
ON SEPARATING SETS OF WORDS III

V. FLAŠKA, T. KEPKA AND J. KORTELAINEN

Abstract. Transitive closures of special replacement relations in
free monoids are studied.

1. Introduction

This article is an immediate continuation of [1] and [2]. References
like I.3.3 (II.3.3, resp.) lead to the corresponding section and result of
[1] ([2], resp.) and all definitions and preliminaries are taken from the
same sources.

2. The transitive closure of the replacement relation

Let Z be a set of words and ψ : Z → A∗ a mapping. Put (ρZ,ψ =)
ρ = {(uzv, uψ(z)v) | z ∈ Z, u, v ∈ A∗}, (λZ,ψ =) λ = ρ∪ idA∗ , denote by
(τZ,ψ =) τ the smallest transitive relation defined on A∗ and containing
ρ (i. e., the transitive closure of ρ) and put (ξZ,ψ =) ξ = τ ∪ idA∗ .

A sequence w0, w1, . . . , wm of words from A∗, m ≥ 1, will be called a
ρ-sequence (λ-sequence, resp.) if (wi, wi+1) ∈ ρ ((wi, wi+1) ∈ λ, resp.)
for every i, 0 ≤ i < m. The positive integer m is the length of the
sequence and the sequence is said to lead from w0 to wm.

Proposition 2.1.

(i) (u, v) ∈ τ if and only if there exists at least one ρ-sequence
leading from u to v.

(ii) (u, v) ∈ ξ if and only if there exists at least one λ-sequence
leading from u to v (and hence ξ is the transitive closure of λ).

Proof. Obvious from the definition of the relations τ and ξ. �

Proposition 2.2.

(i) τ is stable and transitive.
(ii) ξ is stable, reflexive and transitive (and hence ξ is a stable

quasiordering of the monoid A∗).

Proof. Easy (use 2.1). �

Put (νZ,ψ =) ν = ker(τ) (i. e., (u, v) ∈ ν iff (u, v) ∈ τ and (v, u) ∈ τ)
and (µZ,ψ =) µ = ν ∪ idA∗ .
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Proposition 2.3.

(i) ν is stable, symmetric and transitive.
(ii) If (u, v) ∈ ν, then (u, u) ∈ ν, (v, v) ∈ ν, (u, u) ∈ τ and (v, v) ∈

τ .
(iii) µ is a congruence of the monoid A∗.
(iv) µ = ker(ξ).

Proof. Easy. �

Proposition 2.4. The following conditions are equivalent:

(i) ν is reflexive.
(ii) ν = µ.
(iii) ν is a congruence of the monoid A∗.
(iv) τ is reflexive.
(v) For every u ∈ A∗ there is at least one ρ-sequence leading from

u to u.

Proof. Easy. �

3. On when the closure is antisymmetric

Proposition 3.1. The following conditions are equivalent:

(i) τ is a stable near-ordering on A∗.
(ii) τ is antisymmetric.
(iii) w0 6= wm whenever w0, w1, . . . , wm is a ρ-sequence of length

m ≥ 2 such that wi 6= w0 for at least one i, 1 ≤ i < m.
(iv) ν ⊆ idA∗.
(v) ξ is a stable (reflexive) ordering on A∗.
(vi) ξ is antisymmetric.
(vii) µ = idA∗.

Proof. Easy (use 2.2,2.3 and 2.4). �

Remark 3.2. The equivalent conditions of 3.1 are satisfied if u = v
whenever (u, v) ∈ τ and (v, u) ∈ ρ.

Indeed, assume that the latter condition is true. Let w0, w1, . . . , wm
is a ρ-sequence of length m ≥ 2 such that wi 6= w0 for at least one i,
1 ≤ i < m. Let j be the largest number with 1 ≤ j ≤ m and wj 6= w0.
If j < m, then wj+1 = w0, (w0, wj) ∈ τ , (wj, w0) ∈ ρ, a contradiction.
Thus j = m and wm 6= w0.

Proposition 3.3. The following conditions are equivalent:

(i) τ is a stable sharp ordering on A∗.
(ii) τ is irreflexive.
(iii) τ is irreflexive and antisymmetric.
(iv) w0 6= wm whenever w0, w1, . . . , wm is a ρ-sequence.
(v) ν = ∅.

Proof. Easy (use 2.2,2.3 and 2.4). �
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Proposition 3.4. Assume that |ψ(z)| < |z| (|z| < |ψ(z)|, resp.) for
every z ∈ Z. Then:

(i) |v| < |u| (|v| < |u|, resp.) for every (u, v) ∈ τ .
(ii) τ is a stable sharp ordering.
(iii) ξ is a stable ordering.

Proof. Easy (use 3.1 and 3.3). �

Lemma 3.5. Let Z ⊆ A+ be a strongly separating set and let w0, . . . , wm
be a ρ-sequence. Then:

(i) tr(w0) ≤ tr(wm) +m.
(ii) If, for every z ∈ Z, either |ψ(z)| ≤ 2 or ψ(z) is reduced, then

tr(wm) ≤ tr(w0) +m.
(iii) If |ψ(z)| ≤ 1 for every z ∈ Z, then tr(wm) ≤ tr(w0)

Proof. The result follows by induction from I.7.6. �

Proposition 3.6. Assume that |ψ(z)| ≤ 1 for every z ∈ Z. If w ∈ A∗

is a meagre word and (w, v) ∈ ξ then v is meagre.

Proof. The result follows immediately from 3.5 (iii). �

4. Reduced and pseudoreduced words

Proposition 4.1. The following conditions are equivalent for a word
w:

(i) w is reduced.
(ii) (w, x) /∈ ρ for every x ∈ A∗.
(iii) (w, x) /∈ τ for every x ∈ A∗.

Proof. Obvious. �

A word w will be called strongly ((Z,ψ)-) pseudoreduced (or almost
((Z,ψ)-) reduced) if x = w for all (w, x) ∈ ρ.

Proposition 4.2. The following conditions are equivalent for a word
w:

(i) w is strongly pseudoreduced.
(ii) x = w for all (w, x) ∈ λ.
(iii) x = w for all (w, x) ∈ τ .
(iv) x = w for all (w, x) ∈ ξ.
(v) ψ(z) = z for every z ∈ Z that is a factor of w.

Proof. Easy. �

Corollary 4.3. If ψ(z) 6= z for every z ∈ Z, then every strongly
pseudoreduced word is reduced.

A word w will be called (weakly) ((Z,ψ)-) pseudoreduced if (w, x) ∈ ρ
implies (x,w) ∈ ρ (i. e., (w, x) ∈ ker(ρ)).
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Proposition 4.4. Assume that ker(ρ) ⊆ idA∗ (e. g., ν ⊆ idA∗ – see
3.1). Then a word w is pseudoreduced iff it is strongly pseudoreduced.

Proof. Clearly, every strongly pseudoreduced word is pseudoreduced.
On the other hand, if w is pseudoreduced and (w, x) ∈ ρ, then (x,w) ∈
ρ, (w, x) ∈ ker(ρ) and w = x. �

A word w will be called ((Z,ψ)-) quasireduced if (w, x) ∈ τ implies
(x,w) ∈ τ (then (w, x) ∈ ν).

Proposition 4.5. A word w is quasireduced iff (w, x) ∈ ξ implies
(x,w) ∈ ξ

Proof. Obvious. �

Proposition 4.6.

(i) Every strongly pseudoreduced word is quasireduced.
(ii) If ν ⊆ idA∗ (see 3.1), then every quasireduced word is strongly

pseudoreduced.

Proof. Obvious. �

Proposition 4.7. Assume that ν ⊆ idA∗ (e. g., if ψ is strictly length
decreasing or strictly length increasing – see 3.4). Then the following
conditions are equivalent for a word w:

(i) w is pseudoreduced.
(ii) w is strongly pseudoreduced.
(iii) w is quasireduced.

Moreover, if ψ(z) 6= z for every z ∈ Z, then these conditions are
equivalent to:

(iv) w is reduced.

Proof. Combine 4.2, 4.3, 4.4 and 4.6. �

Proposition 4.8. Assume that the mapping ψ is strictly length de-
creasing. Then for every word w ∈ A∗ there exists at least one reduced
word r ∈ A∗ such that (w, r) ∈ ξ.

Proof. Easy (by induction on |w|). �

5. Meagre words

A word w will be called meagre if tr(w) ≤ 1.

Proposition 5.1. (II.5.4) Let Z be a strongly separating set of words
such that Z 6= {ε} and, for every z ∈ Z, either |ψ(z)| ≤ 1 or ψ(z) is
reduced. Assume further that there exists no pair (z1, z2) ∈ Z ×Z such
that either ψ(z1) = z2, ψ(z2) = z1 or z1 = ur, z2 = sv, ψ(z1) = us,
ψ(z2) = rv, u, v, r, s ∈ A+. Then every pseudoreduced meagre word is
reduced.
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A word w will be called pseudomeagre if (w, x) ∈ ρ for at most one
x ∈ A∗. Clearly, every meagre word is pseudomeagre.

Proposition 5.2. (II.6.7) Let Z be a strongly separating set of words
such that Z 6= {ε}. Assume further that the following two conditions
are satisfied:

(c1) ε 6= ψ(z) 6= z and ψ(z) 6= zxz for all z ∈ Z and x ∈ A∗.
(c2) If z1, z2 ∈ Z and x, y ∈ A∗ are such that ψ(z1) = yxz1 and

ψ(z2) = z2xy, then ψ(z1) = ψ(z2).

Then every pseudomeagre word is meagre.

Proposition 5.3. (II.6.8) Let Z be a strongly separating set of words
such that Z 6= {ε}.

(i) If ψ(z) 6= ε and z is neither a prefix nor a suffix of ψ(z) for
every z ∈ Z, then every pseudomeagre word is meagre.

(ii) If |ψ(z)| ≤ |z| for every z ∈ Z, then every pseudomeagre word
is meagre if and only if ε 6= ψ(z) 6= z for every z ∈ Z.

Proposition 5.4. (II.7.3) Let Z be a strongly separating set of words
as in 5.1. Assume further that there exists no triple (z1, z2, z3) ∈ Z ×
Z×Z such that z1 = uv, z3 = gh and ψ(z2) = vpg for some u, v, g, h ∈
A+ and p ∈ A∗. If (w, v) ∈ ξ and w is meagre, then v is meagre.

Corollary 5.5. Let Z be a strongly separating set of words such that
ε /∈ Z and ψ(Z) ⊆ A. Then:

(i) A word v is meagre, provided that (w, v) ∈ ξ for a meagre word
w.

(ii) If ψ(z) 6= z for every z ∈ Z, then every pseudomeagre word is
meagre.

(iii) If there exists no pair (z1, z2) ∈ Z × Z such that ψ(z1) = z2

and ψ(z2) = z1, then every pseudoreduced pseudomeagre word
is reduced.

6. Confluency

Proposition 6.1. Assume that for all u, v, w ∈ A∗ such that (u, v) ∈ ρ,
(u,w) ∈ ρ, (v, w) /∈ ρ, (w, v) /∈ ρ and v 6= w there exists at least one
x ∈ A∗ with (v, x) ∈ ρ and (w, x) ∈ ρ (then v 6= x 6= w and v 6= u 6= w).
Then the relation ξ is confluent (i. e., for all (p, q) ∈ ξ, (p, r) ∈ ξ there
exists at least one s ∈ A∗ with (q, s) ∈ ξ and (r, s) ∈ ξ).

Proof. It follows easily from our assumption that the relation λ is con-
fluent. We have to show that the transitive closure ξ of λ is confluent
as well.

Let u0, u1, . . . , um and v0, v1, . . . , vn be a λ-sequences such that u0 =
v0.

Assume first that m = 1. Proceeding by induction, we find words
r1, . . . , rn in A∗ in the following way: Since λ is confluent, we have
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(u1, r1) ∈ λ and (v1, r1) ∈ λ for some r1 ∈ A∗. Now, if 1 ≤ j <
n and r1, . . . , rj are found such that u1, r1, r2, . . . , rj is a λ-sequence
and (v1, r1) ∈ λ, (v2, r2) ∈ λ, . . . , (vj, rj) ∈ λ, then (rj, rj+1) ∈ λ
and (vj+1, rj+1) ∈ λ for some rj+1 ∈ A∗. Consequently, by induc-
tion, (vn, rn) ∈ λ and u1, r1, . . . , rn is a λ-sequence. Thus (um, rn) =
(u1, rn) ∈ ξ and (vn, rn) ∈ ξ.

In the general case, we proceed by induction onm+n. Due to the pre-
ceding part of the proof, we can assume thatm ≥ 2. Then (um−1, r) ∈ ξ
and (vn, r) ∈ ξ for some r ∈ A∗. Furthermore, (um−1, um) ∈ λ, and
hence (um, s) ∈ ξ and (r, s) ∈ ξ for at least one s ∈ A∗. Consequently,
(um, s) ∈ ξ and (vn, s) ∈ ξ. �

Remark 6.2. Assume that ξ is confluent (see 6.1). If (u, v) ∈ τ and
(u,w) ∈ τ , then (v, r) ∈ ξ and (w, r) ∈ ξ for some r ∈ A∗. If v 6= r 6= w,
then (v, r) ∈ τ and (w, r) ∈ τ . If v = r 6= w, then (w, v) ∈ τ . If
v 6= r = w, then (v, w) ∈ τ . The final case is v = r = w (cf. 6.1).

Remark 6.3. Let the assumption of 6.1 be satisfied and let w ∈ A∗

be such that (x,w) ∈ τ whenever (w, x) ∈ ρ. We show that w is
quasireduced. Indeed, if w = w0, w1, . . . , wm = x is a ρ-sequence, we
show by induction on m that (x,w) ∈ τ . To this purpose, we can
assume that x 6= w. The case m = 1 is clear. Let m ≥ 2. We have
(wm−1, wm) ∈ τ by induction and (wm−1, x) ∈ ρ. Proceeding similarly
as in the proof of 6.1, we find a word r ∈ A∗ such that (w, r) ∈ λ and
(x, r) ∈ ξ. Then (r, w) ∈ ξ, and hence (x,w) ∈ ξ. Since x 6= w, we get
(x,w) ∈ τ .
Proposition 6.4. Let Z ⊆ A+ be a strongly separating set. Then:

(i) The relation ξ is confluent.
(ii) If (u, v) ∈ τ and (u,w) ∈ τ , then either (v, r) ∈ τ and (w, r) ∈

τ for some r ∈ A∗ or (v, w) ∈ τ or (w, v) ∈ τ or v = w.

Proof. Combine I.7.11, 6.1 and 6.2. �

Proposition 6.5. Let Z ⊆ A+ be a strongly separating set and let
ψ be strictly length-decreasing. Then for every w ∈ A∗ there exists a
uniquely determined reduced word r such that (w, r) ∈ ξ.
Proof. Combine 4.8 and 6.4. �

Lemma 6.6. Let Z ⊆ A+ be a strongly separating set and let ψ be
strictly length-decreasing. If (u1u2 · · ·um, r) ∈ ξ, (ui, vi) ∈ ξ, 1 ≤ i ≤
m, and r is reduced, then (v1v2 · · · vm, r) ∈ ξ.
Proof. We have (u1u2 · · ·um, v1v2 · · · vm) ∈ ξ and the rest follows from
6.4. �

7. Regularity

We will say that the replacement relation ρ (or the pair (Z,ψ))
is regular if m = n whenever w0, w1, . . . , wm and v0, v1, . . . , vn are
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ρ-sequences with w0 = v0 and wm = vn. In such a case, we put
(dist(Z,ψ)(w0, wm) =) dist(w0, wm) = m.

Lemma 7.1. Assume that ρ is regular. If (u, v) ∈ τ and (v, w) ∈ τ ,
then dist(u,w) = dist(u, v) + dist(v, w).

Proof. Easy. �

Remark 7.2. Assume that ρ is regular. Then τ is irreflexive, and hence
τ is a stable sharp ordering on A∗ by 3.3. Now, setting dist(w,w) = 0,
we have dist(u, v) for all (u, v) ∈ ξ. Clearly, dist(u,w) = dist(u, v) +
dist(v, w) for all (u, v) ∈ ξ and (v, w) ∈ ξ.

Lemma 7.3. Assume that for all u, v, w ∈ A∗ such that (u, v) ∈ ρ,
(u,w) ∈ ρ and v 6= w there is at least one r ∈ A∗ with (v, r) ∈ ρ
and (w, r) ∈ ρ. If u0, u1, . . . , um and v0, v1, . . . , vn are ρ-sequences with
u0 = v0, um = vn and um is reduced, then m = n

Proof. We will proceed by induction on m+n. We have m+n ≥ 2 and,
if m + n = 2, then m = n = 1. Henceforth, assume that 1 ≤ n ≤ m
and 2 ≤ m.

If u1 = v1, then n ≥ 2, since vn is reduced. Now, u1, . . . , um and
v1, . . . , vn are ρ-sequences of length m − 1 and n − 1, resp. Then
m− 1 = n− 1 by induction, and so m = n.

It remains to consider the case u1 6= v1. According to our assump-
tion, there is r1 ∈ A∗ with (u1, r1) ∈ ρ and (v1, r1) ∈ ρ. Since vn
is reduced, we have n ≥ 2 and, proceeding similarly, we find an in-
dex 1 ≤ k < n and words r1, . . . , rk such that (ri, ri+1) ∈ ρ for every
1 ≤ i < k, (vj, rj) ∈ ρ for every 1 ≤ j ≤ k and rk = vk+1 (use again
the fact that vn is reduced). Clearly, u1, r1, r2 . . . , rk−1, vk+1, . . . , vn
and u1, . . . , um are ρ-sequences of length n− 1 and m− 1, resp. Thus
n− 1 = m− 1 by induction and we get m = n. �

Lemma 7.4. Let the assumptions of 7.3 be satisfied. If u0, u1, . . . , um
and v0, v1, . . . , vn are ρ-sequences such that u0 = v0, um = vn and
(um, r) ∈ ξ for at least one reduced word r ∈ A∗, then m = n.

Proof. If um = r, then um is reduced and the rest follows from 7.3.
If um 6= r, then (um, r) ∈ τ and there is a ρ-sequence w0, w1, . . . , wk
such that um = w0 and r = wk. Now, u0, u1, . . . , um, w1, . . . , wk and
v0, v1, . . . , vn, w1, . . . , wk are ρ-sequences and we have m + k = n + k.
Then m = n. �

Corollary 7.5. Let the assumptions of 7.3 be satisfied and let for every
u ∈ A∗ there exists at least one reduced word r ∈ A∗ with (u, r) ∈ ξ.
Then the relation ρ is regular.

Proposition 7.6. Assume that Z ⊆ A+ is strongly separating set and
that for every u ∈ A∗ there exists at least one reduced word r ∈ A∗ with
(u, r) ∈ ξ. Then the relation ρ is regular.



ON SEPARATING SETS OF WORDS III 8

Proof. Combine I.7.11 and 7.5. �

Theorem 7.7. Assume that Z ⊆ A+ is strongly separating set and
that the mapping ψ is strictly length decreasing. Then the relation ρ is
regular.

Proof. Combine 4.8 and 7.6. �
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