B ⊆ T .

We say that a term a is well-behaved if (a, d) ∈ T for every term d such
that a ⊆ d and S(a) = S(d).

Claim 4. If a ∈ U and if there exist a term b and an infinite sequence
x1, x2, . . . of variables from S(a) such that (a, b) ∈ T , a ⊂ b, S(a) = S(b) and
b � ax1 . . . xk for all k, then a is well-behaved. We have b = ab1 . . . bm for
some terms b1, . . . , bm. Let d be a term such that a ⊂ d and S(a) = S(d).
We have d = ad1 . . . dn for some terms d1, . . . , dn. Take k so large that
ax1 . . . xk is longer than bb1 . . . bmd1 . . . dn. One can easily check that the
assumptions of Claim 3 are all satisfied if we put

p = bx1 . . . xk, q = bb1 . . . bm, r = ax1 . . . xk, s = b

and that they are also satisfied if we put

p = bx1 . . . xk, q = bb1 . . . bmd1 . . . dn, r = ax1 . . . xk, s = bd1 . . . dn.
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It follows from the first observation that (ax1 . . . xk, b) ∈ T , from which we
get (ax1 . . . xk, a) ∈ T ; and from the second observation that (ax1 . . . xk,
bd1 . . . dn) ∈ T , whence (ax1 . . . xk, d) ∈ T . But then (a, d) ∈ T .

Claim 5. If a ∈ U is not well-behaved, then every term b such that
(a, b) ∈ T , a ⊂ b and S(a) = S(b) can be written as b = ay1 . . . yr for a
sequence y1, . . . , yr of variables such that r ≡ 0 mod n, where n is the car-
dinality of S(a), and yi = yj implies i ≡ j mod n. We have b = ay1 . . . yr

for some terms y1, . . . , yr. Consider the infinite sequence x1, x2, . . . , where
{x1, . . . , xn} = S(a) and xi = xi−n for i > n. According to Claim 4,
b ≤ ax1 . . . xk for some k. Clearly, this implies that y1, . . . , yr are variables
and yi = yj implies i ≡ j mod n. We also have (a, az1 . . . z2r) ∈ T where
zi = zi+r = yi for i = 1, . . . , r, so we can similarly conclude that zi = zj

implies i ≡ j mod n. But this is possible only if r ≡ 0 mod n.
Claim 6. Every term a ∈ U is well-behaved. Suppose that a is not well-

behaved. By Claim 2 there exists a term b such that (a, b) ∈ T , a ⊂ b
and S(a) = S(b). By Claim 5, b can be written as b = ay1 . . . yr where
{y1, . . . , yr} = S(a). Take a variable x ∈ S(a). By Claim 4 we have b ≤
ax1 . . . xk for some k, where x1 = · · · = xk = x. Clearly, this is possible
only if S(a) = {x}. In particular, y1 = . . . yr = x. Take a variable y 6= x.
We have (ay, by) ∈ T , so that ay ∈ U . Moreover, ay contains two variables
and we have already proved that every such term, belonging to U , is well-
behaved. Hence (ay, ay · xx) ∈ T and then (ax, ax · xx) ∈ T . From this we
get (a, (ax · xx)y2 . . . yr) ∈ T , a contradiction by Claim 5.

Claim 7. U is a full set. Let a ∈ U and a ≤ b. We need to prove that
b ∈ U . We have f(a) ⊆ b for a substitution f . By Claim 2 there exists a term
c with (a, c) ∈ T , a ⊂ c and S(a) = S(c). Denote by b′ the term obtained
from b by replacing one occurrence of f(a) with f(c). Since (b, b′) ∈ T and
b′ is longer than b, we get b ∈ U .

Claim 8. We have (a, b) ∈ T for any two terms a, b ∈ U with S(a) = S(b).
Indeed, by Claim 6 we have (a, ab) ∈ T and (b, ab) ∈ T .

Claim 9. If T 6= 0L, then U is nonempty. We have (a, b) ∈ T for some
a 6= b. We can suppose that b = p(a) for a permutation p of S(a), since
otherwise both a and b belong to U . Denote by x1, . . . , xn the variables
from S(a), so that n > 1. We have (ax1 . . . xn, bx1 . . . xn) ∈ T , and clearly
bx1 . . . xn 6= p(ax1 . . . xn) for any permutation p of S(a). �

2.3. Theorem. Es is the only modular coatom T of L with the property that
whenever T = A∨B for two modular elements A, B of L then either T = A
or T = B. Consequently, Es is a definable element of L.

Proof. Es is modular by 2.1; of course, it is a coatom of L. Let Es = A∨B
where A and B are both modular. Let x be a variable. Since (x, xx) ∈ Es,
there exists an A∪B-derivation of (x, xx). Consequently, there exists a term
a 6= x such that (x, a) belongs to either A or B. Without loss of generality,
(x, a) ∈ A. But then it follows from 2.2 that A = Es.
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Suppose that there exists a modular coatom T 6= Es of L with the same
property. If (x, a) ∈ T for some variable x and some a 6= x, then T = Es

by 2.2, a contradiction. It follows that T ⊆ IJ where J is the full set of the
terms that are not variables. Since T is a coatom, we get T = IJ . But IJ is
a nontrivial join of two modular elements, e.g., IJ = (IJ ∩ Es) ∨ IK where
K is the set of all terms of length at least 3. �

2.4. Theorem. A theory T is an intersection of a principal ideal theory with
Es if and only if it satisfies the following three conditions:

(1) T is modular and 0L ⊂ T ⊆ Es;
(2) for every modular theory S such that 0L ⊂ S ⊂ T there exists a

theory U ⊆ T for which there is no smallest theory V ⊆ T with the
property U ⊆ (U ∩ S) ∨ V ;

(3) whenever T = M1∨M2 where M1 and M2 are both modular theories
then either T = M1 or T = M2.

Consequently, the set of the theories Ia ∩Es, where a is a term, is definable.

Proof. Let T = Ia ∩ Es. By 2.1, T is modular; the rest of (1) is clear.
Let 0L ⊂ S ⊂ T where S is modular. Denote by J the set of the terms

t for which there exists a term t′ such that (t, t′) ∈ S and t′ 6= p(t) for any
permutation p of S(t). By 2.2, J is a nonempty full set and IJ∩Es ⊆ S. Since
S ⊂ T , we have J ⊂ Ia and a /∈ J . Put U = Cn(a, aa), so that U ⊆ T , and
suppose that there is a smallest theory V ⊆ T with U ⊆ (U∩S)∨V ; we need
to obtain a contradiction from this assumption. Denote by W the set of the
terms w ∈ J such that S(w) = {x}, where x is a fixed variable. Clearly, W is
nonempty. For w ∈ W we have wx ∈ J , (w(a), w(a)a) ∈ U∩S, (a, w(a)) ∈ T
and hence U ⊆ (U ∩ S) ∨Cn(a, w(a)); consequently, V ⊆ Cn(a, w(a)). For
every w ∈ W , (a, w(a)) is contained in the theory consisting of the equations
(u, v) such that for every variable y, νy(u) − νy(v) is divisible by λ(w) − 1.
Consequently, whenever (u, v) ∈ V then for every variable y, νy(u) − νy(v)
is divisible by λ(w)− 1. But obviously, for every w ∈ W there exists a term
w′ ∈ W with λ(w′) = λ(w) + 1. It follows that (u, v) ∈ V is possible only
if νy(u) = νy(v) for all variables y. Since (a, aa) ∈ (U ∩ S) ∨ V , there is an
(U ∩ S) ∪ V -derivation u0, . . . , un of (a, aa). Let us prove by induction on
i that λ(ui) = λ(a) and S(ui) = S(a). This is clear for ui = u0 = a; let
it be true for some ui with i < n. If (ui, ui+1) ∈ V , then the conclusion
for ui+1 follows from the above observation. If (ui, ui+1) ∈ U ∩ S, then it
follows from a /∈ J that ui+1 = p(ui) for a permutation p of S(ui), so that
λ(ui+1) = λ(ui) and S(ui+1) = S(ui). The induction has been finished. In
particular, λ(aa) = λ(a), a contradiction.

Let T = M1 ∨ M2 where M1 and M2 are modular. Since (a, aa) ∈ T ,
there exists a term b such that (a, b) ∈ Mi for an i ∈ {1, 2} and b 6= p(a) for
any permutation p of S(a). Then it follows from 2.2 that T = Mi.

Now we are going to prove the converse implication. Let T be a theory
satisfying the three conditions. Denote by J the set of the terms t for which
there exists a term t′ such that (t, t′) ∈ T and t′ 6= p(t) for any permutation
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p of S(t). By 2.2, J is a nonempty full set and IJ ∩ Es ⊆ T . Suppose
that T 6= IJ ∩ Es. Put S = IJ ∩ Es, so that S is modular by 2.1 and
0L ⊂ S ⊂ T . Let U be a theory contained in T . For every term a ∈ J
we have a/S = a/T = {b ∈ F : S(a) = S(b)}. For every term a /∈ J
we have a/S = {a}, and a/T may contain only the terms p(a) where p is
a permutation of S(a) (so that a/T is finite). From this it follows easily
that for any theory V contained in T , U ⊆ (U ∩ S) ∨ V if and only if
U ∩ ((F − J) × (F − J)) ⊆ V . So, there is a smallest theory among such
theories V . This contradiction with (2) proves that T = IJ ∩ Es.

Since J is nonempty, there exists a minimal term a in J . Denote by Q
the set of the minimal terms of J that are not similar to a and denote by
K the full set generated by Q. Clearly, T = (Ia ∩ Es) ∨ (IK ∩ Es). By (3),
either T = Ia ∩ Es or T = IK ∩ Es. But then, T = Ia ∩ Es. �

2.5. Theorem. A theory T is an ideal theory if and only if either T = 0L or
else T is modular, T 6⊆ Es, and there does not exist a modular theory S ⊂ T
such that S 6⊆ Es and U ⊆ S for any theory U ⊆ T that is an intersection
of a principal ideal theory with Es. Consequently, the set of ideal theories is
definable. Also, the set of principal ideal theories is definable.

Proof. This follows easily from the previous theorems. �

2.6. Theorem. Every principal ideal theory is definable.

Proof. For two terms a, b we have Ia ⊆ Ib if and only if a ≥ b, so that the
ordered set P of principal ideal theories is antiisomorphic to the ordered set
of term patterns. By 2.5, P is a definable subset of the lattice L. According
to Theorem 8.1 of [6], every term pattern is a definable element of the
ordered set of term patterns. Consequently, every principal ideal theory is
a definable element of L. �

For every term a denote by M(a) the set of all equations (u, v) such that
either u = v or u > a and v > a or u ∼ v ∼ a and S(u) = S(v). It is
easy to check that M(a) is a theory. We have M(a) = M(b) if and only if
I(a) = I(b) if and only if a ∼ b.

2.7. Proposition. For a term a, M(a) is the largest modular element T
of L such that T ⊂ Ia and T 6⊆ Es.

Consequently, the binary relation R, where (T1, T2) ∈ R if and only if
T1 = Ia and T2 = M(a) for a term a, is definable.

Proof. First we are going to show that M(a) is modular. Let A, B be two
theories such that A ⊆ B, B ⊆ A ∨ M(a) and B ∩ M(a) ⊆ A. We need
to show that A = B. Suppose, on the contrary, that there is an equation
(b, c) ∈ B−A and take one for which the length n of a minimal (A∪M(a))-
derivation b0, . . . , bn of (b, c) is the smallest possible. We have (b, c) /∈ M(a),
since otherwise we would have (b, c) ∈ B ∩ M(a) ⊆ A. In particular, a 6= b
and n > 0. If (b, b1) ∈ A then b1, . . . , bn is a shorter (A ∪ M(a))-derivation
of the equation (b1, c) ∈ B, so that (b1, c) ∈ A and thus (b, c) ∈ A, a
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contradiction. We get (b, b1) ∈ M(a) − A. Similarly, (bn−1, c) ∈ M(a) − A.
Since (b, c) /∈ M(a), we have b ∼ b1 ∼ a, S(b) = S(b1) and bn−1, c > a
(or vice versa, but the other symmetric case would be handled similarly).
Then n ≥ 3. There is a permutation p of S(b) with b1 = p(b). Since
(b1, b2) ∈ A, we have (p−1(b1), p

−1(b2)) ∈ A, i.e., (b, p−1(b2)) ∈ A. Now,
clearly b, p−1(b2), p

−1(b3), . . . , p
−1(bn−1), c is a shorter (A∪M(a))-derivation

of (b, c), a contradiction.
Clearly, M(a) ⊂ Ia and M(a) 6⊆ Es. Conversely, if T is a modular

element of L such that T ⊂ Ia and T 6⊆ Es, then it follows easily from 2.2
that T ⊆ M(a). �

For a term a we denote by I∗a the largest ideal theory properly contained
in Ia, i.e., the ideal theory IJ where J is the full set generated by all the
covers of a. We have (u, v) ∈ I∗a if and only if either u = v or u, v > a.

3. Parallel equations

By a parallel equation we mean a regular equation (a, b) such that a, b
are two incomparable terms.

For every term a we denote by Ga the set of the permutations p of S(a)
such that p(a) = a. Clearly, Ga is a subgroup of the symmetric group on
S(a).

3.1. Lemma. Let a be a term and p be a permutation of S(a). Then Gp(a) =

pGap
−1.

Proof. For a permutation q of S(a) we have q ∈ Gp(a) iff qp(a) = p(a) iff

p−1qp(a) = a iff p−1qp ∈ Ga iff q ∈ pGap
−1. �

3.2. Lemma. Let (a, b) be a parallel equation and p be a permutation of
S(a). Then (a, p(b)) ∈ Cn(a, b) if and only if p ∈ Ga ∨ Gb (the join in the
lattice of subgroups of the symmetric group on S(a)).

Proof. Let (a, p(b)) ∈ Cn(a, b). There is an (a, b)-derivation a = a0, . . . , an

= p(b). Easily by induction on i = 1, . . . , n, there is a permutation pi such
that if i is odd then ai−1 = pi(a) and ai = pi(b), and if i is even then
ai−1 = pi(b) and ai = pi(a). Clearly, n is odd, p1 ∈ Ga and p−1

n p ∈ Gb.
If i ≥ 3 if odd then pi(a) = ai−1 = pi−1(a), so that pi = pi−1qi for some
qi ∈ Ga. If i ≥ 2 is even then pi(b) = ai−1 = pi−1(b), so that pi = pi−1qi for
some qi ∈ Gb. We have pn = p1q2 . . . qn−1qn ∈ Ga ∨Gb; since p−1

n p ∈ Gb, we
get p ∈ Ga ∨ Gb.

Conversely, let p ∈ Ga ∨ Gb. Then p can be expressed as p = q1q2 . . . qn

where n is odd, qi ∈ Ga if i is odd and qi ∈ Gb if i is even. Then (where ≡
stands for ≡Cn(a,b)),

a = q1(a) ≡ q1(b) = q1q2(b) ≡ q1q2(a) = · · · ≡ q1q2 . . . qn(b) = p(b).

�
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An equation (a, b) is said to be mini-parallel if it is parallel and for any
permutation p of S(a), if (a, p(b)) is a consequence of (a, b) then (a, p(b)) is
equivalent with (a, b).

3.3. Lemma. Every parallel equation (a, b) has a mini-parallel consequence
(a, p(b)) for some permutation p of S(a).

Proof. It is evident. �

3.4. Lemma. A parallel equation (a, b) is mini-parallel if and only if Ga ∨
Gp(b) = Ga ∨ Gb for every p ∈ Gb.

Proof. It follows from 3.2. �

3.5. Example. The equation (xyzz, (xx.zz)y) is parallel but not mini-para-
llel; (xyzz, (xx · yy)z) is its mini-parallel consequence.

3.6. Lemma. Let (a, b) be a parallel equation and T be a theory; put S =
S(a) = S(b). Then T = Cn(a, p(b)) for some permutation p of S such that
(a, p(b)) is mini-parallel if and only if the following are satisfied:

(1) T ⊆ Es;
(2) T 6⊆ M(a) ∨ M(b);
(3) Ia ∨ Ib is the ideal theory generated by T ;
(4) whenever U is a theory such that U ⊂ T then U ⊆ M(a) ∨ M(b).

Proof. Clearly, (u, v) ∈ M(a)∨M(b) if and only if either u = v or u ∼ v ∼ a
and S(u) = S(v) or u ∼ v ∼ b and S(u) = S(v) or each of the terms u, v
is (strictly) larger than at least one of the terms a, b. Let T = Cn(a, p(b))
where (a, p(b)) is mini-parallel. The first three conditions are obviously
satisfied. Let U ⊂ T and suppose that U 6⊆ M(a)∨M(b). Since U ⊆ Ia ∨ Ib

and U 6⊆ M(a) ∨ M(b), either (a, a′) ∈ U for some a′ 6∼ a or (b, b′) ∈ U for
some b′ 6∼ b. But U ⊆ Cn(a, p(b)), so in each case we get (a, qp(b)) ∈ U for
some permutation q. Since (a, p(b)) is mini-parallel, (a, qp(b)) is equivalent
with (a, p(b)). But then T = U , a contradiction.

Conversely, let the four conditions be satisfied. By (2) and (3), either
(a, a′) ∈ T for some a′ 6∼ a or (b, b′) ∈ T for some b′ 6∼ b. If (a, a′) ∈
T then a′ ∼ b, since otherwise we would have either a′ > a or a′ > b,
Cn(a, a′) 6⊆ M(a) ∨ M(b) and hence T = Cn(a, a′) by (4), a contradiction
with (3). So, if (a, a′) ∈ T then a′ ∼ b. Similarly, if (b, b′) ∈ T then
b′ ∼ a. In each case we get (a, p(b)) ∈ T for a permutation p of S(a).
Since Cn(a, p(b)) 6⊆ M(a) ∨ M(b), by (4) we get T = Cn(a, p(b)). If q is a
permutation such that (a, qp(b)) is a consequence of (a, p(b)), then it follows
from (4) that T = Cn(a, qp(b)). Consequently, (a, p(b)) is a mini-parallel
equation. �

Let a be a term. By an a-permutational theory we mean a theory that
has a base consisting of equations (a, p(a)), for some permutations p of S(a).

3.7. Proposition. Let a be a term. A theory T is a-permutational if and
only if either T = 0L or the following conditions are satisfied:
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(1) Ia is the ideal theory generated by T ;
(2) T ⊆ M(a);
(3) whenever U is a theory such that U ⊆ M(a) and U ∨ I∗a = T ∨ I∗a

then T ⊆ U .

Consequently, the binary relation R where (T1, T2) ∈ R if and only if T1 = Ia

and T2 is an a-permutational theory for some term a, is definable.

Proof. Let T be a-permutational and T 6= 0L. Clearly, the conditions (1)
and (2) are satisfied. Let U ⊆ M(a) and U ∨ I∗a = T ∨ I∗a . We have
(u, v) ∈ U ∨ I∗a if and only if either (u, v) ∈ I∗a or (u, v) ∈ U , u ∼ v ∼ a and
S(u) = S(v). We have (u, v) ∈ T ∨ I∗a if and only if either (u, v) ∈ I∗a or
(u, v) ∈ T , u ∼ v ∼ a and S(u) = S(v). Since U ∨I∗a = T ∨I∗a , it follows that
for every permutation p of S(a), (a, p(a)) ∈ U if and only if (a, p(a)) ∈ U .
But T is generated by such equations, so T ⊆ U .

Conversely, let (1), (2) and (3) be satisfied. Denote by G the set of the
permutations p of S(a) such that (a, p(a)) ∈ T . Then G is a group and
Ga ⊆ G; it follows from (1) and (2) that Ga ⊂ G. Denote by U the theory
based on the equations (a, p(a)) with p ∈ G, so that U is a-permutational
and U ⊆ T . Clearly, U ⊆ M(a) and U ∨ I∗a = T ∨ I∗a . By (3), T = U . �

3.8. Lemma. Let a, b be two terms, f be a substitution and x1, . . . , xn (n ≥
0) be variables such that

(1) f(a) = bx1 . . . xn;
(2) if 1 ≤ i ≤ n and i ≤ λ(a) then xi /∈ S(b);
(3) if 1 ≤ i+1 ≤ i+k ≤ n and k ≤ λ(a) then xi+1, . . . , xi+k are pairwise

distinct.

Then either a is a slim linear term or a = a1y1 . . . yn for a term a1 and
pairwise distinct variables y1, . . . , yn not belonging to S(a1). If a = b and
n ≥ 1, then a is a slim linear term.

Proof. The first statement will be proved by induction on n. For n = 0
it is clear. Let n ≥ 1 and let a be not a slim linear term. Then a = cd
for two terms c, d with f(c) = bx1 . . . xn−1 and f(d) = xn. Of course, d is
a variable. By the induction assumption applied to the terms c, b and the
variables x1, . . . , xn−1, there are only two cases to be considered.

Case 1: c is a slim linear term. Then a = y1 . . . ymd where y1, . . . , ym

are pairwise distinct variables and d = yi for some i. It follows that xn

has at least two occurrences in bx1 . . . xn, so that n > λ(a) = m + 1; we
have f(d) = xn, f(ym) = xn−1, . . . , f(y3) = xn−m+2 and {f(y1), f(y2)} =
{bx1 . . . xn−m, xn−m+1}. But bx1 . . . xn−m, xn−m+1, . . . , xn are pairwise dif-
ferent, so y1, . . . , ym, d are pairwise distinct, a contradiction. This case is
not possible.

Case 2: c = c1y1 . . . yn−1 where y1, . . . , yn−1 are pairwise distinct variables
not belonging to S(c1). Then a = c1y1 . . . yn−1d, f(c1) = b, f(yi) = xi and
f(d) = xn. Since λ(a) > n, xn /∈ S(bx1 . . . xn−1) and so d /∈ S(c1y1 . . . yn−1).
We can put a1 = c1 and yn = d.
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In order to prove the second statement, let f(a) = ax1 . . . xn and sup-
pose that a is not slim and linear. By the first statement, a = a1y1 . . . yn

where y1, . . . , yn are pairwise distinct variables not belonging to S(a1). Since
f(a1y1 . . . yn) = a1y1 . . . ynx1 . . . xn, we have f(a1) = a1y1 . . . yn and hence
a1 is a slim linear term (it is obvious in this case, or we could also proceed
by induction on the length of a). But then a is a slim linear term. �

An equation (a, b) is said to be strictly parallel if the following conditions
are satisfied:

(1) (a, b) is parallel and neither a nor b is a slim linear term;
(2) Ga = Gb = idS(a);
(3) whenever a is a wonderful extension of a term a1 then b is not a

substitution instance of a1;
(4) whenever b is a wonderful extension of a term b1 then a is not a

substitution instance of b1.

It follows from 3.2 that every strictly parallel equation is mini-parallel.

3.9. Proposition. Let (a, b) be a strictly parallel equation and let T be a
theory. Then T = Cn(a, b) if and only if the following two conditions are
satisfied:

(1) T = Cn(a, p(b)) for a permutation p of S(a) such that (a, p(b)) is
mini-parallel;

(2) whenever (c, d) is a parallel consequence of (a, b) then (c, q(d)) ∈ T
for a permutation q of S(c) such that (c, q(d)) is mini-parallel.

Proof. The direct implication is obvious. Let (1) and (2) be satisfied. By (1),
T = Cn(a, p(b)) for some permutation p and we only need to prove that p
is the identity. Take a number m such that m ≥ λ(a) and m ≥ λ(b). Take
a sequence x1, . . . , xn of variables such that S(a) ⊆ {x1, . . . , xn}, whenever
1 ≤ i + 1 ≤ i + k ≤ n and k ≤ m then xi+1, . . . , xi+k are pairwise distinct
and whenever xi ∈ S(a) then i > m and xi−1, . . . , xi−m /∈ S(a). Clearly,
(ax1 . . . xn, bx1 . . . xn) is a parallel consequence of (a, b). So, by (2), there
is a permutation q of S(ax1 . . . xn) such that (ax1 . . . xn, q(bx1 . . . xn)) is a
consequence of (a, p(b)).

Let c be a term such that (ax1 . . . xn, c) is an immediate consequence
of either (a, p(b)) or (p(b), a). It follows from 3.8 that p(b) � ax1 . . . xn,
so (ax1 . . . xn, c) can be only an immediate consequence of (a, p(b)). There
exists a substitution f such that f(a) ⊆ ax1 . . . xn and c can be obtained
from ax1 . . . xn by replacing an occurrence of f(a) with fp(b). It follows
from 3.8 that f(a) = a, hence c = fp(b)x1 . . . xn. Since Ga contains only
the identity, f is the identity and c = p(b)x1 . . . xn.

We can show quite similarly that if c is a term such that (p(b)x1 . . . xn, c) is
an immediate consequence of either (a, p(b)) or (p(b), a) then c = ax1 . . . xn.
Since there exists an (a, p(b))-derivation of (ax1 . . . xn, q(bx1 . . . xn)), it fol-
lows that only two terms can be members of this derivation, namely, the
terms ax1 . . . xn and p(b)x1 . . . xn. In particular, we get q(bx1 . . . xn) =
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p(b)x1 . . . xn. Then q(b) = p(b) and q(xi) = xi for all i. Since S(b) ⊆
{x1, . . . , xn}, it follows that q is the identity and p(b) = b. �

3.10. Theorem. The set of strictly parallel equations is good.

Proof. The two conditions in 3.9 can be more formally expressed to obtain
the desired first-order formula; the pieces of the form ’T = Cn(u, g(v)) for
a permutation g such that (u, g(v)) is mini-parallel’ should be reformulated
using 3.6. �

4. Nice equations

A term a is said to be strongly nice if it is a product of two terms, none
of which is a variable; it is said to be weakly nice if it is a product of a
variable with a term containing this variable; it is said to be nice if it is
either strongly or weakly nice. An equation (a, b) is said to be nice if it is
regular and both a and b are nice.

4.1. Theorem. Let (a, b) be a nice equation. Then Cn(a, b) is the greatest
theory T such that T ⊆ Es and any strictly parallel equation belongs to T
if and only if it is a consequence of (a, b). Consequently, the set of nice
equations is good.

Proof. Let T be a such a theory; we need to prove that T ⊆ Cn(a, b). Let
(c, d) ∈ T and c 6= d. Put m = max(λ(c), λ(d)). Clearly, there exists a
sequence x1, . . . , xn of variables such that n > 2m, S(c) ⊆ {x1, . . . , xn},
x1, . . . , xm /∈ S(c), x1, . . . , xn−1 are pairwise distinct and xn = xn−m.

Suppose that cx1 . . . xn ≤ dx1 . . . xn. Since n > m, we have f(cx1 . . . xn) =
dx1 . . . xi for some substitution f and some i; clearly, i > n − m. Since
n > 2m, we have i−m > 1 and f(xn) = xi, f(xn−1) = xi−1, . . . , f(xn−m) =
xi−m. If i 6= n, we get a contradiction from xn = xn−m and xi 6= xi−m. So,
i = n and f(cx1 . . . xn) = dx1 . . . xn. Consequently, one of the following two
cases takes plase.

Case 1: f(c) = d and f(xi) = xi for all i. Since S(c) ⊆ {x1, . . . , xn}, we
get f(c) = c, so that c = d, a contradiction.

Case 2: f(c) = x1, f(x1) = d and f(xi) = xi for all i ≥ 2. Then c is a
variable, c = xj for some j and clearly j 6= 1, so that f(c) = c and again
c = d, a contradiction.

We have proved cx1 . . . xn � dx1 . . . xn. Quite similarly, dx1 . . . xn �
cx1 . . . xn. So, (cx1 . . . xn, dx1 . . . xn) is a parallel equation. Obviously, it is
strictly parallel. Since it belongs to T , it is a consequence of (a, b) and there
is an (a, b)-derivation u0, . . . , uk of this equation.

Let us prove by induction on i that ui = vix1 . . . xn for some term vi

such that (c, vi) is a consequence of (a, b). For i = 0 it is clear. Let i ≥ 1.
Without loss of generality, (ui−1, ui) is an immediate consequence of (a, b).
There is a substitution f such that f(a) ⊆ ui−1 = vi−1x1 . . . xn and ui results
from ui−1 by replacing f(a) with f(b). If f(a) ⊆ vi−1, then ui = vix1 . . . xn

where vi results from vi−1 by replacing f(a) with f(b), so that (vi−1, vi) is a
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consequence of (a, b) and then it follows from the induction assumption that
(c, vi) is a consequence of (a, b). The other case is f(a) = vi−1x1 . . . xr for
some r ≥ 1. If r ≤ m then xr /∈ S(vi−1x1 . . . xr−1), so that a cannot be nice,
a contradiction. Hence r > m. Then xr−m+1, . . . , xr are pairwise distinct
variables; since λ(a) ≤ m and f(a) = exr−m+1 . . . xr for some term e, we
get that a is a slim linear term; but then a is not nice, a contradiction.

In particular, dx1 . . . xn = vnx1 . . . xn where (c, vn) is a consequence of
(a, b). But then (c, d) is a consequence of (a, b). We have proved T ⊆
Cn(a, b). �

5. Modest equations

An equation is (a, b) is said to be modest if it is regular, a, b are of length
≥ 3 and there exists a variable x such that a = a1x and b = b1x for some
terms a1, b1 with x /∈ S(a1) and x /∈ S(b1).

Denote by EM the set of the equations (a, b) such that either a = b or
(a, b) is either nice or modest.

(The reason why did we forbid terms of length less than 3 in the definition
of a modest equation is that if we forgot about it, then EM would not
be transitive: we would have (xxy, xy) ∈ EM and (xy, yyx) ∈ EM but
(xxy, yyx) /∈ EM .)

5.1. Proposition. EM is a theory. It is the greatest theory T such that
T ⊆ Es, T ⊆ Ixyz ∨ Ixx and whenever (u, v) is either strictly parallel or nice
then (u, v) ∈ T if and only if (u, v) ∈ EM . Consequently, EM is a definable
element of L.

Proof. One can easily check that EM is a theory. Let T be a theory with
the above mentioned properties; we must prove T ⊆ EM . Suppose, on the
contrary, that there exists an equation (c, d) ∈ T − EM . Without loss of
generality, c = c1x where x ∈ X −S(c1), while d is not of such a form (with
the same x).

We can suppose that c1 and d are both nice. Indeed, if this was not the
case, then instead of (c, d) we could take the equation (f(c), f(d)) where f
is the substitution with f(x) = x and f(y) = yy for all variables y 6= x; we
have (f(c), f(d)) ∈ T − EM , and the terms f(c1) and f(d) are both nice.

Put S(c1) = {x1, . . . , xn}. The equations (c1, x1x1 · x1x1x2 . . . xn) and
(d, x1x1x · x1x1x1x2 . . . xn) are both nice, belong to EM and hence belong
to T . Then also (c, (x1x1 · x1x1x2 . . . xn)x) belongs to T and we get (x1x1 ·
x1x1x2 . . . xn)x, x1x1x · x1x1x1x2 . . . xn) ∈ T , since (c, d) ∈ T . Clearly, this
equation is strictly parallel and so it follows that it belongs to EM ; but it
does not belong to EM and we get a contradiction. �

5.2. Theorem. Let (a, b) be a modest equation. Then Cn(a, b) is the greatest
theory T such that T ⊆ EM and any nice equation belongs to T if and only
if it is a consequence of (a, b). Consequently, the set of modest equations is
good.
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Proof. Let (a, b) = (a1x0, b1x0). Let T be such a theory; we need to prove
T ⊆ Cn(a, b). Let (c, d) ∈ T and c 6= d; we are going to prove that (c, d) ∈
Cn(a, b). If (c, d) is nice, it is clear. Let (c, d) be not nice. Since (c, d) ∈ EM ,
it follows that (c, d) is modest. We have c = c1x and d = d1x for two terms
c1, d1 and a variable x /∈ S(c1) = S(d1). Take a variable y ∈ S(c1). The
equation (c1y, d1y) is nice and belongs to T , so it is a consequence of (a, b).
There is an (a, b)-derivation w0, . . . , wn of (c1y, d1y).

Let us prove by induction on i that wi = siy for a term si such that
(c1x, six) ∈ Cn(a, b). For i = 0 it is clear. Let i ≥ 1. The equation
(wi−1, wi) is an immediate consequence of either (a, b) or (b, a); without loss
of generality, it is sufficient to consider the case when it is an immediate
consequence of (a, b). There is a substitution f such that f(a) ⊆ wi−1 =
si−1y and wi results from wi−1 by replacing f(a) with f(b). If f(a) ⊆ si−1,
then everything is clear. The other case is f(a) = si−1y. Then f(a1) = si−1,
f(x0) = y and wi = f(b1)y. Put si = f(b1), so that wi = siy. Denote by
g the substitution with g(x0) = x and g(z) = f(z) for all variables z 6= x0.
Since g coincides with f on S(a1) = S(b1), we have f(a1) = g(b1). Then
g(a) = g(a1)x = f(a1)x = si−1x and g(b) = g(b1)x = f(b1)x = six. Since
(g(a), g(b)) ∈ Cn(a, b), we get (si−1x, six) ∈ Cn(a, b) and hence (c1x, six) ∈
Cn(a, b).

In particular, for i = n we get (c1x, d1x) ∈ Cn(a, b), i.e., (c, d) ∈ Cn(a, b).
�

6. Unary equations

An equation (a, b) is said to be unary if S(a) = S(b) = {x} for a variable x.

6.1. Theorem. Let (a, x) be a unary equation such that x is a variable
and a 6= x. Then Cn(a, x) is the greatest theory T such that T ⊆ Es and
any nice equation belongs to T if and only if it is a consequence of (a, x).
Consequently, the set of unary equations is good.

Proof. Let T be such a theory; we need to prove that T ⊆ C where C =
Cn(a, x). Let (c, d) ∈ T and c 6= d. For every variable y ∈ S(c) take four
distinct variables y1, y2, y3, y4 in such a way that if y 6= z then the sets
{y1, y2, y3, y4} and {z1, z2, z3, z4} are disjoint. Denote by f the substitution
with f(y) = y1y2 · y3y4 for all y ∈ S(c). Since (f(c), f(d)) ∈ T is a nice
equation, we have (f(c), f(d)) ∈ C. Clearly, there exists a substitution g
such that gf(y) = σx

yσx
a(a) for all y ∈ S(c). We have (σx

yσx
a(a), y) ∈ C and

thus (gf(y), y) ∈ C for all y ∈ S(c). Hence (gf(c), c) ∈ C and (gf(d), d) ∈ C;
since (f(c), f(d)) ∈ C, we have (gf(c), gf(d)) ∈ C and we get (c, d) ∈ C.

It follows that the set of the unary equations (a, b) such that either a ∈ X
or b ∈ X is good. The other nontrivial unary equations are all nice, so the
whole set is good. �
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7. xy-equations

Throughout this section let x and y be two distinct variables. By an
xy-equation we mean a regular equation with the left side equal to xy. The
aim of this section is to prove that the set of xy-equations is good.

By a 1-special equation we mean an equation (xy, a) where a is a term
such that S(a) = {x, y}, a 6= xy and neither xx nor yy is a subterm of a.

7.1. Theorem. Let (xy, a) be a 1-special equation. Then Cn(xy, a) is the
greatest theory T such that T ⊆ Es and every equation that is either modest
or unary belongs to T if and only if it is a consequence of (xy, a). Conse-
quently, the set of 1-special equations is good.

Proof. Let T be such a theory and (c, d) ∈ T ; we need to prove that (c, d)
is a consequence of (xy, a). This is clear if (c, d) is either modest or unary.
Consider the remaining case only. Since (c, d) is not unary, c, d are of length
at least 2. Take a variable z not belonging to S(c) = S(d). The equation
(cz, dz) is modest and belongs to T , so it is a consequence of (xy, a). There
exists an (xy, a)-derivation u0, . . . , uk of (cz, dz).

Let us prove by induction on i that whenever ui can be written as ui =
vv1 . . . vm where z /∈ S(v) and z ∈ S(v1) (less formally, whenever v is a
maximal no z containing occurrence of a subterm in ui) then (c, v) is a
consequence of (xy, a). For i = 0 it is clear, since u0 = cz. Let i > 0.
Then ui is obtained from ui−1 by replacing one occurrence of a subterm
pq (for some terms p, q) with the term r = σx,y

p,q (a), or vice versa. If a
maximal no z containing occurrence of v in ui is disjoint with pq (with r,
respectively), then it is also a maximal no z containing occurrence of v in
ui−1 and so (c, v) is a consequence of (xy, a) by induction. If it contains
pq (or r, respectively) then the same replacement in v transforms v into a
maximal no z containing occurrence of a subterm in ui−1 and we can again
apply induction. The only remaining possibility is that v is a proper subterm
of pq (or of r, respectively). But then, in both cases, v is a subterm of either
p or q (here we are using the fact that (xy, a) is 1-special) and the induction
can be applied again.

Since d is a maximal no z containing occurrence of a subterm in uk, it
follows that (c, d) is a consequence of (xy, a). �

Let K be a set of equations. By a K-related pair we mean a pair of regular
theories T1, T2 such that (x, t) ∈ Ti implies t = x, there are two terms a1, a2

of length ≥ 3 with (xy, ai) ∈ Ti for i = 1, 2, and whenever (u, v) ∈ K then
(u, v) ∈ T1 if and only if (u, v) ∈ T2.

7.2. Lemma. Let T1 6= T2 be a K-related pair where K is the set of the
equations that are either strictly parallel or nice or modest or unary or 1-
special. For i = 1, 2 denote by Hi the set of the terms t of length ≥ 3 such
that (xy, t) ∈ Ti.

(1) Let i ∈ {1, 2}. Then Hi contains a strongly nice term.



18 J. JEŽEK

(2) Let i ∈ {1, 2}. For every term t /∈ X there exists a strongly nice
term t′ with (t, t′) ∈ Ti.

(3) T1 6⊆ T2 and T2 6⊆ T1.
(4) H1 6⊆ H2 and H2 6⊆ H1.
(5) Let i ∈ {1, 2}. There exists a term a ∈ Hi such that either xx ⊆ a

or yy ⊆ a.
(6) Let i ∈ {1, 2}. There exists a term a ∈ Hi such that both xx ⊆ a

and yy ⊆ a.
(7) Let i ∈ {1, 2}. For every term t /∈ X there exists a strongly nice

term t′ such that (t, t′) ∈ Ti and xx ⊆ t′ for all x ∈ S(t).
(8) Let i ∈ {1, 2}. Let t /∈ X be a term and x1, . . . , xn be all (pairwise

distinct) variables occurring in t. Then there exists a strongly nice
term t′ such that (t, t′) ∈ Ti, xixi ⊆ t′ for all i and νx1

(t′) < νx2
(t′) <

· · · < νxn
(t′).

(9) Let i ∈ {1, 2}. There exists a positive integer c such that for every
term t /∈ X there is a positive integer N with the property that for
every k ≥ 0 there exists a term t′ as in (8) of length N + kc.

(10) Let u, v be two terms of length ≥ 3. Then (u, v) ∈ T1 if and only if
(u, v) ∈ T2.

(11) H1 ∩ H2 = ∅.
(12) Let i ∈ {1, 2} and a ∈ Hi. Then either xx ⊆ a or yy ⊆ a.

Proof. (1) There is a term ai of length ≥ 3 such that (xy, ai) ∈ Ti. If ai is
not already strongly nice, then (without loss of generality) ai = bix for a
term bi /∈ X. We have (xy, σx,y

bi,x
(ai)) ∈ Ti and the right side of this equation

is a strongly nice term.
(2) Let t = uv. By (1) there is a strongly nice term bi ∈ Hi. We have

(t, σx,y
u,v(b)) ∈ Ti where the right side is a strongly nice term.

(3) Suppose, for example, that T1 ⊂ T2. Take an equation (u, v) ∈ T2−T1,
so that u, v /∈ X. By (2) there are nice terms u′, v′ with (u, u′) ∈ T1 and
(v, v′) ∈ T1. Then (u, u′) ∈ T2 and (v, v′) ∈ T2. Since (u, v) ∈ T2, we get
(u′, v′) ∈ T2. But (u′, v′) is nice, so (u′, v′) ∈ T1. But then (u, v) ∈ T1, a
contradiction.

(4) Suppose, for example, that H1 ⊆ H2. Take a strongly nice term
a ∈ H1. If (u1u2, v1v2) is an arbitrary nontrivial equation from T1, then
(u1u2, σ

x,y
u1,u2

(a)) amd (v1v2, σ
x,y
v1,v2

(a)) both belong to T1 ∩ T2 and so the
equation (σx,y

u1,u2
(a), σx,y

v1,v2
(a)) belongs to T1; but it is a nice equation, so

it also belongs to T2 and we get (u1u2, v1v2) ∈ T2. Now T1 ⊆ T2 is a
contradiction with (3).

(5) If, for example, no term from H1 contains either xx or yy as a subterm,
then (xy, u) is a 1-special equation for all u ∈ H1, so that all such equations
belong to T2 and H1 ⊆ H2, a contradiction with (4).

(6) If a ∈ Hi where (for example) xx ⊆ a and yy 6⊆ a, then a contains a
subterm yv for some term v; the term obtained from a by replacing yv with
σx,y

y,v (a) belongs to Hi and contains both xx and yy.
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(7) Let a be as in (6) and t′ be as in (2). Let x ∈ S(t). We have xv ⊆ t′

for some term v. The term obtained from t′ by replacing xv with σx,y
x,v(a) is

strongly nice, Ti-related with t′ and contains xx; it also contains yy for any
other variable y whenever t′ did, so that we can make this replacement for
all varibles in S(t) one by one.

(8) Let t′ be as in (7). Take a term a ∈ Hi and replace an occurrence of
x2x2 in t′, perhaps repeatedly, with σx,y

x2,x2
(a) until t′ is transformed into a

term with more occurrences of x2 than of x1. Then do the same with the
variables x3, . . . , xn.

(9) Take a term a ∈ Hi and put c = λ(a) − 2. For a term t, take a term
t′ as in (8) and put N = λ(t′). If we replace a subterm xnxn of t′ (where xn

is the variable with the largest number of occurrences) with σx,y
xn,xn

(a), we
obtain a term of length N + c with the same properties of t′ as in (8). We
can do this k times to obtain a term of length N + kc.

(10) Let (u, v) ∈ T1; we are going to prove that (u, v) ∈ T2.
By (2), there is a nice term w such that (u, w) ∈ T1. We shall first

prove that (u, w) ∈ T1 ∩ T2. This is clear if u is nice. Otherwise, u = u1z
for a variable z not occurring in u1. It follows easily from (9) that there
are (perhaps very long) strongly nice terms u′

1 and w′ = w′

1w
′

2, both with
the properties of t′ in (8), such that λ(u′

1) + 1 < λ(w′), λ(u′

1) > λ(w′

1)
and λ(u′

1) > λ(w′

2). The equation (u, u′

1z) is modest and belongs to T1, so
(u, u′

1z) ∈ T2. The equation (w, w′) is nice and belongs to T1, so (w, w′) ∈ T2.
The equation (u′

1z, w′) is strictly parallel and belongs to T1, so (u′

1z, w′) ∈ T2.
We have obtained (u, w) ∈ T1 ∩ T2.

Similarly, there exists a nice term w̄ such that (v, w̄) ∈ T1 ∩ T2. Since
(u, v) ∈ T1, we have (w, w̄) ∈ T1. But (w, w̄) is nice, so (w, w̄) ∈ T2. But
then (u, v) ∈ T2.

(11) If there is a term in H1 ∩ H2, then it follows from (10) that for any
equation (u, v) we have (u, v) ∈ T1 if and only if (u, v) ∈ T2, so that T1 = T2,
a contradiction.

(12) If a ∈ Hi and neither xx ⊆ a nor yy ⊆ a, then (xy, a) is a 1-special
equation, (xy, a) ∈ T1 ∩ T2 and a ∈ H1 ∩ H2, a contradiction with (11). �

By a 2-special term we mean a term t1t2 where S(t1) = {x} and S(t2) =
{y}. By a 2-special equation we mean an equation (xy, t) where t is a 2-
special term of length ≥ 3.

7.3. Lemma. Let (xy, w) be a consequence of a 2-special equation (xy, t).
Then w is 2-special.

Proof. One can easily see that if (r, s) is an immediate consequence of a
2-special equation then r is 2-special if and only if s is 2-special. �

7.4. Theorem. Let (xy, a) be a 2-special equation. Then C = Cn(xy, a) is
the only theory T such that T ⊆ Es, the ideal theory generated by T equals
Ixy, and every equation that is either strictly parallel or nice or modest or
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unary or 1-special belongs to T if and only if it is a consequence of (xy, a).
Consequently, the set of 2-special equations is good.

Proof. Let T be a theory with these properties. We have a = u(x)v(y) for
two unary terms u and v. Since Ixy is the ideal theory generated by T , there
exists a term b of length ≥ 3 such that (xy, b) ∈ T . We have S(b) = {x, y}
and so we can write b = b(x, y). Clearly, (xy, u′v′) for two some terms u′, v′

not belonging to X. Since (xy, b(x, y)) ∈ T , we have (u′v′, b(u′, v′)) ∈ T .
This equation is nice, so (u′v′, b(u′, v′)) ∈ C. Then (xy, b(u′, v′)) ∈ C.
By 7.3, b(u′, v′) is a 2-special term. From this it follows that b is a 2-special
term.

Let (U, V ) be an arbitrary immediate consequence of (xy, a), so that U =
pqw1 . . . wn and V = u(p)v(q)w1 . . . wn for some terms p, q, w1, . . . , wn (n ≥
0). We are going to prove that all 2-special subterms of U are C-equivalent
with xy if and only if all 2-special subterms of V are C-equivalent with xy.

Let all 2-special subterms of U be C-equivalent with xy and let t be a
2-special subterm of V . If either t ⊆ p or t ⊆ q or t ⊆ wi for some i then t is
a 2-special subterm of U , so that (xy, t) ∈ C. If t ⊆ u(p) then (since t is a
2-special term) t ⊆ p. Similarly, if t ⊆ v(q), then t ⊆ q. The only remaining
case is t = u(p)v(q)w1 . . . wi for some i ≥ 0. Then t is C-equivalent with
pqw1 . . . wi; this is a 2-special subterm of U and so it is C-equivalent with
xy.

The converse implication can be proved similarly.
Take a variable z /∈ {x, y}. The equation (xyz, bz) is modest and belongs

to T , so it belongs to C and there exists an (xy, a)-derivation of (xyz, bz).
The left side of this equation contains a single 2-special subterm, namely,
the term xy. It follows from what we have just proved that also every 2-
special subterm of bz is C-equivalent with xy. But b is a 2-special subterm
of bz, so (xy, b) ∈ C. Hence (xy, b) ∈ C ∩ T . Now it follows from 7.2(11)
that T = C. �

By a 3-special equation we mean an equation (xy, a) such that S(a) =
{x, y} and xy ⊆ a.

7.5. Lemma. Let (xy, a) be a 3-special equation and C = Cn(xy, a). Let z
be a variable different from both x and y; let A0, A1, . . . , An be an (xy, a)-
derivation where A0 = xyz; let u be a term such that S(u) = {x, y} and
zu ⊆ An. Then there exists a unary term w such that (u, w(xy)) ∈ C.

Proof. We proceed by induction on n. For n = 0 everything is clear. Let
n > 0, zu ⊆ An and S(u) = {x, y}. If zu ⊆ An−1, we are done by induction.
So, let zu 6⊆ An−1. There are two cases.

Case 1: An−1 = a(r, s)p1 . . . pk and An = rsp1 . . . pk for some terms
r, s, p1, . . . , pk (k ≥ 0). Then zu 6⊆ pi for all i, zu 6⊆ rs (since rs ⊆
a(r, s) ⊆ An−1) and thus zu = rsp1 . . . pj for some j > 0. Since z is a
variable, z = pj and u = rsp1 . . . pj−1. For u′ = a(r, s)p1 . . . pj−1 we have
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(u, u′) ∈ C, S(u′) = {x, y}, zu′ = a(r, s)p1 . . . pj ⊆ An−1 and so, by induc-
tion, (u′, w(xy)) ∈ C for a unary term w. But then (u, w(x, y)) ∈ C.

Case 2: An−1 = rsp1 . . . pk and An = a(r, s)p1 . . . pk for some terms
r, s, p1, . . . , pk. If zu = a(r, s)p1 . . . pj for some j > 0, then we can proceed
similarly as in Case 1. Of course, zu 6⊆ pj for all j. So, the only remaining
case is zu ⊆ a(r, s). We have zu 6⊆ r and zu 6⊆ s, so that zu = b(r, s) for a
non-variable subterm b of a. Since z is a variable not contained in u, this
is possible only if either z = r and u = c(s) or else z = s and u = c(r) for
a unary term c. By symmetry, it is sufficient to consider the case z = r,
u = c(s). We have rs ⊆ An−1 where r = z and S(s) = {x, y}, so by induc-
tion (s, w(xy)) ∈ C for a unary term w. But then (c(s), c(w(xy))) ∈ C, i.e.,
(u, c(w)(xy)) ∈ C where c(w) is a unary term. �

7.6. Theorem. Let (xy, a) be a 3-special equation. Then C = Cn(xy, a) is
the only theory T such that T ⊆ Es, the ideal theory generated by T equals
Ixy, and every equation that is either strictly parallel or nice or modest or
unary or 1-special or 2-special belongs to T if and only if it is a consequence
of (xy, a). Consequently, the set of 3-special equations is good.

Proof. Let T be a theory with these properties. Since Ixy is the ideal theory
generated by T , there exists a term t of length ≥ 3 such that (xy, t) ∈ T ;
we have S(t) = {x, y}. Take a variable z /∈ {x, y}. The equation (xyz, tz) is
modest and belongs to T , so it belongs to C. By 7.5, there is a unary term
w such that (t, w(xy)) ∈ C.

Suppose T 6= C, so that by 7.2(11) there is no term b except xy with
(xy, b) ∈ C ∩ T . In particular, (xy, t) /∈ C and thus w is not a variable.
Also, t is not 2-special; since S(t) = {x, y}, it follows that t is nice. Since w
is not a variable, w(xy) is also nice and thus (t, w(xy)) is a nice equation;
since it belongs to C, we get (t, w(xy)) ∈ T . Hence (xy, w(xy)) ∈ T . But
this is a 1-special equation, so (xy, w(xy)) ∈ T ∩ C, a contradiction. �

By a 4-special term we mean a term a such that S(a) = {x, y}, a is
strongly nice and the following two conditions are satisfied:

(1) whenever u /∈ X is a proper subterm of a then f(u) 6= g(a) for all
substitutions f, g;

(2) whenever f(a) = g(a) for two substitutions f, g then f(xy) = g(xy).

By a 4-special equation we mean an equation (xy, a) such that a is a 4-special
term.

7.7. Theorem. Let (xy, a) be a 4-special equation. Then C = Cn(xy, a) is
the only theory T such that T ⊆ Es, the ideal theory generated by T equals
Ixy, and every equation that is either strictly parallel or nice or modest or
unary or 1-special belongs to T if and only if it is a consequence of (xy, a).
Consequently, the set of 4-special equations is good.

Proof. Let T be a theory with these properties; we need to prove that T = C.



22 J. JEŽEK

Let a = a1a2 and write a as a = a(x, y). Denote by A the set of the terms
t such that a � t. For u, v ∈ A define a term u ◦ v ∈ A by induction on the
length of uv as follows:

u ◦ v =

{

uv if uv ∈ A,

p ◦ q if uv = a(p, q) for two terms p and q.

It follows from (2) that ◦ is a correctly defined commutative binary operation
on A.

Let h be a homomorphism of the groupoid T of all terms into the groupoid
(A, ◦); put p = h(x) and q = h(y). Let us prove by induction on the length
of u that if u is a proper subterm of a then h(u) = u(p, q). This is clear if
u ∈ {x, y}. Now let u = u1u2. Then h(u) = h(u1)◦h(u2) = u1(p, q)◦u2(p, q)
by the induction assumption. It follows from (1) that u(p, q) ∈ A, so that
h(u) = u1(p, q) ◦ u2(p, q) = u1(p, q)u2(p, q) = u(p, q) as desired.

In particular, we have h(a) = h(a1) ◦ h(a2) = a1(p, q) ◦ a2(p, q) = p ◦ q =
h(xy). This means that the groupoid (A, ◦) satisfies the equation (xy, a).

Denote by H the extension of the identity on X to a homomorphism
of the groupoid T of all terms onto the groupoid (A, ◦). Clearly, H(u) =
u for all u ∈ A. Let us prove by induction on the length of a term t
that (t, H(t)) ∈ C. This is clear if t ∈ X. Now let t = t1t2. We have
H(t) = h(t1) ◦ h(t2) where, by the induction assumption, (t1, h(t1)) ∈ C
and (t2, h(t2)) ∈ C. If H(t1) ◦ h(t2) = H(t1)H(t2), we get (H(t), t1t2) ∈ C
as desired. In the opposite case we have H(t1)H(t2) = a(p, q) for some
p, q ∈ A, and H(t) = p ◦ q. Since (clearly) pq is shorter that t, by the
induction assumption we have (pq, p ◦ q) ∈ C. Of course, (pq, a(p, q)) ∈ C;
since a(p, q) = H(t1)H(t2) and (H(ti), ti) ∈ C, we get (H(t), t) ∈ C.

From this it follows that for any terms t and u, (t, u) ∈ C if and only if
H(t) = H(u).

Since Ixy is the ideal theory generated by T , there exists a term b of
length ≥ 3 such that (xy, b) ∈ T . Take a variable z /∈ {x, y}. The modest
equation (xyz, tz) belongs to T , so that it also belongs to C. Consequently,
H(xyz) = H(tz). But H(xyz) = xyz and (since a is strictly nice) H(tz) =
H(t)z. We get xyz = H(t)z, so that xy = H(t) and (xy, t) ∈ C ∩ T . By 7.2
we get T = C. �

By a 5-special equation we mean an equation (xy, a) such that (xy, a) is
not 2-special, S(a) = {x, y} and xy 6⊆ a.

7.8. Lemma. Let (xy, a) be a 5-special equation. Let t be a term such that
S(t) = {x, y} and xy 6⊆ t. Then (t, uv) ∈ Cn(xy, a) for two terms u, v such
that S(u) = S(v) = {x, y} and xy 6⊆ uv.

Proof. Since a is not 2-special, without loss of generality a = a1a2 where
S(a2) = {x, y} and x ∈ S(a1). Let t = t1t2. We can assume that at least
one of the terms t1, t2 contains both x and y, because otherwise t could be
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replaced with a(t1, t2). Without loss of generality, S(t2) = {x, y}. Then we
can take uv = a(t2, t1). �

7.9. Lemma. Let (xy, a) be a 5-special equation. Let t be a term such that
S(t) = {x, y} and xy 6⊆ t. Then (t, t′) ∈ Cn(xy, a) for a term t′ such that
xy 6⊆ t′ and t′ has a subterm uv with S(u) = {x}, S(v) = {y}, u 6= x and
v 6= y.

Proof. Let w be a minimal subterm of t with S(w) = {x, y}. Then w = w1w2

where S(w1) = {x} and S(w2) = {y}. Also, let b be a minimal subterm of
a with S(b) = {x, y}. Then b = b1b2 where S(b1) = {x} and S(b2) = {y}.
Without loss of generality, b2 6= y. If w1 = x then w2 6= y and we can
replace the subterm w of t with the subterm a(w2, w1) ⊇ b1(w2)b2(w1). If
w2 = y then w1 6= x and we can replace the subterm w of t with the subterm
a(w1, w2) ⊇ b1(w1)b2(w2). �

In the following we are going to prove that every 5-special equation has
at least one 4-special consequence. Let (xy, a) be a 5-special equation. It
follows from 7.8 and 7.9 that we can assume that a = a1a2 · a3a4 where

(1) for j = 1, 2, 3, 4, aj contains a subterm UjVj with S(Uj) = {x},
S(Vj) = {y}, Uj 6= x, Vj 6= y;

(2) a2 is essentially longer than a1a3a4.

Denote by ≡ the theory based on (xy, a).
Denote by α the term a(x, x) and write it as α = xxα1 . . . αk (k ≥ 1). Of

course, α ≡ xx. Put α0 = xx and αi+1 = αiα1 . . . αk, so that αi ≡ xx for
all i ≥ 0. Denote by β, β1, . . . , βk, β

i the terms α, α1, αk, α
i with x replaced

by y. Hence βi ≡ yy for all i ≥ 0.
Put N = |a| = |α| = |β|.
For j = 1, . . . , 4 and any i ≥ 0 denote by U i

j the term obtained from Uj

by replacing one occurrence of xx with αi, denote by V i
j the term obtained

from Vj by replacing one occurrence of yy with βi, and denote by ai
j the

term obtained from aj by replacing one occurrence of UjVj with U i
jV

i
j .

Let us take a positive integer m such that am
2 is essentially longer than a.

Put M = |a1a
m
2 · a3a4|.

7.10. Lemma. For any i, j ≥ 0, every unary subterm of ai
1a

m
2 · aj

3a4 that is
not a variable is a product of two terms, at least one of which is of length <
N .

Proof. It is obvious. �

7.11. Lemma. Let i, j be such that U j
3V j

3 is essentially longer than ai
1a

m
2

and ai
1 is essentially longer than am

2 . Then there are no terms p, q with

ai
1a

m
2 (p, q) ⊆ aj

3a4(p, q).

Proof. Suppose ai
1a

m
2 (p, q) ⊆ aj

3a4(p, q). Clearly, ai
1a

m
2 (p, q) is a subterm of

either U j
3 (p) or V j

3 (q); without loss of generality, it is sufficient to consider
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the case ai
1a

m
2 (p, q) ⊆ U j

3 (p). Since ai
1(p, q) is longer than am

2 (p, q), it follows

from 7.10 that am
2 (p, q) = w(p) for a subterm w of U j

3 and |w| < N . Now

N |p| ≤ νx(am
2 )|p| < |am

2 (p, q)| = |w(p)| < N |p|,

a contradiction. �

7.12. Lemma. Let i ≥ M2 and u be a unary term of length > 1 such that
whenever w1w2 ⊆ u then either |w1| < N or |w2| < N . Then there are no
terms p, q, r with either ai

1a
m
2 (p, q) = u(r) or ai

3a4(p, q) = u(r).

Proof. Suppose ai
1a

m
2 (p, q) = u(r). We can write u as u = u1u2 where

ai
1(p, q) = u1(r) and am

2 (p, q) = u2(r). Since ai
1(p, q) is longer than am

2 (p, q),
u1 is longer than u2 and hence |u2| < N by 7.10.

We have |U i
1(p)V i

1 (q)| > i|p|+ i|q| ≥ M2(|p|+ |q|). On the other hand, the
length of the rest of ai

1a
m
2 (p, q) is less than M(|p| + |q|). Hence the length

of U i
1(p)V i

1 (q) makes more than two-thirds (in particular, more than a half)
of the length of ai

1a
m
2 (p, q). From this it follows that U i

1(p)V i
1 (p) is not a

subterm of r, so that U i
1(p) = w1(r) and V i

1 (q) = w2(r) for a subterm w1w2

of u.
Suppose w1, w2 /∈ X. We can write w1 as w1 = w11w12 and U i

1 as U i
1 = PQ

where P (p) = w11(r) and Q(p) = w12(r). Without loss of generality, P is
longer than Q; but then |P | > i ≥ M2 and |Q| < N . So, |P | > N |Q|,
|P (p)| > N |Q(p)|, |w11(r)| > N |w12(r)|, and hence |w1| > N . Similarly,
|w2| > N . This is a contradiction, since w1w2 ⊆ u.

So, without loss of generality, w1 = x and U i
1(p) = r. Since the length

of U i
1(p)V i

1 (q) makes more than two-thirds of the length of ai
1a

m
2 (p, q), we

cannot have V i
1 (q) = r; hence w2 /∈ X. We can write w2 = w21w22 and

V i
1 = RS where |R| > i ≥ M2 and |S| < N . Without loss of generality,

w22(r) = S(q). Then |w22| < |w21|, so |w22| < N . From this it follows that
either |r| = c|q| or |q| = c|r| for some positive integer c < N . On the other
hand, |r| = d|p| for some d > M2, since U i

1(p) = r implies that |r| is a
multiple of |p| and we have |U i

1| > i ≥ M2.
Put e = νx(am

2 ) and f = νy(a
m
2 ), so that 1 ≤ e, f ≤ N . Then |u2||r| =

|u2(r)| = |am
2 (p, q)| = e|p| + f |q|.

If |r| = c|q| then c|u2||q| = e|p|+f |q| means that e|p| is divisible by |q|, so
that |q| ≤ e|p|, |r| = c|q| ≤ ce|p| < M2|p| (since c, e < N), a contradiction,
since |r| = d|p| where d > M2.

If |q| = c|r| then |u2||r| = e|p| + fc|r|, so that e|p| is divisible by |r|
and hence |r| ≤ e|p| where e < N , a contradiction, since |r| = d|p| where
d > M2.

This proves that we cannot have ai
1a

m
2 (p, q) = u(r). Quite similarly, we

cannot have ai
3a4(p, q) = u(r). �

7.13. Lemma. There exist positive integers i, j with these properties:

(1) i > M2;
(2) νx(U i

1V
i
1 ) > M3 and νy(U

i
1V

i
1 ) > M3;
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(3) ai
1 is essentially longer than am

2 ;

(4) U j
3V j

3 is essentially longer than ai
1a

m
2 ;

(5) Mνx(ai
1a2) < νx(aj

3a4) < M2νx(ai
1a

m
2 ) and Mνy(a

i
1a2) < νy(a

j
3a4) <

M2νy(a
i
1a

m
2 ).

Proof. One can take i so large that (1), (2) and (3) are satisfied and, more-
over, such that (4) and (5) are satisfied if we take j = Mi + M2. (In order
to check it, it is useful to realize that if t is any of the terms ak

1, ak
1a

m
2 , Uk

1 ,
Uk

3 , ak
3a4 for some k, then νx(t) = (N − 2)k + d and νy(t) = (N − 2)k + d′

for some 0 ≤ d, d′ < M .) �

7.14. Lemma. Let A = ai
1a

m
2 · aj

3a4 where i, j satisfy the five conditions
of 7.13, and let u /∈ X be a proper subterm of A. Then there are no terms
p, q, r, s with A(p, q) = u(r, s).

Proof. Suppose A(p, q) = u(r, s). We can write u as u = u1u2 where

ai
1a

m
2 (p, q) = u1(r, s) and aj

3a4(p, q) = u2(r, s).
Suppose that u1 is unary. Then, by 7.12, u1 ∈ X. If also u2 is unary

then similarly u2 ∈ X, but clearly u1 6= u2, so that xy is a subterm of A, a

contradiction. So, u1 ∈ X and S(u2) = {x, y}. Then ai
1a

m
2 (p, q) ⊆ aj

3a4(p, q),
a contradiction with 7.11.

This proves S(u1) = {x, y}. Similarly, S(u2) = {x, y} (in this case, instead

of an application of 7.11 we can use the fact that aj
3a4(p, q) is longer than

ai
1a

m
2 (p, q)).

If |u2| ≤ M then |aj
3a4(p, q)| = |u2(r, s)| < M(|r| + |s|) < M |u1(r, s)| =

M |ai
1a

m
2 (p, q)|, contradicting 7.13(5). Hence |u2| > M . Since u2 con-

tains both x and y, this is possible only if either U i
1V

i
1 or U j

3V j
3 is a sub-

term of u2. Also, since u1u2 ⊂ A, we have |u1| < M by 7.10. Since
νx(u2) ≥ νx(U i

1V
i
1 ) > M3 > M2νx(u1) (and similarly for y), we have

|u2(r, s)| > M2|u1(r, s)|, i.e., |aj
3a4(p, q)| > M2|ai

1a
m
2 (p, q)|. On the other

hand, it follows from 7.13(5) that |aj
3a4(p, q)| < M2|ai

1a
m
2 (p, q)| and we have

obtained a desired contradiction. �

7.15. Lemma. Let A = ai
1a

m
2 · aj

3a4 be as in 7.14 and let p, q, r, s be terms
such that A(p, q) = A(r, s). Then pq = rs.

Proof. Clearly, U i
1(p)V i

1 (q) = U i
1(r)V

i
1 (s). If U i

1(p) = U i
1(r) and V i

1 (q) =
V i

1 (s), then p = r and q = s. The other case is U i
1(p) = V i

1 (s) and V i
1 (q) =

U i
1(r).
Suppose p 6= s. Then these two terms must be of different lengths, and

it is possible to consider, without loss of generality, only the case |p| > |s|.
Clearly, |p| ≥ 2|s|. We have |U i

1| = 2+i(N−2)+c and |V i
1 | = 2+i(N−2)+d

for some 0 ≤ c, d < N , so that

(2 + i(N − 2) + c)|p| = |U i
1(p)| = |V i

1 (s)| = (2 + i(N − 2) + d)|s|

from which we get

2(2 + i(N − 2) + c)|s| ≤ (2 + i(N − 2) + d)|s|



26 J. JEŽEK

and consequently i < N . This contradiction proves p = s, and q = r can be
proved similarly. �

7.16. Theorem. The set of xy-equations is good.

Proof. It follows from the previous lemmas that the set of 5-special equations
is good. The set of xy-equations is the union of the five sets of equations
considered and proved to be good in this section. �
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[5] J. Ježek, The lattice of equational theories. Part IV: Equational theories of finite alge-

bras. Czechoslovak Math. J. 36, 1986, 331–341.
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