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Abstract. A ring R is radical if there is a ring S (with unit) such that
R = J (S) (the Jacobson radical). We study the commutative subdirectly

irreducible radical rings and show that such a ring is noetherian if and only
if is finite. We present a reflection of the commutative radical rings into the
category of the commutative rings and derive a lot of examples of the subdi-
rectly irreducible radical rings with various properties. At last, we show partial

results in the classification of the factors R/M of the subdirectly irreducible
radical rings R by their monoliths M .

For a ring R we denote J (R) =
⋂
{AnnR(M)| M is a simple R-module} the

Jacobson’s radical of R. Radical rings are just all Jacobson’s radicals of all rings.
These rings are important not only for this property, but were also massively used,
together with their adjoint groups, by E. Zelmanov in solving of the Burnside’s
problem for finitely generated groups.

Equivalently, a ring R is radical if and only if for every a ∈ R there is an adjoint
element ã ∈ R such that a+ ã+ aã = 0. Thus we can view the class of the radical
rings as a universal algebraic variety (with one nullary, two unary and two binary
operations). Since every simple radical ring is isomorphic to a zero-multiplication
ring Zp for a prime p, we proceed naturally by investigating of the structure of this
variety to the subdirectly irreducible ones.

A subdirectly irreducible ring is one in which the intersection of all the nonzero
ideals is a nonzero ideal. These ring are a kind of building blocks, since, by the
Birkhoff’s theorem, every radical ring is isomorphic to a subdirect product of sub-
directly irreducible radical rings.

In this paper we pay our attention on the commutative rings. Subdirectly irre-
ducible commutative ring were already studied by N.H. McCoy [6] and N. Divinsky
[7]. In [6] was shown that these rings are of the following three types:

(α) Fields.
(β) Every element is a zero divisor.
(γ) There exists both non-divisors of zero and nilpotent elements.

The subdirectly irreducible commutative radical rings are of type (β). In addition,
by [6], if they satisfy either the descending or the ascending condition, they are
nilpotent.

An important property of the class of commutative radical rings is also the
existence of a reflection of the category of the commutative rings into the category
of the commutative radical rings. In this paper we present such reflection, which
will be consecutively a very effective tool for constructing of examples of subdirectly
irreducible radical rings with various properties. As we will see, a very helpful class
for these constructions will be the class of so called subradical rings.
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Finally, we are concerned with the following natural question: ”Which (univer-
sal) algebras are homomorphic images of subdirectly irreducible (universal) alge-
bras?” T. Kepka asked for a characterisation of those algebras in [3]. For semigroups
was the complete answer given in [1]. For algebras with only unary operations was
the problem partially solved in [2]. In [5], the aswer was given for quasigroups. In
this paper we study this question for (commutative) radical rings. We give some
necessery conditions for such factors and make a characterization of the case when
the factor is zero-multiplication ring.

1. Introduction

Throughout this paper, all rings are assumed to be commutative with or without
unit. Henceforth, the word ’ring’ will always mean a commutative one.

The Dorroh extension D(R) for a ring R is a ring Z ⊕R with the multiplication
(n, a) · (m, b) = (nm,ma + nb + ab) for n,m ∈ Z and a, b ∈ R. We can therefore
assume that R ⊆ D(R). Nontrivial radical ring cannot contain a unit (otherwise

−1 ∈ R and 0 = (−1) + (−̃1) + (−1)(−̃1) = −1, a contradiction). Hence we can
write (1 + a)(1 + ã) = 1 in D(R).

Let R be a ring, X,Y ⊆ R subsets. Denote X · Y the subgroup of (R,+)
generated by the set {xy|x ∈ X, y ∈ Y }. Further, put X1 = {

∑
i

xi|xi ∈ X} and

Xn+1 = X ·Xn for n ∈ N.
Let R be a ring and A ⊆ R a subset. We will say that R is id-generated by A iff

R is generated by A as a R-module. We say that a radical ring R is rd-generated
by A iff is generated by A as a radical ring.

For a ring R we denote Ann(R) the annihilator, N (R) the nilradical, T (R) the
torsion part and D(R) the divisible part of R.

A ring R is said to be subdirectly irreducible iff it has the least non-zero ideal,
called a monolith and denoted by M(R). Let M 6= 0 be an ideal of R. Clearly, a
ring R is subdirectly irreducible with a monolith M(R) = M iff M ⊆ Rx for every
x ∈ R \Ann(R) and M ⊆ Zx′ for every 0 6= x′ ∈ Ann(R) (i.e. iff M ⊆ Rx+ Zx for
every 0 6= x ∈ R).

Let R be a subdirectly irreducible radical ring with a monolith M . By [4] 12.1,
T (R) is a p-group and Zp(+) ∼= M(+) ⊆ Ann(R)(+) ∼= Zpn(+), where 1 ≤ n ≤ ∞.

Denote by S the the class of all subdirectly irreducible radical rings.

Lemma 1.1. Let R be a ring, A ⊆ R a subset. Let An = 0 for some n ∈ N and
suppose R is id-generated by A.

Then R is generated by A as a ring and Rn = 0 (hence R is nilpotent).

Proof. Obviously R = A1 +R ·A1. Now, by induction, if R = A1 + · · ·+Ak+R ·Ak,
then R = A1 + · · · + Ak + (A1 + R · A1) · Ak = A1 + · · · + Ak + Ak+1 + R · Ak+1.
Hence R = A1 + · · · +An and R is nilpotent. �

Lemma 1.2. Let R be a noetherian ring. Then there is m ∈ N such that m ×
T (R) = 0.

Proof. Let P = {p1, p2, . . .} be the set of all prime numbers. Put In = {a ∈
R|(∃ k ∈ N)(p1 . . . pn)

k × a = 0}. Then {In}n∈N is an increasing sequence of
ideals of R and T (R) =

⋃
n In. Hence T (R) = In0

for some n0. Further, put
Jk = {a ∈ R|(p1 . . . pn0

)k × a = 0}. Then {Jk}k∈N is an increasing sequence of
ideals of R and T (R) =

⋃
k Jk. Hence T (R) = Jk0 for some k0. Finally, set

m = (p1 . . . pn0
)k0 . �

Lemma 1.3. Let S be a subdirectly irreducible radical ring with a monolith M ∼= Zp.
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(i) If T (S) 6= S, then for every n ∈ N there exists a subgroup Gn ⊆ S(+) such
that M ⊆ Gn ∼= Zpn(+).

(ii) If S is noetherian then is torsion and nil.

Proof. (i) Let a be a torsion-free element in S, n ∈ N. Then pn−1 × a is also
torsion-free and hence pn−1 × a 6∈ Ann(R). Thus there is b ∈ S such that 0 6=
b · (pn−1 × a) ∈M . Therefore ba is of order pn and we put Gn = 〈ba〉.

(ii) T (S) is a p-group, hence there is n ∈ N such that pn × T (S) = 0, by 1.2.
Suppose that S 6= T (S). Then, by (i), for every k ∈ N there is a ∈ T (S) of order
pk, a contradiction.

Suppose now a ∈ S is not nilpotent. Put Jn := {x ∈ S|xan ∈ M}. Then
{Jn}n∈N is an increasing sequence of ideals. Since an+1 6∈ Ann(S), there is bn ∈ R
such that 0 6= bna

n+1 ∈ M and obviously bna
n 6∈ M ⊆ Ann(S) (otherwise 0 6=

bna
n+1 = (bna

n)a = 0, a contradiction). Hence bn ∈ Jn+1 \ Jn for every n ∈ N, a
contradiction. �

Theorem 1.4. Let S be a subdirectly irreducible radical ring. Then S is noetherian
if and only it is finite. Hence, if S is noetherian then is also artinian.

Proof. (⇐) Easy.
(⇒) S is a finitely id-generated ring. By 1.3(ii) is nil and hence by 1.1 is finitely

generated as a ring. Moreover, pk ×R = 0 for some prime p and k ∈ N by 1.2 and
1.3(ii). Hence is S finite. �

Remark 1.5. Ring Zp∞ , p ∈ P, with a trivial multiplication is an example of a
subdirectly irreducible radical ring that is artinian, but not noetherian.

2. Reflection of radical rings and subradical rings

Construction 2.1. Let R be a commutative ring, D(R) its Dorroh extension with a
unit 1 = 1D(R). The set 1 + R = {(1, r) ∈ D(R)|r ∈ R} is a subsemigroup of the

semigroup D(R)(·). Consider localization (1 +R)−1D(R) of D(R) and the subring
A(R) = (1 +R)−1R with map ϕ : R→ (1 +R)−1R, ϕ(r) = r/1, r ∈ R.

Proposition 2.2. Let R be a commutative ring.

(i) A(R) = (1 + R)−1R is a radical ring, r/(1 + s) = r/1 + s̃/1 · r/1 and
r/1 = r/(1 + s) + s/1 · r/(1 + s) for every r, s ∈ R.

(ii) ϕ : R→ (1+R)−1R, ϕ(r) = r/1 is a reflection of the category of the commu-
tative rings into the category of the commutative radical rings (i.e. for every radical
ring T and every ring homomorphism ψ : R→ T there is an unique homomorphism
of radical rings f : (1 +R)−1R→ T such that ψ = f ◦ ϕ.)

(iii) r/(1 + s) = 0 iff r/1 = 0, ker(ϕ) = {x ∈ R|(∃a ∈ R) x = ax}.
(iv) (1 +R)−1R = 0 iff ϕ = 0.

Proof. (i) For a = r/(1+s) ∈ (1+R)R−1 take ã = −r/(1+r+s). Then a+ã+aã = 0.
The rest is easy.

(ii) ϕ is a reflection: First, we show uniqueness. Let there be a homomorphism
f : (1 + R)−1R → T of radical rings such that ψ = fϕ, where ψ : R → T is a ring

homomorphism. Since r/(1 + s) = r/1 + r/1 · (−s/(1 + s)) = r/1 + r/1 · s̃/1, we

have f(r/(1 + s)) = f(r/1) + f(r/1)f̃(s/1) = ψ(r) + ψ(r)ψ̃(s) for all r, s ∈ R.
To show existence, define f as above. Let D(T ) be the Dorroh extension of T ,

then we have f(r/(1 + s)) = ψ(r)(1 + ψ̃(s)) in D(T ).
f is well defined: Let r/(1+s) = r′/(1+s′), where r, r′, s, s′ ∈ R, then (1+u)w =

0 for some u ∈ R, where w = r(1 + s′) − r′(1 + s). Hence ψ(w) = ψ(−u)ψ(w) and
thus ψ(w) = 0, since A is a radical ring. Therefore ψ(r)(1+ψ(s′)) = ψ(r′)(1+ψ(s))
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and ψ(r)(1 + ψ̃(s)) = ψ(r)(1 + ψ(s′))(1 + ψ̃(s′))(1 + ψ̃(s)) = ψ(r′)(1 + ψ(s))(1 +

ψ̃(s))(1 + ψ̃(s′)) = ψ(r′)(1 + ψ̃(s′)).

It is easy to show, that f is a ring homomorphism. Hence f(ã) = f̃(a) for every
a ∈ (1 +R)−1R and f is a homomorphism of radical rings.

(iii),(iv) Obvious. �

Lemma 2.3. Let R be a commutative ring.
(i) If R is generated by X (as a ring), then (1+R)−1R is rd-generated by ϕ(X).
(ii) Let R be a free commutative ring with a basis X (i.e. R ∼=

∑
x∈X xZ[X]).

Then ϕ is injective and (1 +R)−1R is a free radical ring with a basis ϕ(X).
(iii) Let R be a subdirectly irreducible ring with a monolith M . If ϕ|M is injective,

then ϕ is injective and (1 + R)−1R is a subdirectly irreducible radical ring with a
monolith (1 +R)−1M .

(iv) Let R be id-generated by X, then (1 +R)−1R is id-generated by ϕ(X).

Proof. (i) Follows immediately from r/(1 + s) = r/1 + r/1 · s̃/1 for all s, r ∈ R.
(ii) (See also [4]11.1.2.) Let R =

∑
x∈X xZ[X] be a free commutative ring with

a basis X. Then ϕ is injective by 2.2(iii) and (1 + R)−1R is rd-generated by
ϕ(X) by (i). Let A be a radical ring and g : ϕ(X) → A a map. Then there
is a ring homomorphism ψ : R → A such that g ◦ (ϕ|X) ⊆ ψ. Hence there is
f : (1 + R)−1R → A a homomorphism of radical rings such that fϕ = ψ. Thus
g ⊆ f . Since ϕ(X) rd-generates (1 +R)−1R, is f uniquely determined.

(iii) If ker(ϕ) 6= 0, then by assumptionM ⊆ ker(ϕ) and ϕ|M = 0, a contradiction.
We show that (1 + R)−1M is a monolith of (1 + R)1R. Let I 6= 0 be an ideal of
(1 + R)−1R and 0 6= r/(1 + s) ∈ I. Then 0 6= r and thus M ⊆ Rr + Zr. Let be
m ∈ M and t ∈ R. Since r/1 = r/(1 + s) + s/1 · r/(1 + s) ∈ I, we have m/1 ∈ I

and m/(1 + t) = m/1 + t̃/1 ·m/1 ∈ I. Hence (1 +R)−1M ⊆ I.
(iv) Obvious. �

Let f : R → T be a ring homomorphism, ϕR : R → A(R) and ϕT : T → A(T )
reflections. Then there is a unique homomorphism of radical rings f∗ : A(R) →
A(T ) such that f∗ϕR = ϕT f . Hence we have a covariant functor R 7→ A(R), f 7→
f∗ from the category of the commutative rings into the category of the commutative
radical rings.

Definition 2.4. A commutative ring R will be called subradical iff (∀x, a ∈ R) (x =
xa⇒ x = 0).

Remark 2.5. (i) Every radical ring is subradical (see [4] 7.9).
(ii) The class of subradical rings is closed under subrings and products.
(iii) Let R be a commutative ring, then xR[x] and xR[[x]] are subradical.
Indeed, for 0 6= f =

∑
i aix

i ∈ R[[x]] put m(f) = min{n|an 6= 0} ≥ 1. If
0 6= f = fg for some f, g ∈ R[[x]] then m(f) = m(f) +m(g), a contradiction.

(iv) The ring R = xZ[x] is subradical but its non-trivial homomorphic image
R/(1 − x)R has a unit and hence isn’t subradical.

(v) Let T be a domain with unit 1T and R a subring such that 1T 6∈ R. Then
R is subradical. (If a = ax, a, x ∈ R, then (1T − x)a = 0. Since T is a domain and
1T 6∈ R, we get a = 0.)

(vi) Let R be a commutative ring. Put R0 = R and Rn+1 = D(Rn) for n ≥ 0.
Then T =

⋃
nRn is a ring without a unit and at the same time for every x ∈ T

there is a ∈ T such that x = ax. Hence T is not subradical and A(T ) = 0.
(vii) Let R be a ring, I = {x ∈ R|(∃a ∈ R) x = ax}. Then R/I is subring of

(1 + R)−1R by 2.2, hence subradical. It is easy to see that the natural projection
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π : R → R/I is a reflection of the category of the commutative rings into the
category of the commutative subradical rings.

(viii) Let R be subradical. Then Ann
(
A(R)

)
= Ann(R), N

(
A(R)

)
= (1 +

R)−1N (R) and T
(
A(R)

)
= (1 +R)−1T (R).

Let r/(1 + s) ∈ Ann
(
(1 +R)−1R

)
. Then ru/(1 + s) = 0 for every u ∈ R. Hence

ru/1 = 0 by 2.2(ii) and ru = 0, since R is subradical. Thus r ∈ Ann(R) and
r/(1 + s) = r/1. The rest is similar.

(ix) If f : R→ T is surjective, then f∗ is surjective.
(x) Let R be a ring with a unit, such that J (R) 6= 0. Then the inclusion

i : J (R) → R is injective, but i∗ : J (R) → (1+R)−1R = 0 is a zero homomorphism.
(xi) Let R be a subradical ring and ν : T → R be an injective ring homomor-

phism. Then ν∗ is also injective.

(xii) The sequence of (subradical) rings 0 → 2xZ[x]
i
→ xZ[x]

π
→ xZ2[x] → 0,

where i is inclusion and π natural projection, is exact, but Im i∗ 6= kerπ∗.
Indeed, denote R = xZ[x] and I = 2R. Then Im i∗ = {r/(1 + s)|r, s ∈ I} and

kerπ∗ = {r/(1+s)|r ∈ I, s ∈ R}. We show that 2x/(1+x) ∈ kerπ∗\Im i∗. Suppose,
on contrary, that 2x/(1 + x) = 2xf(x)/(1 + 2xg(x)) for some f(x), g(x) ∈ Z[x].
Then 2x(1+2xg(x)) = 2xf(x)(1+x), since R is subradical, and thus 1+2xg(x) =
f(x)(1+x). Using a natural projection σ : Z[x] → Z2[x] we obtain 1 = f(x)(1+x)
in Z2[x], a contradiction, by comparing the degrees of the polynomials.

Corollary 2.6. Let S be a subdirectly irreducible radical ring. The following are
equivalent:

(i) S is finite,
(ii) S is finitely rd-generated,
(iii) S is noetherian.

Proof. We only need to prove (ii)⇒(iii). The rest follows from 1.4.
We show that every finitely rd-generated radical ring is noetherian. It is enough

to prove it only for a free radical ring T with a finite basis. By 2.2(iv) there is a

free commutative ring T =
n∑
i=1

xiZ[x1, . . . , xn] and a reflection ϕ : T → (1 + T )−1T

such that U = (1 + T )−1T . We prove that every ideal I in U is finitely generated
as a U -module. Obviously K = ϕ−1(I) is finitely generated T -module, since T is a
noetherian ring. Hence (1 + T )−1ϕ(K) = I is also finitely generated (1 + T )−1T -
module. �

Every finitely generated commutative ring is noetherian. Infinite fields are easy
examples of noetherian rings that are not finitely generated. Following example
shows a noetherian radical ring that is not finitely rd-generated.

Example 2.7. Put R = xZn[[x]], where n = 0 or n ≥ 2. Then:

(i) R is id-generated by x.
(ii) R is a noetherian subradical ring.
(iii) S = (1 +R)−1R is a noetherian radical ring which is not finitely (not even

countably) rd-generated.

Proof. (i) Let f(x) = λ1x+ λ2x
2 + · · · , then −λ1x+ f(x) = xg(x) ∈ xR for some

g(x) ∈ R.
(ii) The ring Zn is noetherian, hence Zn[[x]] is noetherian. An ideal I of R is

also an ideal of Zn[[x]]. Hence R is noetherian. By 2.5 (iii) is subradical.
(iii) R is uncountable. The rest follows by localization. �

Following lemmas show that a subradical semigroup allows to get a subradical
ring with help of the classical construction of a semigroup algebra (eventually the
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contracted construction, where the zero element of a semigroup is identified with a
zero of the ring). In the first case the semigroup needs to be without a zero element.

Definition 2.8. Let A be a commutative semigroup. We call A subradical iff every
x ∈ A, such that x = ax for some a ∈ A, is a zero element.

Remark 2.9. Let K 6= ∅ be a finite set and ϕ : K → K a map. Choose x ∈ K.
Since K is finite, there must be m,n ∈ N , m < n such that ϕm(x) = ϕn(x). Put
a = ϕm(x) and k = n−m. Then ϕk(a) = a.

Lemma 2.10. Let R be a ring, A a semigroup with a zero element o. Let R[A] be
a semigroup algebra with an ideal I = R · o.

(i) Let R have a unit. If R[A]/I is subradical, then A is subradical.
(ii) Let A be subradical. Then R[A]/I is subradical.

Proof. (i) Easy.

(ii) Suppose, for contradiction, that [
n∑
i=1

λiai] · [
m∑
j=1

µjbj ] = [
n∑
i=1

λiai] in R[A]/I,

where n ≥ 1,m ≥ 0, λi, µj ∈ R, λi 6= 0 and ai, bj ∈ A, ai 6= 0 for all i, j. From the
multiplication in R[A]/I follows that there are maps ϕ : {1, . . . , n} → {1, . . . , n}
and ψ : {1, . . . , n} → {1, . . . ,m} such that ai = aϕ(i)bψ(i) for every i = 1, . . . , n.

By 2.9 there are i0 ∈ {1, . . . , n} and k ∈ N such that ϕk(i0) = i0. Hence ai0 =
aϕ(i0)bψ(i0) = aϕ2(i0)bψ2(i0)bψ(i0) = · · · = aϕk(i0)bψk(i0)bψk−1(i0) . . . bψ(i0). Thus 0 6=
ai0 = ai0 .b for some b ∈ A, a contradiction. �

Consequence 2.11. Let R be a ring, A a semigroup and R[A] a semigroup algebra.
(i) Let R have a unit. If R[A] is subradical, then A is subradical.
(ii) Let A be a subradical without a zero element. Then R[A] is subradical.

Proof. (i) Easy.
(ii) Put A′ = A ∪ {o}, where o is new element and set ao = oa = oo = o for

every a ∈ A. Then A′ is a subradical semigroup with a zero element o. Then by
2.10(ii) R[A′]/I is a subradical ring (where I = R · o). Since R[A] ∼= R[A′]/I, it
follows that R[A] is also subradical. �

Comparing to the subradical rings, the only way how to obtain a radical ring
as a semigroup algebra, is to use the contracted construction and a nil semigroup,
as we will see in next lemmas. Radical (contracted) semigroup algebras provide
thus only a limited class of examples to choose. The subradical semigroups on the
other hand extend a much wider class of rings, which will be very useful for the
constructions in the next chapter.

Lemma 2.12. Let A be a commutatice semigroup with a zero element o (i.e. ao = o
for all a ∈ A), R be a commutative ring with a unit. Put S = R[A]/I, where R[A]
is a semigroup algebra and I = R · o an ideal of R[A].
S is a radical ring if and only if A is a nil semigroup (i.e. (∀a ∈ A)(∃n ∈

N)(an = o)). In this case S is a nil ring.

Proof. (⇐) S is generated by the set {λa|λ ∈ R, a ∈ A} of nilpotent elements and
hence is it a nil ring and therefore a radical ring.

(⇒) For 0 6= a ∈ A there is ã ∈ S such that a + ã + aã = 0 and ã =
n∑
i=1

λiai,

where n ≥ 1, 0 6= λi ∈ R, 0 6= ai ∈ A for all i = 1, . . . , n and ai 6= aj for all i 6= j.
We show by induction on k ≥ 0 that:

”If k ≤ n then ã =
k∑
i=1

(−1)iai +
n∑

i=k+1

λ′ia
′
i for some 0 6= λ′i ∈ R and 0 6= a′i ∈ A

such that a′i 6= a′j for i 6= j.”
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For k = 0 is it obvious. Suppose now, that the statement is true for k ≥ 0.
Hence

0 = a+
( k∑

i=1

(−1)iai +

n∑

i=k+1

λ′ia
′
i

)
+ a ·

( k∑

i=1

(−1)iai +

n∑

i=k+1

λ′ia
′
i

)
=

=
(
a+

k∑

i=1

(−1)iai +
k+1∑

i=2

(−1)i+1ai
)

+
n∑

i=k+1

λ′ia
′
i +

n∑

i=k+1

λ′iaa
′
i =

= (−1)kak+1 +
n∑

i=k+1

λ′ia
′
i +

n∑

i=k+1

λ′iaa
′
i.

Suppose first that k < n. Then must be ak+1 6= 0 (otherwise would be a+ a′ +

aa′ = 0 for a′ =
k∑
i=1

(−1)iai and hence ã = a′ , a contradiction with the choice of

n.) Now, if ak+1 6= a′i for all k+ 1 ≤ i ≤ n, then there would be n− k+ 1 pairwise
different non-zero elements ak+1, a′k+1, . . . , a

′
n and no more than n − k pairwise

different elements aa′k+1, . . . , aa
′
n, which would be in contradiction with the zero

combination in the sum. Hence (without lose of generality) ak+1 = a′k+1.

For contradiction suppose that λ′k+1 6= (−1)k+1. Then 0 = µak+1 +
n∑

i=k+2

λ′ia
′
i +

n∑
i=k+1

λ′iaa
′
i, where 0 6= µ = λ′k+1 + (−1)k. Considering again the numbers of

pairwise different element in the sum, it must be a′i = aa′π(i) for all i and some

permutation π on the set {k + 1, . . . , n}. Obviously a′i = ama′πm(i) for all m ∈ N
and πm0 = id for some m0 ∈ N. Hence 0 6= a′k+1 = am0 · a′k+1, a contradiction,
supposing S being radical.

Finally, let k = n. Then 0 = (−1)kak+1 and thus ã =
n∑
i=1

(−1)iai and a is

nilpotent. �

Consequence 2.13. Let A be a commutatice semigroup, R 6= 0 a commutative
ring with a unit. Then the semigroup algebra R[A] is never a radical ring.

Proof. Suppose R[A] is radical. Put A′ = A ∪ {o}, where o is a new element such
that ao = oa = oo = o for all a ∈ A. Then A′ is a semigroup with a zero element
o. Obviously R[A] ∼= R[A′]/I, where I = R · o is an ideal in R[A′]. Hence R[A′]/I
is a radical ring and by the previous lemma must A′ be nilpotent. Thus for every
a ∈ A there is n ∈ N such that an = o, a contradiction, since o 6∈ A. �

3. Examples on subdirectly irreducible radical ring

In this section we will construct examples of the subdirectly irreducible radi-
cal rings to investigate the relations between various properties of these ring and
the relations between the nilradical, the torsion part, the divisible part and the
annihilator.

Our method will usually be to find a subdirectly irreducible subradical ring R
with desired properties and then construct the reflection A(R) = (1 + R)−1R (see
2.2). This ring will be a subdirectly irreducible radical ring by 2.3(iii) and (since it
is a localization and the reflection is a monomorphism) many of the properties of
R will be preserved in A(R) (see for example 2.3(i)(iv), 2.5(viii)).

For a ring R we have a following sequence of implications:
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R is a zero multiplication ring ⇒ R is nilpotent ⇒ R is a nil ring (⇔ R is a
radical and Hilbert ring) ⇒ R is a radical ring.

For a radical ring R and a subset A ⊆ R we have this sequence of implications:

R is generated by A (as a ring) ⇒ R is rd-generated by A (i.e. generated as a
radical ring) ⇒ R is id-generated by A (i.e. generated as a R-module).

Remark 3.1.

(1) There is a (finite) nilpotent S ∈ S that is not a zero-multiplication ring
(see 3.3(ii)).

(2) There is a nil ring S ∈ S that is not nilpotent (see 3.17).
(3) There is S ∈ S that is not nil (see 3.12, 3.14).
(4) Every radical ring, that is finitely generated (as a ring) is nilpotent (see [4]

10.4). By 1.4 every finitely rd-generated R is finite, hence nilpotent.
(5) There is an one-id-generated S ∈ S that is not nil, hence not finitely rd-

generated (see 3.12).

Remark 3.2. Let G =
⊕

i∈I Gi be a direct sum of commutative groups. Then
D(G) =

⊕
i∈I D(Gi).

Indeed, put H =
⊕

i∈I D(Gi). Since H is divisible, we have H ⊆ D(G).
Now, G/H ∼=

⊕
i∈I Gi/D(Gi) and Gi/D(Gi) are reduced for every i ∈ I. Hence

D(G)/H ⊆ D(G/H) = 0 and D(G) = H.

Example 3.3. (i) Consider S = Zpn , 1 ≤ n ≤ ∞ with a trivial multiplication.
Since every subdirectly irreducible group is of this form, are these rings the only
zero-multiplications subdirectly irreducible radical rings.

(ii) Let Zpn , n ∈ N, be a ring with the standard multiplication mod pn. Put
S(k, n) = pkZpn , 1 ≤ k < n. The ring S(k, n) is an ideal of J (Zpn), hence a
subdirectly irreducible radical ring. We have Ann(S(k, n)) = S(n− k, n) if 2k < n
and Ann(S(k, n)) = S(k, n) otherwise.

Subdirectly radical rings can be obtained in following way (see [4] 12.2):
Let R be a radical ring and a ∈ R, a 6= 0. The set A of such ideals J that a /∈ J

is a non-empty and upwards-inductive. If K ∈ A is maximal in A then S = R/K is
a subdirectly irreducible radical ring with a monolith M = (K+Ra)/K if Ra 6⊆ K
and M = (K + Za)/K if Ra ⊆ K.

It is easy to see that every subdirectly irreducible radical ring is of this form.

In the next lemma we look what kind of rings arises if we apply this construction
on the radical rings with quite simple structure - on the one-generated F -algebras.

Lemma 3.4. Let F be a field, n ∈ N, R = xF [x]/xn+1F [x]. Then R is a nilpotent
ring and:

(i) Subset I ⊆ R is an ideal if and only if I = Fxn⊕· · ·⊕Fxk+1⊕Hxk, where
k ∈ N and H is a subgroup of F .

(ii) Let S be a subdirectly irreducible factor of R. Then S = Fxn⊕· · ·⊕Fxk⊕
Gxk+1, where 0 ≤ k < n and G = Zp if charF = p > 0 and G = Zp∞ for
some p ∈ P if charF = 0. The multiplication is given as follows

( k∑

i=1

λix
i+gxk+1

)
·
( k∑

j=1

µjx
j+hxk+1

)
=

k∑

l=1

( ∑

i+j=l

λiµj
)
xl+π

( ∑

i+j=k+1

λiµj
)
xk+1

where π : (F,+) → (G,+) is an epimorphism of groups.
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Proof. (i) Clearly, R is a vector space over F with a basis x, . . . , xn. Let a =
λix

i + · · · + λnx
n, where λj ∈ F , λi 6= 0 and let J be an ideal generated by a. We

show that J = Fxn⊕· · ·⊕Fxi+1⊕Zλixi. The inclusion ” ⊆ ” is clear. For ” ⊇ ” let
n+1 ≥ j ≥ i+1 be the least j such that Fxn⊕· · ·⊕Fxj ⊆ J . Suppose that j > i+1.
Then λxj−1 = (λλ−1

i xj−(i+1))a − (λλ−1
i λi+1x

j+1 + · · · + λλ−1
i λnx

n+j−(i+1)) ∈ J
for every λ ∈ F . Hence Fxn ⊕ · · · ⊕ Fxj−1 ⊆ J , a contradiction. Hence j = i + 1
and our claim is obvious.

(ii) S is a subdirectly irreducible factor of R if and only if S ∼= R/M , where
M is an ideal maximal with respect to the property a 6∈ M for some a ∈ R.
Let a = λk+1x

k+1 + · · · + λnx
n, where λk+1 6= 0, 0 ≤ k < n. Then, by (i),

M = Hxk+1 ⊕ Fxk+2 ⊕ · · · ⊕ Fxn, where H is a subgroup of F maximal with the
respect to the property λk+1 6∈ H. Hence R/M = Fx⊕ · · · ⊕ Fxk ⊕Gxk+1, where
G = F/H and the multiplication is as above. Now, if charF = p > 0, then F is
a vector space over Zp and, by the property of H, we easily get F/H ∼= Zp. On
the other hand, if charF = 0, then F is divisible, since Q ≤ F , and so F/H is also
divisible. From the classification of the divisible groups and the property of H we
get that F/H ∼= Q or F/H ∼= Zp∞ for some p ∈ P. But if F/H ∼= Q then S = R/M
would be torsionfree, a contradiction, since the monolith of S is torsion. �

This example gives us an idea how to construct other subdirectly irreducible
rings.

Definition 3.5. Let A be a commutative semigroup with a zero element 0. Put
Ann(A) = {a ∈ A|(∀ x ∈ A)ax = 0} and A∗ = A \ Ann(A).

Construction 3.6. Let A be a commutative semigroup with a zero element 0 and
Ann(A) = {0,m}, m 6= 0.

Let R be a commutative ring (not necessary with a unit), G(+) a commutative
group and ϕ : R(+) → G(+) a group homomorphisms.

Put R(R,A,G, ϕ) = (
⊕
a∈A∗

R·a)⊕G·m and set the multiplication on R(R,A,G, ϕ)

as follows:

( ∑

a∈A∗

λa ·a+g ·m
)
·
( ∑

b∈A∗

µb ·b+h ·m
)

=
∑

c∈A∗

( ∑

ab=c

λaµb
)
·c+ϕ

( ∑

aa′=m

λaµa′
)
·m

It is easy to verify that R(R,A,G, ϕ) is a commutative ring.

Example 3.7. Let A be a commutative semigroup with 0, Ann(A) = {0,m}, m 6= 0
and such that for every n ≥ 1, a1, . . . , an ∈ A∗, there is 1 ≤ i0 ≤ n and b ∈ A such
that ai0b = m and aib = 0 for ai 6= ai0 .

(i) Let F be a field and set G = Zp if charF = p > 0 and G = Zp∞ for
some p ∈ P if charF = 0. Let π : F → G be a group epimorphism. Then
R = R(F,A,G, π) is a subdirectly irreducible ring with a monolith Zp ·m.
Further, Ann(R) = G · m, D(R) = 0 if charF > 0, and D(R) = R if
charF = 0.

(ii) Let be p ∈ P, i ∈ N and i ≤ k ≤ ∞. Let ν : (Zpi ,+) → (Zpk ,+) be
inclusion. Then R = R(Zpi , A,Zpk , ν) is a subdirectly irreducible ring with
a monolith Zp ·m. Further, Ann(R) = Zpk ·m, D(R) = Zp∞ ·m if k = ∞,
and D(R) = 0 otherwise.

(iii) Let R be the ring constructed in (i) or (ii). If A is a subradical semigroup,
then R is also subradical, (1 + R)−1R is radical and Ann((1 + R)−1R) =
Ann(R). Moreover, if A is nil, then they are also nil and, hence, radical.
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Proof. (i) By 3.6 is R a ring. We show that (Rx + Zx) ∩ G · m 6= 0 for every

0 6= x ∈ R. If x ∈ R \ G · m then x =
n∑
i=1

λiai + λm, where n ≥ 1, λ ∈ G,

0 6= λi ∈ F and ai ∈ A∗ for every i. By assumption there is i0 and b ∈ A such that
ai0b = m and aib = 0 if ai 6= ai0 . There is µ ∈ F such that π(λi0µ) 6= 0. Hence
0 6= x(µb) ∈ G ·m.

Now, since G is a subdirectly irreducible group, we easily get that Zp ·m is a
monolith of R.

Finally, suppose that x ∈ Ann(R) and x = (
∑n
i=1 λi · ai) + g ·m, where n ∈ N,

0 6= λi ∈ F , g ∈ G and ai ∈ A∗ are pairwise different. By assumption there is b ∈ A
and i0 ∈ {1, . . . , n} such that (1 · b)x = 1 · bai0 = 1 ·m 6= 0, a contradiction. Thus
Ann(R) = G ·m.

For divisible part use 3.2. (ii) Similar to (i).
(iii) Similar to the proof of 2.12 and 2.10. �

Remark 3.8. Following semigroups fulfil the conditions of 3.7:

(i) A = F0(x1, . . . , xk)/ ≡, where F0(x1, . . . , xk) is a free commutative semi-
group with a basis {x1, . . . , xk} and a zero element 0 and ≡ is a congruence
on F0(x1, . . . , xk) generated by xni

i ≡ 0, xi ∈ X, 2 ≤ ni ∈ N, i = 1, . . . , k.
(ii) A = F (x) ∪ {0, a0, a1, . . .} (a disjoint union), where F (x) is a free commu-

tative semigroup with a basis {x}, {0, a0, a1, . . .} is a zero multiplication
semigroup, xi0 = 0xi = 0 for every i ∈ N and

xiaj = ajx
i =

{
aj−i , j ≥ i
0 , j < i.

(iii) The semigroup constructed in 4.4(iv).

Next construction shows how to glue together the subdirectly irreducible radical
rings, with isomorphic monoliths, to get a new one.

Construction 3.9. Let {Si}i∈X be a family of the subdirectly irreducible radi-
cal rings and let there for every i, j ∈ X such that |Ann(Si)| ≤ |Ann(Sj)| be a
monomorphism νi,j : Ann(Si) → Ann(Sj) such that

(i) νi,j = id for every i ∈ X and
(ii) νj,k ◦ νi,j = νi,k if |Ann(Si)| ≤ |Ann(Sj)| ≤ |Ann(Sk)|.
Let S =

⊕
i∈X

Si be a direct sum of rings and I an ideal of S generated by the

set {x − νi,j(x)|x ∈ Ann(Si), |Ann(Si)| ≤ |Ann(Sj)|, i, j ∈ X}. Then R/I is a
subdirectly irreducible radical ring with a monolith (

⊕
j∈X

Mj + I)/I = (Mi + I)/I

and an annihilator (
⊕
j∈X

Ann(Sj)/I, where Mj is a monolith of Sj .

Proof. Clearly,M = (
⊕
j∈X

Mj+I)/I is a direct limit of {Mi}i∈I andN = (
⊕
j∈X

Ann(Rj))/I

is a direct limit of {Ann(Ri)}i∈I . Hence M = (Mi + I)/I ∼= Mi 6= 0 for every i ∈ I
and N ∼= Zpn , where 1 ≤ n ≤ ∞.

Let 0 6= a = [
∑
i xi] ∈ S/I, xi ∈ Si. If xi0 ∈ Si0 \ Ann(Si0) for some i0, then

there is ri0 ∈ Si0 such that 0 6= ri0xi0 ∈Mi0 , hence 0 6= [ri0 ][
∑
i xi] = [ri0xi0 ] ∈M

and [
∑
i xi] 6∈ Ann(S/I). On the other hand, if xi ∈ Ann(Si) for every i, then

0 6= a ∈ N ∼= Zpn , hence 0 6= pk × a ∈M ⊆ N for some k ∈ N.
Therefore M is the least nonzero ideal of S/I and Ann(S/I) = N . �

Lemma 3.10. Let K be a commutative R-algebra. Then R⊕K with the multipli-
cation given as (r, x) · (s, y) = (rs, ry + sx+ xy) is a commutative ring containing
R and K as the subrings.
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Proof. Easy to verify. �

Lemma 3.11. Let N be a R-module.
(i) If R is a subradical ring and Fix(r) = {a ∈ N |ra = a} = 0 for every r ∈ R,

then R⊕N is subradical.
(ii) If N is a faithful (i.e. AnnR(N) = {r ∈ R|(∀a ∈ N)ra = 0} = 0) subdirectly

irreducible R-module with a monolith M , then S = R⊕N is a subdirectly irreducible
ring with a monolith M . Moreover, the annihilator of S is equal to {a ∈ N |(∀r ∈
R)ra = 0}.

Proof. (i) Easy.
(ii) Clearly, M is an ideal of S. We need to show that M ∩ (Sx + Zx) 6= 0 for

every 0 6= x ∈ S. Then M = Sm+ Zm ⊆ Sx+ Zx, where 0 6= m ∈M ∩ (Sx+ Zx),
hence M is the least nonzero ideal in S.

Let 0 6= x = (r, a) ∈ S. We can assume that r = 0, since for r 6= 0 there is
x ∈ N such that rx 6= 0, thus 0 6= (0, rx) = (r, a)(0, x) ∈ Sx + Zx. Hence a 6= 0
and therefore M ∩ (Ra+ Za) 6= 0. For that reason M ∩ (Sx+ Zx) 6= 0. The rest is
easy. �

Example 3.12. Let X be a set, k ∈ N ∪ {∞}. Put Gi = Zpk for i ∈ (X × N) ∪ {0}
and

N =
⊕

i∈(X×N)∪{0}

Gi

a direct sum of groups and

T (X) =





⊕
x∈X

xZpk [x] , k ∈ N
⊕
x∈X

xZ[x] , k = ∞

a direct sum of rings.
For x ∈ X let αx ∈ End(N(+)) be an endomorphism such that

(
αx(a)

)
(i) =





a(x, n+ 1) , i = (x, n)
a(x, 1) , i = 0
0 , otherwise

where a ∈ N .
Since αx ◦ αy = 0 for x 6= y we have a ring endomorphism

α :
⊕

x∈X

xZ[x] → End(N(+))

x 7→ αx

and for k < ∞ we have pkxZ[x] ⊆ ker(α) for every x ∈ X. Hence N is a T (X)-
module (and thus N is a T (X)-algebra with N2 = 0.)

(i) R = T (X) ⊕N is a ring.
(ii) R is subradical.
(iii) R is a subdirectly irreducible with a monolith (Zp)0 ⊆ (Zpk)0.
(iv) T (X) as a subring of R contains non-nilpotent elements.
(v) R is id-generated by X.
(vi) S = (1 +R)−1R is a subdirectly irreducible radical ring id-generated by X

and is not a nil ring.
(vii) Let S = (1 +R)−1R be id-generated by Y . Then |Y | ≥ |X|.
(viii) Ann((1 +R)−1R) = Ann(R) = G0.
(ix) N ((1+R)−1R) = (1+R)−1(pT (X)⊕N) and D((1+R)−1R) = 0 if k ∈ N,

and N ((1 +R)−1R) = D((1 +R)−1R) = (1 +R)−1N if k = ∞.
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Proof. (i) Follows from 3.10.
(ii) For 0 6= a ∈ N denote D(a) = {n|(∃x ∈ X)a(x, n) 6= 0}. Put m(a) =

maxD(a) if D(a) 6= ∅, m(a) = 0 otherwise and m(0) = −1 for 0 ∈ N . Now, clearly
m(f ·a) < m(a) for every f ∈ T (X) and 0 6= a ∈ N . Hence R is subradical by 3.11.

(iii) Let 0 6= f =
∑
x,n λ(x,n)x

n ∈ T (X) and n0 ∈ N be the least such that
λ(x0,n0) 6= 0 for some x0 ∈ X. Clearly, there is µ ∈ Zpk such that λx0,n0

µ 6= 0. Put
a(x0, n0) = µ and a(i) = 0 for i ∈ (X × N) ∪ {0}, i 6= (x0, n0). Then a ∈ N and
fa 6= 0. Hence N is a faithful T (X)-module.

Let 0 6= a ∈ N . If m(a) = m ≥ 1 and a(x0,m) 6= 0, x0 ∈ X then 0 6= xm0 a ∈
(Zp)0. And if m(a) = 0 then 0 6= pj × a ∈ (Zp)0 for some j ∈ N0. Hence N is a
subdirectly irreducible T (X)-module with a monolith (Zp)0 and R is subdirectly
irreducible by 3.11.

(iv),(v) Easy.
(vi) Follows from (iii),(iv) and 2.2.
(vii) Let R be id-generated by Y . Put I = pR + N +

∑
x∈X xT (X). Then

I is an ideal of R. Let π : R → R/I be a natural homomorphism. Since π∗ :
(1 + R)−1R → (1 + R/I)−1R/I = Q is an epimorphism, is Q id-generated by
π∗(Y ). Hence Q ∼= (Zp)(X) is generated by π∗(Y ) as a vector space over Zp and
thus |X| = dimQ ≤ |π∗(Y )| ≤ |Y |.

(viii) Use 3.11.
(ix) We have N (Zpn [x]) = pZpn [x] for the ring of polynomials Zpn [x], n ∈ N and

further (f + a)n = fn + nfn−1a for every f ∈ T (X), a ∈ N and n ∈ N. The rest
follows from 3.2. �

Remark 3.13. The ring R from 3.12 is isomorphic to R(Zpk , A,Zpk , id|Z
pk

), if k ∈ N
and A = {0, a0, a1, . . .} ∪ (

⋃
x∈X F (x)) (a disjoint union), where F (x) is a free

commutative semigroup with a basis {x}, {0, a0, a1, . . .} is a zero multiplication
semigroup, xi0 = 0xi = xiyj = 0 for every i, j ∈ N, x, y ∈ X, x 6= y and

xiaj = ajx
i =

{
aj−i , j ≥ i
0 , j < i.

Example 3.14. Let T = xQ[x] be a ring. Put G0 = Zp∞ , Gn = Q for n ∈ N and
N =

⊕
n∈N0

Gn a direct sum of groups and π : (Q,+) → (Zp∞ ,+) an epimorphism of

groups.
For λ ∈ Q and k ∈ N let α(λ,k) ∈ End(N(+)) be an endomorphism such that

(
α(λ,k)(a)

)
(i) =

{
λ · a(k + i) , i ≥ 1
π(λ · a(k)) , i = 0

where a ∈ N .
Put α(

∑
k

λkx
k) =

∑
k

α(λk,k). Then:

(i) α : T → End(N(+)) is a ring homomorphism. Hence N is a T -module (via
α) and thus also a T -algebra with N2 = 0.

(ii) The ring R = T ⊕ N is isomorphic to R(Q, A,Zp∞ , π), where A is from
3.8(ii).

(iii) R is a subdirectly irreducible subradical ring with a monolith M(R) ∼= Zp.
(iv) T ((1 + R)−1R) = Ann((1 + R)−1R) = Ann(R) ∼= Zp∞ , D((1 + R)−1R) =

(1 + R)−1R and N ((1 + R)−1R) = (1 + R)−1M . Hence (1 + R)−1R is
divisible, but not nilpotent.

Proof. (i) We show α(λ,k)α(µ,l) = α(λµ,k+l), where k, l ∈ N, λ, µ ∈ Q. We have(
α(λ,k)α(µ,l)(a)

)
(i) = λ·α(µ,l)(a)(k+i) = λµ·a(k+l+i) =

(
α(λµ,k+l)(a)

)
(i) for i ≥ 1

and
(
α(λ,k)α(µ,l)(a)

)
(0) = π

(
λ ·α(µ,k)(a)(k)

)
= π

(
λµ ·a(k+ l)

)
=

(
α(λµ,k+l)(a)

)
(0).

The rest is easy.
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(ii) As in Example 1, put m(a) = max{n|a(n) 6= 0} for 0 6= a ∈ M and m(0) =
−1. Then, clearly, m(fa) < m(a) for every f ∈ S and 0 6= a ∈ N . Hence R is
subradical by 3.11.

(iii) Let 0 6= f =
∑
k λkx

k ∈ S and k0 ∈ N be the least such that λk0 6= 0. There
is obviously µ ∈ Q such that π(µ ·λk0) 6= 0. Put a(k0) = µ and a(k) = 0 for k 6= k0.
Then a ∈ N and fa 6= 0. Hence N is a faithful T -module.

Let 0 6= a ∈ N . If m(a) = m ≤ 1 and a(m) 6= 0, then there is λ ∈ Q such that
π(λ · a(m)) 6= 0. Hence 0 6= (λxm)a ∈ (Zp)0. If m(a) = 0 then 0 6= pk × a ∈ (Zp)0
for some k ∈ N0. Hence N is a subdirectly irreducible T -module with a monolith
(Zp)0 and R is subdirectly irreducible by 3.11.

(iv) Easy. �

Remark 3.15.

(i) There is S ∈ S such that D(S) $ N (S) (see 3.12). There is S ∈ S such
that N (S) $ D(S) (see 3.14). There is S ∈ S such that D(S) = N (S) (see
3.12).

(ii) There is S ∈ S such that D(S) $ T (S) (see 3.7(ii) and 3.8(i)). There
is S ∈ S such that T (S) $ D(S) (see 3.14). There is S ∈ S such that
D(S) = T (S) (see 3.3(i)).

(iii) There is S ∈ S such that N (S) $ T (S) (see 3.12). There is S ∈ S such
that T (S) $ N (S) (see 3.4). There is S ∈ S such that N (S) = T (S) (see
3.4, 3.3).

(iv) There is S ∈ S such that D(S) ∩ N (S) 6⊆ T (S) (see 3.14). There is S ∈ S
such that T (S) ∩N (S) 6⊆ D(S) 6= 0 (see 3.7(ii) and 3.8(i)).

Lemma 3.16. Let S be a subdirectly irreducible radical ring.

(i) D(S) ∩ T (S) ⊆ N (S).
(ii) If T (S) = S, then either D(S) = 0 or D(S) = Ann(S) ∼= Zp∞ , p ∈ P.

Proof. (i) By [4] 1.13.(iii) is
(
D(S) ∩ T (S)

)2
= 0.

(ii) By [4] 1.13.(iii) is D(S) · T (S) = 0. Hence, by [4] 12.1.(vi), follows that
Div(S) ⊆ Ann(S) ∼= Zpn for some p prime and 1 ≤ n ≤ ∞. �

In examples 3.3, 3.4, 3.7 and 3.14 we have for the subdirectly irreducible radical
ring S that Ann(S) ∼= Zp∞ assuming T (S) 6= S. The following example shows that
this is not true in common.

Example 3.17. Let Sk = pZpk , k ≥ 3 be ideal of Zpk . Then Sk is a subdirectly irre-
ducible radical ring and Ann(Sk) is identical with the monolith M(∼= Zp). Consider

T = (
∞⊕
k=3

Sk)/I be the subdirectly irreducible radical ring with identified monoliths

of all Sk (as in 3.9). Let M ∼= Zp be a monolith of T . Put ϕ : pZ → End(T (+)),
ϕ(pk)(x) = pk × x, x ∈ T . Then:

(i) T is a pZ-algebra (via ϕ) and hence R = pZ ⊕ T is a ring.
(ii) R is subradical.
(iii) R is a subdirectly irreducible with a monolith M ∼= Zp, T (R) 6= R and

D(R) = 0.
(iv) (1 +R)−1R is radical, T ((1 +R)−1R) 6= R and D((1 +R)−1R) = 0.

Proof. (i) Easy.
(ii) Let (pk, a) = (pk, a)(pl, b) = (p2kl, pk × b + pl × a + ab), where k, l ∈ Z,

a, b ∈ T . Then pk = p2kl, thus k = 0. Hence we have a = pl × a + ba and
(1 − pl) × a = ba. By induction we get (1 − pl)n × a = bna for every n ∈ N. Hence
(1 − pl)n0 × a = 0 for some n0, since T is a nil ring. Since a must be of order pm,
where m ∈ N0, we get a = 0. Thus R is subradical.
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(iii) Let 0 6= x = (pk, a) ∈ R. If k 6= 0 then by the construction of A there
obviously is b ∈ T such that ba = 0 and the order of b is greater than p|k|. Then
(pk, a)(0, b) = (0, pk × b) 6= 0. Hence R(0, a′) + Z(0, a′) ⊆ Rx + Zx for some
0 6= (0, a′) ∈ R. Since T is a subdirectly irreducible by 3.9 with a monolith M , we
have M ⊆ Ta′+Za′ ⊆ R(0, a′)+Z(0, a′) ⊆ Rx+Zx. The ring R is thus subdirectly
irreducible with a monolith M .

Since T and pZ are reduced, R is also reduced. �

In view of 3.17 we can ask whether D(T (S)) 6= 0 implies Ann(S) ∼= Zp∞ , p ∈ P,
for a subdirectly irreducible radical ring S. Example 3.18 shows that the answer is
again negative.

Example 3.18. Let a1 be an element of order p in Zp∞ . Put U = (Zp∞ ⊕ Zp∞)/K,
where K is a subgroup of Zp∞ ⊕ Zp∞ generated by (a1,−a1). Let T = pZ × pZ be
a product of rings. Put

ϕ : T → End(U(+))

ϕ(pk, pl)
(
(a, b) +K

)
= (pk × a, pl × b) +K,

(a, b) ∈ Zp∞ ⊕ Zp∞ . Then:

(i) U is a T -module and hence R = T ⊕ U is a ring.
(ii) R is subradical.
(iii) R is a subdirectly irreducible with a monolith M = (Zp ⊕ Zp)/K and

T (R) = U is a divisible group.
(iv) (1 + R)−1R is a subdirectly irreducible radical ring with a monolith ∼= Zp

and T ((1 +R)−1R) = (1 +R)−1T (R) is a divisible group.

Proof. (i) Easy.
(ii) Clearly, for 0 6= a ∈ U is the order of a greater than the order of (pk, pl)a for

every (pk, pl) ∈ U . Hence R is subradical by 3.11.
(iii) Let 0 6= (pk, pl) ∈ T . Obviously there are a, b ∈ Zp∞ such that at least one

of the elements pk× a, pl× b is of order at least p2. Then (pk, pl) · ((a, b)+K) 6= 0.
Hence U is a faithful T -module.

Let 0 6= (a, b)+K ∈ U . Suppose (a, b)+K 6∈M . Then at least one of the orders of
the elements a, b (say a) must be pk, where k ≥ 2. Hence 0 6= (pk−1, 0)·((a, b)+K) ∈
M .

It follows by 3.11, that R is a subdirectly irreducible with a monolith M .
(iv) Follows from 2.2. �

4. Factors of the subdirectly irreducible radical rings by their

monoliths

Corollary 4.1. Let R 6= 0 be an artinian subradical ring. Then Ann(R) 6= 0.

Proof. Let Ann(R) = 0 and 0 6= a ∈ R. Then there is 0 6= b ∈ R such that 0 6= ab.
Hence there is a sequence a1, a2, . . . such that 0 6= an+1 ∈ Ran for every n ∈ N. Put
In = Ran. Then {In}n∈N is a decreasing sequence of ideals and an+1 ∈ In \ In+1,
since R is subradical. Hence R is not artinian. �

Corollary 4.2. Let S be a subdirectly irreducible radical ring with a monolith M .
Then:

(i) If S/M 6= 0 then every element of S/M is a zero divisor.
(ii) If S \ Ann(S) 6= ∅ then N (S) \ Ann(S) 6= ∅. Hence if S/M 6= 0 then

N (S/M) 6= 0.
(iii) Ann(S/M) ⊆ T (S/M).
(iv) Let S is artinian (e.g. finite) and S/M 6= 0. Then Ann(S/M) 6= 0.
(v) S/M is noetherian if and only if it is finite.
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Proof. (i) Let [0] 6= [a] ∈ S/M . If a ∈ Ann(S), then [a] ∈ Ann(S/M) and hence
is a zero-divisor. If a 6∈ Ann(S), then there is b ∈ S such that 0 6= ba ∈ M and
hence [b] · [a] = [0] and [b] 6= [0] (otherwise would be b ∈ M ⊆ Ann(S) and ba = 0,
a contradiction).

(ii) Let a ∈ S \ Ann(S). Suppose that a 6∈ N (S). Then a2 6∈ Ann(S) and hence
there is b ∈ S such that 0 6= ba2 ∈M ⊆ Ann(S). Thus ba ∈ S \ Ann(S) (otherwise
ba2 = (ba)a = 0) and (ba)2 = b(ba2) = 0. Therefore ba ∈ N (S) \ Ann(S).

(iii) If [a] ∈ Ann(S/M), then ra ∈ M for every r ∈ R. Since M ∼= Zp we have
r(p × a) = p × (ra) ∈ p ×M = 0 for every r ∈ S and hence p × a ∈ Ann(S). The
additive group Ann(S) is a p-group and hence pk × (p× a) = 0 for some k ∈ N and
thus a ∈ Tor(S).

(iv) Follows immediately from 4.1.
(v) Follows from 1.4. �

It is not difficult to see that for the subdirectly irreducible radical ring S from
3.3, 3.4, 3.12, 3.14, 3.17 and 3.18, such that S/M(S) 6= 0, is Ann(S/M(S)) 6= 0.
Now we construct a subdirectly irreducible radical ring without this property (see
4.5).

Definition 4.3. Let A be a commutative semigroup with a zero element 0. We
will say that A has a basis B ⊆ A∗ (with respect to A∗) iff every element x ∈ A∗

has (up to commutativity) unique form x = bi11 · · · binn , where bj ∈ B are pairwise
different and ik ∈ N for k = 1, . . . , n.

Construction 4.4. Let A be a commutative semigroup with a zero element 0 and a
basis B ⊆ A∗.

(1) Let FX be a free commutative semigroup (without a unit) with a basis X.
Put FX(A) = A ∪ FX ∪ (A∗ × FX) (a disjoin union of sets) and set a commutative
binary operation ∗ on FX(A) as follows:

a ∗ b = ab a ∗ w = w ∗ a =

{
0 , a 6∈ A∗

(a,w) , a ∈ A∗

u ∗ w = uw a ∗ (c, v) = (c, v) ∗ a =

{
0 , ac 6∈ A∗

(ac, v) , ac ∈ A∗

u ∗ (c, v) = (c, v) ∗ u = (c, uv) (c, v) ∗ (d, t) =

{
0 , cd 6∈ A∗

(cd, vt) , cd ∈ A∗

for a, b ∈ A, u,w ∈ FX and (c, v), (d, t) ∈ A∗ × FX .
Then FX(A) is a commutative semigroup with a zero element 0 and a basis

B ∪X, A is a subsemigroup of FX(A) and Ann(A) = Ann(FX(A)).

Proof. Put Ã = A ∪ {1A} and F̃ = FX ∪ {1F }, where 1A and 1F are new symbols
(units), such that a1A = 1Aa = a, 1A1A = 1A and w1F = 1Fw = w, 1F 1F = 1F
for every a ∈ A, w ∈ FX . Further denote S = Ã× F̃ a product of semigroups and

ρ = id|S ∪
(
(Ann(A)×FX) ∪ {(0, 1F )}

)2

a relation on S. It is easy to see, that ρ

is a congruence on S. Set ϕ : FX(A) → S/ρ, where a 7→ (a, 1F )/ρ, w 7→ (1A, w)/ρ
and (a,w) 7→ (a,w)/ρ with a ∈ A, w ∈ FX , (a,w) ∈ A∗ × FX . Now is easy to
verify, that ϕ is a monomorphism and hence FX(A) is a semigroup.

Let z = a1 . . . anx1 . . . xk = a′1 . . . a
′
mx

′
1 . . . x

′
l ∈ A∗ × FX where n,m, k, l ≥ 1,

ai, a
′
j ∈ A, xi, x

′
j ∈ FX . Then a1 . . . an = a′1 . . . a

′
m and x1 . . . xk = x′1 . . . x

′
l hence

by assumption z has an unique decomposition (up to commutativity) with respect
to B ∪X. The rest is easy. �
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(2) Choose 0 6= m ∈ Ann(A). Then there is a commutative semigroup A′ such
that:

(i) A is a subsemigroup of A′, 0 is a zero element in A′ and Ann(A′) = Ann(A)
(ii) A′ a has basis B′ such that B ⊆ B′

(iii) (∀ a ∈ A∗)(∃ b ∈ A′) ab = m.

Proof. Let FX(A) be as in (1) where X = {xa|a ∈ A∗}. Set C = {(a, xa)|a ∈ A∗}
and D = FX(A) ·C \ {0}. Then σ = Id|FX(A) ∪ (C×{m})∪ ({m}×C)∪C2 ∪ (D×
{0}) ∪ ({0} ×D) ∪D2 is obviously a congruence on FX(A).

Put A′ = FX(A)/σ and ϕ : A → FX(A)/σ, a 7→ [a] = a/σ. Then ϕ is a
monomorphism and A can be identified with a subsemigroup of A′.

Ann(A′) = Ann(A): For a ∈ A∗ we obviously have [a] 6∈ Ann(A′) and for
w ∈ FX is also [w] 6∈ Ann(A′), since [w]2 6= [0]. For (a,w) ∈ A∗ × FX such that
[(a,w)] 6∈ Ann(A) suppose that [(a,w)] · [w] = [0]. Then by the definition of σ there
are z ∈ FX(A) and (b, xb) ∈ C such that z(b, xb) = (a,w2). Hence xb divides w2

and therefore, due to the basis of FX(A), xb divides w or xb = w. It follows that
(a,w) ∈ D and [(a,w)] = [0], a contradiction. Hence [(a,w)] 6∈ Ann(A′).

Finally, put B′ = ϕ(B∪X). Obviously [xa] 6= [xb] for a 6= b. Now, if [z1 . . . zn] =
[z′1 . . . z

′
m] 6∈ Ann(A′′) where zi, z

′
j ∈ B ∪ X, then, by definition of σ, we have

z1 . . . zn = z′1 . . . z
′
m. Hence the decomposition is unique, since B ∪X is a basis of

FX(A). �

(3) There is a commutative semigroup A′′ such that:

(i) A is a subsemigroup ofA′′, 0 is a zero element in A′′ and Ann(A′′) = Ann(A)
(ii) A′′ has a basis B′′ such that B ⊆ B′′

(iii) For all a, a1, . . . , an ∈ A∗ such that ai 6= a and ai doesn’t divide a for any
i = 1, . . . , n there exists b ∈ A′ such that aib = 0 for all i = 1, . . . , n and
ab ∈ (A′′)∗.

Proof. Let FX(A) be as in (1) where X = {xK |K is finite subset of A∗}. Set
C = {(a, xK) ∈ A∗×X|K is finite subset of A∗, a ∈ K}. Then τ = Id|FX(A)∪ (C ∪
FX(A) · C)2 is obviously a congruence on FX(A).

Put A′′ = FX(A)/τ and ϕ : A → FX(A)/τ , a 7→ [a] = a/τ . Then ϕ is a
monomorphism and A can be identified with a subsemigroup of A′′.

Ann(A′′) = Ann(A): For a ∈ A∗ we obviously have [a] 6∈ Ann(A′′) and for
w ∈ FX is also [w] 6∈ Ann(A′′), since [w]2 6= [0]. For (a,w) ∈ A∗ × FX such that
[(a,w)] 6∈ Ann(A) suppose that [(a,w)] · [w] = [0]. Then, by the definition of τ ,
there are z ∈ FX(A), a finite subset K of A∗, b ∈ K and (b, xK) ∈ C such that
z(b, xK) = (a,w2). Hence xK divides w2 and therefore, due to the basis of FX(A),
xK divides w or xK = w. It follows that (a,w) ∈ C ∪ FX(A) ·C and [(a,w)] = [0],
a contradiction. Hence [(a,w)] 6∈ Ann(A′′).

Let be a ∈ A∗ and K = {a1, . . . , an} ⊆ A∗ such that ai 6= a and ai doesn’t
divide a for any i = 1, . . . , n. Then obviously [ai] · [xK ] = [0]. Suppose that
[(a, xK)] ∈ Ann(A′′). Then [(a, x2

K)] = [0]. Hence, by the definition of τ , ai = a or
ai divides a for some i, a contradiction.

Finally, put B′′ = ϕ(B ∪X). For the rest see proof of (ii). �

(4) There is a (countable) commutative semigroup D with a zero element 0 such
that:

(i) Ann(D) = {0,m} $ D, where m 6= 0
(ii) D has an infinite basis C ⊆ D∗

(iii) (∀ a ∈ D∗)(∃ b ∈ D) ab = m



COMMUTATIVE SUBDIRECTLY IRREDUCIBLE RADICAL RINGS 17

(iv) For all a, a1, . . . , an ∈ D∗ such that ai 6= a and ai doesn’t divide a for any
i = 1, . . . , n there exists b ∈ D such that aib = 0 for all i = 1, . . . , n and
ab ∈ D∗.

Proof. Let D0 = {0,m}, m 6= 0 be a zero multiplicative semigroup, X = {x}. Put
D1 = FX(D0). Further, by the induction, set Dn+1 = (Dn)

′ (see (2)), if n is odd,
and Dn+1 = (Dn)

′′ (see (3)), if n is even. Now, put D =
⋃
nDn. The rest is

easy. �

Example 4.5. Let D be a semigroup constructed in 4.4 (4) with a zero element o
and Ann(D) = {o,m}, m 6= o. Let p be a prime number. Put R = Zp[D]/I, where
I = Zp · o is an ideal in a semigroup algebra Zp[D]. Then:

(i) D is a subradical semigroup and hence R is a subradical ring, by 2.10(ii).
(ii) R is a subdirectly irreducible with a monolith M = Zp ·m = Ann(R) and

for every x ∈ R \ Ann(R) there is y ∈ R such that xy ∈ R \ Ann(R).
(iii) S = (1 + R)−1R is a subdirectly irreducible radical ring with a monolith

M ∼= Zp. Moreover Ann(S) = Ann(R) = M and Ann(S/M) = 0.

Proof. (i) Let 0 6= a ∈ D such that ab = a for some b ∈ D. Then a, b 6∈ Ann(D) and
hence there are two different decomposition of a in the basis C, a contradiction.

(ii) Let x ∈ R \ Zp · m. We show that xb = µc for some 0 6= µ ∈ Zp, b ∈ D,
c ∈ D∗.

Clearly, x =
∑n
i=1 λiai + λm, where n ≥ 1, λ, λi ∈ Zp, ai ∈ S∗, λi 6= 0 for all

i = 1, . . . , n and ai 6= aj for i 6= j.
Suppose first n = 1. Since C is infinite, is there b0 ∈ C that doesn’t divide a1.

Hence we have c = a1b ∈ D∗ (and b0b = 0) for some b ∈ D. Thus xb = λ1a1b = λ1c.
Now, let n ≥ 2. Then there is i0 such that ai doesn’t divide ai0 for every

i 6= i0. Indeed, suppose on the contrary, that there is a map ϕ : {1, . . . , n} →
{1, . . . , n} such that ai = biaϕ(i) for every i, where bi ∈ S. Then ϕk(i′) = i′ for
some i′ ∈ {1, . . . , n} and k ∈ N. Hence ai′ = bi′aϕ(i′) = bi′bϕ(i′)aϕ2(i′) = · · · =
bi′ . . . bϕk−1(i′)aϕk(i′), a contradiction with the subradicality of D.

Thus there is b ∈ D such that aib = 0 for i 6= i0 and c = ai0b ∈ D∗. Hence
xb = λi0ai0b = λi0c.

Since xb 6= 0, we have x ∈ R \ Ann(R) and we have proved Ann(R) ⊆ Zp ·m.
The other inclusion is trivial. Hence Ann(R) = Zp ·m and xb ∈ R \ Ann(R).

Finally, there is b′ ∈ D such that cb′ = m. Hence 0 6= x(cb′) ∈ Zp ·m and R is a
subdirectly irreducible with a monolith Zp ·m.

(iii) Follows from 2.2, 2.5 and (ii). �

Now we classify the subdirectly irreducible radical rings S such that S/M(S) is
a zero-multiplication ring.

Lemma 4.6. (i) Let S be a subdirecly irreducible radical ring with a monolith
M ∼= Zp such that S/M is a zero multiplication ring. Then there is a bi-additive
symmetric form µ : S × S → Zp and 0 6= m ∈M such that ab = µ(a, b)m for every
a, b ∈ S and Ann(S) = ker(µ) = {x ∈ S|(∀a ∈ S) µ(x, a) = 0}.

(ii) Conversely, let S(+) be a group and µ : S×S → Zp a symmetric bi-additive
form such that ker(µ) ∼= Zpn , where 1 ≤ n ≤ ∞. Let 0 6= m ∈ ker(µ) be such that
|m| = p. Set a · b = µ(a, b)m for all a, b ∈ S. Then S is a subdirectly irreducible
radical ring with a monolith M = Zp ·m and an annihilator ker(µ) such that S/M
is a zero multiplication ring.

Proof. (i) For 0 6= m ∈M and a, b ∈ S put µ(a, b) = λ ∈ Zp, where ab = λm. The
rest is easy.

(ii) First we show the associativity of the multiplication. For a, b, c ∈ S we
have (ab)c = (µ(a, b)m)c = µ(µ(a, b)m, c)m = 0, since m ∈ ker(µ) and hence
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a(bc) = (bc)a = 0 = (ab)c. The distributivity is easy to verify. Further put
ã = −a+ µ(a, a)m for a ∈ S. Then a+ ã+ aã = a+ (−a+ µ(a, a)m) + µ(a,−a+
µ(a, a)m)m = µ(a, a)m− µ(a, a)m+ µ(a, µ(a, a)m)m = 0 and hence S is a radical
ring.

For a ∈ S \ ker(µ) there is b ∈ S such that ba = µ(a, b)m 6= 0 and for a ∈ ker(µ)
there is k ≥ 0 such that pk × a = m, thus S is a subdirectly irreducible with a
monolith M . The rest is clear. �

Lemma 4.7. Let G be a commutative group, p a prime number. Then there is a
symmetric bi-aditive form µ : G × G → Zp such that kerµ ⊆ Zp∞ if and only if

G ∼= (Zp)(κ) ⊕ Zpn , with κ an ordinal number and 1 ≤ n ≤ ∞.

Proof. (⇒) We have p ×G ⊆ ker(µ) ∼= Zpn since µ(p × a, x) = p × µ(a, x) = 0 for
every a, x ∈ G. Hence p × G ∼= Zpk , 0 ≤ k ≤ ∞. Now, put H = p × G if k = ∞

and H = 〈a〉 for some a ∈ G of order pk+1 if k <∞. There exists a subgroup F of
G such that Soc(G) = (H ∩ Soc(G)) ⊕ F .

We show that G = F ⊕ H. Obviously, H ∩ F = H ∩ F ∩ Soc(G) = 0. Let
x ∈ G. Since p × H = p × G, there is b ∈ H such that p × x = p × b and hence
x = b+ (x− b) ∈ H + F .

(⇐) Let {eα|α < κ} be a basis of (Zp)κ. Set µ(
∑
α

λαeα + a,
∑
β

µβeβ + b) =
∑
α

λαµα for λα, µβ ∈ Zp and a, b ∈ Zpn . The rest is easy. �

The previous classification gives us a hint to find an example of a finite radical
ring, that cannot be isomorphic to any factor of a subdirectly irreducible radical
ring by its monolith.

Example 4.8. Let R = Zp2 ⊕ Zp2 be a ring with a trivial multiplication. Then R
is radical and N(R) = Ann(R) = R, but there is no subdirectly irreducible radical
ring S with a monolith M , such that S/M ∼= R.

Indeed, suppose that ϕ : S → R is such epimorphism. Then ψ : S/Soc(S) →
R/Soc(R), ψ(x+Soc(S)) = ϕ(x)+Soc(R) is also an epimorphism, where Soc(G) =
{a ∈ G|p × a = 0} for a p-group G. But S/Soc(S) is cyclic by 4.6 and 4.7, while
R/Soc(R) ∼= Zp ⊕ Zp, a contradiction.
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