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Abstract. The existence of congruence-simple semiring S with non-constant

multiplication such that 2s = 3t for all s, t ∈ S and S + S = S is proved and
hence the most enigmatic class of congruence-simple semirings is not empty.

1. Introduction

Semirings (i. e., non-empty sets equipped with two binary operations, usually
denoted as addition and multiplication, where the addition is commutative and
associative, the multiplication is associative and distributes over the addition) are
widely used in various branches of mathematics and computer science and in ev-
eryday practice as well (the semiring of natural numbers for instance). In spite
of this fact, structural properties of semirings are not well understood so far and,
in contrast to more fashionable rings, they are studied relatively scarcely (albeit
some material is collected in the monographs [3] and [4]). Congruence-simple ob-
jects (i.e., those possesing precisely two congruence relations) serve a basic building
stone for any algebraic structure and these objects are massively popular in some
cases (as groups, rings, algebras). This is not the case for semirings, however.
Congruence-simple commutative (finite, resp.) semirings were classified in [1] ([2],
resp.) and the classification carries over to the non-commutative case ([1]). Namely,
if S (= S(+, ·)) is a congruence-simple semiring, then S fits into just one of the
following five classes:

(1) S is additively idempotent (i. e., s = 2s for every s ∈ S);
(2) S is additively cancellative (i. e., s + t 6= s + r for all r, s, t ∈ S, r 6= t);
(3) |S| = 2 and |S + S| = 1 = |SS|;
(4) |S + S| = 1 and SS = S;
(5) S is additively zeropotent (i. e., 2s = 3t for all s, t ∈ S) and S + S = S.

Examples of congruence-simple semirings from each of the first four classes come
readily to mind (see [5], [6]). On the other hand, it seems that no example of a
congruence-simple semiring of class (5) with non-constant multiplication is known
so far. The aim of the present modest note is to show that the class (5) is not
empty. Employed methods are purely combinatorial.

2. First steps

First of all, notice that a semiring S is zeropotent if and only if S contains a
bi-absorbing element o (= oS) and 2a = o for every a ∈ S (2s = 2t and 2s + t =
2t+ t = 3t = 2s, s, t ∈ S). Let A = {a, b} be a two-element set, A∗ the free monoid
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over A (the elements of A∗ are non-empty words containing the letters a, b and the
empty word ε) and let A+ = A∗ \ {ε} (notice that A+ is the free semigroup over
A).

Let T denote the set of all finite subsets of A+. Now, define an operation addition
on T by E + F = E ∪ F if E 6= ∅ 6= F , E ∩ F = ∅, and E + F = ∅ otherwise.
It is easy to see that T (+) is the free zeropotent commutative semigroup over A+,
oT = ∅ and that T + T = {E ∈ T ; |E| 6= 1} = T \ A+.

Using the addition, we also define a multiplication on T by E · F =
∑

ui · vj ,
ui ∈ E, vj ∈ F . Again it is quite easy to see that T (+, ·) becomes the free zeropotent
semiring over the two-element set A. In the following text we will use u instead of
{u}, u ∈ A+, u1 + · · ·+un instead of {u1, . . . , un} and elements of T will be usually
denoted by s, t.

Now, put β = {(uav, ua2b2v+ua2bab2v), (ubv, ua2bababv);u, v ∈ A∗} and denote
by α the congruence closure of β ∪ β−1. One checks immediately that α is just
the congruence of the semiring T generated by the pairs (a, a2b2 + a2bab2) and
(b, a2babab).

3. Why is α a proper congruence

Put ρ = {(ua2b2v, uav), (ua2bab2v, uav), (ua2bababv, ubv);u, v ∈ A∗} and denote
by τ the transitive closure of ρ. Clearly, if w, z ∈ A+ then (w, z) ∈ τ if and only if
there exists s ∈ T ∪ {0} such that the pair (w + s, z) is in the transitive closure of
β.

Proposition 1. There exists at least one w ∈ A+ such that (w, o) ∈ α if and
only if there exist elements u, v ∈ A∗ and x ∈ A+ such that (x, ua2b2v) ∈ τ and
(x, ua2bab2v) ∈ τ .

Proof. The converse implication is almost trivial. If there are such elements u, v
and x then (uav, ua2b2v + ua2bab2v) ∈ α and there exist s1, s2 ∈ T ∪ {0} such that
(x + s1, ua2b2v) ∈ α and (x + s2, ua2bab2v) ∈ α. Hence (uav, x + s1 + x + s2) ∈ α
and x + s1 + x + s2 = o.

The direct implication is only a bit more tricky. Suppose that there exists w ∈
A+ such that (w, o) ∈ α and consider s0, . . . , sn ∈ T such that s0 = w, sn = o
and (si−1, si) ∈ β ∪ β−1. We may assume that n is minimal. Now, w = uav,
s1 = ua2b2v + ua2bab2v for some u, v ∈ A∗, (ua2b2v, o) /∈ α and (ua2bab2v, o) /∈ α
and hence there exist x ∈ A+ and t1, t2 ∈ T ∪{0} such that (ua2b2v, x+t1) ∈ α and
(ua2bab2v, x + t2) ∈ α. If (x, ua2b2v) ∈ τ and (x, ua2bab2v) ∈ τ we are through.
In the other case we may find x′ ∈ A+ such that (x′, x) ∈ τ , (x′, ua2b2v) ∈ τ and
(x′, ua2bab2v) ∈ τ by “walking back” all the steps where we used β−1 (notice that
if (w, o) ∈ β−1 then (w, o) ∈ β). �

Suppose now that there exist u, v ∈ A∗ and x ∈ A+ such that (x, ua2b2v) ∈ τ and
(x, ua2bab2v) ∈ τ . Assume that |u|+ |v| is minimal (hence neither u nor v contains
any of the words a2b2, a2bab2, a2babab as a factor) and that x is the shortest possible
for (already chosen) u, v. Using standard combinatorial methods it is not difficult
to see (words containing other than belowmentioned occurrences of the words a2b2,
a2bab2, a2babab as a factor can be easily shortened) that x = ua2b2ya2bab2v (or x =
ua2bab2ya2b2v) for some y ∈ A∗ and, moreover, (ya2bab2v, v) ∈ τ and (ua2b2y, u) ∈
τ ((ya2b2v, v) ∈ τ and (ua2bab2y, u) ∈ τ), u, v ∈ A+. According to the choice of x,
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we see that y is reduced. Henceforth, (yav, v) ∈ τ and (uay, u) ∈ τ . The following
proposition will show that the existence of such u, v and y yields a contradiction.

Proposition 2. There are no words u, v ∈ A+, y ∈ A∗ and c ∈ A such that
(ycv, v) ∈ τ and (ucy, u) ∈ τ .

Proof. Proceeding by contradiction, assume that there exist u, v and y such that
|u|+ |v| is minimal (this means that neither u nor v contains any of the words a2b2,
a2bab2, a2babab as a factor). Let y be the shortest possible for given u and v (once
again, this means that y does not contain any of the words a2b2, a2bab2, a2babab
as a factor).

First, let c = a. Since (uay, u) ∈ τ and u and y do not contain any of the words
a2b2, a2bab2, a2babab as a factor, a in uay must be a factor of one of these words.
Thus we have to distinguish the following nine cases:

(1) y = ab2y′. Notice that from (yav, v) ∈ τ we may deduce that v = ab2v′

(ab2 as a prefix of v cannot take part in any ρ-step). Thus (ab2y′a2b2v′,
ab2v′) ∈ τ , (y′a2b2v′, v′) ∈ τ and hence (y′av′, v′) ∈ τ . Moreover,
(uay′, u) ∈ τ ((ua2b2y′, u) ∈ τ), a contradiction with the minimality of
|u| + |v|.

u a ab2 y

(2) y = abab2y′. Similarly as in the preceding case, v = abab2v′ and (y′av′,
v′) ∈ τ and (uay′, u) ∈ τ , a contradiction with the minimality of |u| + |v|.

u a abab2 y

(3) y = abababy′. Similarly as in the preceding cases, v = abababv′ and
(y′bv′, v′) ∈ τ and (uby′, u) ∈ τ , a contradiction with the minimality of
|u| + |v|.

u a ababab y

(4) u = u′a and y = b2y′. Similarly as in the preceding cases, v = b2v′ and
hence (y′ab2v′, v′) ∈ τ . Thus y′ ∈ {y′′a, y′′ab; y′′ ∈ A∗} but if we repeat
now the argument used to get v = b2v′, we obtain that a suffix of u and y′

must coincide, and so y′ = y′′a and (u′ay′′a, u′a) ∈ τ , (u′ay′′, u′) ∈ τ and
(y′′av′, v′) ∈ τ , a contradiction with the minimality of |u| + |v|.

u a a b2 y

(5) u = u′a and y = bab2y′. Similarly as in the preceding cases, v = bab2v′,
y = bab2y′′a and (u′ay′′, u′) ∈ τ and (y′′av′, v′) ∈ τ , a contradiction with
the minimality of |u| + |v|.

u a a bab2 y
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(6) u = u′a and y = bababy′. Similarly as in the preceding cases, v = bababv′,
y = bababy′′a and (u′by′′, u′) ∈ τ and (y′′bv′, v′) ∈ τ , a contradiction with
the minimality of |u| + |v|.

u a a babab y

(7) u = u′a2b and y = b2y′. Similarly as in the preceding cases, v = b2v′,
y = b2y′′a2b and (u′ay′′, u′) ∈ τ and (y′′av′, v′) ∈ τ , a contradiction with
the minimality of |u| + |v|.

u a2b a b2 y

(8) u = u′a2b and y = baby′. Similarly as in the preceding cases, v = babv′,
y = baby′′a2b and (u′by′′, u′) ∈ τ and (y′′bv′, v′) ∈ τ , a contradiction with
the minimality of |u| + |v|.

u a2b a bab y

(9) u = u′a2bab and y = by′. Similarly as in the preceding cases, v = bv′,
y = by′′a2bab and (u′by′′, u′) ∈ τ and (y′′bv′, v′) ∈ τ , a contradiction with
the minimality of |u| + |v|.

u a2bab a b y

Now, let c = b. Since (ybv, v) ∈ τ and v and y do not contain any of the words
a2b2, a2bab2, a2babab as a factor, b in ybv must be a factor of one of these words.
Thus we have to distinguish the following eight cases, quite parallel to the preceding
nine ones:

(1) y = y′a2b. According to the foregoing part, u = u′a2b and (u′ay′, u′) ∈ τ
and (y′av, v) ∈ τ , a contradiction with the minimality of |u| + |v|.

y a2b b v

(2) y = y′a2bab. Similarly as in the preceding case u = u′a2bab and (u′ay′,
u′) ∈ τ and (y′av, v) ∈ τ , a contradiction with the minimality of |u| + |v|.

y a2bab b v

(3) y = y′a2baba. Similarly as in the preceding cases u = u′a2baba and
(u′by′, u′) ∈ τ and (y′bv, v) ∈ τ , a contradiction with the minimality of
|u| + |v|.

y a2baba b v



EXAMPLE OF A CG-SIMPLE SEMIRING 5

(4) v = bv′ and y = y′a2. Similarly as in the preceding case (4), u = u′a2,
y′ = by′′, (u′ay′′, u′) ∈ τ and (y′′av′, v′) ∈ τ , a contradiction with the
minimality of |u| + |v|.

y a2 b b v

(5) v = bv′ and y = y′a2ba. Similarly as in the preceding case, u = u′a2ba,
y′ = by′′, (u′ay′′, u′) ∈ τ and (y′′av′, v′) ∈ τ , a contradiction with the
minimality of |u| + |v|.

y a2ba b b v

(6) v = abv′ and y = y′a2ba. Similarly as in the preceding cases, u = u′a2ba,
y′ = aby′′, (u′by′′, u′) ∈ τ and (y′′bv′, v′) ∈ τ , a contradiction with the
minimality of |u| + |v|.

y a2ba b ab v

(7) v = ab2v′ and y = y′a2. Similarly as in the preceding cases, u = u′a2,
y′ = ab2y′′, (u′ay′′, u′) ∈ τ and (y′′av′, v′) ∈ τ , a contradiction with the
minimality of |u| + |v|.

y a2 b ab2 v

(8) v = ababv′ and y = y′a2. Similarly as in the preceding cases, u = u′a2,
y′ = ababy′′, (u′by′′, u′) ∈ τ and (y′′bv′, v′) ∈ τ , a contradiction with the
minimality of |u| + |v|.

y a2 b abab v

�

4. A very short comment

We have shown that α is a proper congruence of the semiring T . The congruence
α was generated by the pairs (a, a2b2 + a2bab2) and (b, a2babab) and hence R =
T/α satisfies R = R + R (and multiplication on R is non-constant). Now, let
γ be a congruence of T containing α and maximal with respect to (a, o) /∈ γ.
Obviously, γ is a maximal conngruence of T . Setting S = T/γ we get a (non-
trivial!) congruence-simple semiring S of class (5) with S = S+S and non-constant
multiplication, and hence such semirings exist. Unfortunately, any explicite and
transparent construction of these semirings remains an open problem.
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