
ON SEPARATING SETS OF WORDS IV

V. FLAŠKA, T. KEPKA AND J. KORTELAINEN

Abstract. Further properties of transitive closures of special re-
placement relations in free monoids are studied.

1. Introduction

This article is an immediate continuation of [1], [2] and [3]. Refer-
ences like I.3.3 (II.3.3, III.3.3, resp.) lead to the corresponding section
and result of [1] ([2], [3], resp.) and all definitions and preliminaries
are taken from the same source.

2. Complementary sequences

Troughout this note, let Z ⊆ A+ be a strongly separating set of
words and let ψ : Z → A∗ be a mapping with ψ(z) 6= z for every
z ∈ Z. Notice that then the corresponding replacement relation ρ
(= ρZ,ψ) is irreflexive.

Two sequences p0, p1, . . . , pm and q0, q1, . . . , qm, m ≥ 1, of words will
be called ((Z,ψ)− or ρ-) complementary if, for every 0 ≤ i < m, either
(pi, pi+1) ∈ ρ and qi = qi+1 or pi = pi+1 and (qi, qi+1) ∈ ρ. Notice that
due to the irreflexivity of ρ, just one of the two cases holds.

Lemma 2.1. Let p0, p1, . . . , pm and q0, q1, . . . , qm be complementary
sequences. Then:

(i) Both the sequences are λ-sequences.
(ii) (p0, pm) ∈ ξ and (q0, qm) ∈ ξ.
(iii) If (p0, pm) /∈ τ ((q0, qm) /∈ τ , resp.), then p0 = p1 = · · · = pm

(q0 = q1 = · · · = qm, resp.), q0, q1, . . . , qm (p0, p1, . . . , pm, resp.)
is a ρ-sequence and (q0, qm) ∈ τ ((p0, pm) ∈ τ , resp.).

(iv) Either (p0, pm) ∈ τ or (q0, qm) ∈ τ .

Proof. Easy. �

Let w0, w1, . . . , wm be a ρ-sequence and let z ∈ Z. Furthermore, let
αi = (pi, zi, qi) ∈ Tr(wi) (so that wi = pizqi) for all i = 0, 1, . . . ,m. We
will say that the ρ-sequence is (z, α0, . . . , αm)-fluent if the sequences
p0, p1, . . . , pm and q0, q1, . . . , qm are complementary.
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and the second author was supported by the Grant Agency of Czech Republic, No.
201/09/0296.

1



ON SEPARATING SETS OF WORDS IV 2

Lemma 2.2. Let (w0, w1) ∈ ρ and α = (p0, z, q0) ∈ Tr(w0). Then
w0 = p0zq0 and at least one of the following two cases holds:

(1) w0
α→ w1, (w0, w1) ∈ ρz and w1 = p0ψ(z)q0;

(2) w1 = p1zq1 and the sequences p0, p1 and q0, q1 are complemen-
tary (and hence the sequence w0, w1 is (z, α, β)-fluent, β =
(p1, z, q1)).

Proof. Assume that (1) is not true. Then there is γ = (r, z1, s) ∈ Tr(w0)
such that γ 6= α and w1 = rψ(z1)s. We have p0zq0 = w0 = rz1s, where
p0 6= r and q0 6= s. Consequently, |p0| 6= |r| and |q0| 6= |s|.

First, assume that |p0| < |r|. Then r = p0r1, r1 6= ε, zq0 = r1z1s,
|q0| > |s|, q0 = s1s, s1 6= ε and zs1 = r1z1. From this, r1 = zt and s1 =
tz1 and we get w0 = p0zq0 = p0r1z1s = p0ztz1s, q0 = tz1s, r = p0zt,
w1 = rψ(z1)s = p0ztψ(z1)s = p1zq1, where p0 = p1, q1 = tψ(z1)s and
(q0, q1) ∈ ρ.

Next assume that |r| < |p0|. Then p0 = rr1, r1 6= ε, r1zq0 = z1s,
|r1| ≥ |z1|, r1 = z1t, s = tzq0, p0 = rz1t. Now, w0 = rz1tzq0,
w1 = rψ(z1)s = rψ(z1)tzq0 = p1zq1, where q0 = q1, p1 = rψ(z1)t
and (p0, p1) ∈ ρ.

The lemma follows easily from I.6.4 as well. �

Lemma 2.3. Let w0, w1, . . . , wm be a ρ-sequence and let α0 = (p0, z, q0) ∈
Tr(w0) (so that w0 = p0zq0). Then at least one of the following two
cases holds:

(1) w0
α0→ w1, (w0, w1) ∈ ρz and w1 = p0ψ(z)q0;

(2) There are 1 ≤ n ≤ m and αi = (pi, z, qi) ∈ Tr(wi) (so that
wi = pizqi), 0 ≤ i ≤ n, such that the sequence w0, w1, . . . , wn
is (z, α0, α1, . . . , αn)-fluent and either n = m or n < m and

wn+1 = pnψ(z)qn (so that (wn, wn+1) ∈ ρz and wn
αn→ wn+1).

Proof. Assume that (1) is not true and proceed by induction on m.
If m = 1 then 2.2 applies. If m ≥ 2, we consider the sequence
w1, w2, . . . , wm. �

Remark 2.4. Consider the situation from 2.3 (2) and assume that
n < m. Put v0 = p0zq0 = w0, v1 = p0ψ(z)q0, v2 = p1ψ(z)q1, . . . ,
vn = pn−1ψ(z)qn−1 and vn+1 = pnψ(z)qn = wn+1. Clearly, w0 =

v0, v1, . . . , vn, vn+1 = wn+1 is a ρ-sequence, v0 = w0
α0→ v1, w1

α1→ v2, . . . ,

wn
αn→ vn+1 = wn+1 and w0 = v0, v1, . . . , vn, vn+1 = wn+1, wn+2, . . . , wm

is a ρ-sequence. In particular, (p0ψ(z)q0, wm) = (v1, wm) ∈ τ .

3. Auxiliary results (a)

Lemma 3.1. Let z1, z2 ∈ Z and r ∈ A∗. Then z1rψ(z2) = ψ(z1)rz2 iff
at least (and then just) one of the following two cases holds:

(1) There are s, t ∈ A+ such that sr = rt (see I.3.5) and z1 =
ψ(z1)s, z2 = tψ(z2);
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(2) There are s, t ∈ A+ such that sr = rt and ψ(z1) = z1s, ψ(z2) =
tz2.

Proof. Easy. �

Corollary 3.2. The following two conditions are equivalent:

(i) z1rψ(z2) 6= ψ(z1)rz2 for all z1, z2 ∈ Z and r ∈ A∗.
(ii) sr 6= rt for every r ∈ A∗ whenever s, t ∈ A+ and z1, z2 ∈ Z are

such that either z1 = ψ(z1)s and z2 = tψ(z2) or ψ(z1) = z1s
and ψ(z2) = tz2 (the latter case does not take place when ψ is
strictly length decreasing).

Lemma 3.3. Let (w0, w1) ∈ ρ and α = (p0, z, q0) ∈ Tr(w0) (see 2.2).
If the equivalent conditions of 3.2 are satisfied, then just one of the
cases 2.2 (1), (2) holds.

Proof. If both 2.2 (1), (2) are true, then p0ψ(z)q0 = w1 = p1zq1 and
either p0 = p1 and (q0, q1) ∈ ρ or (p0, p1) ∈ ρ and q0 = q1. Assume the
first case, the other one being similar. Then ψ(z)q0 = zq1, q0 = rz1s,
q1 = rψ(z1)s and ψ(z)rz1 = zrψ(z1). The rest is clear from 3.2. �

Remark 3.4. Assume that the equivalent conditions of 3.2 are satisfied
and let (w0, w1) ∈ ρ. Then it follows from 3.3 that w0

α0→ w1 for a
uniquely determined instance α ∈ Tr(w0).

Remark 3.5. Assume that the equivalent conditions of 3.2 are satisfied
and consider the situation from 2.3. Then just one of the cases 2.3 (1),
(2) holds. Furthermore, if 2.3 (2) is true, then the number n and the
instances α0, α1, . . . , αn are determined uniquely.

4. Auxiliary results (b)

In this section, let z1, z2 ∈ Z, z1 6= z2, r1, r2, s1, s2 ∈ A∗, t1 = r1z1s1

and t2 = r2z2s2.

Lemma 4.1. t1 6= t2 in each of the following six cases:

(1) r1 = r2;
(2) s1 = s2;
(3) r1, s1 are reduced;
(4) r2, s2 are reduced;
(5) r1, r2 are reduced;
(6) s1, s2 are reduced.

Proof. Easy to see (use I.6.4). �

Lemma 4.2. Assume that the mapping ψ is length decreasing. Then
(t1, t2) /∈ τ in each of the following three cases:

(1) |r1| + |s1| ≤ |r2| + |s2|, |z1| ≤ |z2| and at least one of these
inequalities is sharp (equivalently, |t1| < |t2|);
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(2) r1, s1 are reduced, |r1|+ |s1| ≤ |r2|+ |s2|, |ψ(z1)| ≤ |z2| and at
least one of these inequalities is sharp;

(3) r1, s1 are reduced and |ψ(z1)| < |z1|.
Proof. Easy (if r1, s1 are reduced and (t1, t2) ∈ τ , then (r1ψ(z1)s1, t2) ∈
ξ). �

Corollary 4.3. Assume that the mapping ψ is strictly length decreasing
and the words r1, r2, s1, s2 are reduced. Then (t1, t2) /∈ ξ and (t2, t1) /∈
ξ.

5. Auxiliary results (c)

In this section, let zi ∈ Z, ri, si ∈ A∗ and ti = rizisi, i = 1, 2, be
such that (t1, t2) /∈ ξ and (t2, t1) /∈ ξ (see the preceding section). Put
(P (t1, t2) =) P = {w ∈ A∗ | (w, t1) ∈ ξ, (w, t2) ∈ ξ} and denote by
(Q(t1, t2) =) Q the set of w ∈ P such that w = w′ whenever w′ ∈ P
and (w,w′) ∈ ξ.
Lemma 5.1.

(i) If w ∈ P , then (w, t1) ∈ τ , (w, t2) ∈ τ and t1 6= w 6= t2.
(ii) If w ∈ P , then w ∈ Q if and only if (w,w′) /∈ ρ for every

w′ ∈ P .

Proof. Easy. �

Remark 5.2. Assume that P 6= ∅. By III.6.4 (i), there exists at least
one word t ∈ A∗ with (t1, t) ∈ ξ and (t2, t) ∈ ξ. Then (t1, t) ∈ τ and
(t2, t) ∈ τ . Furthermore, if ri, si are reduced, then (r1ψ(z1)s1, t) ∈ ξ
and (r2ψ(z2)s2, t) ∈ ξ.
Lemma 5.3. Assume that the relation ρ is regular (e.g., if ψ is strictly
length decreasing – see III.7.7). Then for every w ∈ P there exists at
least one w′ ∈ Q with (w,w′) ∈ ξ.
Proof. PutR = {v ∈ P | (w, v) ∈ ξ} andM = {dist(v, t1)+dist(v, t2) | v ∈
R}. Then M is a non-empty set of positive integers and if w′ ∈ R is
such that dist(w′, t1) + dist(w′, t2) is the smallest number in M , then
w′ ∈ Q. Notice that if ψ is strictly length decreasing and w′ ∈ R is
such that |w′| is the smallest number in |R|, then w′ ∈ Q. �

Now, take w ∈ Q and let w
(i)
0 , w

(i)
1 , . . . , w

(i)
mi , mi ≥ 1, i = 1, 2, be

ρ-sequences such that w
(i)
0 = w and w

(i)
mi = ti.

Lemma 5.4. If (w
(i1)
j , w

(i2)
k ) ∈ ξ for {i1, i2} = {1, 2} and some 0 ≤

j ≤ mi1, 0 ≤ k ≤ mi2, then w
(i1)
j = w.

Proof. We have (w
(i1)
j , ti1) ∈ ξ and (w

(i2)
k , ti2) ∈ ξ. Since i1 6= i2, it

follows that w
(i1)
j ∈ P . But w ∈ Q and (w,w

(i1)
j ) ∈ ξ. Consequently,

w
(i1)
j = w. �
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Lemma 5.5. w
(1)
1 6= w

(2)
1 .

Proof. If w
(1)
1 = v = w

(2)
1 , then v ∈ P , (w, v) ∈ ρ and v = w, since

w ∈ Q. Thus (w,w) ∈ ρ, a contradiction with the irreflexivity of ρ. �

Lemma 5.6. Assume that either τ is irreflexive (see III.3.3) or that
the sum m1 +m2 is minimal (for the word w). Then:

(i) (w
(i1)
j , w

(i2)
k ) /∈ ξ for all {i1, i2} = {1, 2}, 0 ≤ j ≤ mi1, 0 ≤ k ≤

mi2.

(ii) All the words w = w
(1)
0 = w

(2)
0 , w

(i)
ji

, ji = 1, 2, . . . ,mi, i = 1, 2,
are pair-wise different.

Proof. Easy (use 5.4). �

Lemma 5.7. tr(w) ≥ 2 (i. e., w is not meagre).

Proof. Clearly, w is not reduced. On the other hand, if tr(w) = 1,
then w = pzq, where z ∈ Z and p, q are reduced. Consequently,

w
(i)
1 = pψ(z)q, w

(1)
1 = w

(2)
1 , a contradiction with 5.5. �

Lemma 5.8. alph(w) ⊆ alph(t1) ∪ alph(t2).

Proof. Let, on the contrary, w = pzq, where z ∈ Z and z /∈ alph(t1) ∪
alph(t2). Using 2.3 and 2.4, we get ρ-sequences v

(i)
0 , v

(i)
1 , . . . , v

(i)
mi , i =

1, 2, such that v
(i)
0 = w, v

(i)
1 = pψ(z)q and v

(i)
mi = ti. Then v

(i)
1 = v,

where (v, ti) ∈ ξ, v ∈ P and v = w a contradiction with the irreflexivity
of ρ. �

Lemma 5.9. Assume that z1 6= z2 and z1 /∈ alph(r2) ∪ alph(s2) (i. e.,

z1 /∈ alph(t2)). If w = p0z1q0, then the sequence w = w
(1)
0 , w

(1)
1 , . . . , w

(1)
m1 =

t1 is (z1, α0, . . . , αm1)-fluent, where α0 = (p0, z1, q0), α1 = (p1, z1, q1),
αm1 = (pm1 , z1, qm1), pm1 = r1, qm1 = s1 (then (p0, r1) ∈ ξ and
(q0, s1) ∈ ξ).

Proof. Proceeding by contradiction, assume that our result is not true.

According to 2.3 and 2.4, there is a ρ-sequence w = v
(2)
0 , p0ψ(z1)q0 =

v
(2)
1 , v

(2)
2 . . . , v

(2)
m2 = t2. Thus v

(1)
1 = v = v

(2)
1 , (v, t1) ∈ ξ, (v, t2) ∈ ξ,

v ∈ P and v = w, (w,w) ∈ ρ, a contradiction with the irreflexivity of
ρ. �

Lemma 5.10. Assume that z1 6= z2 and z1 /∈ alph(r1) ∪ alph(r2) ∪
alph(s2). Then w 6= y0z1y1z1y2 for all y0, y1, y2 ∈ A∗.

Proof. Let, on the contrary, w = y0z1y1z1y2. Then (y0z1y1, r1) ∈ ξ
and (y2, s1) ∈ ξ by 5.9 and 2.1 (ii). Since z1 /∈ alph(r1), we have
(y0ψ(z1)y1, r1) ∈ ξ by 2.4, and therefore (y0ψ(z1)y1z1y2, t1) ∈ ξ. On the
other hand, z1 /∈ alph(t2), and so (y0ψ(z1)y1z1y2, t2) ∈ ξ as well. Thus
y0ψ(z1)y1z1y2 ∈ P , a contradiction with w ∈ Q and ψ(z1) 6= z1. �
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Proposition 5.11. Assume that z1 6= z2 and ri, si are reduced, i = 1, 2.
Then there exist reduced words x0, x1, x2 ∈ A∗ such that just one of the
following two cases takes place:

(1) w = x0z1x1z2x2, x0 = r1, (x1z2x2, s1) ∈ τ , (x0z1x1, r2) ∈
τ and x2 = s2 (then w = r1z1x1z2s2, (x1ψ(z2)s2, s1) ∈ ξ,
(r1ψ(z1)x1, r2) ∈ ξ and r1, s2 are reduced);

(2) w = x0z2x1z1x2, x0 = r2, (x1z1x2, s2) ∈ τ , (x0z2x1, r1) ∈
τ and x2 = s1 (then w = r2z2x1z1s1, (x1ψ(z1)s1, s2) ∈ ξ,
(r2ψ(z2)x1, r1) ∈ ξ and r2, s1 are reduced).

Proof. Combining 5.7, 5.8 and 5.10 (and the dual), we see that tr(w) =
2 and alph(w) = {z1, z2}. According to I.6.4, either w = x0z1x1z2x2 or
w = x0z2x1z1x2, where x0, x1 and x2 are reduced. Assume the former
equality, the latter being dual. Now, it follows from 5.9 that (x0, r1) ∈
ξ. Since x0 is reduced, we get x0 = r1. Furthermore, (x1z2x2, s1) ∈
ξ and, since z2 /∈ alph(s1), we have (x1z2x2, s1) ∈ τ . The rest is
similar. �

Remark 5.12. Consider the situation from 5.11 (and its proof) and
assume that (1) is true (the other case being dual). Put u1 = x1ψ(z2)s2

and u2 = r1ψ(z1)x1. We have (u1, s1) ∈ ξ and (u2, r2) ∈ ξ.
(i) If u1 is reduced, then u1 = s1, t1 = r1z1x1ψ(z2)s2, (w, t1) ∈ ρ

and (t1, u3) ∈ ρ, where u3 = r1ψ(z1)x1ψ(z2)s2.
(ii) If u2 is reduced, then u2 = r2, t2 = r1ψ(z1)x1z2s2, (w, t2) ∈ ρ

and (t2, u3) ∈ ρ, where u3 = r1ψ(z1)x1ψ(z2)s2.
(iii) If the equivalent conditions of II.7.3 are satisfied, then all the

words u1, u2, s1, r2 are meagre. Now, if s1 is not reduced,
then s1 = y0z3y1, z3 ∈ Z, z1 6= z3 6= z2, y0, y1 are reduced and
t1 = r1z1y0z3y1. If r2 is not reduced, then r2 = y2z4y3, z4 ∈ Z,
z1 6= z4 6= z2, y2, y3 are reduced and t2 = y2z4y3z2s2.

Remark 5.13. Assume that P 6= ∅ and choose w′ ∈ P such that m′
1+m

′
2

is minimal, where m′
1 and m′

2 is the length of a ρ-sequence from w′ to
t1 and t2, resp. It is easy to see that 5.5, 5.7, 5.8 and 5.9 remain true.

6. The ultimate consequence

Theorem 6.1. Assume that the mapping ψ is strictly length decreas-
ing. Let z1, z2 ∈ Z and r1, r2, s1, s2 ∈ A∗ be such that z1 6= z2, the
words r1, r2, s1, s2 are reduced and P (t1, t2) 6= ∅, where t1 = r1z1s1

and t2 = r2z2s2. Then Q(t1, t2) 6= ∅ and, if w ∈ Q(t1, t2), then just one
of the following two cases takes place:

(1) w = r1z1xz2s2, (r1z1x, r2) ∈ τ , (xz2s2, s1) ∈ τ and x is reduced;
(2) w = r2z2yz1s1, (r2z2y, r1) ∈ τ , (yz1s1, s2) ∈ τ and y is reduced.

Proof. By 5.3, Q(t1, t2) 6= ∅. The rest follows from 5.11. �
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[2] V. Flaška, T. Kepka and J. Kortelainen, On separating sets of words II, Acta
Univ. Carolinae Math. Phys., 50/1(2009), 15-28.
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