COMMUTATIVE SEMIGROUPS THAT ARE SIMPLE
OVER THEIR ENDOMORPHISM SEMIRINGS

JAROSLAV JEZEK, TOMAS KEPKA, AND PETR NEMEC

ABSTRACT. In the paper, commutative semigroups simple over their endomorphism
semirings are investigated. In particular, commutative semigroups having just two
fully invariant congruences are classified into five basic types and each of these types
is characterized.

Congruence-simple (universal) algebras (i.e., those possessing just two congru-
ence relations) appear as keystone in many algebraic structure theories, but not
always. Sometimes, the simple algebras are too many and difficult to handle
and sometimes they are quite few. The latter apllies to commutative semigroups
(abelian groups included). Congruence-simple commutative semigroups are just
two-element semilattices, two-element constant semigroups and p-element cyclic
groups, p being a prime. All of these semigroups are finite and tame in many
situations. Now, the scenery becomes much wilder if we consider commutative
semigroups that are simple over their automorphism groups (i.e., non-trivial com-
mutative semigroups without non-trivial invariant congruences). A few pieces of in-
formation concerning these semigroups (let us call them amc-simple) can be found
in [6] (but see also [7], [9], [10], [11], [12], [14], [15] and [16]).

In the finite case, we do not get much more. Namely, if A is a finite amc-simple
commutative semigroup then either A is simple (and then it is one of the semigroups
mentioned in the preceding paragraph) or A is a semilattice with at least three
elements such that a +b = c+d for all a,b,c,d € A, a # b, ¢ # d. In the infinite
case, we get many others. Just one example: Put A = Z x Z (the set of ordered
pairs of integers) and (k,m) @ (I,n) = (min(k,!), min(m,n)) then A(®) becomes
an amc-simple semilattice (notice that A(®) is not a chain).

The aim of the present note is to investigate commutative semigroups that are
simple over their endomorphisms semirings (i.e., non-trivial commutative semi-
groups without non-trivial fully invariant congruences). Some related results are
available in [4] and [5].
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1. BASIC NOTIONS

Throughout the paper, let A = A(4) be a commutative semigroup and F =
End(A(+)) be the full endomorphism semiring of A (clearly, F is a unitary semiring
and A is a left F-semimodule). Further, N denotes the set of positive integers, Ny
is the set of non-negative integers, 7Z is the set of integers, Q is the set of rational
numbers, R is the set of real numbers and R is the set of positive real numbers.
As usual, 04 (04, resp.) will denote the neutral (absorbing, resp.) element of A
and 04 ¢ A means that A has no neutral element. If z ¢ A then Ay = AU {z} is
a semigroup such that A is a subsemigroup of Ay and x+ 2 = x for all z € Ay (thus
z =04,). Further, for every X C Aand a € A, we put Xg = XU{z} and a+ X =
{a+ulue Xo}=(a+ X)U{a}. For a € A, we denote E(a) ={ f(a)|f € E}.

A subset I of A is an ideal if I # () and A+ 1 C I (then 8 = (I x I) U
id4 is a congruence of A and the corresponding factor will be denoted by A/I).
A congruence r of A is said to be fully invariant if f(r) = {(f(a), f(b))]|(a,b) €
r} C r for every f € E. Similarly, a subsemigroup B (an ideal I, resp.) of A is
fully invariant if f(B) C B (f(I) C I, resp.) for every f € E. Now, we shall say
that A is

— emc-simple if A has just two fully invariant congruences (then |A| > 2 and
ida, A x A are the congruences);

— ems-simple if |A| > 2 and |B| = 1 whenever B is a fully invariant subsemi-
group with B # A;

— emi-simple if |A| > 2 and |I| = 1 whenever [ is a fully invariant ideal of A
with I # A (if such an ideal I exists then I = {04}, i.e., A has just two
fully invariant ideals);

— a semilattice if it satisfies the identity 2z = = (i.e., A is idempotent);

— constant if |[A+ Al =1 (le,z+y=x+ 2);

— zeropotent (or nil of class 2) if it satisfies the identity 2z = 3y (then 2a = o4
for every a € A;

— a nil-semigroup of class m € N, m > 2, if mz = (m + 1)y (then ma = 04
for every a € A;

— a nil-semigroup if o4 € A and for every a € A there is m € N with ma = o4;

— cancellative if a + b = a + ¢ implies b = ¢;

— archimedean if A/(A + a) is a nil-semigroup for every a € A (then A/I is
a nil-semigroup for every ideal I);

— strongly archimedean if it is archimedean, cancellative and not a group.

For every n € N, the transform ¢, = ¢, a4 defined by ¢, (a) = na for every
a € A, is an endomorphism of A. Hence @, : N — E, &#(n) = ¢, is a unitary
homomorphism of semirings.

Now, let r be a fully invariant congruence of A, 7 : A — A/r be the natural
projection and denote m(a) by a/r. For every f € E and a € A put ¥(f)(a/r) =
f(a)/r. Then¥(f) € End(A/r) and ¥ : E — End(A/r) is a unitary homomorphism
of semirings. Clearly, ¥(on,4) = ¢n,a/r for every n € N. If s is a fully invariant
congruence of A/r then 771(s) = {(a,b) € A x A|(rw(a),7(b)) € s} is a fully
invariant congruence of A and r C 7 !(s). Clearly, 7~ %(s) = r iff s = ida/r,
and 77 1(s) = A x Aiff s = A/r x A/r. Thus A/r is emc-simple, provided that r
is a maximal proper fully invariant congruence of A.
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1.1 OBSERVATION. Consider the following relations on A:

04 ={(a,b)|mbe A+ a and na € A+ b for some m,n € N},
oa={(a,b)|a+c=0b+ cfor some ce A},

Ta={(a,b)|a€b+Agand b€ a+ Ay},

oy, = ker(p,,) (for n € N),

Or = (I xI)Uidy (for a fully invariant ideal I),

v8 ={(a,b)|(a+ B)N(b+ B) # 0} (for a fully invariant subsemigroup B),
0n = {(a,b

a
a

|a + nu = b+ nv for some u,v € A} (for n € N),

(a,b)
srn = { (a,b) | (na,nb) € r} (for a fully invariant congruence r and n € N),
euw =1{(a,0)|a+ f(u) + g(v) = b+ g(u) + f(v) for some f,g € E} (u,v € A),
A ={(a,b) [forall fe B,z € A, f(a)+xz=wiff f(b)+x=w} (forwe A).

The following observations are straightforward, fairly basic and folklore to much
extent. Henceforth, we shall not attribute them to any particular source.

(i) All the relations defined above are fully invariant congruences of A.

(ii) 04 is the smallest conguence such that the corresponding factor is a semilattice.
Clearly, p4 = id 4 iff A is a semilattice and o4 = A X A iff A is archimedean.

(iii) 74 C pa and 74 = A x A iff A is a group.

(iv) 04 is the smallest congruence such that the corresponding factor is cancellative.
(v) Assume that o, = A X A, i.e., na = nb = o for all a,b € A. Then 20 = o
and o+ a= (n+ 1)a = p,r1(a) for every a € A. If ayy1 = A X A then 0 = 0y is
absorbing and A is a nil-semigroup. If «;, 11 = id4 then o+ a = a for every a € A,
hence o =04 and A is a group.

(vi) If B is a fully invariant subsemigroup of A then B x B C yp. If yg = id4 then
B ={o0},20=o0and (a+0,a) € vp for every a € A. Thus 0 =04 and f(04) =04
for every f € E.

(vii) The sets I1 = {2a4+u|a € A,u € Ag}, Is ={2a+bla,be A} and Is = A+ A
are fully invariant ideals of A, 81, C B, C Br,, Br, is the smallest congruence such
that the corresponding fcctor is zeropotent and fy, is the smallest congruence such
that the corresponding factor is constant.

(viii) Clearly, 6; = A x A and ¢, is cancellative (i.e., (a + ¢,b + ¢) € §,, implies
(a,b) € 0,) and (na,nd) € §,, (a,a + nb) € J, for all a,b € A (in particular, if
0p, = ida then na = nb = 04 for all a,b € A). Further, d,, is the smallest congru-
ence such that the corresponding factor is a torsion group of exponent n. If A is
cancellative then, clearly, d,, = A x A for every n € Niff §, = A x A for every prime
p iff the difference group G = A — A is divisible.

(ix) Let r be a cancellative fully invariant congruence of A and denote B = A/r.
Then s, is cancellative for every n € N. If s,.,, = A x A for some n € N then B
is a torsion group of exponent n. If s, ,, = r for all n € N then the difference group
B — B is a torsionfree group.

(x) For all u,v € A, (u,v) € €y, since u+ u + 2v = v + 2u + v. In particular,
€u,o 7 ida for u # v. Obviously, if A is cancellative then ¢, , is cancellative. Let r
be a fully invariant congruence with (u,v) € r. Then (f(u)+ g(v),g(u) + f(v)) € r
for all f,g € E, and consequently ¢, ,, C r if r is cancellative. Hence, if A is can-
cellative then €, , is the fully invariant cancellative congruence of A generated by
the pair (u,v).
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(xi) Let G be a groupoid and @ be the set of all homomorphisms ¢ : A — G.
Then r = Nkery, ¢ € &, is a fully invariant congruence of A. In particular, if A
is emc-simple and |p(A)| > 2 for at least one ¢ € & then r = id4, and hence A
imbeds into a cartesian power of G.

(xii) Let A be archimedean. Then A has at most one idempotent element. Ob-
viously, if 04 € A then A is a group. If A has no idempotents then (a,2a) ¢ o4
for every a € A, i.e., A/oa is strongly archimedean (indeed, if (a,2a) € o4 then
a+ b= 2a+ b for some b € A, however b + ¢ = ma for some m € N and ¢ € A,
and hence e = (m+1)a = a+b+c¢c =2a+b+c = (m+ 2)a is idempotent).
Consequently, if 04 = A x A then A has exactly one idempotent element.

2. EMC-SIMPLE SEMIGROUPS - BASIC CLASSIFICATION

2.1 Lemma. Assume that o4 = AX A and oy =ida for some k > 2. Ifa,b,c € A
are such that a + c = b+ ¢ then 2a = 2b.

Proof. Since (a,c) € Ax A = ga, there are i > 2 and d € A with ka = c+d. Now,
a+kia=a+c+d=b+c+d=>b+kia, and hence k(a + k'"ta) = ka + kla =
(k—la+a+ka=((k-1Da+b+ka=(k—2)a+b+a+kla=(k—2)a+
20+ kla = --- = kb+ kia = k(b+ k'"la). Thus (a + k""ta,b+ ki"ta) € ap = idy
and a+k*"'a = b+k*la. Proceeding by induction, we obtain 2b = b+a, and hence
2a = 2b by symmetry. O

2.2 Corollary. If p4 = A x A and oy = ida for at least one even k then A is
cancellative (i.e., o4 =idas). O

2.3 Lemma. Assume that ag = A X A. If a,b,c € A are such that a+c=b+ ¢
then 3a = 3b.

Proof. Since (a,c) € as and (b, ¢) € ag, we have 2a = 2¢ = 2b. Now, 3a = a+2a =
a+2c=a+c+c=b+c+c=b+2c=b+2b=3b. O

2.4 Corollary. If as = A X A and ap = ida for some k divisible by 3 then A is
cancellative. [

2.5 Lemma. Assume that ap = A X A = «a3. Then 2a = 3b for all a,b € A (i.e.,
A is zeropotent).

Proof. Since (2a,b) € as, we have 6a = 3b. Further, (3a,a) € a3, and hence
6a = 2a. O

2.6 Theorem. Let A be an emc-simple commutative semigroup. Then just one of
the following five cases takes place:
(1) A is idempotent (i.e., a semilattice);
(2) A is an abelian group;
(3) A is cancellative and a + b # a for all a,b € A (and then A is infinite);
(4) A is constant;
(5) A is zeropotent and A+ A = A (and then A is not finitely generated).

Proof. If p4 = id 4 then A is idempotent. In the opposite case, p4 = A X A. Now,
if ap = idy then A is cancellative by 2.2. On the other hand, if ap # id4 and A
is not cancellative then as = A x A = a3 by 2.4, and hence A is zeropotent by
2.5 (we will show in 5.7 that A is infinite if A4+ A = A, and then A is not finitely
generated - see 2.12). If A+ A # A then 1, = id4 and A is constant. Finally,
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assume that A is cancellative. If 04 ¢ A then a + b # a for all a,b € A and A is
infinite. In the opposite case, either 74 = A x A and A is a group or 74 = idy
and it follows that B = A\ {04} is a subsemigroup of A. Now, define a relation r
on A by r={(a,b)|for every f € E, f(a) =04 iff f(b) =04 }. One checks readily
that r is a fully invariant congruence of A. Clearly, (04,a) ¢ A for every a # 04.
Thus r = id 4, however (a,2a) € r, a contradiction. [

2.7 REMARK. If A is emc-simple and not a semilattice then p4 = A x A, and hence
A is archimedean. Further, if A is emc-simple and [ is a proper fully invariant ideal
of A then 8y = ida. Thus I = {0}, 0 = 04 is absorbing (i.e., A has just two
fully invariant ideals, namely A and {04}) and f(o) = o for every f € E. Finally,
an abelian group is emc-simple iff it is ems-simple.

Just for the sake of completeness, we include the following well-known result:

2.8 Theorem. A non-trivial abelian group A is emc-simple (and ems-simple) if
and only if it is either p-elementary for some prime p (i.e., A is a direct sum of
copies of the p-element cyclic group Z,(+)) or torsionfree divisible (i.e., A is a
direct sum of copies of the additive group Q(+) of rational numbers). [

The following lemma is quite familiar:

2.9 Lemma. Let A be a semilattice and a,b € A be such that a +b # a # b.
If v,y € A are arbitrary then there is an endomorphism f of A such that f(a) = x,
fla+b)=z+y and f(A) ={z,z+y}. O

2.10 Theorem. FEvery non-trivial semilattice is emc-simple and ems-simple.

Proof. Let A be a semilattice and r # id4 be a fully invariant congruence of A
and take (a,b) € 7, a # b. Then (a,a + b) € r and we can assume that a + b # a.
Let z,y € A and f be an endomorphism from 2.9. Then (z,z + y) € r and,
symetrically, (y,z+y) € r, hence (x,y) € r and r = A x A. Finally, every constant
transformation is an endomorphism, and hence A has no proper fully invariant
subsemigroups. [

The following result is very easy:

2.11 Theorem. FEvery non-trivial constant semigroup A is emc-simple and ems-
simple. O

2.12 REMARK. Let A be a finitely generated emc-simple commutative semigroup.
Then there is a congruence r of A such that the factor A/r is a (congruence-)simple
commutative semigroup. Now, just one of the following three cases takes place:
(1) A/r is a two-element semilattice and A is a finite semilattice;

(2) A/r is a two-element constant semigroup and A is a finite constant semigroup;
(3) A/r is a cyclic p-group for some prime p and then A is a finite p-elementary
group.

Notice that A is finite anyway.

3. EMC-SIMPLE CANCELLATIVE COMMUTATIVE SEMIGROUPS

3.1 Proposition. Let A be a cancellative commutative semigroup. The following
conditions are equivalent:

(i) ida and A x A are the only fully invariant cancellative congruences of A.
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(ii) For all a,b,c,d € A such that a # b there are f,g € E such that f(a) +
g(b) +c=g(a)+ f(b) +d.

Proof. If a # b then e, # ida (see 1.1(x)). O

3.2 REMARK. Notice that the equivalent conditions of 3.1 imply the following three
conditions:
(1) Forall a,b,c € A, a # b, there are f, g € E such that f(a)+g(b)+c = g(a)+ f (D).
(2) For all a,c,d € A, a # 04 there are f,g € E such that f(a)+c=g(a)+d.
(3) For all a,b € A, a # 04, there are f,g € E with f(a) +b = g(a).

Further, if A satisfies the conditions of 3.1 and 04 ¢ A then §,, = A x A for all
n € N, and hence the difference group G = A — A is torsionfree and divisible, i.e.,
for every a,b € A and n € N there are ¢,d € A such that a + nd = b+ nc.

3.3 Lemma. Let A be an archimedean commutative semigroup such that A has
no proper fully invariant ideal. Then:

(i) If r is a fully invariant congruence of A such that (w,2w) € r for some w € A
then A/r is a group.

(ii) If w € A is such that w # 2w and r, s are fully invariant congruences of A such
that r G s and r is mazimal with respect to (w,2w) ¢ r then A/s is a group.

(iii) If w € A is such that 2w # 4w, r is a fully invariant congruence mazimal
with respect to (2w, 4w) ¢ r, and A/s is not a group whenever s is a fully invariant
congruence of A such that r g s # Ax A then B = AJr is emc-simple of type

2.6(2) or 2.6(3).

Proof. (i) If v € A is such that (v,2v) € r then (w,v) € r. Indeed, since A is
archimedean, we have w+x = mv and v+y = nw for suitable z,y € Aand m,n € N.
However (w,nw) € r, (v,mv) € r, and hence (w + x,v) € r and (v + y,w) € r.
Consequently, (2w + z,v+w) € r and v+ y,w+v) €r. As (w+z,2w+zx) €T
and (v +y,2v +y) € r, we obtain (w+ x,v+w) € r and (v + y,w + v) € r, hence
(w+z,v+y) €rand (v,w) €r, as desired. If f € E then (f(w),2f(w)) € r, and
so (w, f(w)) € r. Since F(w) + A is a fully invariant ideal, for every a € A there
are b€ A and g € E with g(w) + b = a. Then (w+ b,a) = (w + b, g(w) +b) € r,
and hence (2w + b,a + w) € r. Since (2w + b,w + b) € r, we have (2w + b,a) € r
and (a,a + w) € r. Finally, there are ¢ € A and m € N with a + ¢ = mw, hence
(a+ ¢, w) € r and we conclude that A/r is a group.

(ii) We have (w,2w) € s and (i) applies.

(iii) Let m : A — B be the natural projection and t # idg be a fully invariant
congruence of B. Then s = 77 1(t) ((a,b) € s iff (w(a), m(b)) € t) is a fully invariant
congruence of A and r G s. By (ii), A/s is a group. Thus s = Ax Aandt = Bx B.
The rest is clear from 2.6. O

3.4 Theorem. A non-trivial cancellative commutative semigroup A is emc-simple
if and only if it satisfies the following three conditions:

(1) Foralla,be A there are c € A and m € N such that a+c=mb (i.e., Ais
archimedean,).

(2) For all a,b € A there are c € A and f € E such that f(a) +c=10b (i.e., A
has no proper fully invariant ideal).

(3) Foralla,b,c,d € A such that a # b there are f,g € E with f(a)+g(b)+c =
g(a) + f(b) +d.
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Proof. First, suppose that the conditions (1),(2) and (3) are satisfied and let r be
a fully invariant congruence of A. If (w,2w) € r for some w € A then A/r is
a group by 3.3(i), hence r is cancellative and r = A x A by 3.1. On the other hand,
it (w,2w) ¢ r for every w € A then (2w,4w) ¢ r as well. Fixing w € A, let r; be
a fully invariant congruence of A maximal with respect to (2w, 4w) ¢ r and r C rq.
Combining 3.1 and 3.3(iii), we get 71 = ida, and hence r = ids. The converse
implication is clear (cf. 2.7 and 3.1). O

3.5 REMARK. Now, let A be a cancellative commutative semigroup without neutral
element. Denote by G = A — A the difference group of A and define a relation <4
on G by <g= {(u,v)|v—u € A}Uidy. Clearly, <4 is an order relation on the group
G and A ={u € G|0g <a u} is the cone of positive elements. Obviously, if A is
archimedean then, for alla € A and u € G, there is m € N with u <4 ma. For every
f € E, define an endomorphism f of G by f(a—b) = f(a)— f(b) for all a,b € A. The
mapping f +— f is an injective unitary homomorphism of the semiring £ = End(A)
into the ring End(G). The image E is a subsemiring of End(G). Obviously, if
¢ € End(G) then ¢ € E iff p(A) C A. Put R = E — E (ie., R C End(G) and
R is the difference ring of the semiring F). It is easy to see that the semigroup A
satisfies the equivalent conditions of 3.1 iff G is a simple R-module.

3.6 REMARK. Let P be an additively cancellative parasemifield (i.e., a semiring,
where the multiplicative semigroup is a group). Clearly, P(+) satisfies the condition
3.4(1) iff for every a € P there are b € P and m € N such that 1p + b = ma
(equivalently, for every a € P there are b € P and m € N with a +b = mlp).
Further, we have 2b~'a - a + 2;1b = b for all a,b € P, and hence the condition
3.4(2) is always true for P(+).

3.7 EXAMPLE. Let r € R™ be a transcendental number and F = Q(r). Put
A={>a?la; € F\{0},1 <i<neN}and B=F*" (= FUR"). Clearly,
A C B, both A abd B are subparasemifields of Rt and A is just the set of the
numbers

fi(r) 4+ -+ f3(r)
g%(r)

Now, we see that r € B\ A, A # B and A— A= F = B — B. Both the additive
semigroups A(+) and B(+) satisfy the conditions 3.4(2),(3) and B(+) satisfies
3.4(1) (thus B(+) is emc-simple). On the other hand, A(+) does not satisfy 3.4(1)
(we have 4 ¢ 1+ A for every m € N).

T

7nEN7 fl""7fn7g€Q[x}\{0}.

3.8 ExAMPLE. Let A = {q € Q" |¢ > 1}. Then A is a subsemiring of Q*
and A(+) satisfies 3.4(1),(3). On the other hand, since f(q) # 1 for every ¢ > 1
and f € End(A(+)), I = {q € A|q > 1} is a fully invariant ideal of A, and so
A(+) does not satisfy 3.4(2).

3.9 ExaMPLE. Let A = Q\ {0,1,—1}. Then A(-) is a cancellative commutative
semigroup without neutral element. Clearly, A satisfies 3.4(1),(2), however A does
not satisfy 3.4(3).

3.10 EXAMPLE. Let F be a subfield of R and A = F™(+4). Then A" is emc-imple
for every n € N.
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4. HOMOMORPHISMS OF STRONGLY ARCHIMEDEAN
COMMUTATIVE SEMIGROUPS INTO RT (+)

In 4.1 — 4.6, we assume that A is archimedean. Let B be a subsemigroup of A
and ¢ : B — R*(+) be a homomorphism such that ¢(a) > ¢(b) whenever a,b € B
and a € b+ A. Further, in Ay we formally put ¢(0) = 0. Let w € A be arbitrary
and put

p(w) = sup { 2lar = ¢loa) ;nw(%)

a1 € B,as € By,m € N,ag € Ag, mw + as = a; +a3}

and

‘ by € B,by € Byg,n € N b3 € Ay, by = nw + by +b3}.
The very basic idea of the following five easy lemmas goes back to [8] (but see
and consult also [1], [2], [3] and [13]).

4.1 Lemma. (i) 0 < p(w) < q(w) < 4o0.
(i) If w € B then p(w) = q(w) = p(w). O

Now, put C,, = (B + Nw) U B, i.e., Cy is the subsemigroup of A generated
by BU {w}.

4.2 Lemma. Let ¢ : C,, — RY(+) be a homomorphism such that ¢|B =
and Y(u) > (v) whenever u,v € Cy are such that uw € v+ A. Then p(w)

P(w) <gq(w). O

4.3 Lemma. (i) If r € RT is such that p(w) <7 and m € N, a € By, b € B,
c € Ay are such that mw + a = b+ ¢ then p(a) +mr > o(b).

(ii) If r € RT is such that r < g(w) and n € N, a € By, b € B, ¢ € Ay are such
that b = nw + a + ¢ then nr 4+ p(a) < p(b).

(iii) If r € RT is such that p(w) < r < q(w) and k € N, a € By, b € B are such
that kw = a+ b then p(b) = kr + ¢(a). O

4.4 Lemma. Let A be cancellative and r € RY be such that p(w) < r < q(w).
If ki1,ks € Ny and by,by € By are such that kyw + a; = kow + as € A then
kir + @(ar) = kar + ¢(az). O

4.5 Lemma. Assume that A is cancellative, 04 ¢ A and r € RY is such that
p(w) < 7 < q(w). Then there is a homomorphism v : C,, — RY(+) such that
Y|B = ¢, Y(w) = r and Y(u) > Y(v) whenever u,v € Cy are such that u €
A+w. O

¥
<

4.6 Proposition. Let A be cancellative and 04 ¢ A. For every a € A there is
a homomorphism @, : A — RT(+) such that pq(a) = 1.

Proof. Let B denote the set of all ordered pairs (B, ¢), where B is a subsemigroup
of A and ¢ : B — R (+) is a homomorphism such that ¢(a) > ¢(b) whenever
a,b € A, a € b+ A. The set B is ordered by inclusion. By 4.5, if (B,¢) is
maximal in B then B = A. Finally, if a € A then Na is isomorphic to N(+), and
hence the mapping na +— n is an injective homomorphism of B = Na into R (+)
anda— 1. O
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4.7 Theorem. Let A be emc-simple of type 2.6(3). Then A imbeds into a cartesian
power of R (+).

Proof. By 3.4, A is strongly archimedean. The rest is clear from 4.6. [

4.8 EXAMPLE. Let G = Za(+) X Z(+) and A = {(i,m) € G|m > 1}. Then A is
a subsemigroup of G, G = A — A is the difference group of A and A is a strongly
archimedean semigroup. Of course, 2(1,1) = 2(0, 1), and hence A does not imbed
into any cartesian power of RT (+).

4.9 Proposition. Let A be an archimedean commutative semigroup. The following
conditions are equivalent:

(i) A has no idempotent.
(i) For every a € A there is a homomorphism ¢, : A — RY(+) with p,(a) = 1.

Proof. If (i) holds then A/o 4 is strongly archimedean and 4.6 applies. The converse
is obvious. O

4.10 REMARK. Let A be a commutative semigroup and ¢ : A — R*(4) be
a homomorphism. Define a relation < on A by a < b iff either a = b or ¢(a) <
©(b). One checks readily that this relation is a compatible (partial) order relation
and a < a4+ b for all a,b € A (i.e., every element from A is strictly positive
in the order). Furthermore, the order is archimedean in the following sense: For all
a,b € A there is m € N with a < mb.

5. ENDO-C-SIMPLE ZEROPOTENT SEMIGROUPS

5.1 Lemma. Letw € A be such that E(w) = {w} and Ay = AX A. Then w = o4
is absorbing and A+ A = {w} (i.e., A is a constant semigroup).

Proof. E(w) = {w} implies 2w = w. If f € F and a € A then (a,w) € Ay,
f(w)+w = 2w = 2w = w, and hence f(a) + w = w. In particular, a + w = w
and w is absorbing. Then, of course, ida(w) +b = w + b = w for every b € A,
and therefore a +b=1idy +b=w foralla,bec A O

5.2 Lemma. Leto =04 € A be absorbing and E(o) = {o}. Ifr is a fully invariant
congruence of A such that r ¢ X, then the set I = {a € A|(a,0) € v} is a fully
invariant ideal of A and |I| > 2.

Proof. Since r € X,, we have (a,b) € 7\ A, for some a,b € A. Then, say, f(a)+z =
o# v = f(b)+ x for some f € F and z € A. Of course, (o,v) € r and |I| > 2.
The rest is clear. [

5.3 Proposition. Let A be emi-simple, 0 = 04 € A, E(0) = {o} and A+ A # {o}
(i.e., A is not constant). Then the semigroup A/X, is emc-simple.

Proof. By 5.1, A\, # id4. Hence, using 5.2, )\, is a maximal proper fully invariant
congruence of A, and so A/), is emc-simple. [

The following assertion is obvious:

5.4 Lemma. Let o =04 € A be absorbing and E(o) = {o}. Then:
(1) A/X, is a semilattice iff a + b= o for all a,b € A such that 2a + b = o;
(i1) A/X, is constant iff A+ A+ A= {o}. O
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5.5 Proposition. Let A be emi-simple, o = oa € A, E(o) = {0} # A+ A
and 2a +b = 0 # a+ b for some a,b € A. Then the factorsemigroup A/)\, is
emc-simple of type 2.6(5). In particular, A is emc-simple iff \, = id4.

Proof. By 5.3, the factorsemigroup B = A/), is emc-simple, B is not a semilattice
with respect to 5.4(i) and, of course, B is not cancellative. Finally, I = A+ A is a
fully invariant ideal, however I # {o}, and hence ] = A. Then A = A+ A+ A and
B is not constant due to 5.4(ii). Now it remains to use 2.6. O

5.6 Theorem. Let A be a non-trivial zeropotent semigroup and o = 04. Then A
is emc-simple of type 2.6(5) (i.e., A is not constant) if and only if the following two
conditions are satisfied:
(1) E(a) + A = A for every a € A\ {o} (i.e., for all a,b € A\ {o} there are
f€FE andce A with f(a)+¢c=0b).
(2) For all a,b € A\ {0}, a # b, there are g € E and d € A such that {0} G
{9(a) +d, g(b) + d}.

Proof. First, assume that A is emc-simple and not constant. If a € A\ {0} then
E(a)+A is a fully invariant ideal, and hence E(a)+A = A (otherwise E(a)+A = {o}
and A is constant). Of course, A\, = id 4 (otherwise A\, = A x A and A is constant
by 5.1) and (2) immediately follows. Conversely, assume that the conditions (1) and
(2) are satisfied. Of course, (1) implies that A is not constant and I = A whenever
I is a fully invariant ideal of A with I # {o}. Further, the set J ={a € A|(a,0) €
Ao } is a fully invariant ideal of A, hence J = {0} (otherwise J = A, A, = A x A
and A is constant) and (2) implies that (a,b) ¢ A, whenever a,b € A\ {0} and
a # b. Thus A\, = id4, however A is neither idempotent nor cancellative, and so A
is emc-simple of type 2.6(5) by 5.3 and 2.6. O

5.7 REMARK. Suppose that A is non-trivial, zeropotent and satisfies 5.6(1) (i.e.,
A is emi-simple with A + A = A).

(i) Take b,c € Asuch that a =b+c# o4 andput K = {f € E|be A+ f(a) },
L ={ge FE|ce A+ g(a)}. Obviously, both K and L are non-empty subsets
of E. If f1, fo € K then, for some u,v € A, u+ fi(a) = b= v+ fa(a) and b =
u+ f1(b+c¢) =u+ fi(v) + fifz(a) + fi(c) and we see that fifo € K. Proceeding
similarly, we can show that KK UKL C K nad LLU LK C L. Furthermore,
it h € KN L then, for some u,v € A, b = u+ h(a), c =v+ h(a) and 04 # a =
b+c=u+v+2h(a) =u+v+04 =04, a contradiction. Thus K N L = . The set
M = K U L is a subsemigroup of the multiplicative semigroup F(-) and both K
and L are right ideals of M. Notice that ids ¢ M.

(i) Take z € A, z # 04, and define a relation ¢ on the set E(z) by ¢t = idg(.) U
{(f(2),9(2))| f,g € F and f(z) € A+ g(z) }. Clearly, ¢ is reflexive and transitive.
Moreover, if f(z) = a + g(z) and g(z) = b+ f(z) for some a,b € A then f(z) =
a+b+f(2) =2(a+b)+ f(2) = oa+f(z) = 04. Symmetrically, g(z) = 04 and we see
that ¢ is antisymmetric. Thus ¢ is an order relation on E(z) and 04 is the smallest
element in F(z). On the other hand, if 04 # f(z) € E(z) then f(z) = b+c for some
b,c € A and, with respect to 5.6(1), b = g(z) +u and ¢ = k(z) +v for some g,k € F
and u,v € A. Clearly, (f(2),9(2)) € t and (f(2),k(z)) € t. If f(z) = g(z) = k(2)
then f(z) =b+c=2f(z) + u+ v = 04, a contradiction. Thus the set F(z) has
no maximal element and the sets E(z), E and A are infinite.

5.8 EXAMPLE. Let 7 denote the set of all infinite countable subsets of an un-
countable set S and put S = 7 U {S}. Define an addition on S by R+ T = RUT
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if RNT = (0 and R+ T = S otherwise. Then S becomes a commutative zeropotent
semigroup, S +S = S and os = S. One checks easily that automorphisms operate
transitively on 7 and the conditions 5.6(1),(2) are satisfied, i.e., S is emc-simple.

5.9 EXAMPLE. Let Z denote the set of all infinite subsets of N and define an addition
onZby I+J=1IUJifINJ=0and I+ J = N otherwise. Again, Z becomes
a commutative zeropotent semigroup, Z +7Z =7 and oz = N.

Let I, J € Z be such that I # N # J and « be a bijection of I onto J. For K € Z,
put f(K)={a(m)|me K} CJ whenever K C I and f(K) = N otherwise. Then
f(I)=J and f is an endomorphism of Z(+). For, let K,L € Z. If f(K) = N then
J(K)+f(L)=N,K ¢ I, K+L ¢ I and f(K+L)=N. Symmetrically, if f(L) =N
then f(K)+ f(L) = N= f(K + L). Now, suppose that f(K) # N # f(L). Then
KULCI. If KNL = 0 then, a being injective, f(K) N f(L) = # and we have
J(K+L)=f(KUL)= f(K)U f(L) = f(K)+ f(L). Finally, if K N L # ) then
KAL) C ()N F(L), hence f(K)N f(L) # 0 and f(K +L) = N = f(K)+ f(L).

Now it is clear that endomorphisms operate transitively on Z\ {N} and Z satisfies
the conditions 5.6(1),(2). Thus 7 is emc-simple. Notice that automorphisms do not
operate transitively on Z \ {N}. Namely, if f is an automorphism of 7 and I is a
cofinite subset of N then f(I) is cofinite.

5.10 EXAMPLE.([7]) Let R be a subsemigroup of a left cancellative semigroup
S = S(-) such that aS NbR # @ for all @ € S and b € R. Furthermore, assume
that uRNvR = ) for some u,v € R. Now, denote by R the set of all non-empty
subsets A of S such that AR C A and define an addition on R by A+ B=AUB
if ANB = () and A+ B = S otherwise. Then R, S € R, R becomes a commutative
zeropotent semigroup, og = Sand r = {(A,B) e RxR|forallC € R,ANC =
0 if BNC =0} is a congruence of R. Put S = R/r and denote by 7 the natural
projection of R onto S.

(i) We have (aS,5) € r for every a € S (indeed, if C € R and ¢ € C then
) # aSNcR C aS). Hence, if r = idg then S is a group.

(ii) If A,B € R and a € S then (a(A+ B),aAd + aB) € r. Indeed, if ANB =0
then A+ B = AUB and a(A+ B) = aAUaB. Since S is left cancellative, we have
aANaB = () and aA + aB = aA U aB. On the other hand, if AN B # () then
A+B=S5,a(A+ B)=aS,aANaB # 0, aA+aB = S and (aS,S) € r by (i).
(iii) If (A, B) € r then (aA,aB) € r for every a € S. Indeed, if C € R is such that
aANC # () then AND # (), where D = {d € S|ad € C} € R, hence BN D # ()
and aBNC # 0.

(iv) Using (ii) and (iii), we get a multiplicative homomorphism « : S — End(R),
where a(a)(m(A)) = w(ad) for alla € S, A € R.

(v) If o is a fully invariant congruence of S such that (7(R),n(S)) € o then
0 =8 x 8. Indeed, put s = 7 (o). Then s is a congruence of R, r C s
and if (A,B) € s then (ad,aB) € s for every a € S. Further, (R,S) € s,
(aR,aS) € s for every a € S and, since (aS,S5) € r C s, we get (aR,S) € s.
In particular, if A € R is such that (aR,A) € s then (A,S5) € s. On the other
hand, if a € S, (aR,A) ¢ s and B € R is maximal with respect to B C A
and BNaR =, then (A,BUaR) € s, (BUaR,S) = (B+aR,B+S) € s and,
again, (A,5) € S. Thuss=R xR and c =8 x S.

(vi) We have uR,vR € R, (uR,vR) ¢ r and (R,S) ¢ r. Indeed, R is a sub-
semigroup, and hence uR,vR € R. Further, (uR,vR) ¢ r, since uR N uR # ()
and vRNuR = 0. Finally, if (R,S) € r then (uR,uS) € r and (vR,vS) € r,
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however (uS,S) € r and (vS,S) € r, and hence (uR,vR) € r, a contradiction.
(vii) Now, suppose that 7 is a fully invariant congruence of & maximal with respect
to (m(R),n(S)) ¢ 7. Then 7 = S/7 is emc-simple of type 2.6(5). Indeed, 7 is a
non-trivial zeropotent semigroup. If g is a fully invariant congruence of 7 such that
0 # id, then o = ¥ ~1(p), v being the natural projection of S onto 7, is a fully
invariant congruence of S and 7 G 0. Thus (7(R),7(S)) € 0, 0 = S x S by (v),
and hence ¢ = 7 x 7. Finally, it remains to show that 7 is not constant. Let I
be a right ideal of R maximal with respect to vR C I and uRN I = @ (we know
that uRNovR = (). Then uR+ 1 =uwRUI, (WuRUI,R) €r, m(uR)+n(I) = n(R)
and (m(uR) +w(I),n(S)) & 7.

5.11 REMARK. As a particular case of 5.10, we can take for R the free semigroup
of words over two letters u,v and for S any group containing R. For instance, S
can be the free group over v and v or S can be chosen to be free metabelian over
u and v.

REFERENCES

Baer, R., Zur Topologie der Gruppen, J. Reine Angew. Math. 160 (1929), 208-226.

. Cartan, H., Une théoréme sur les groupes ordonnés, Bull. Sci. Math. 63 (1939), 201-205.

. Conrad, P. F., Right-ordered groups, Michigan Math. J. 6 (1959), 267-275.

. El Bashir, R., Kechlibar, M. and Kepka, T., Commutative semigroups with few fully invariant

congruences I., Acta Univ. Carolinae Math. Phys. 46/1 (2005), 49-64.

, Commutative semigroups with few fully invariant congruences II., Acta Univ. Car-
olinae Math. Phys. 46/1 (2005), 65-75.

6. El Bashir, R. and Kepka, T., Commutative semigroups with few invariant congruences, Semi-
group Forum 64 (2002), 453-471.

, Commutagive zeropotent semigroups with few invariant congruences, Czech. Math.
J. 58 (2008), 865-885.

8. Holder, O., Die Aziome der Quantitdt und die Lehre vom Mass, Berichte iber die Verhand-
lungen der Koniglich Sachsischen Gesselshaft der Wissenschaften zu Leipzig, Mathematisch-
Physische Classe 53 (1901), 1-64.

9. Holland, C. W. and McCleary, S. H., Wreath products of ordered permutation groups, Pacific
J. Math. 31 (1969), 703-716.

10. Jezek, J., Simple semilattices with two commuting automorphisms, Algebra Universalis 15
(1982), 162-175.

11. Jezek, J. and Kepka, T., Simple semimodules over commutative semirings, Acta Sci. Math.
Szeged 46 (1983), 17-27.

12. , Medial groupoids, Rozpravy CSAV 93/2 (1983), 96 pp..

13. Loonstra, F., Ordered groups, Proc. Nederl. Akad. Wetensch. 49 (1945), 41-66.

14. Maréti, M., Semilattices with a group of automorphisms, Algebra Universalis 38 (1997), 238
265.

15. McCleary, S. H., o-Primitive ordered permutation groups, Pacific J. Math. 40 (1972), 349-372.

16. , o-Primitive ordered permutation groups (II), Pacific J. Math. 49 (1973), 431-445.

N

DEPARTMENT OF ALGEBRA, MFF UK, SOKOLOVSKA 83, 186 75 PRAHA 8, CZECH REPUBLIC
E-mail address: jezek@karlin.mff.cuni.cz

DEPARTMENT OF ALGEBRA, MFF UK, SOKOLOVSKA 83, 186 75 PRAHA 8, CZECH REPUBLIC
E-mail address: kepka@karlin.mff.cuni.cz

DEPARTMENT OF MATHEMATICS, CZU, KAMYCKA 129, 165 21 PRAHA 6 — SucHDOL, CZECH
REPUBLIC
E-mail address: nemec@tf.czu.cz



