ON SEPARATING SETS OF WORDS IV

V. FLAŠKA, T. KEPKA AND J. KORTELAINEN

Abstract

Further properties of transitive closures of special replacement relations in free monoids are studied.

1. Introduction

This article is an immediate continuation of [1], [2] and [3]. References like I.3.3 (II.3.3, III.3.3, resp.) lead to the corresponding section and result of [1] ([2], [3], resp.) and all definitions and preliminaries are taken from the same source.

2. Complementary sequences

Troughout this note, let $Z \subseteq A^{+}$be a strongly separating set of words and let $\psi: Z \rightarrow A^{*}$ be a mapping with $\psi(z) \neq z$ for every $z \in Z$. Notice that then the corresponding replacement relation ρ ($=\rho_{Z, \psi}$) is irreflexive.

Two sequences $p_{0}, p_{1}, \ldots, p_{m}$ and $q_{0}, q_{1}, \ldots, q_{m}, m \geq 1$, of words will be called $((Z, \psi)-$ or ρ-) complementary if, for every $0 \leq i<m$, either $\left(p_{i}, p_{i+1}\right) \in \rho$ and $q_{i}=q_{i+1}$ or $p_{i}=p_{i+1}$ and $\left(q_{i}, q_{i+1}\right) \in \rho$. Notice that due to the irreflexivity of ρ, just one of the two cases holds.

Lemma 2.1. Let $p_{0}, p_{1}, \ldots, p_{m}$ and $q_{0}, q_{1}, \ldots, q_{m}$ be complementary sequences. Then:
(i) Both the sequences are λ-sequences.
(ii) $\left(p_{0}, p_{m}\right) \in \xi$ and $\left(q_{0}, q_{m}\right) \in \xi$.
(iii) If $\left(p_{0}, p_{m}\right) \notin \tau\left(\left(q_{0}, q_{m}\right) \notin \tau\right.$, resp.), then $p_{0}=p_{1}=\cdots=p_{m}$ $\left(q_{0}=q_{1}=\cdots=q_{m}\right.$, resp. $), q_{0}, q_{1}, \ldots, q_{m}\left(p_{0}, p_{1}, \ldots, p_{m}\right.$, resp. $)$ is a ρ-sequence and $\left(q_{0}, q_{m}\right) \in \tau\left(\left(p_{0}, p_{m}\right) \in \tau\right.$, resp.).
(iv) Either $\left(p_{0}, p_{m}\right) \in \tau$ or $\left(q_{0}, q_{m}\right) \in \tau$.

Proof. Easy.
Let $w_{0}, w_{1}, \ldots, w_{m}$ be a ρ-sequence and let $z \in Z$. Furthermore, let $\alpha_{i}=\left(p_{i}, z_{i}, q_{i}\right) \in \operatorname{Tr}\left(w_{i}\right)$ (so that $\left.w_{i}=p_{i} z q_{i}\right)$ for all $i=0,1, \ldots, m$. We will say that the ρ-sequence is $\left(z, \alpha_{0}, \ldots, \alpha_{m}\right)$-fluent if the sequences $p_{0}, p_{1}, \ldots, p_{m}$ and $q_{0}, q_{1}, \ldots, q_{m}$ are complementary.

The work is a part of the research project MSM0021620839 financed by MŠMT and the second author was supported by the Grant Agency of Czech Republic, No. 201/09/0296.

Lemma 2.2. Let $\left(w_{0}, w_{1}\right) \in \rho$ and $\alpha=\left(p_{0}, z, q_{0}\right) \in \operatorname{Tr}\left(w_{0}\right)$. Then $w_{0}=p_{0} z q_{0}$ and at least one of the following two cases holds:
(1) $w_{0} \xrightarrow{\alpha} w_{1},\left(w_{0}, w_{1}\right) \in \rho_{z}$ and $w_{1}=p_{0} \psi(z) q_{0}$;
(2) $w_{1}=p_{1} z q_{1}$ and the sequences p_{0}, p_{1} and q_{0}, q_{1} are complementary (and hence the sequence w_{0}, w_{1} is (z, α, β)-fluent, $\beta=$ $\left.\left(p_{1}, z, q_{1}\right)\right)$.

Proof. Assume that (1) is not true. Then there is $\gamma=\left(r, z_{1}, s\right) \in \operatorname{Tr}\left(w_{0}\right)$ such that $\gamma \neq \alpha$ and $w_{1}=r \psi\left(z_{1}\right) s$. We have $p_{0} z q_{0}=w_{0}=r z_{1} s$, where $p_{0} \neq r$ and $q_{0} \neq s$. Consequently, $\left|p_{0}\right| \neq|r|$ and $\left|q_{0}\right| \neq|s|$.

First, assume that $\left|p_{0}\right|<|r|$. Then $r=p_{0} r_{1}, r_{1} \neq \varepsilon, z q_{0}=r_{1} z_{1} s$, $\left|q_{0}\right|>|s|, q_{0}=s_{1} s, s_{1} \neq \varepsilon$ and $z s_{1}=r_{1} z_{1}$. From this, $r_{1}=z t$ and $s_{1}=$ $t z_{1}$ and we get $w_{0}=p_{0} z q_{0}=p_{0} r_{1} z_{1} s=p_{0} z t z_{1} s, q_{0}=t z_{1} s, r=p_{0} z t$, $w_{1}=r \psi\left(z_{1}\right) s=p_{0} z t \psi\left(z_{1}\right) s=p_{1} z q_{1}$, where $p_{0}=p_{1}, q_{1}=t \psi\left(z_{1}\right) s$ and $\left(q_{0}, q_{1}\right) \in \rho$.

Next assume that $|r|<\left|p_{0}\right|$. Then $p_{0}=r r_{1}, r_{1} \neq \varepsilon, r_{1} z q_{0}=z_{1} s$, $\left|r_{1}\right| \geq\left|z_{1}\right|, r_{1}=z_{1} t, s=t z q_{0}, p_{0}=r z_{1} t$. Now, $w_{0}=r z_{1} t z q_{0}$, $w_{1}=r \psi\left(z_{1}\right) s=r \psi\left(z_{1}\right) t z q_{0}=p_{1} z q_{1}$, where $q_{0}=q_{1}, p_{1}=r \psi\left(z_{1}\right) t$ and $\left(p_{0}, p_{1}\right) \in \rho$.

The lemma follows easily from I. 6.4 as well.
Lemma 2.3. Let $w_{0}, w_{1}, \ldots, w_{m}$ be a ρ-sequence and let $\alpha_{0}=\left(p_{0}, z, q_{0}\right) \in$ $\operatorname{Tr}\left(w_{0}\right)$ (so that $\left.w_{0}=p_{0} z q_{0}\right)$. Then at least one of the following two cases holds:
(1) $w_{0} \xrightarrow{\alpha_{0}} w_{1},\left(w_{0}, w_{1}\right) \in \rho_{z}$ and $w_{1}=p_{0} \psi(z) q_{0}$;
(2) There are $1 \leq n \leq m$ and $\alpha_{i}=\left(p_{i}, z, q_{i}\right) \in \operatorname{Tr}\left(w_{i}\right)$ (so that $\left.w_{i}=p_{i} z q_{i}\right), 0 \leq i \leq n$, such that the sequence $w_{0}, w_{1}, \ldots, w_{n}$ is $\left(z, \alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}\right)$-fluent and either $n=m$ or $n<m$ and $w_{n+1}=p_{n} \psi(z) q_{n} \quad$ (so that $\left(w_{n}, w_{n+1}\right) \in \rho_{z}$ and $\left.w_{n} \xrightarrow{\alpha_{n}} w_{n+1}\right)$.
Proof. Assume that (1) is not true and proceed by induction on m. If $m=1$ then 2.2 applies. If $m \geq 2$, we consider the sequence $w_{1}, w_{2}, \ldots, w_{m}$.

Remark 2.4. Consider the situation from 2.3 (2) and assume that $n<m$. Put $v_{0}=p_{0} z q_{0}=w_{0}, v_{1}=p_{0} \psi(z) q_{0}, v_{2}=p_{1} \psi(z) q_{1}, \ldots$, $v_{n}=p_{n-1} \psi(z) q_{n-1}$ and $v_{n+1}=p_{n} \psi(z) q_{n}=w_{n+1}$. Clearly, $w_{0}=$ $v_{0}, v_{1}, \ldots, v_{n}, v_{n+1}=w_{n+1}$ is a ρ-sequence, $v_{0}=w_{0} \xrightarrow{\alpha_{0}} v_{1}, w_{1} \xrightarrow{\alpha_{1}} v_{2}, \ldots$, $w_{n} \xrightarrow{\alpha_{n}} v_{n+1}=w_{n+1}$ and $w_{0}=v_{0}, v_{1}, \ldots, v_{n}, v_{n+1}=w_{n+1}, w_{n+2}, \ldots, w_{m}$ is a ρ-sequence. In particular, $\left(p_{0} \psi(z) q_{0}, w_{m}\right)=\left(v_{1}, w_{m}\right) \in \tau$.

3. Auxiliary results (a)

Lemma 3.1. Let $z_{1}, z_{2} \in Z$ and $r \in A^{*}$. Then $z_{1} r \psi\left(z_{2}\right)=\psi\left(z_{1}\right) r z_{2}$ iff at least (and then just) one of the following two cases holds:
(1) There are $s, t \in A^{+}$such that $s r=r t$ (see I.3.5) and $z_{1}=$ $\psi\left(z_{1}\right) s, z_{2}=t \psi\left(z_{2}\right) ;$
(2) There are $s, t \in A^{+}$such that $s r=r t$ and $\psi\left(z_{1}\right)=z_{1} s, \psi\left(z_{2}\right)=$ $t z_{2}$.

Proof. Easy.
Corollary 3.2. The following two conditions are equivalent:
(i) $z_{1} r \psi\left(z_{2}\right) \neq \psi\left(z_{1}\right) r z_{2}$ for all $z_{1}, z_{2} \in Z$ and $r \in A^{*}$.
(ii) $s r \neq r t$ for every $r \in A^{*}$ whenever $s, t \in A^{+}$and $z_{1}, z_{2} \in Z$ are such that either $z_{1}=\psi\left(z_{1}\right) s$ and $z_{2}=t \psi\left(z_{2}\right)$ or $\psi\left(z_{1}\right)=z_{1} s$ and $\psi\left(z_{2}\right)=t z_{2}$ (the latter case does not take place when ψ is strictly length decreasing).

Lemma 3.3. Let $\left(w_{0}, w_{1}\right) \in \rho$ and $\alpha=\left(p_{0}, z, q_{0}\right) \in \operatorname{Tr}\left(w_{0}\right)$ (see 2.2). If the equivalent conditions of 3.2 are satisfied, then just one of the cases 2.2 (1), (2) holds.

Proof. If both $2.2(1),(2)$ are true, then $p_{0} \psi(z) q_{0}=w_{1}=p_{1} z q_{1}$ and either $p_{0}=p_{1}$ and $\left(q_{0}, q_{1}\right) \in \rho$ or $\left(p_{0}, p_{1}\right) \in \rho$ and $q_{0}=q_{1}$. Assume the first case, the other one being similar. Then $\psi(z) q_{0}=z q_{1}, q_{0}=r z_{1} s$, $q_{1}=r \psi\left(z_{1}\right) s$ and $\psi(z) r z_{1}=z r \psi\left(z_{1}\right)$. The rest is clear from 3.2.

Remark 3.4. Assume that the equivalent conditions of 3.2 are satisfied and let $\left(w_{0}, w_{1}\right) \in \rho$. Then it follows from 3.3 that $w_{0} \xrightarrow{\alpha_{0}} w_{1}$ for a uniquely determined instance $\alpha \in \operatorname{Tr}\left(w_{0}\right)$.

Remark 3.5. Assume that the equivalent conditions of 3.2 are satisfied and consider the situation from 2.3. Then just one of the cases 2.3 (1), (2) holds. Furthermore, if 2.3 (2) is true, then the number n and the instances $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}$ are determined uniquely.

4. Auxiliary results (b)

In this section, let $z_{1}, z_{2} \in Z, z_{1} \neq z_{2}, r_{1}, r_{2}, s_{1}, s_{2} \in A^{*}, t_{1}=r_{1} z_{1} s_{1}$ and $t_{2}=r_{2} z_{2} s_{2}$.

Lemma 4.1. $t_{1} \neq t_{2}$ in each of the following six cases:
(1) $r_{1}=r_{2}$;
(2) $s_{1}=s_{2}$;
(3) r_{1}, s_{1} are reduced;
(4) r_{2}, s_{2} are reduced;
(5) r_{1}, r_{2} are reduced;
(6) s_{1}, s_{2} are reduced.

Proof. Easy to see (use I.6.4).
Lemma 4.2. Assume that the mapping ψ is length decreasing. Then $\left(t_{1}, t_{2}\right) \notin \tau$ in each of the following three cases:
(1) $\left|r_{1}\right|+\left|s_{1}\right| \leq\left|r_{2}\right|+\left|s_{2}\right|,\left|z_{1}\right| \leq\left|z_{2}\right|$ and at least one of these inequalities is sharp (equivalently, $\left|t_{1}\right|<\left|t_{2}\right|$);
(2) r_{1}, s_{1} are reduced, $\left|r_{1}\right|+\left|s_{1}\right| \leq\left|r_{2}\right|+\left|s_{2}\right|,\left|\psi\left(z_{1}\right)\right| \leq\left|z_{2}\right|$ and at least one of these inequalities is sharp;
(3) r_{1}, s_{1} are reduced and $\left|\psi\left(z_{1}\right)\right|<\left|z_{1}\right|$.

Proof. Easy (if r_{1}, s_{1} are reduced and $\left(t_{1}, t_{2}\right) \in \tau$, then $\left(r_{1} \psi\left(z_{1}\right) s_{1}, t_{2}\right) \in$ $\xi)$.
Corollary 4.3. Assume that the mapping ψ is strictly length decreasing and the words $r_{1}, r_{2}, s_{1}, s_{2}$ are reduced. Then $\left(t_{1}, t_{2}\right) \notin \xi$ and $\left(t_{2}, t_{1}\right) \notin$ ξ.

5. Auxiliary results (c)

In this section, let $z_{i} \in Z, r_{i}, s_{i} \in A^{*}$ and $t_{i}=r_{i} z_{i} s_{i}, i=1,2$, be such that $\left(t_{1}, t_{2}\right) \notin \xi$ and $\left(t_{2}, t_{1}\right) \notin \xi$ (see the preceding section). Put $\left(P\left(t_{1}, t_{2}\right)=\right) P=\left\{w \in A^{*} \mid\left(w, t_{1}\right) \in \xi,\left(w, t_{2}\right) \in \xi\right\}$ and denote by $\left(Q\left(t_{1}, t_{2}\right)=\right) Q$ the set of $w \in P$ such that $w=w^{\prime}$ whenever $w^{\prime} \in P$ and $\left(w, w^{\prime}\right) \in \xi$.

Lemma 5.1.

(i) If $w \in P$, then $\left(w, t_{1}\right) \in \tau,\left(w, t_{2}\right) \in \tau$ and $t_{1} \neq w \neq t_{2}$.
(ii) If $w \in P$, then $w \in Q$ if and only if $\left(w, w^{\prime}\right) \notin \rho$ for every $w^{\prime} \in P$.

Proof. Easy.
Remark 5.2. Assume that $P \neq \emptyset$. By III.6.4 (i), there exists at least one word $t \in A^{*}$ with $\left(t_{1}, t\right) \in \xi$ and $\left(t_{2}, t\right) \in \xi$. Then $\left(t_{1}, t\right) \in \tau$ and $\left(t_{2}, t\right) \in \tau$. Furthermore, if r_{i}, s_{i} are reduced, then $\left(r_{1} \psi\left(z_{1}\right) s_{1}, t\right) \in \xi$ and $\left(r_{2} \psi\left(z_{2}\right) s_{2}, t\right) \in \xi$.
Lemma 5.3. Assume that the relation ρ is regular (e.g., if ψ is strictly length decreasing - see III.7.7). Then for every $w \in P$ there exists at least one $w^{\prime} \in Q$ with $\left(w, w^{\prime}\right) \in \xi$.
Proof. Put $R=\{v \in P \mid(w, v) \in \xi\}$ and $M=\left\{\operatorname{dist}\left(v, t_{1}\right)+\operatorname{dist}\left(v, t_{2}\right) \mid v \in\right.$ $R\}$. Then M is a non-empty set of positive integers and if $w^{\prime} \in R$ is such that $\operatorname{dist}\left(w^{\prime}, t_{1}\right)+\operatorname{dist}\left(w^{\prime}, t_{2}\right)$ is the smallest number in M, then $w^{\prime} \in Q$. Notice that if ψ is strictly length decreasing and $w^{\prime} \in R$ is such that $\left|w^{\prime}\right|$ is the smallest number in $|R|$, then $w^{\prime} \in Q$.
Now, take $w \in Q$ and let $w_{0}^{(i)}, w_{1}^{(i)}, \ldots, w_{m_{i}}^{(i)}, m_{i} \geq 1, i=1,2$, be ρ-sequences such that $w_{0}^{(i)}=w$ and $w_{m_{i}}^{(i)}=t_{i}$.
Lemma 5.4. If $\left(w_{j}^{\left(i_{1}\right)}, w_{k}^{\left(i_{2}\right)}\right) \in \xi$ for $\left\{i_{1}, i_{2}\right\}=\{1,2\}$ and some $0 \leq$ $j \leq m_{i_{1}}, 0 \leq k \leq m_{i_{2}}$, then $w_{j}^{\left(i_{1}\right)}=w$.
Proof. We have $\left(w_{j}^{\left(i_{1}\right)}, t_{i_{1}}\right) \in \xi$ and $\left(w_{k}^{\left(i_{2}\right)}, t_{i_{2}}\right) \in \xi$. Since $i_{1} \neq i_{2}$, it follows that $w_{j}^{\left(i_{1}\right)} \in P$. But $w \in Q$ and $\left(w, w_{j}^{\left(i_{1}\right)}\right) \in \xi$. Consequently, $w_{j}^{\left(i_{1}\right)}=w$.

Lemma 5.5. $w_{1}^{(1)} \neq w_{1}^{(2)}$.
Proof. If $w_{1}^{(1)}=v=w_{1}^{(2)}$, then $v \in P,(w, v) \in \rho$ and $v=w$, since $w \in Q$. Thus $(w, w) \in \rho$, a contradiction with the irreflexivity of ρ.

Lemma 5.6. Assume that either τ is irreflexive (see III.3.3) or that the sum $m_{1}+m_{2}$ is minimal (for the word w). Then:
(i) $\left(w_{j}^{\left(i_{1}\right)}, w_{k}^{\left(i_{2}\right)}\right) \notin \xi$ for all $\left\{i_{1}, i_{2}\right\}=\{1,2\}, 0 \leq j \leq m_{i_{1}}, 0 \leq k \leq$ $m_{i_{2}}$.
(ii) All the words $w=w_{0}^{(1)}=w_{0}^{(2)}, w_{j_{i}}^{(i)}, j_{i}=1,2, \ldots, m_{i}, i=1,2$, are pair-wise different.

Proof. Easy (use 5.4).
Lemma 5.7. $\operatorname{tr}(w) \geq 2$ (i. e., w is not meagre).
Proof. Clearly, w is not reduced. On the other hand, if $\operatorname{tr}(w)=1$, then $w=p z q$, where $z \in Z$ and p, q are reduced. Consequently, $w_{1}^{(i)}=p \psi(z) q, w_{1}^{(1)}=w_{1}^{(2)}$, a contradiction with 5.5.

Lemma 5.8. $\operatorname{alph}(w) \subseteq \operatorname{alph}\left(t_{1}\right) \cup \operatorname{alph}\left(t_{2}\right)$.
Proof. Let, on the contrary, $w=p z q$, where $z \in Z$ and $z \notin \operatorname{alph}\left(t_{1}\right) \cup$ $\operatorname{alph}\left(t_{2}\right)$. Using 2.3 and 2.4 , we get ρ-sequences $v_{0}^{(i)}, v_{1}^{(i)}, \ldots, v_{m_{i}}^{(i)}, i=$ 1,2 , such that $v_{0}^{(i)}=w, v_{1}^{(i)}=p \psi(z) q$ and $v_{m_{i}}^{(i)}=t_{i}$. Then $v_{1}^{(i)}=v$, where $\left(v, t_{i}\right) \in \xi, v \in P$ and $v=w$ a contradiction with the irreflexivity of ρ.

Lemma 5.9. Assume that $z_{1} \neq z_{2}$ and $z_{1} \notin \operatorname{alph}\left(r_{2}\right) \cup \operatorname{alph}\left(s_{2}\right)$ (i.e., $\left.z_{1} \notin \operatorname{alph}\left(t_{2}\right)\right)$. If $w=p_{0} z_{1} q_{0}$, then the sequence $w=w_{0}^{(1)}, w_{1}^{(1)}, \ldots, w_{m_{1}}^{(1)}=$ t_{1} is $\left(z_{1}, \alpha_{0}, \ldots, \alpha_{m_{1}}\right)$-fluent, where $\alpha_{0}=\left(p_{0}, z_{1}, q_{0}\right), \alpha_{1}=\left(p_{1}, z_{1}, q_{1}\right)$, $\alpha_{m_{1}}=\left(p_{m_{1}}, z_{1}, q_{m_{1}}\right), p_{m_{1}}=r_{1}, q_{m_{1}}=s_{1}$ (then $\left(p_{0}, r_{1}\right) \in \xi$ and $\left.\left(q_{0}, s_{1}\right) \in \xi\right)$.

Proof. Proceeding by contradiction, assume that our result is not true. According to 2.3 and 2.4, there is a ρ-sequence $w=v_{0}^{(2)}, p_{0} \psi\left(z_{1}\right) q_{0}=$ $v_{1}^{(2)}, v_{2}^{(2)} \ldots, v_{m_{2}}^{(2)}=t_{2}$. Thus $v_{1}^{(1)}=v=v_{1}^{(2)},\left(v, t_{1}\right) \in \xi,\left(v, t_{2}\right) \in \xi$, $v \in P$ and $v=w,(w, w) \in \rho$, a contradiction with the irreflexivity of ρ.

Lemma 5.10. Assume that $z_{1} \neq z_{2}$ and $z_{1} \notin \operatorname{alph}\left(r_{1}\right) \cup \operatorname{alph}\left(r_{2}\right) \cup$ $\operatorname{alph}\left(s_{2}\right)$. Then $w \neq y_{0} z_{1} y_{1} z_{1} y_{2}$ for all $y_{0}, y_{1}, y_{2} \in A^{*}$.

Proof. Let, on the contrary, $w=y_{0} z_{1} y_{1} z_{1} y_{2}$. Then $\left(y_{0} z_{1} y_{1}, r_{1}\right) \in \xi$ and $\left(y_{2}, s_{1}\right) \in \xi$ by 5.9 and 2.1 (ii). Since $z_{1} \notin \operatorname{alph}\left(r_{1}\right)$, we have $\left(y_{0} \psi\left(z_{1}\right) y_{1}, r_{1}\right) \in \xi$ by 2.4 , and therefore $\left(y_{0} \psi\left(z_{1}\right) y_{1} z_{1} y_{2}, t_{1}\right) \in \xi$. On the other hand, $z_{1} \notin \operatorname{alph}\left(t_{2}\right)$, and so $\left(y_{0} \psi\left(z_{1}\right) y_{1} z_{1} y_{2}, t_{2}\right) \in \xi$ as well. Thus $y_{0} \psi\left(z_{1}\right) y_{1} z_{1} y_{2} \in P$, a contradiction with $w \in Q$ and $\psi\left(z_{1}\right) \neq z_{1}$.

Proposition 5.11. Assume that $z_{1} \neq z_{2}$ and r_{i}, si are reduced, $i=1,2$. Then there exist reduced words $x_{0}, x_{1}, x_{2} \in A^{*}$ such that just one of the following two cases takes place:
(1) $w=x_{0} z_{1} x_{1} z_{2} x_{2}, x_{0}=r_{1},\left(x_{1} z_{2} x_{2}, s_{1}\right) \in \tau,\left(x_{0} z_{1} x_{1}, r_{2}\right) \in$ τ and $x_{2}=s_{2}$ (then $w=r_{1} z_{1} x_{1} z_{2} s_{2},\left(x_{1} \psi\left(z_{2}\right) s_{2}, s_{1}\right) \in \xi$, $\left(r_{1} \psi\left(z_{1}\right) x_{1}, r_{2}\right) \in \xi$ and r_{1}, s_{2} are reduced);
(2) $w=x_{0} z_{2} x_{1} z_{1} x_{2}, x_{0}=r_{2},\left(x_{1} z_{1} x_{2}, s_{2}\right) \in \tau,\left(x_{0} z_{2} x_{1}, r_{1}\right) \in$ τ and $x_{2}=s_{1}$ (then $w=r_{2} z_{2} x_{1} z_{1} s_{1},\left(x_{1} \psi\left(z_{1}\right) s_{1}, s_{2}\right) \in \xi$, $\left(r_{2} \psi\left(z_{2}\right) x_{1}, r_{1}\right) \in \xi$ and r_{2}, s_{1} are reduced).

Proof. Combining 5.7, 5.8 and 5.10 (and the dual), we see that $\operatorname{tr}(w)=$ 2 and $\operatorname{alph}(w)=\left\{z_{1}, z_{2}\right\}$. According to I.6.4, either $w=x_{0} z_{1} x_{1} z_{2} x_{2}$ or $w=x_{0} z_{2} x_{1} z_{1} x_{2}$, where x_{0}, x_{1} and x_{2} are reduced. Assume the former equality, the latter being dual. Now, it follows from 5.9 that $\left(x_{0}, r_{1}\right) \in$ ξ. Since x_{0} is reduced, we get $x_{0}=r_{1}$. Furthermore, $\left(x_{1} z_{2} x_{2}, s_{1}\right) \in$ ξ and, since $z_{2} \notin \operatorname{alph}\left(s_{1}\right)$, we have $\left(x_{1} z_{2} x_{2}, s_{1}\right) \in \tau$. The rest is similar.

Remark 5.12. Consider the situation from 5.11 (and its proof) and assume that (1) is true (the other case being dual). Put $u_{1}=x_{1} \psi\left(z_{2}\right) s_{2}$ and $u_{2}=r_{1} \psi\left(z_{1}\right) x_{1}$. We have $\left(u_{1}, s_{1}\right) \in \xi$ and $\left(u_{2}, r_{2}\right) \in \xi$.
(i) If u_{1} is reduced, then $u_{1}=s_{1}, t_{1}=r_{1} z_{1} x_{1} \psi\left(z_{2}\right) s_{2},\left(w, t_{1}\right) \in \rho$ and $\left(t_{1}, u_{3}\right) \in \rho$, where $u_{3}=r_{1} \psi\left(z_{1}\right) x_{1} \psi\left(z_{2}\right) s_{2}$.
(ii) If u_{2} is reduced, then $u_{2}=r_{2}, t_{2}=r_{1} \psi\left(z_{1}\right) x_{1} z_{2} s_{2},\left(w, t_{2}\right) \in \rho$ and $\left(t_{2}, u_{3}\right) \in \rho$, where $u_{3}=r_{1} \psi\left(z_{1}\right) x_{1} \psi\left(z_{2}\right) s_{2}$.
(iii) If the equivalent conditions of II.7.3 are satisfied, then all the words $u_{1}, u_{2}, s_{1}, r_{2}$ are meagre. Now, if s_{1} is not reduced, then $s_{1}=y_{0} z_{3} y_{1}, z_{3} \in Z, z_{1} \neq z_{3} \neq z_{2}, y_{0}, y_{1}$ are reduced and $t_{1}=r_{1} z_{1} y_{0} z_{3} y_{1}$. If r_{2} is not reduced, then $r_{2}=y_{2} z_{4} y_{3}, z_{4} \in Z$, $z_{1} \neq z_{4} \neq z_{2}, y_{2}, y_{3}$ are reduced and $t_{2}=y_{2} z_{4} y_{3} z_{2} s_{2}$.

Remark 5.13. Assume that $P \neq \emptyset$ and choose $w^{\prime} \in P$ such that $m_{1}^{\prime}+m_{2}^{\prime}$ is minimal, where m_{1}^{\prime} and m_{2}^{\prime} is the length of a ρ-sequence from w^{\prime} to t_{1} and t_{2}, resp. It is easy to see that $5.5,5.7,5.8$ and 5.9 remain true.

6. The ultimate consequence

Theorem 6.1. Assume that the mapping ψ is strictly length decreasing. Let $z_{1}, z_{2} \in Z$ and $r_{1}, r_{2}, s_{1}, s_{2} \in A^{*}$ be such that $z_{1} \neq z_{2}$, the words $r_{1}, r_{2}, s_{1}, s_{2}$ are reduced and $P\left(t_{1}, t_{2}\right) \neq \emptyset$, where $t_{1}=r_{1} z_{1} s_{1}$ and $t_{2}=r_{2} z_{2} s_{2}$. Then $Q\left(t_{1}, t_{2}\right) \neq \emptyset$ and, if $w \in Q\left(t_{1}, t_{2}\right)$, then just one of the following two cases takes place:
(1) $w=r_{1} z_{1} x z_{2} s_{2},\left(r_{1} z_{1} x, r_{2}\right) \in \tau,\left(x z_{2} s_{2}, s_{1}\right) \in \tau$ and x is reduced;
(2) $w=r_{2} z_{2} y z_{1} s_{1},\left(r_{2} z_{2} y, r_{1}\right) \in \tau,\left(y z_{1} s_{1}, s_{2}\right) \in \tau$ and y is reduced.

Proof. By 5.3, $Q\left(t_{1}, t_{2}\right) \neq \emptyset$. The rest follows from 5.11.

References

[1] V. Flaška, T. Kepka and J. Kortelainen, On separating sets of words I, Acta Univ. Carolinae Math. Phys., 49/1(2008), 33-51.
[2] V. Flaška, T. Kepka and J. Kortelainen, On separating sets of words II, Acta Univ. Carolinae Math. Phys., 50/1(2009), 15-28.
[3] V. Flaška, T. Kepka and J. Kortelainen, On separating sets of words III, preprint.

Department of Algebra, MFF UK, Sokolovská 83, 18675 Praha 8
Department of Information Processing Science, University of Oulu,
P. O. BOX 3000 FIN-90014, OULU

E-mail address: flaska@matfyz.cz
E-mail address: kepka@karlin.mff.cuni.cz
E-mail address: juha.kortelainen@oulu.fi

