COMMUTATIVE PARASEMIFIELDS
FINITELY GENERATED AS SEMIRINGS

ViTEZSLAV KALA AND ToMAS KEPKA

ABSTRACT. Commutative parasemifields that are finitely generated as semirings are
studied in more detail.

This short article continues immediately [2] and [3] and the reader is fully referred
to the cited papers as concerns all necessary and/or helpful prerequisities.

1. INTRODUCTION

By a parasemifield we mean a non-trivial algebraic structure with two commu-
tative and associative binary operations, addition and multiplication, where the
multiplication forms an (abelian) group and distributes over the addition. Familiar
examples of such a structure are the parasemifields of positive rational or real num-
bers. Both these parasemifields are congruence-simple and they are not finitely
generated as semirings. In fact, according to [1, 14.3], every congruence-simple
finitely generated commutative semiring is either finite or additively idempotent.
A corresponding result for ideal-simple finitely generated commutative semirings
seems to be an open problem. According to [2, 5.1], it is sufficient to solve the
problem only for parasemifields. Since every parasemifield is infinite, it would
mean that a parasemifield is additively idempotent, provided that it is a finitely
generated semiring.

2. PARASEMIFIELDS AND SUBSEMIGROUPS OF N

In the paper, let S be a commutative parasemifield that is not additively idem-
potent (i.e., lg #lg+1s = 25).

First, observe that the prime subparasemifield T of S (i.e., the subparasemifield
generated by the unit 1g) is a copy of the parasemifield QT of positive rationals. Tt is
quite easy to show that Q7 is a congruence-simple semiring (i.e., idg+ and Qt x Q™
are the only semiring congruences of Q*) and that QT is not a finitely generated
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semiring. Consequently, if p is a congruence of S, then either p [ T = idr or T is
contained in a block of p and the factor-semiring S/p is additively idempotent.

For every u € S, the set I,, = (S + u) U {u} is the principal ideal of the additive
semigroup S(+) generated by the element u. We denote by @ the set of the elements
u € S such that I, N T # (). Furthemore, we put R=(S+7T)UT and P = Q N R;
notice that R is the ideal of S(+) generated by T'.

2.1 Proposition. ([3]) (i) Both Q and R are subsemirings of S.

(ii)) R=Q ' = {u=tu € Q}.

(iii) S = QR = {uvju € Q,v € R}.

(i) TCP=Q+T=QnNR.

(v) P is an additively archimedean and cancellative parasemifield.

(vi) Neither QQ nor P is a finitely generated semiring,

(vii) If uy, ..., uy, € S,n > 1 are such that uy+- - -+u, € Q, thenuy,...,u, € Q.

(viii) If u € S and n > 1 are such that u™ € Q (R, P, resp.), then u € Q (R, P,
resp. ).

(ix) If u,v,w € Q are such that u+ v = u + w, then v+t = w + t for every
tefT.

Proof. See [3, 4.3], [3, 4.8], [3, 3.11], [3, 4.10], [3, 4.18], [3, 4.4], [3, 4.6], and [3,
4.15]. O

In the remaining part of the paper, assume that S is finitely generated as a

semiring. Let {z1,...,zn}, m > 1, be a finite set of generators of S.
2.2 Lemma. (i) Q # S # R.
(ii) Q # P # R.

Proof. Combine 2.1(vi) and [3, 4.9]. O

Put A = {(k1,...,km) € N[ - 2hm € Q}, A" = {(k1, ..., km) € N[5 - 2B
R}, and B = {(ky1,...,kp) € NI*|2F ... 2Fm ¢ P} (Ny denotes the semiring of non-
negative integers).

2.3 Proposition. (i) 0€ A,0# A # NJ* and A is a pure subsemigroup of N*(+)
(i.e., nA = ANnNy for everyn > 1).
(ii) A is not a finitely generated semigroup.

Proof. (i) Clearly, 2%---20 =15 € T C @, and so 0 € A. Since Q(-) is a sub-
semigroup of the multiplicative group S(-), we see that A is a subsemigroup of the
additive semigroup Nj*(+)(= No(+)™). From 2.1(viii) follows that A is a pure
subsemigroup.

(ii) See [3, 4.19(iii)]. O

2.4 Lemma. Let k> 1 and a; = (ki1, ..., kim) € NJ',1 <i < k.

(i) If >, z’fi’l kim e Q) then a; € A for every i, 1 <i < k.

(ii) If ¢; € QF,1 < i < k (the semifield of non-negative rationals) are such that
a=>.qia; € NJ'(+) and if a; € A for every i, then a € A.

Proof. (i) The assertion follows easily from 2.1(vii).
(ii) We have ¢; = r;/s; for suitable r; € Ny and s; € N. If s = s;---5 then
sq; € No,b; = sqia; € A and sa => b, € ANsNJ' = sA. Thusa € A. O

kme
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2.5 Proposition. 0 € A’ A’ # NJ* and A’ is a pure subsemigroup of NJ*(+).
Proof. Similar to that of 2.3(1). O

2.6 Proposition. (i) 0 € B and B is a pure subsemigroup of NJ*(+).
(ii)) B=An A,
(iii) B # A.
Proof. (i) Similar to 2.3(i).
(ii) We have P = Q N R.
(iii) If B = A then A C A’, and hence R = S, a contradiction with 2.2(i). O

2.7 Lemma. Letbe€ A. Thenb € B if and only ifa—b € A for every a € A such
that a — b € Nj*.

Proof. Let b= (k1,...,kn) andu:z’fl---zﬁm €Q.Ifbe Bthenuec P,u"' €Q

and Z7F gl —km — =1y € Q, where a = (I1,...,l,) € A and a — b € NJ".
Consequently, a—be A
Now we are going to show the converse implication. We have u~! = Zle zlfl e

for some k > 1 and a; = (ki1,...,kim) € N*,1 < i < k. Then 1lg = uu™! =
> z’fﬁki’l oot e and it follows from 2.4(i) that b+ a; € A for every
i. On the other hand, a; = (b+ a;) — a; € Nj* and we get that a; € A. Thus

Z’f“ MmO for every 4 and, finally, ™' € Q. Thus w € P and b € B. [

2.8 Lemma. Leta € A" and b € B be such that a —b € NJ'. Thena—be A'.
Proof. See the first part of the proof of 2.7. [

2.9 Lemma. Leta € A and ay,...,a; € N,k > 1, be such that a + a; € A for
every 1,1 < i < k. Assume that there exist positive integers ny,...,n; such that
(n; — 1)a + n;a; € A for everyi. Then:

(i) (n —1)a+ na; € A for all i and positive integers n > max(n;).

(ii) (n —1)a+ > ra; € A for all n > max(n;) and ry,...,rp € No, > .1 = n.

Proof. (i) We have n = n; + [; for some [; € Ny and (n — 1)a + na; = (n; — 1)a +
n;a; + l,(a + ai) c A.

(ii) We have (n — 1)a + > ria; = > (ri/n)((n — 1)a + na;) € Nj*. It remains to
combine (i) and 2.4(ii). O
2.10 Lemma. Let a = (ky,...,ky) € A and u = z’fl coezkmo e Q. Let a; =
(ki1 oy kim) € Ng 1 < i <k, be such thatu™" = v;, where v; = z’fi’l . z’ﬁi ™ e
S. Then:

(i) a + a; € A for every i.

(ii) a € B and u € P, provided that there exist positive integers n; such that
(n; — 1)a+ n;a; € A for every i.
Proof. (i) Easy (see the second part of the proof of 2.7).

(ii) Put n = > n;. Then u™™ = (Y v ) = .t Hl 3 vt r = (ry,...,1E) €

K>S r =n,t, € Nur~l = zgn_l)kl ooz Em and wmt = w1y, On the
other hand, u™~ 1]_[Z LUt =21t zom where s; = (n—1)k; +Zz L Tik id for every
j=1,...,m. Since (n—l)a+z ria; € A by 2.9(ii), we have u"~ IHz 1V EQ
and consequently, =5 tp(unt HZ 1) €Q. Thusu € Pand a € B. O
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2.11 Remark. Counsider the situation from 2.10. If a € A\B (i.e., u € P), then

there exists ig, 1 < ip < k, such that (n — 1)a + na;, ¢ A for every positive integer

n. In particular, a;, # 0. Now, if a;, = ga for some q € Q*, then ¢ =r/s,r,s € N,

and we get (s—1)a+sa;, = (s—1)a+ra = (s+r—1)a € A, a contradiction. Thus
. +

ai, ¢ Qy a.

2.12 Lemma. Let a,a1,...,ar, € A,k > 1,0 N, r,s € QY and qq,- .., qx EQ{{

be such that rb — sa = Zle gia;. Then (n — 1)a+ nb € A for a positive integer n
(and hence a+b e A).

Proof. There are positive integers n,l,¢ such that » = n/t and s = [/t. Now,
nb—la =), qa; € N’ and nb—la € A by 2.4(ii). But (n—1)a+nb = (nb—la)+
(n+l—-1)ae A. O

2.13 Lemma. The following conditions are equivalent for all a € A and b € Nj*:
(1) (n —1)a+nbe A for somen € N.
(ii) There are r,s € Qt, k € Nyay,...,ar € A and q1,...,qx € QF such that
r(a+ b) — sa = Z?Zl qia;.
Moreover, if these equivalent conditions are satisfied, then a + b € A.

Proof. If (i) is true, then (n — 1)a +nb=ay € A and n(a+b) —a = a1, so we can
put r =n,s =1=£k,q; = 1. Moreover, n(a +b) =ay +a € A and a + b € A since
A is a pure subsemigroup of Nj*(+).
Now, assume that (ii) is satisfied. We have r = k1 /t and s = ky/t for suitable
k1, k2, t € N. Then ¢ = (k1—ka)a+keb = t(r(a+b)—sa) =, tgia; € Z™N(QF)™ =
0r and ¢ € A by 2.4(ii). Consequently, (k1 — 1)a+ kib=c+ (k2 —1)a€ A. O

2.14 Lemma. Let a € A be such that for every b € Ny* with a +b € A there exist
aty...,ax € Ak > 1,15 € QF and qi,...,q5 € QF with r(a+0b) —sa =3, g;a;.
Then a € B.

Proof. Combine 2.13 and 2.10. [

2.15 Corollary. (cf. 2.11) Let a € A\B (see 2.6(iii)). Then there exists b € Nj*
such that a+b € A and r(a+b)—sa # > qa; forall ay,...,ap € A,k > 1,7,s € QF
and q1,...,q; € QF. In particular, a + b € Qa and b ¢ Qa.

2.16 Remark. Let o be a congruence of S maximal with respect to (1g,25) ¢ o,
Then S/o is a parasemifield that is not additively idempotent.

As in [3], define a relation pg on S by (a,b) € ug if and only if b = a + z for
some z € SU {0} and define a relation ng on S by (a,b) € ng if and only if there
exist m,n € N such that (a,mb) € pg and (b,na) € pg. Then ng is the smallest
congruence of S such that the corresponding factor is additively idempotent (see
[3, 1.5]).

Hence, ng C o1, whenever o4 is a congruence of S such that o C ;. In particular,
the factor-semiring S/o is subdirectly irreducible.

3. MaAprPING TO R

The preceding section is immediately continued. Since S is a non-trivial finitely
generated semiring, S possesses at least one (proper) maximal congruence p. Com-
bining [1, 14.3], [1, 10.1], [1, 5.3], we conclude that there exists a mapping ¢ : S — R
(the field of real numbers) such that ker(¢) = p, p(u + v) = min(p(u), ¢(v)) and
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o(uv) = p(u) + ¢(v) for all u,v € S. Then p(lg) = 0 and ¢(S)(+) is a non-zero
finitely generated subgroup of R(+). In fact, if the semiring S is generated by
{z1,-..,2m},m > 1, then the semigroup ¢(S)(+) is generated by the real numbers
©(21), .- 0(Zm)-

Put V= ¢~ (p(S) NRy), U = ¢~ (¢(S) NRy ) and W = ¢~ }(0).

3.1 Proposition. (i) V and U are subsemirings of S.
(ii) W is a subparasemifield of S.
(iii) U = V1.
(iv) S+U=U and W+V =W.
(v)VUU =S and VNnU=W.
(vi)V#S#U.
(vii) V£ W £ U.
(viti) @ CV,RC U and P C W.

Proof. The first seven assertions follow easily from the properties of the mapping
@. It remains to show the last one.

First, T C W =V NU, since T is the prime subparasemifield of S. If v € Q\T,
then v + w € T for some w € S and we have 0 = (v + w) = min(p(v), p(w)).
Consequently, p(v) > 0 and v € V. This means that Q = (Q\T)UT C V. Ifu € R,
then u=! € V, and so u € U by (iii). O

3.2 Lemma. Let uy,...,up € S,n>1, and u = uy + -+ + Uy,.
(i) If u € V, then uy,...,u, € V.
(ii) If u € U, then u; € U for at least one i.
(iii) If w € W, then uy,...,u, €V and u; € W for at least one i.

Proof. Tt is easy. [

3.3 Lemma. Ifu € S andn > 1 are such that u™ € V. (U,W, resp.), then u € V
(U, W, resp.).

Proof. Tt is easy. [
3.4 Lemma. Both V' = V\W and U = U\W are subsemirings of S.
Proof. 1t is easy. [

3.5 Lemma. ¢(5) = ¢(Q) — ¢(Q).

Proof. We have ¢(S) = 9(QR) = p(QQ™") = ¢(Q) + ¢(Q™") = p(Q) — ¢(Q). O
Put A = {(k1,...,kn) € NP|2F o b e VI A= {(k1,... kp) € NP|2F1 .. 2 €

U}, and B = {(k1,..., km) € NI |28 gk c WY,

3.6 Proposition. (i)0 € A,0# A # NI and A is a pure subsemigroup of NJ*(+).
(ii) AC A #Np.
(iii) If A is a finitely generated semigroup, then V is a finitely generated semiring.
Proof. (i) An easy consequence of the definition of A.

(ii) A C A, since Q CV, and A # NI since V # S.
(iii) Use 3.2(1). O
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3.7 Lemma. Let k > 1,a1,...,a; € A and q1,...,q; € Q(J{ be such that a =
> qia; € NI'. Then a € A.

Proof. Similar to that of 2.4(ii). O

3.8 Proposition. (i)0 € A,0# A+NP and A is a pure subsemigroup of NI* (+).
(ii) AU A = NI,

Proof. 1t is easy (use 3.1(v)). O

3.9 Lemma. Let k > 1 and a; = (kiq1,...,kim) € Ny*,1 < i <k, be such that
> z’fi’l gk ey (U, resp.). Then a; € A for every i (a; € A for at least one
J, resp.).

Proof. 1t is easy. [

3.10 Proposition. (i) 0 € B and B is a non-zero pure subsemigroup of NJ*(+).
(ii) B= AN A.
(iii) A # B # A.

Proof. (i) Clearly, 0 € B and B is a pure subsemigroup of NI*(+). Since the

semiring S is generated by the set {z1,...,2p,} there are £ > 1 and 0 # a; €

moi=1,...,ka; = (ki1,..., kim), such that 1g = 3, 2/ -+ 5™ By 3.2(iii),

a; € B for at least one i. Thus B # 0.

(ii) We have W =V N U by 3.1(v).

(iii) If B = A, then A C A, and hence V C U and U = S, a contradiction. If
B = g, then A C A, and hence A = N7, again a contradiction. [J

3.11 Lemma. (i) Letb € A. Then b€ B if and only ifa —b € A for everya € A
such that a —b € Nj*.

(i) Let b € B. Thena—b € A for every a € A such that a —b € NI*.
Proof. Similar to that of 2.7. [J

3.12 Remark. By 3.1(iv), we have W + V = W. We are going to show that
w+V # W for every w € W.

Assume, on the contrary, that wy +V = W for some wy; € W. Then wl_1 ew,
and hence 15+ V = 1g + w;'V = wi(wy + V) = wi'W = W. Furthemore,
w4V =w+wV =w(lg+ V) =wW = W for every w € W. In particular,
w425+ V =W,and then w+1g+V +2¢ =W+1g. But V4+2¢ =V+4+1g+1g5 C
W +1g and we see that w+1g+ W + 15 =W + 1g. Now, it is clear that W 4+ 1g
is a subgroup of S(+). If z is the neutral element of the subgroup, then 2z = z,
and hence 2g = 1g, a contradiction.
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