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WITH VARIOUS DIVISIBILITY CONDITIONS
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Abstract. Infinite fields are not finitely generated rings. Similar ques-
tion is considered for further algebraic structures, mainly commutative
semirings. In this case, purely algebraic methods fail and topological
properties of integral lattice points turn out to be useful. We prove that
a commutative semiring that is a group with respect to multiplication,
can be two-generated only if it belongs to the subclass of additively
idempotent semirings; this class is equivalent to ℓ-groups.

1. Introduction

Finitely generated algebraic structures satisfying various divisibility and/
or simplicity conditions show sometimes a tendency to have additional more
or less strong properties. In fact, an archetypical example of such a situation
is the following useful result of folklore type that is occasionally attributed
to I. Kaplansky:

(A) A field is finite, provided that it is a finitely generated ring.

Now, (congruence/ideal-) simple commutative rings are just fields and
zero multiplication rings of finite prime orders. Commutative division rings
are fields. Therefore:

(B) A finitely generated commutative ring is finite, provided that it is
simple or it is a division ring.

Notice that the multiplicative groups of finite fields are cyclic, and so
these groups are one-generated semigroups and finite fields are one-generated
semirings. Notice also that the additive groups of zero multiplication rings
of prime order are cyclic, and so these groups are one-generated semigroups
and the rings are one-generated semirings.

There are two immediate ways how to generalize (A). The first of them
is an extension to the non-commutative case, of course. But this seems to
be exceedingly difficult and the authors of the present note are not aware
of any related result. The second way leads to commutative semirings, i.e.,

1991 Mathematics Subject Classification. 16Y60, 12K10.
Key words and phrases. finitely generated, simple, semiring, quasigroup.
The work is a part of the research project MSM0021620839, financed by MSMT. The

first and the third authors were also partly supported by the Grant Agency of the Czech
Republic, grant #201/09/0296, and the second author by the Grant Agency of Charles
University, grant #8648/2008.

1
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ring-like structures where addition and multiplication are commutative and
associative (no neutral and/or absorbing elements assumed a priori).

In the present note we consider the case of commutative semirings. Al-
though we obtain only a partial solution, the employed method may be of
interest. Namely, the purely algebraic problem is linked with geometrical
and topological properties of some sets of lattice points (see [1] and [6]).

A semiring is an algebraic structure with two associative binary oper-
ations, usually denoted by addition and multiplication, such that the ad-
dition is commutative and the multiplication distributes over the addition
from either side. A semiring is said to be commutative if its multiplication
is commutative (as well as the addition).

A parasemifield is a non-trivial commutative semiring, the multiplicative
semigroup of which is a group. Familiar examples of such structures are the
parasemifields Q+ and R+ of positive rational and positive real numbers (by
adjoining 0 we get the semifields Q+

0 and R+
0 of non-negative rational and

non-negative real numbers). Besides, additively idempotent parasemifields
(i.e., those satisfying 2a = a for all a) are equivalent to the better known
and popular lattice-ordered abelian groups (see [3] and [7]). The main re-
sult of this paper is Theorem 7.18, saying that a parasemifield is additively
idempotent, provided that it is a two-generated semiring.

Define two binary operations ⊕ and ⊙ on Z (the set and the ring of
integers) by m ⊕ n = min(m, n) and m ⊙ n = m + n for all m, n ∈ Z. Then
Z(⊕,⊙) becomes an additively idempotent parasemifield generated (as a
semiring) by the two-element set {1,−1}. Moreover, Z(⊕,⊙) is congruence-
simple (and also ideal-simple). Quite different sort of ideal-simple semirings
are the following ones: Let G be an abelian group (denoted multiplicatively)
and let o /∈ G and U(G) = G ∪ {o}. Put a + b = o and ao = oa = a
for all a, b ∈ U(G), the multiplication of G being extended. Notice that
o is the only additively idempotent element of U(G) and that U(G) is a
finitely generated semiring if and only if G is a finitely generated group.
The semiring U(G) is congruence-simple if and only if |G| = 1. According
to Corollary 14.3 of [2], the following is true:

(C) Every finitely generated congruence-simple commutative semiring is
either finite or additively idempotent.

On the other hand, the following conjecture is an open problem:

(D) Every finitely generated ideal-simple commutative semiring is either
finite or additively idempotent or it is a copy of the semiring U(G)
for a finitely generated infinite abelian group G.

Put Z∗ = Z ∪ {1/2} and extend the operations of the parasemifield
Z(⊕,⊙) by 1/2⊕ 1/2 = 0, 1/2⊕ n = n⊕ 1/2 = n⊕ 0, 1/2⊙ 1/2 = 1/2 and
1/2⊙n = n⊙1/2 = n for all n ∈ Z. We obtain a (unitary) division semiring
Z∗(⊕,⊙) that is finitely generated (namely by the set {1,−1, 1/2}) and that
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is almost additively idempotent (all but one elements are additively idem-
potent). Furthermore, Z∗ is neither congruence-simple nor ideal-simple. We
have the following conjecture:

(E) Every finitely generated commutative division semiring is either fi-
nite or (almost) additively idempotent or it is a copy of U(G) for a
finitely generated infinite abelian group G.

Now, it is not difficult to show (it may be used as a stimulating exercise)
that commutative ideal-simple or division semirings are either finite or fields
or copies of U(G) or additively idempotent or, finally, they are constructed
in quite transparent ways from parasemifields. Then it turns out that both
(D) and (E) are equivalent to:

(F) A parasemifield is additively idempotent, provided that it is a finitely
generated semiring.

The statement (F) seems to be an open problem. Every parasemifield
is infinite, it is not a one-generated semiring and, if it is not additively
idempotent, then it contains a copy of Q+. The additively idempotent
parasemifield Z(⊕,⊙) is a two-generated semiring.

Theorem 7.18 of the present paper is just a partial solution of (F), but the
method employed could possibly serve as a model for extensions. Namely,
after a few steps the question is transferred to the investigation of additive
subsemigroups of N2

0 (here, N denotes the semiring of positive integers and
N0 that of non-negative integers). These subsemigroups are viewed as sets
of lattice points; the question is then solved by using some elementary ge-
ometry of the corresponding convex envelopes inside (Q+

0 )2. An approach
to a full solution of (F) could be to generalize the whole process to the
n-generated case, for n > 2. However, the geometry then starts to cause
troubles. Perhaps, deeper topological insight is needed.

The statement (C) and the (equivalent) conjectures (D) and (E) are gen-
eralizations of (B) which in turn follows immediately from (A); (F) is a
semiring analogue of (A).

As concerns structures with one (binary) operation, the situation is com-
pletely different. Of course, the additive group of integers is a two-generated
semigroup. Besides, avoiding associativity, we get even more: we also show
in this paper that every countable groupoid can be embedded into a one-
generated division groupoid, and every countable cancellation groupoid can
be embedded into a quasigroup that is one-generated as a groupoid.

2. An elementary proof of statement (A)

Since the statement (A) will be used in what follows, we provide here one
of its less known elementary proofs.

Let us start with a few easy observations concerning quite classical sit-
uation. Henceforth, let Q ⊆ F be an extension of fields. Assume first
that Q contains a subring R with 1Q ∈ R 6= Q = R(R \ {0})−1 and F =
R[u1, . . . , un], where the elements u1, . . . , un (n ≥ 1) are algebraic over Q.
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For i = 1, . . . , n there are elements ai,0, . . . , ai,mi
∈ R (mi ≥ 1) such that

ai,mi
6= 0 = ai,0 + ai,1ui + · · · + ai,mi

umi

i . Put a =
∏

i ai,mi
, so that 0 6= a ∈

R ⊆ S = R[a−1] ⊆ Q. We claim that the element a is contained in every non-
zero prime ideal of the domain R. We proceed by contradiction to prove this
claim. Therefore, let P be a prime ideal of R such that a /∈ P and 0 6= b ∈ P .
Then ak 6= bb0a

k +bb1a
k−1 + · · ·+bbk ∈ P and b−1 6= b0 +b1a

−1 + · · ·+bka
−k

for all k ≥ 0 and b0, b1, . . . , bk ∈ R. It follows that b−1 /∈ S, S 6= Q and S
is not a field. Put A =

∑
Suli

i where 1 ≤ i ≤ n and 0 ≤ li < mi. We have

umi

i = −a−1
i,mi

ai,0 − a−1
i,mi

ai,1ui − · · · − a−1
i,mi

ai,mi−1
u

mi−1

i ∈ A and it follows

easily that uki

i ∈ A for all i and ki ≥ 0. Then A = F and SF is a finitely
generated S-module. The Q-module QQ is a direct summand of QF , and so

QQ is a homomorphic image of QF . But any such homomorphism is at the
same time an S-homomorphism and we conclude that SQ is a finitely gener-
ated S-module. Thus SQ =

∑
Scjd

−1
j where 1 ≤ j ≤ t, cj ∈ S, dj ∈ S \{0},

and Q = Qd1 . . . dt ⊆ S, a contradiction. We have proved our claim.
Now, more generally, assume that F = Q[M ] for a finite subset M of F .

We want to show that F is algebraic over Q. Again, proceeding by contra-
diction, let N 6= ∅, R1 = Q[N ] and Q1 = Q(N), where N is a transcendence
base such that N ⊆ M . We have R1 ⊆ Q1 ⊆ F = R1[M \N ], F is algebraic
over Q1 and, due to the preceding observations, we are able to find an ele-
ment a1 ∈ R1, a1 6= 0, such that a1 is contained in all non-zero prime ideals
of the polynomial ring R1. In particular, 1 − a1 ∈ R∗

1 = Q \ {0} (the group

of invertible elements), a1 ∈ Q and a−1
1 ∈ R1. Thus R1 has no non-zero

prime ideals and R1 is a field, a contradiction. We have proved that F is
algebraic over Q. Then, of course, QF is a finitely generated Q-module. In
particular, F is finite, provided that Q is such. If F is infinite and Q is the
prime subfield of F , then Q ≃ Q and R ≃ Z, where R is the prime subring.
Since no non-zero integer is contained in all maximal ideals of the integral
domain Z, we get F 6= R[M1] for any finite subset M1 of F . The statement
(A) is thus proved.

3. One-generated division groupoids

By a groupoid we mean a non-empty set equipped with one binary opera-
tion (usually denoted as multiplication). A groupoid G is a division groupoid

if aG = Ga = G for every element a ∈ G. Notice that the class of division
groupoids is closed under taking homomorphic images and cartesian prod-
ucts.

Theorem 3.1. Every countable groupoid A is a subgroupoid of a groupoid

C with the following properties:

(i) C is a one-generated groupoid;

(ii) C is a division groupoid;

(iii) C is congruence-simple;

(iv) if A is commutative then C is also commutative.
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Proof. Since every finite groupoid can be embedded into an infinite count-
able one, it is sufficient to prove the theorem under the assumption that A
is infinite. Let i 7→ ai be a bijection of N0 (the set of non-negative integers)
onto A. Take an infinite countable set B disjoint with A and let i 7→ bi

be a bijection of N0 onto B. For i, j ∈ N0 put f(i, j) = 2i+13j+1 and
g(i, j) = 5i+17j+1, so that f and g are two injective mappings of N0 × N0

into N0 with disjoint ranges; observe that f(i, j) > i and g(i, j) > i for all
i, j.

Define multiplication on the set C = A∪B, extending the multiplication
of A, by means of the following rules:

(1) b0bi = bib0 = bi+1 for all i;
(2) bi+1bi+1 = ai for all i;
(3) bibf(i,j) = bf(i,j)bi = aj for all i > 0 and j ≥ 0;
(4) bibg(i,j) = bg(i,j)bi = bj for all i > 0 and j ≥ 0;
(5) a0b0 = b0a0 = b0;
(6) ai+1b0 = b0ai+1 = ai for all i;
(7) aibf(i,j) = bf(i,j)ai = aj for all i, j;
(8) aibg(i,j) = bg(i,j)ai = bj for all i, j;
(9) xy = b0 in all the remaining cases.

One can easily check that the multiplication is correctly defined. Of course,
A is a subgroupoid of B. The groupoid B is generated by the element b0,
since if a subgroupoid contains b0 then by (1) it contains all the elements of
B and then by (2) it contains all the elements of A.

Let c, d ∈ C. We are going to check that the equation cx = d has at least
one solution in C; the equation xc = d will then have the same solution. If
c, d ∈ A then x exists by (7). If c ∈ A and d ∈ B then x exists by (8). If
c ∈ B and d ∈ A then x exists by (3) and (6). Finally, if c, d ∈ B then x
exists by (1),(4) and (5).

Thus C is a division groupoid. Clearly, xy = yx whenever x, y ∈ C and
either x /∈ A or y /∈ A. Thus C is commutative whenever A is. It remains
to prove that C is congruence-simple. Let ρ 6= idC be a congruence of C;
we need to show that ρ = C × C.

Let us first prove that if (ak, al) ∈ ρ for some k 6= l then ρ = C × C.
We have (ai, b0) = (akbf(k,i), albf(k,i)) ∈ ρ for every i and it follows that
A × A ⊆ ρ. Since A is a subgroupoid of C and C is generated by b0, we
conclude that for every b ∈ B there is an a ∈ A with (a, b) ∈ ρ. Then, of
course, ρ = C × C.

Next we are going to prove that if (bk, bl) ∈ ρ for some k 6= l then
ρ = C × C. If l = 0, then (bk+1, b1) = (bkb0, b0b0) ∈ ρ. Thus it is sufficient
to restrict ourselves to the case when k, l ≥ 1. There exist i, j such that
i 6= j and f(k, i) 6= l 6= f(k, j). We have (ai, b0) = (bkbf(k,i), blbf(k,i)) ∈ ρ
and similarly (aj , b0) ∈ ρ. Thus (ai, aj) ∈ ρ and we know already that this
implies ρ = C × C.
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It remains to consider the case when (ak, bl) ∈ ρ for some k, l. If l ≥
1 and k 6= l then, choosing i ≥ 1 with g(k, i) > l, we get (bi, b0) =
(akbg(k,i), blbg(k,i)) ∈ ρ, so that ρ = C × C. If k = l ≥ 1, then (ak−1, bk+1) =
(akb0, bkb0) ∈ ρ. Finally, if l = 0, then (ai, bf(k,i)+1) = (akbf(k,i), b0bf(k,i)) ∈
ρ for every i. �

4. One-generated quasigroups

A groupoid G is a cancellation groupoid if ab 6= ac and ba 6= ca for
all a, b, c ∈ G with b 6= c. If, moreover, G is a division groupoid, then G is
called a quasigroup. By a loop we mean a quasigroup with a neutral element.
Notice that every finite cancellation groupoid, and also every finite division
groupoid, is a quasigroup; the class of cancellation groupoids is closed under
taking subgroupoids and cartesian products.

It is quite easy to show that every (countable, commutative) cancellation
groupoid is a subgroupoid of an infinite (countable, commutative) quasi-
group.

Theorem 4.1. Every countable cancellation groupoid A is a subgroupoid of

a groupoid Q with the following properties:

(i) Q is a one-generated groupoid;

(ii) Q is a quasigroup;

(iii) if A is a loop then Q is a loop, with the same neutral element;

(iv) if A is commutative then C is also commutative.

Proof. Clearly, we can assume that A is an infinite quasigroup. Let i 7→ ai

be a bijection of N0 onto A, such that if A has a neutral element then the
neutral element of A is a0. Take an infinite countable set B disjoint with A
and let i 7→ bi be a bijection of N0 onto B. Define multiplication, extending
the multiplication of A, by means of induction and the following rules:

(1) bibi = bi+1 for all i;
(2) for i 6= j let bibj = ak where k is the least number such that

ak /∈ {b0bj , . . . , bi−1bj} ∪ {bib0, . . . , bibj−1}. (Thus bibj is defined
by induction on i + j.) Observe that bibj = bjbi for all i, j;

(3) aibj = bjai = bk where k is the least number such that bk /∈
{bj+1}∪{a0bj , . . . , ai−1bj}∪{aib0, . . . , aibj−1}∪{bja0, . . . , bjai−1}∪
{b0ai, . . . , bj−1ai}.

Thus bibj and aibj = bjai are defined by induction on i + j. One can check
easily that the multiplication on Q is defined correctly. Of course, A is a
subgroupoid of Q. For a small illustration, the two tables in Fig. 1 show
fragments of the multiplication table of Q.

One can easily check by induction on i+j that aibj = bjai and bibj = bjbi

for all i, j. In particular, this proves (iv).
If a subgroupoid of Q contains the element b0 then it contains all elements

of B, since bibi = bi+1, and also all elements of A, since b0bi+1 = ai. Thus
B is generated by the element b0. We get (i).
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b0 b1 b2 b3 b4 b5 b6 b7

b0 b1 a0 a1 a2 a3 a4 a5 a6

b1 a0 b2 a2 a1 a4 a3 a6 a5

b2 a1 a2 b3 a0 a5 a6 a3 a4

b3 a2 a1 a0 b4 a6 a5 a4 a3

b4 a3 a4 a5 a6 b5 a0 a1 a2

b5 a4 a3 a6 a5 a0 b6 a2 a1

b6 a5 a6 a3 a4 a1 a2 b7 a0

b7 a6 a5 a4 a3 a2 a1 a0 b8

b0 b1 b2 b3 b4 b5 b6 b7

a0 b0 b1 b2 b3 b4 b5 b6 b7

a1 b2 b0 b1 b5 b3 b4 b8 b6

a2 b3 b4 b0 b1 b2 b7 b5 b9

a3 b4 b3 b5 b0 b1 b2 b9 b10

a4 b5 b6 b4 b2 b0 b1 b3 b11

a5 b6 b5 b7 b8 b9 b0 b1 b2

a6 b7 b8 b6 b9 b10 b3 b0 b1

a7 b8 b7 b9 b6 b11 b10 b2 b0

Fig. 1

One can easily verify that Q is a cancellation groupoid. By induction
on i, aibi = b0 and a0bi = bi for all i. In particular, if a0 is a neutral element
of A then it is also a neutral element of Q. It remains to prove that Q is a
division groupoid.

Let us prove by induction on i that x 7→ bix is a bijection of B onto
bi+1 ∪ A. We already know that the mapping is injective. Suppose that
an element aj of A is not in the range of this mapping, and let j be the
least number with this property. There exists a number k > j such that
{a0, . . . , aj−1} ⊆ {bib0, . . . , bibk−1}. For all numbers m ≥ k we have aj ∈
{b0bm, . . . , bi−1bm} by the definition of bibm. It follows that at least one of
the mappings x 7→ brx, for r < i, is not injective, a contradiction.

One can prove in a similar way that for every number i, the mapping
x 7→ aix is a bijection of B onto B and the mapping x 7→ bix is a bijection
of A onto B \ {bi+1}. �

Remark 4.2. The construction in the proof of Theorem 4.1 gives a little
bit more than just the fact that the extension Q of A is one-generated: it
can be shown that if A is a quasigroup then the quasigroup Q is generated
by any element of Q \ A. Also, the last statement of the theorem can be
strengthened: we have xy = yx for all x, y ∈ Q such that {x, y} 6⊆ A.

Remark 4.3. A group is one-generated as a semigroup if and only if it is
a finite cyclic group. The infinite cyclic group is two-generated, but not
one-generated as a semigroup.

Remark 4.4. A groupoid satisfying the equation (xy)(zu) = (xz)(yu) is
called medial. According to Proposition 6.4.1 of [4], every finitely generated
medial division groupoid is a quasigroup. On the other hand, Z(−) is a
medial quasigroup that is generated by the number 1 as a groupoid.

5. Finitely generated subsemigroups of N2
0(+)

The sets N2
0 and (Q+

0 )2 will be considered in this section as semigroups
with respect to addition (defined componentwise). The set (Q+

0 )2 is the
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first quadrant of the rational plane; its elements will be called points. The
elements of N2

0 will be called lattice points.
The slope σ(k, l) of a point (k, l) 6= (0, 0) is defined in this way: If k 6= 0,

put σ(k, l) = l/k; if k = 0, put σ(k, l) = ∞. As it is easy to see, we have
σ(k1, l1) ≤ σ(k2, l2) if and only if k2l1 ≤ k1l2. This observation will enable us
to avoid dealing with fractions, so that it will be unnecessary to distinguish
between points of finite and infinite slopes.

By a ray we mean a set R of points such that there exists a point a 6= (0, 0)
with R = Q+

0 a = {ra : r ∈ Q+
0 }; we say that R is generated by a. Clearly,

every ray is generated by any of its points different from (0, 0); every ray is
generated by a lattice point. The slope of a generating point (k, l) of R does
not depend on the choice of (k, l) and is called the slope of R. Clearly, each
ray is uniquely determined by its slope.

By an angle we mean a non-empty subset U of (Q+
0 )2 such that Q+

0 U ⊆ U
and whenever R1, R2, R3 are rays such that R1 ⊆ U , R3 ⊆ U and σ(R1) <
σ(R2) < σ(R3) then R2 ⊆ U . Clearly, every angle is a subsemigroup of
(Q+

0 )2 containing the point (0, 0). For every subset X of N2
0, the least angle

containing X will be denoted by ∡(X) and called the angle generated by X.

Proposition 5.1. Let A be a subsemigroup of N2
0(+). Then ∡(A) =

Q+
0 A = {r(a, b) : r ∈ Q+

0 and (a, b) ∈ A}.

Proof. We need to prove that if (a1, b1) and (a2, b2) are two elements of
A\{(0, 0)} and (p, q) 6= (0, 0) is a lattice point such that σ(a1, b1) < σ(p, q) <
σ(a2, b2) then (p, q) ∈ Q+

0 A. If a2 = 0, then a1, b2, p, q are positive integers,
p(a1, b1) + s(0, b2) = a1(p, q) for a positive rational number s, and hence
there are positive integers k, l, t with ta1(p, q) = k(a1, b1)+ l(0, b2) ∈ A; thus
(p, q) ∈ Q+

0 A. Now, assume that a2 6= 0 and put e = a1a2p, c = b1a2p,
d = a1b2p and f = a1a2q, so that (e, c) is a lattice point generating the
same ray as (a1, b1), (e, d) is a lattice point generating the same ray as
(a2, b2) and (e, f) is a lattice point generating the same ray as (p, q); we
have c < f < d. Put r = (d − f)/(d − c), so that r and 1 − r are positive
rational numbers. There exists a positive integer n such that both nr and
n(1−r) are integers. Thus nr(e, c)+n(1−r)(e, d) ∈ A. One can easily check
that nr(e, c) + n(1 − r)(e, d) = n(e, f), so that the point n(e, f) belongs to
Q+

0 A; this point generates the same ray as (p, q). �

Let U be an angle and R ⊆ U be a ray. We say that R is a border ray of
U if either σ(R′) ≥ σ(R) for all rays R′ ⊆ U or σ(R′) ≤ σ(R) for all rays
R′ ⊆ U ; in the first case R is called the lower border ray and in the second
case, the upper border ray of U . An angle is said to be closed if it has both
the lower and the upper border. Clearly, an angle if closed if and only if it
is generated by a pair of points different from (0, 0).

Proposition 5.2. Let A be a non-trivial subsemigroup of N2
0(+). Then A

is a finitely generated semigroup if and only if ∡(A) is a closed angle.
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Proof. The direct implication is easy to see. In order to prove the converse,
let A be a non-trivial subsemigroup of N2

0 such that the angle C = ∡(A)
has both the lower border R1 and the upper border R2. There are elements
d1 ∈ R1 ∩ A and d2 ∈ R2 ∩ A. Easily, every element of C can be expressed
as rd1 + sd2 for some r, s ∈ Q+

0 . Put D = {rd1 + sd2 : r, s ∈ Q+
0 , r ≤ 1, s ≤

1} ∩ N2
0, so that D is a finite subset of N2

0.
Let a ∈ A. Since a ∈ C, we have a = r1d1 + r2d2 for some r1, r2 ∈ Q+

0 .
We have r1 = s1 + k and r2 = s2 + l for some k, l ∈ N0 and s1, s2 ∈ Q+

0
such that s1 ≤ 1 and s2 ≤ 1. Put c = s1d1 + s2d2. Since a = c + kd1 + ld2

where a and kd1 + ld2 belong to N2
0 , we have c ∈ D. Thus every element a

of A can be expressed as c + kd1 + ld2 for some c ∈ D and some k, l ∈ N0.
For every c ∈ D put Nc = {(k, l) ∈ N2

0 : c + kd1 + ld2 ∈ A}. Clearly,
if (k, l) ∈ Nc then (k′, l′) ∈ Nc for all (k′, l′) ∈ N2

0 such that k′ ≥ k and
l′ ≥ l. Denote by Mc the set of the pairs (k, l) ∈ Nc such that whenever
(k′, l′) ∈ Nc where k′ ≤ k and l′ ≤ l, then (k, l) = (k′, l′). Clearly, for every
pair (k, l) ∈ Nc there exists at least one pair (k′, l′) ∈ Mc such that k′ ≤ k
and l′ ≤ l.

Let c ∈ D. It is easy to see that for every k ∈ N0 there exists at most one
l such that (k, l) ∈ Mc; if (k1, l1) ∈ Mc and (k2, l2) ∈ Mc where k1 < k2 then
l1 > l2. Thus if k0 < k1 < k2 < . . . is an increasing sequence of non-negative
integers for which there exist li with (ki, li) ∈ Mc, then l0 > l1 > l2 > . . . .
Consequently, any such sequence is finite. It follows that there exists a
positive integer K such that k < K whenever (k, l) ∈ Mc. Quite similarly,
there exists a positive integer L such that l < L whenever (k, l) ∈ Mc. This
shows that the set Mc is finite.

Put E = {d1, d2}∪
⋃

c∈D{c+kd1 + ld2 : (k, l) ∈ Mc}. Taking into account
the preceding part of this proof, we conclude easily that the semigroup A is
generated by E. Since D is finite and each Mc is finite, the set E is finite.
Thus A is finitely generated. �

A subsemigroup B of a commutative semigroup A(+) is said to be pure

if a ∈ B whenever a ∈ A and na ∈ B for a positive integer n.

Proposition 5.3. Let A be a pure subsemigroup of N2
0(+) containing (0, 0).

If there exists an element b ∈ A\{(0, 0)} such that a−b ∈ A whenever a ∈ A
and a − b ∈ N2

0, then A is finitely generated.

Proof. Denote by B the set of the elements b ∈ A such that a − b ∈ A
whenever a ∈ A and a − b ∈ N2

0. Suppose that B 6= {0, 0} and A is not
finitely generated.

If both (1, 0) ∈ A and (0, 1) ∈ A, then A = N2
0 and A is finitely generated,

a contradiction. Thus either (1, 0) /∈ A or (0, 1) /∈ A. From the reason of
symmetry it is sufficient to consider the case (1, 0) /∈ A.

Claim 1. A ∩ N0(1, 0) = {(0, 0)}. This follows from the fact that A is
pure.
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Claim 2. B is a pure subsemigroup of N2
0(+); if a, b ∈ B are such that

a − b ∈ N2
0, then a − b ∈ B. This can be checked easily.

Claim 3. B ∩ N0(1, 0) = {(0, 0)} = B ∩ N0(0, 1). The first equality
follows from Claim 1, since B ⊆ A. Suppose that (0, 1) ∈ B. Then (r, s) ∈
A implies (r, 0) ∈ A; since (1, 0) /∈ A and A is pure, we conclude that
A = N0(0, 1) and hence A is finitely generated, a contradiction. We get
(0, 1) /∈ B. Consequently, B ∩ N0(0, 1) = {(0, 0)}.

In the rest of the proof let b = (k, l) ∈ B \ {(0, 0)} be such that k + l is
minimal. It follows from Claim 3 that k 6= 0 6= l.

Claim 4. B = N0b. Suppose, on the contrary, that B \ N0b is non-
empty and let b′ = (k′, l′) ∈ B \N0b be such that k′ + l′ is minimal. Again,
k′ 6= 0 6= l′. We have l′b− lb′ = (l′k− lk′, 0) and lb′− l′b = (lk′− l′k, 0); since
(1, 0) /∈ A, we get kl′ = k′l. If k < k′ then l < l′ and b′−b = (k′−k, l′−l) ∈ B;
by the minimality of k′ + l′ we get b′ − b ∈ N0b, so that b′ ∈ N0b, a
contradiction. Thus k′ ≤ k and then l′ ≤ l. However, k + l ≤ k′ + l′ by the
minimality of k + l and it follows that k = k′ and l = l′. Hence b′ = b, a
contradiction with b′ ∈ B \ N0b.

Claim 5. B is a proper subset of A. Indeed, B is finitely generated (by
Claim 4), while A is not.

Claim 6. el < kf whenever (e, f) ∈ A \ B. We have l 6= 0 6= f . If
el = kf then l(e, f) = f(k, l) ∈ B, so that (e, f) ∈ B (since B is pure), a
contradiction. If el > kf then (el− kf, 0) = l(e, f)− f(k, l) ∈ N2

0 and, since
(k, l) ∈ B, we get (el − kf, 0) ∈ A; but then (1, 0) ∈ A (since A is pure), a
contradiction.

Claim 7. (0, 1) ∈ A. By Claim 5 there exists an element (e, f) ∈ A \ B.
By Claim 6, el < kf . Hence (0, kf − el) = k(e, f) − e(k, l) ∈ N2

0, so that
(0, kf − el) ∈ A and thus (0, 1) ∈ A.

Denote by C the set of the numbers g ∈ N0 such that g ≤ k and (g, h) ∈ A
for at least one positive integer h. For every g ∈ C denote by p(g) the least
positive integer with (g, p(g)) ∈ A. Denote by A′ the subsemigroup of N2

0

generated by the finite set {(g, p(g)) : g ∈ C} ∪ {(0, 0)}.
Claim 8. 0 ∈ C, p(0) = 1, p(k) = l, (0, 1) ∈ A′, (k, l) ∈ A′ and B ⊆

A′ ⊂ A. These are easy observations. We have A′ 6= A, since A′ is finitely
generated.

Take a = (r, s) ∈ A \ A′ such that the sum r + s is minimal. Clearly,
r 6= 0 6= s and (r, s) /∈ B.

Claim 9. rl < sk. If rl = sk then la = sb and a ∈ B, a contradiction. If
rl > sk then la − sb = (rl − sk, 0) ∈ A and then (1, 0) ∈ A, a contradiction
again.

Claim 10. r < k. Suppose k ≤ r, so that (by Claim 9) l < s. We have
a − b = (r − k, s − l) ∈ A, since b ∈ B. But r − k + s − l < r + s implies
a − b ∈ A′ by the minimality of r + s and hence a = (a − b) + b ∈ A′, a
contradiction.
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Since r < k and (r, s) ∈ A, we have r ∈ C, (r, p(r)) ∈ A′, p(r) ≤ s. Since
(0, 1) ∈ A′, we get (0, s − p(r)) ∈ A′ and thus a = (r, s) = (r, p(r)) + (0, s −
p(r)) ∈ A′, a contradiction. �

6. Division semirings, semifields, parasemifields

If it exists, the unique additively neutral element of a semiring S will be
denoted by 0S (so that 0S + x = x for all x ∈ S). If it exists, the unique
multiplicatively neutral element of S will be denoted by 1S (so that 1Sx = x
for all x ∈ S). A semiring S may also contain a unique additively absorbing
element a (a + x = a) and/or a unique multiplicatively absorbing element o
(ox = o).

A semiring S is a ring if the additive semigroup S(+) is a group. A non-
trivial commutative ring S is a field if the non-zero elements of S constitute
a subgroup of the multiplicative semigroup S(·).

One can easily see that every additively cancellative commutative semir-
ing S can be embedded into a commutative ring R such that R = S − S =
{x− y : x, y ∈ S}; the ring R is unique up to an isomorphism over S and is
called the difference ring of S.

By a division semiring we mean a semiring S such that |SS| ≥ 2 and
S contains an element w with S \ {w} ⊆ Sa ∩ aS for every a ∈ S \ {w}.
According to this definition, fields are just the commutative division rings (if
|SS| = 1, then two-element zero multiplication rings would make exeption).

By a semifield we mean a commutative semiring S containing a mul-
tiplicatively absorbing element w such that S \ {w} is a subgroup of the
multiplicative semigroup of S. A semifield is said to be proper if it is not a
field. Clearly, every semifield is a division semiring.

By a parasemifield we mean a non-trivial commutative semiring S such
that the multiplicative semigroup of S is a group. Clearly, every parasemi-
field is a division semiring. Note that every parasemifield is infinite.

By an ideal of a commutative semiring S we mean a non-empty subset I
such that (I+I)∪SI ⊆ I. A commutative semiring is said to be ideal-simple

if it has no non-trivial proper ideals. It is easy to check that a commutative
ring is an ideal-simple semiring if and only if it is an (ideal-)simple ring in
the usual sense.

A commutative semiring S is congruence-simple if it has precisely two
congruences, idS and S×S. It is immediately seen that a commutative ring
is congruence-simple if and only if it is a simple ring in the usual sense.

For a commutative semiring S, define a relation ρS on S by (a, b) ∈ ρS if
and only if a+s = b+s for at least one s ∈ S. Obviously, ρS is a congruence
of the semiring S and the factor S/ρS is an additively cancellative semiring
(ρS is the smallest congruence with this property).

Lemma 6.1. Let S be a commutative semiring and T = S/ρS. If T is a

finitely generated semiring, then T does not contain a subsemiring isomor-

phic with the parasemifield Q+.
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Proof. Suppose that T is finitely generated and that T contains a subsemir-
ing P ≃ Q+. The set T1 = T1P is a subsemiring of T with the unit element
1T1

= 1P and P ⊆ T1. The semiring T1 is finitely generated, since it is a ho-
momorphic image of T . Now, consider the difference ring R = T1−T1 of T1.
Then 1R = 1T1

= 1P , R is a finitely generated semiring and Q = P − P
is an isomorphic copy of the field Q. If I is a maximal ideal of R, then
Q∩ I = {0R} and hence Q can be embedded into the field R/I. But R/I is
a finitely generated semiring and so R/I is a finite field while Q is infinite,
a contradiction. �

Lemma 6.2. Let S be a commutative semiring and T = S/ρS. If w ∈ T is

such that w + w = w, then w = 0T is additively neutral and multiplicatively

absorbing in T .

Proof. Just use the fact that T is additively cancellative. �

Lemma 6.3. Let S be a finitely generated commutative semiring and let S
contain a subsemiring P ≃ Q+ with 1P = 1S. Then ρS = S × S.

Proof. It follows from 6.1 that the restriction of ρS to P is different from
idP . Since P is congruence-simple, we have P × P ⊆ ρS . Consequently,
1S/ρS is an additively idempotent element of S/ρS . It follows by 6.2 that
1S/ρS is both additively neutral and multiplicatively absorbing in S/ρS .
Thus a/ρS = (a1S)/ρS = a/ρS ·1S/ρS = 1S/ρS , (a, 1S) ∈ ρS for every a ∈ S
and ρS = S × S. �

Proposition 6.4. Let S be a finitely generated, congruence-simple commu-

tative semiring. Then S is either finite or additively idempotent.

Proof. See Corollary 14.3 of [2]. �

Proposition 6.5. Let S be a finitely generated, additively cancellative com-

mutative semiring. If S is either ideal-simple or congruence-simple, then S
is a finite simple ring (i.e., S is either a finite field or a zero multiplication

ring of finite prime order).

Proof. Use 6.4 and Proposition 14.5 of [2]. �

Proposition 6.6. No one-generated commutative semiring is a parasemi-

field.

Proof. Suppose that there exists a parasemifield P that is generated by one
element as a semiring. Since P is a finitely generated semiring, P has a
maximal congruence r. The factor Q = P/r is a one-generated, congruence-
simple semiring and, of course, a parasemifield. Now Theorem 10.1 of [2],
providing a classification of congruence-simple commutative semirings, can
be applied. The first five cases listed in that theorem are easily excluded.
So, the sixth case is the only remaining one. But then P is additively
cancellative, a contradiction with 6.5. �
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7. Two-generated parasemifields

Throughout this section, let P be a parasemifield that is generated by a
set {x, y} as a semiring (we have x 6= y due to 6.6). We claim that P is
additively idempotent. To prove this, we proceed by means of contradiction.
Suppose that P is not additively idempotent, so that 1P 6= 2P = 1P + 1P .
Then the prime subparasemifield Q of P is a copy of the parasemifield Q+

of positive rational numbers. Denote by S the set of the elements u ∈ P
such that Q ∩ (P + u) 6= ∅.

Lemma 7.1. (i) S is a subsemiring of P .

(ii) If u1, . . . , un ∈ P are such that u1+· · ·+un ∈ S, then all the elements

u1, . . . , un belong to S.

(iii) Q + P is a subsemiring of P .

(iv) Q ⊆ S ∩ S−1 ∩ (Q + P ).

Proof. It is obvious. �

Lemma 7.2. Q + P = S−1.

Proof. If u = q1 + v where q1 ∈ Q, then u−1 + q−1
1 vu−1 = q−1

1 ∈ Q and
hence u ∈ S−1. Conversely, if u−1 + w = q2 ∈ Q where w ∈ P , then
q−1
2 1P + q−1

2 wu = u and u ∈ Q + P . �

Lemma 7.3. The set T = S ∩ S−1 = S ∩ (Q + P ) = Q + S = Q + T is a

subsemiring of P and T is a parasemifield.

Proof. We have T = S∩S−1 = S∩(Q+P ) and hence T is a subsemiring of P ,
since both S and S−1 = Q+P are subsemirings. Clearly, T is a parasemifield
and Q ⊆ T ⊆ S. Since S is a subsemiring, we have Q+S ⊆ S. The inclusion
Q+S ⊆ Q+P is obvious, and therefore Q+T ⊆ Q+S ⊆ S ∩ (Q+P ) = T .
Finally, if u ∈ T , then u = q + v for some q ∈ Q and v ∈ P , the element
w = q/2 + v belongs to Q + P , we have u = w + q/2, w ∈ S, and so w ∈ T .
Thus T ⊆ Q + T . �

Lemma 7.4. The parasemifield T is additively cancellative.

Proof. Let u, v, z ∈ T be such that u + z = v + z. Then u−1z ∈ T and it
follows easily from the definition of the subsemiring S that u−1z + w = 2n

P

for some w ∈ P and some non-negative integer n. Now, z + wu = 2nu and
hence u + 2nu = u + z + wu = v + z + wu = v + 2nu. If n = 0, then
2u = u + v. If n ≥ 1, then 2(u + 2n−1u) = u + u + 2nu = u + v + 2nu =
v + v + 2nu = 2(v + 2n−1u) and consequently u + 2n−1u = v + 2n−1u.
Proceeding by induction, we get 2u = u + v anyway. Quite symmetrically,
2v = u + v, and so 2u = 2v and, finally, u = v. �

Lemma 7.5. If u, v, z ∈ S are such that u + z = v + z, then u + q = v + q
for every q ∈ Q (in particular, u + 1P = v + 1P ).

Proof. The elements u + q, v + q, z + q belong to T by 7.3 and the result
ensues from 7.4. �
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Lemma 7.6. If u, v ∈ T and z ∈ S are such that u+ z = v + z, then u = v.

Proof. We have u + 1P = v + 1P by 7.5 and then we get u = v by 7.4. �

Lemma 7.7. Neither S nor T is a finitely generated semiring.

Proof. First, T is an additively cancellative parasemifield, and hence T is
not a finitely generated semiring by 6.5. Next, it follows from 7.6 that the
restriction of the congruence ρS to T is the identity on T , and consequently
ρS 6= S × S. Now, S is not finitely generated by 6.3. �

Lemma 7.8. P = SS−1 = S(Q + P ).

Proof. We have u−1(u+1P ) = 1P +u−1 ∈ Q+P for every u ∈ P , and hence
the element v = u(u + 1P )−1 belongs to S by 7.2. Now, u = v(u + 1P ) ∈
SS−1. �

Lemma 7.9. T 6= S 6= P .

Proof. Since P is a finitely generated semiring while S is not, we have S 6= P .
Now it follows from 7.8 that S−1 6⊆ S, and hence S 6= T , since T−1 = T . �

Lemma 7.10. If u ∈ P and n ≥ 1 are such that un ∈ S (un ∈ Q + P ,

un ∈ T , resp.), then u ∈ S (u ∈ Q + P , u ∈ T , resp.).

Proof. First, assume that un ∈ S. Then un+w = qn for some w ∈ P and q ∈
Q and we have uv+w = qv, where v = un−1+un−2q+· · ·+uqn−2+qn−1 ∈ P .
Now, u + wv−1 = q ∈ Q and u ∈ S.

If un ∈ Q + P , then u−n ∈ S by 7.2, and hence u−1 ∈ S and u ∈ Q + P .
Finally, if un ∈ T = S ∩ S−1, then u ∈ T . �

Put A = {(k, l) ∈ N2
0 : xkyl ∈ S} and B = {(k, l) ∈ N2

0 : xkyl ∈ T}.

Lemma 7.11. (i) (0, 0) ∈ A and {(0, 0)} 6= A 6= N2
0.

(ii) A is a pure subsemigroup of N2
0(+).

(iii) A is not a finitely generated semigroup.

Proof. First, (0, 0) ∈ A and A is a subsemigroup of N2
0(+), since 1P ∈

Q ⊆ S and S is closed under multiplication. The fact that S is a pure
subsemigroup follows easily from 7.10. If M is a (non-empty) generating
subset of the semigroup A, then {xkyl : (k, l) ∈ M} is a generating subset of
the semiring S (use 7.1(ii)), and hence M is infinite due to 7.7. Consequently,
A is not finitely generated and it follows that {(0, 0)} 6= A 6= N2

0. �

Lemma 7.12. The following two conditions are equivalent for (k, l) ∈ N2
0:

(i) (k, l) ∈ B;

(ii) (k, l) ∈ A and (m− k, n− l) ∈ A for every pair (m, n) ∈ A such that

m ≥ k and n ≥ l.

Proof. (i) implies (ii). We have u = xkyl ∈ T , u−1 = x−ky−l ∈ S, v =
xmyn ∈ S and u−1v = xm−kyn−l ∈ S. But (m − k, n − l) ∈ N2

0, and so
(m − k, n − l) ∈ A.
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(ii) implies (i). We have u = xkyl ∈ S and u−1 =
∑t

i=1 xkiyli for some

(ki, li) ∈ N2
0 (1 ≤ i ≤ t). Then 1P = uu−1 =

∑
xk+kiyl+li and it follows

from 7.1(ii) that (k + ki, l + li) ∈ A for every i. Now, using (ii), we get
(ki, li) ∈ A, and hence u−1 ∈ S. Thus u ∈ S ∩ S−1 = T . �

Lemma 7.13. (0, 0) ∈ B ⊂ A and B is a pure subsemigroup of N2
0(+).

Proof. Use 7.12, 7.9 and 7.10. �

Lemma 7.14. Let qi ∈ Q+
0 and (ki, li) ∈ A (1 ≤ i ≤ t) be such that

(k, l) =
∑t

i=1(qiki, qili) ∈ N2
0. Then (k, l) ∈ A.

Proof. We have qi = ri/si for suitable ri ∈ N0 and si ∈ N. Put s = s1 . . . st.
Then sqi ∈ N0, (sqiki, sqili) ∈ A and (sk, sl) =

∑
(sqiki, sqili) ∈ A. Thus

(sk, sl) ∈ A ∩ sN2
0 = sA and (k, l) ∈ A. �

Lemma 7.15. Let (k, l) ∈ A, u = xkyl ∈ S and (ki, li) ∈ N2
0 (1 ≤ i ≤ t) be

such that u−1 =
∑t

i=1 vi, where vi = xkiyli ∈ P . Then:

(i) (k + ki, l + li) ∈ A for every i.
(ii) (k, l) ∈ B and u ∈ T , provided that there exist positive integers ni

with ((ni − 1)k + niki, (ni − 1)l + nili) ∈ A for every i.

Proof. (i) is easy (see the second part of the proof of 7.12).

(ii) Put n =
∑

ni. Then u−n = (
∑

vi)
n can be written as

∑
r sr

∏t
i−1 vri

i

where r runs over the set of the t-tuples r = (r1, . . . , rt) ∈ Nt
0 with

∑
ri = n,

and sr ∈ N. We have un−1 = x(n−1)ky(n−1)l and u−1 = un−1u−n. On the
other hand, un−1

∏t
i=1 vri

i = xarybr where ar = (n − 1)k +
∑t

i=1 riki and

br = (n − 1)l +
∑t

i=1 rili. Thus u−1 =
∑

r srx
arybr and, in order to show

that u−1 ∈ S, it is sufficient to check that (ar, br) ∈ A for every r.
There are mi ∈ N0 with n = ni+mi and we have ((n−1)k+nki, (n−1)l+

nli) = (n−1)(k, l)+n(ki, li) = (ni−1)(k, l)+ni(ki, li)+mi(k+ki, l+ li) ∈ A
for every i. Finally, (ar, br) = (n − 1)(k, l) +

∑
ri(ki, li) =

∑
(ri/n)((n −

1)(k, l) + n(ki, li)) =
∑

(ri/n)((n − 1)k + nki, (n − 1)l + nli) ∈ N2
0 and

(ar, br) ∈ A by 7.14. �

Lemma 7.16. The following two conditions are equivalent for all (k, l) ∈ A
and (a, b) ∈ N2

0:

(i) ((n − 1)k + na, (n − 1)l + nb) ∈ A for a positive integer n;

(ii) there are r, s ∈ Q+, (ki, li) ∈ A and qi ∈ Q+
0 (1 ≤ i ≤ t) such that

((r − s)k + ra, (r − s)l + rb) =
∑t

i=1(qiki, qili).

Moreover, if these equivalent conditions are satisfied, then (k +a, l+ b) ∈ A.

Proof. (i) implies (ii). We put r = n, s = t = 1, k1 = (n − 1)k + na,
l1 = (n − 1)l + nb and q1 = 1. Moreover, n(k + a, l + b) = (k, l) + ((n −
1)k + na, (n − 1)l + nb) ∈ A and hence (k + a, l + b) ∈ A, since A is a pure
subsemigroup of N2

0(+).
(ii) implies (i). We have r = n/c and s = m/c for suitable n, m, c ∈ N.

Then ((n − m)k + na, (n − m)l + nb) = c((r − s)k + ra, (r − s)l + rb) =
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∑
(cqiki, cqili) ∈ Z2 ∩ (Q+

0 )2 = N2
0 and ((n − m)k + na, (n − m)l + nb) ∈ A

by 7.14. Now, ((n − 1)k + na, (n − 1)l + nb) = ((n − m)k + na, (n − m)l +
nb) + ((m − 1)k, (m − 1)l) ∈ A. �

Lemma 7.17. For every (k, l) ∈ A \ B there exists at least one (a, b) ∈ N2
0

such that (k+a, l+b) ∈ A and ((r−s)k+ra, (r−s)l+rb) 6=
∑t

i=1(qiki, qili)
for all r, s ∈ Q+, (ki, li) ∈ A and qi ∈ Q+

0 (1 ≤ i ≤ t). In particular,

(k + a, l + b) /∈ Q(k, l) and (a, b) /∈ Q(k, l).

Proof. The result follows by an easy combination of 7.15 and 7.16. If (a, b) =
q(k, l) for some q ∈ Q, then (k + a, l + b) = (q + 1)(k, l) and q > −1, since
(k, l) ∈ A\{(0, 0)}. Now, q+1 ∈ Q+ and ((r0−s0)k+r0a, (r0−s0)l+r0b) =
(0, 0) where r0 = 1 and s0 = q + 1, a contradiction. �

Theorem 7.18. Let P be a parasemifield that is two-generated as a semir-

ing. Then P is additively idempotent.

Proof. It follows from 7.11, 7.12 and 5.3 that B = {(0, 0)}. Thus 7.17 can
be reformulated as follows: For every (k, l) ∈ A \ {(0, 0)} there exists at
least one (c, d) ∈ A with (c, d) − (k, l) ∈ N2

0 such that for all r, s ∈ Q+,

r(c, d) − s(k, l) /∈ ∡(A) = {
∑t

i=1 qi(ki, li) : (ki, li) ∈ A, qi ∈ Q+
0 }.

Since A is not finitely generated, by 5.2 the angle ∡(A) has at most
one border ray. If (c, d) is not on a border ray, then for r = 1 and all
sufficiently small positive rational numbers s we have r(c, d)−s(k, l) ∈ ∡(A),
a contradiction. Thus (c, d) is on the border ray, for every (k, l) ∈ A\{(0, 0)}.
Now, choose (k, l) to be also on that border ray. Then (c, d) = q(k, l) for
some q ∈ Q+ and 2(c, d) − q(k, l) = (c, d) ∈ A, a contradiction. �
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