
ADDITIVELY DIVISIBLE COMMUTATIVE SEMIRINGS

TOMÁŠ KEPKA AND MIROSLAV KORBELÁŘ

Abstract. Commutative semirings with divisible additive semigroup are stud-
ied.

1. Preliminaries

Throughout the paper, all semigroup, groups, semirings, rings and fields are as-
sumed to be commutative (but, possibly, without additively and/or multiplicatively
neutral elements). Furthermore, the following notation will be used in the sequel:

N . . . the semiring of positive integers;
N0 . . . the semiring of non-negative integers;
Z . . . the ring of integers;
Q+ . . . the parasemifield of positive rationals.

2. Congruences of N

Define a relation ρ(k, t) on N for all k, t ∈ N by (m,n) ∈ ρ(k, t) iff m − n ∈ Zt
and either m = n or m ≥ k and n ≥ k.

Lemma 2.1. ρ(k, y) is a congruence of the semiring N.

Proof. It is easy to check that the relation ρ(k, t) is an equivalence and that it is
stable under addition and multiplication. ¤

Lemma 2.2. The congruence ρ(k, t) has exactly k + t − 1 blocks and these are
just the following subsets of N: {1}, {2}, . . . , {k − 1}, {m + lt| l ∈ N0}, m ∈ N,
k ≤ m ≤ k + t− 1.

Proof. The assertion follows easily from the definition of the congruence ρ(k, t). ¤

Lemma 2.3. (k, k + t) ∈ ρ(k, t).

Proof. The assertion follows directly from the definition of the congruence ρ(k, t).
¤

Lemma 2.4. Let m ∈ N. Then (m, 2m) ∈ ρ(k, t) iff k ≤ m and t divides m.

Proof. The assertion follows immediately from the definition of the congruence
ρ(k, t). ¤

Lemma 2.5. (i) (kt, 2kt) ∈ ρ(k, t).
(ii) (l, 2l) ∈ ρ(k, t), where l = lcm(k, t).
(iii) (k + t − s, 2(k + t − s)) ∈ ρ(k, t), where r, s ∈ N0 are such that k = rt + s

and s < t.
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Proof. Use 2.4. ¤

Lemma 2.6. Let m1,m2 ∈ N be such that (m1, 2m1) ∈ ρ(k, t) and (m2, 2m2) ∈
ρ(k, t). Then (m1,m2) ∈ ρ(k, t).

Proof. Combine 2.4 and the definition of ρ(k, t). ¤

Lemma 2.7. Let w ∈ N be such that (w, 2w) ∈ ρ(k, t) (see 2.4, 2.5 and 2.6). Then
(m,m + w) ∈ ρ(k, t) for every m ∈ N, m ≥ k.

Proof. By 2.4, w ≥ k and t divides w. The rest is clear. ¤

Lemma 2.8. Let w ∈ N be such that (w, 2w) ∈ ρ(k, t) (see 2.4, 2.5, 2.6 and 2.7).
Then:

(i) For every m ∈ N, m ≥ k, there exists at least one n ∈ N such that n ≥ k
and (m + n,w) ∈ ρ(k, t).

(ii) If m,n1, n2 ∈ N are such that m ≥ k, n1 ≥ k, n2 ≥ k, (m+n1, w) ∈ ρ(k, t)
and (m + n2, w) ∈ ρ(k, t), then (n1, n2) ∈ ρ(k, t).

Proof. (i) Choose l ∈ N such that m+k ≤ lw and put n = lw−m. Then n ≥ k and
m + n = lw. But (w, 2w) ∈ ρ(k, t), (2w, 3w) ∈ ρ(k, l), . . . , ((l − 1)w, lw) ∈ ρ(k, t)
(for l ≥ 2) and we have (w, lw) ∈ ρ(k, t). Thus (m + n, w) ∈ ρ(k, t).

(ii) We have (m+n1, w) ∈ ρ(k, t), (m+n2, w) ∈ ρ(k, t), and hence (m+n1,m+
n2) ∈ ρ(k, t). Furthermore, (m+2n1, w+n1) ∈ ρ(k, t), (m+n1+n2, w+n2) ∈ ρ(k, t)
and (m + 2n1,m + n1 + n2) ∈ ρ(k, t). Consequently, (w + n1, w + n2) ∈ ρ(k, t).
Now, (n1, n2) ∈ ρ(k, t) follows from 2.7. ¤

Lemma 2.9. ρ(k, t), as a congruence of the additive semigroup N(+) is generated
by the single pair (k, k + t).

Proof. Denote by ρ the congruence of N(+) generated by the ordered pair (k, k+t).
Since (k, k + t) ∈ ρ(k, t), we have ρ ⊆ ρ(k + t). Conversely, we have to show that
(m,n) ∈ ρ(k, t) implies (m, n) ∈ ρ; we can assume that m < n. Then m = k + l
and n = k + l + rt for some l ∈ N0 and r ∈ N. Of course, (m,m + t) = (k +
l, k + l + t) = (k, k + t) + (l, l) ∈ ρ, (m + t,m + 2t) = (k + l + t, k + l + 2t) =
(k, k + t) + (l + t, l + t) ∈ ρ, . . . , (m + (r − 1)t,m + rt) ∈ ρ. Using transitivity, we
get (m,n) = (m,m + rt) ∈ ρ. ¤

3. Cyclic semigroups

It is well known, that every congruence of N(+) is either identity or ρ(k, t) for
some k, t ∈ N.

Proposition 3.1. The congruences idN and ρ(k, t), k, t ∈ N, are just all congru-
ences of the semiring N(+, ·) of positive integers.

Proof. Easy to verify. ¤

Lemma 3.2. Let t(S) denote the set elements of finite order of a semigroup S. If
t(S) 6= 0, then t(S) is a subsemigroup. of S

Proof. It is easy. ¤

A semigroup S will be called torsion if every element of S has finite order.

Lemma 3.3. Let A be a non-empty subset of a semigroup S such that there exists
m ∈ N with ordS(a) ≤ m for every a ∈ A. Then there exists n ∈ N such that
2nb = nb for every b ∈ 〈A〉S.
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Proof. For every a ∈ A there are ka, ta ∈ N with 〈A〉S ∼= C(ka, ta) ∼= N(+)/ρ(ka, ta).
Of course, ka + ta ≤ m+1. By 2.5(ii), 2maa = maa for some ma ∈ N, ma ≤ m+1.
Now, it suffices to put n = (m + 1)!. ¤

Lemma 3.4. Let A be a non-empty subset of a semigroup S such that there exists
m ∈ N with ordS(a) ≤ m for every a ∈ A. Then there exists l ∈ N with ordS(b) ≤ l
for every b ∈ 〈A〉S.

Proof. By 4.6, 2nb = nb for some n ∈ N and all b ∈ 〈A〉S . We have 〈b〉S ∼= C(kb, tb)
and ordS(b) = kb + tb − 1. Since nb = 2nb, n ≥ kb and tb divides 2n − n = n.
Consequently, kb + tb − 1 ≤ 2n− 1. ¤

Lemma 3.5. Let S be a semigroup and let a, b ∈ S be such that ka = la + b for
some k, l ∈ N, k 6= l. If ordS(b) is finite, then ordS(a) is so.

Proof. We have mb = nb for some m,n ∈ N, m < n. Now, nka = nla + nb =
nla + mb = (n−m)la + m(la + b) = (n−m)la + mka = ((n−m)l + mk)a. Since
k 6= l, we have (n−m)k 6= (n−m)l and nk 6= (n−m)l + mk. Consequently, 〈a〉S
is finite. ¤

4. Divisible semigroups

A (commutative) semigroup S(= S(+)) is called divisible if S = mS for every
m ∈ N.

Proposition 4.1. (i) The class of divisible semigroups is closed under homo-
morphic images and cartesian products.

(ii) The class of divisible semigroups contains all semilattices (i.e., idempotent
commutative semigroups) and all divisible abelian groups.

(iii) The additive semigroup Q+(+) (Q+
0 (+), resp.) of positive (non-negative,

resp.) rational numbers are divisible.

Proof. It is easy to see. ¤

Proposition 4.2. A finite semigroup is divisible if and only if it is idempotent
(i.e., it is a semilattice).

Proof. All semilattices are divisible. On the other hand, if S is a finite semigroup,
then for every a ∈ S there is ma ∈ N with 2maa = maa (4.6). If m =

∏
ma, a ∈ S,

then 2ma = ma for every a ∈ S. Finally, if S is divisible, then mS = S and S is
idempotent. ¤

Lemma 4.3. Let S be a semigroup and a ∈ S. Define a relation ρa on S by
(u, v) ∈ ρa iff u + ka = v + la for some k, l ∈ N. Then ρa is a congruence of S and
(a, 2a) ∈ ρa.

Proof. Clearly, ρa is reflexive, symmetric and stable under the addition of the
semigroup S. It remains to show that ρa is transitive. If u + ka = v + la and
v + ra = w + sa, k, l, r, s ∈ N, then u + (k + r)a = v + la + ra = w + (l + s)a. ¤

Proposition 4.4. Let S be a semigroup. Then S is finitely generated and divisible
if and only if S is a finite semilattice.

Proof. Assume that S is divisible and generated by a finite set A. Let m be the set
number of non-idempotent element of A. We proceed by induction on m.

If m = 0, then S is generated by a set of idempotents and if follows easily that
S is idempotent itself. Of course, a finitely generated semilattice is finite. Now,
assume that m ≥ 1. If a ∈ A is such that a 6= 2a, then S/ρa is a (finite) semilattice
by induction (see 5.3). Since S is divisible, we have a = 2b for some b ∈ S and
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(a, b) = (2a, b) ∈ ρa (since S/ρa is idempotent). Then ka = b + la for some k, l ∈ N
and we get 2ka = 2b + 2la = (2l + 1)a. Since 2k 6= 2l + 1, we conclude that the
cyclic subsemigroup 〈a〉S generated by {a} is finite.

We have proved that 〈a〉S is finite for every a ∈ A. Since A is finite and S
is generated by A, one checks easily that S is finite, too. By 5.2, S is a finite
semilattice. ¤

Lemma 4.5. Let S be a semigroup. Define a relation σ(S) on S by (u, v) ∈ σ(S)
iff mu = mv for some m ∈ N. Then σ(S) is a congruence of S and σ(S/σ(S)) = id.

Proof. Clearly, σ(S) is reflexive, symmetric and stable under the addition. If mu =
mv and nv = nw, then mnu = mnw, and hence σ(S) is transitive as well. Thus
σ(S) is a congruence of the semigroup. Finally, if (mu,mv) ∈ σ(S), then kmu =
kmv and (u, v) ∈ σ(S). ¤

Corollary 4.6. If S is a divisible semigroup, then S/σ(S) is a uniquely divisible
semigroup.

Lemma 4.7. Let S be a semigroup. Define a relation τ(S) on S by (u, v) ∈ τ(S)
iff mu = nv for some m,n ∈ N. Then τ(S) is a congruence of S, σ(S) ⊆ τ(S) and
τ(S/τ(S)) = id.

Proof. Similar to 5.5. ¤

Corollary 4.8. If S is a divisible semigroup, then S/τ(S) is a uniquely divisible
semigroup.

Lemma 4.9. Let S be a semigroup such that the factor-semigroup S/σ(S) is tor-
sion. Then S is torsion.

Proof. For every a ∈ S there are k, l ∈ N such that (ka, la) ∈ σ(S) and k < l.
Furthermore, there is m ∈ N with mka = mla. Clearly, mk < ml, and hence
ordS(a) is finite. ¤

Proposition 4.10. Let S be a divisible semigroup such that there exists m ∈ N
with ordS(a) ≤ m for every a ∈ S. Then S is a semilattice.

Proof. By 4.6, there is n ∈ N such that 2na = na for every a ∈ S. Now, a = nb,
and hence 2a = 2nb = nb = a. ¤

Lemma 4.11. Let S be a uniquely divisible semigroup. If a ∈ S is such that
ordS(a) is finite, then 2a = a.

Proof. There is m ∈ N with 2ma = ma. Then 2a = a, since S is uniquely divisible.
¤

5. Additively divisible semirings

Lemma 5.1. Let S be a semiring. Then:

(i) σ(S) is a congruence of S and σ(S/σ(S)) = id.
(ii) τ(S) is a congruence of S and τ(S/τ(S)) = id.

Proof. Clearly, both σ(S) and τ(S) are stable under the multiplication of the semi-
ring S and the rest follows from 5.5 and 5.7. ¤

Corollary 5.2. Let S be an additively divisible semiring. Then both S/σ(S) and
S/τ(S) are additively uniquely divisible semirings.
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Remark 5.3. Let S be an additively uniquely divisible semiring.
(i) For all m,n ∈ N and a ∈ S, there is a uniquely determined b ∈ S with ma = nb

and we put (m/n)a = b. If m1, n1 ∈ N and b1 ∈ S are such that m/n = m1/n1

and m1a = n1b1, then k = mn1 = m1n and kb1 = mm1a = kb and b1 = b.
Consequently, we get a (scalar) multiplication Q+ × S → S (one checks easily that
q(a1 + a2) = qa1 + qa2, (q1 + q2)a = q1a + q2a, q1(q2a) = (q1q2)a and 1a = a
for all q1, q2 ∈ Q+ and a1, a2, a ∈ S) and S becomes a unitary Q+-semimodule.
Furthermore, qa1 · a2 = a1 · qa2 for all q ∈ Q+ and a1, a2 ∈ S, and therefore S is a
unitary Q+-algebra.

(ii) Let a ∈ S be multiplicatively but not additively idempotent (i.e., a2 = a 6=
2a). Put Q = Q+a. Then Q is a subalgebra of the Q+-algebra S and the mapping
ϕ : q 7→ qa ia a homomorphism of the Q+-algebras and, of course, of the semirings
as well. Since a 6= 2a, we have ker(ϕ) 6= Q+ ×Q+. But Q+ is a congruence-simple
semiring and it follows that ker(ϕ) = id. Consequently, Q ∼= Q+.

Put T = Sa. Then T is an ideal of the Q+-algebra S, Q ⊆ T (we have qa =
a·qa ∈ T ) and a = 1Q = 1T is a multiplicatively neutral element of T . The mapping
s 7→ sa is a homomorphism of the Q+-algebras. Consequently, T is additively
uniquely divisible. Furthermore, T is a finitely generated semiring, provided that
S is so.

Proposition 5.4. Let S be an additively divisible semiring with 1S ∈ S. Then:

(i) S is additively uniquely divisible.
(ii) Either S is additively idempotent or S contains a subsemiring Q such that

Q ∼= Q+ and 1S = 1Q.
(iii) If ordS(+)(1S) is finite, then S is additively idempotent.

Proof. For every m ∈ N, there is wm ∈ S such that 1S = mwm. That is, wm =
(m1S)−1. If ma = mb, then a = wmma = wmnb = b and we see that S is additively
uniquely divisible. The rest is clear from 6.3. ¤

Lemma 5.5. Let S be a semiring such that t(S) = t(S(+)) 6= ∅. Then t(S) is an
ideal of S. Moreover, if S is additively divisible, then t(S) is so.

Proof. By 4.5, t(S) is a subsemigroup of S(+). Furthermore, if a ∈ t(S), then
ka = la for some k, l ∈ N, k < l, and then kab = lab for every b ∈ S. It means that
ab ∈ t(S) and t(S) becomes an ideal of the semiring S. Finally, if a = mc, m ∈ N,
c ∈ S, then kmc = ka = la = lmc and km < lm. Thus c ∈ t(S). ¤

Proposition 5.6. Let a semiring S be generated as a (left) S-semimodule by a
subset A such that ordS(+)(a) ≤ m for some m ∈ N and all a ∈ A. If S is
additively divisible, then S is additively idempotent.

Proof. Put B = {b ∈ S| ordS(+)(b) ≤ m}. Then A ⊆ B and b ∈ B for all s ∈ S and
b ∈ B. Furthermore, 〈B〉S(+) = S, and hence there is l ∈ N with ordS(+)(r) ≤ l for
every r ∈ S (by 4.7). Now, it remains to use 5.10. ¤

Corollary 5.7. Let an additively divisible semiring S be generated as an S-semimodule
by a finite set of elements of finite additive orders. Then S is additively idempotent.

Corollary 5.8. Every additively divisible and torsion finitely generated semiring
is additively idempotent.

Remark 5.9. The zero multiplicative ring defined on Zp∞ is both additively divisible
and additively torsion. Of course, the ring is neither additively idempotent nor
finitely generated. The (semi)group Zp∞(+) is not uniquely divisible.
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Remark 5.10. Let R be a (non-zero) finitely generated ring. Then R has at least
one maximal ideal I and the factor R/I is a finitely generated simple ring. However,
any such a ring is finite and consequently, R is not additively divisible.

Proposition 5.11. Let S be a non-trivial additively cancellative and divisible semi-
ring. Then S is not finitely generated.

Proof. Consider the difference ring R = S − S of S. It is easy to check that R is
additively divisible. According to 6.10, R is not finitely generated. Then S is not
finitely generated either. ¤

6. One-generated additively divisible semirings

Lemma 6.1. Let S be a semiring such that 1s ∈ S (1S being multiplicatively
neutral). Let w ∈ S, a, b, c ∈ 〈w〉S and m ∈ N be such that ma = nb and mc = w.
Then a = b.

Proof. We have 〈w〉S = 〈w, w2, w3, . . . 〉S(+) and it follows easily that for every
d ∈ 〈w〉S there is d′ ∈ S with d = wd′. Now, a = wa′ = mca′ = mwc′a′ = mac′ =
mbc′ = mwc′b′ = mcb′ = wb′ = b. ¤

Proposition 6.2. Every additively divisible one-generated semiring is uniquely
divisible.

Proof. Let S be an additively divisible semiring generated by a single element
w. First, put T = S ∪ {0T }, where 0T is additively neutral and multiplicatively
absorbing. Then T becomes an additively divisible semiring and S a subsemiring
of T . Next, let R = T × N0 be the Dorroh extension. That is, (r,m) + (s, n) =
(r + s,m + n) and (r,m)(s, n) = (rs + nr + ms,mn). Clearly, T (= T × {0}) is a
subsemiring of R, 0R = (0T , 0) is additively neutral and multiplicatively absorbing
in R and 1R = (0T , 1) is multiplicatively neutral in R. Now, if a, b ∈ S and m ∈ N
are such that ma = mb, then w = mc for some c ∈ S and we get a = b by 7.1. ¤

Lemma 6.3. Let S be an additively divisible semiring generated by an element w.
If ordS(+)(wm) is finite for some m ∈ N, then S is additively idempotent.

Proof. If ordS(+)(w) is finite, then S is additively idempotent by 6.7. Consequently,
assume that n ≥ 2, where n ∈ N is the smallest number with ordS(+)(wn) finite.
Since S(+) is divisible, we have w = 2v for some v ∈ S. Moreover, there are
1 ≤ i1 < i2 < · · · < ik, k ∈ N, such that v = ni1w

i1 + ni2w
i2 + · · · + nik

wik for
some nij ∈ N. From this we see that wn−1 = 2ni1w

i1+n−2 + 2ni2w
i2+n−2 + · · · +

2nik
wik+n−2. If k = 1, then wn−1 = 2ni1w

i1+n−2, where i1+n−2 ≥ n−1. If i1 = 1,
then wn−1 = 2ni1w

n−1 and ordS(+)(wn−1) is finite, a contradiction. If i1 ≥ 2, then
wn−1 = 2ni1w

nwi1−2, and ordS(+)(wn−1) is finite, too. If k ≥ 2, then 3 ≤ i2 and
ordS(+)(u) is finite, where u = 2ni2w

i2+n−2 + · · · + 2nik
wik+n−2. If i1 ≥ 2, then

ordS(+)(2ni1w
i1+n−2) is finite, and so the same is true for ordS(+)(wn−1). Finally,

if i1 = 1, then wn−1 = 2ni1w
n−1 + u and ordS(+)(wn−1) is finite by 4.8, the final

contradiction. ¤

Remark 6.4. Let S be an additively divisible semiring generated by an element w
(see 7.2 and 7.3). There exists v ∈ S with 2v = w and v = n1w

i1 + · · ·+ nkwik for
some n1, . . . , nk, k ∈ N and 1 ≤ i1 < i2 < · · · < ik. Then w = 2n1w

i1 +· · ·+2nkwik .
(i) Assume that i1 ≥ 2. Then w = we, where e = 2n1w

i1−1 + · · · + 2nkwik−1

and we conclude easily that e = 1S is the multiplicatively neutral element of S.
Furthermore, 1S = e = wf , f = 2n1w

i1−2 + · · · + 2nkwik−2 (here, w0 = 1S),
and hence f = w−1. Thus wS∗ , where S∗ denotes the group of multiplicatively
invertible elements of S.
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(ii) Assume that i1 = 1. Then k ≥ 2 by 7.3 and w = w + u, u = (2n1 − 1)w +
2n2w

i2 + · · ·+ 2nkwik . Now, it is easy to see that for every r ∈ S there is at least
one s ∈ S with r + s = r.

Remark 6.5. Let S be a non-trivial additively divisible semiring generated by an
element w (see 7.2,7.3 and 7.4). Consider a maximal congruence ρ of S. Then
T = S/ρ is a congruence-simple semiring and, of course, T is additively divisible
and one-generated. According to [1, 10.1], T is additively idempotent and either
T ∼= Z3, Z4 or T ∼= V (G) for a finite cyclic group G.

(i) If T ∼= Z3, then the congruence ρ has just two blocks A and B, where A is a
bi-ideal of S, SS ⊆ A and w ∈ B, B + B ⊆ B. Then w2, w3, · · · ∈ A and it follows
that B = 〈w〉S(+) = {w, 2w, 3w, . . . }. On the other hand, w = 2v for some v ∈ S
and v ∈ B. This means that ordS(+)(w) is finite and it follows from 7.3 that S is
additively idempotent.

(ii) If T ∼= Z4, then the congruence ρ has just two blocks A and B, where
A + S ⊆ A, w ∈ A, AA ⊆ B, B is an ideal of S and SS ⊆ B. Then w2, w3, · · · ∈ B
and, in fact, A = {n1w + n2w

2 + · · ·+ nkwk| k ∈ N, ni ∈ N0, n1 6= 0}. Notice that
B, as a semiring, is generated by the set {w2, w3}. Finally, notice that S possesses
no multiplicatively neutral element.

(iii) Finally, assume that T ∼= V (Zm(+)) for some m ∈ N and denote by ϕ a
projection of S onto V (Zm). We have V (Zm(+)) = Zm∪{o} = {o, 0, 1, . . . ,m−1}.
Put A = ϕ−1(o) and Bk = ϕ−1(k) for every k = 0, 1, . . . , m − 1. Then A is a
bi-ideal of S, B0 is a subsemiring of S and B1, . . . , Bm−1 are subsemigroups of
S(+). Furthermore, BkBl ⊆ Bt, t = k + l (mod(m)) for all 0 ≤ k, l ≤ m − 1,
and Bk + Bl ⊆ A for k 6= l. Without loss of generality, we can assume that
w ∈ B1, w

2 ∈ B2, . . . , w
m−1 ∈ Bm−1 and wm ∈ B0. Now, it is clear that Bk =

{n1w
k + n2w

k+m + · · · + njw
k+(j−1)m| j ∈ N, ni ∈ N0,

∑
ni 6= 0} for every 1 ≤

kleqm − 1 and B0 = {n1w
k + n2w

2m + · · · + njw
jm| j ∈ N, ni ∈ N0,

∑
ni 6= 0}.

Consequently, B0, as a semiring, is generated by wm. Of course, all B0, . . . , Bm−1

are additively divisible.
Since B0 is a subsemiring of S, we have w 6∈ B0 and m ≥ 2.
(iv) Consider the situation from (iii) and assume that 1S ∈ S. Then 1S ∈ B0

and 1S = a1w
m + a2w

2m + · · · + ajw
jm, where j ∈ N, ai ∈ N0 and

∑
ai 6= 0.

Consequently, 1S = w(a1w
m−1 + a2w

2m−1 + · · · + ajw
jm−1) and it follows that

w−1 = a1w
m−1 + · · · + ajw

jm−1 ∈ S, w−1 ∈ Bm−1, w−m = a11S + a2w
m + · · · +

ajw
(j−1)m ∈ B0. notice also that S is additively idempotent if and only if B0 is so

(i.e., iff 1S = 2S). If wt = 1S for some t ∈ N, then m divides t.
(v) Consider that situation from (iv) and assume that S is not additively idem-

potent. We are going to show that wt 6= 1S for every t ∈ N.
Let, on the contrary, wt = 1S for some t ∈ N. We will proceed by induction

on t. As we know from (iv), t = t1m, t1 ∈ N. If t1 = 1, that wm = 1S and then
B0 = {n1S | n ∈ N} is not additively divisible, a contradiction.

Thus 2 ≤ t1 < t. But B0 is additively divisible, it is not additively idempotent,
and B0 is generated by wm. Since (wm)t1 = 1B0 , we get a contradiction (see (i),(ii)
and (iii)).

Lemma 6.6. Let S be a semiring generated by an element w. Then S is additively
divisible if and only if for every prime integer p there is vp ∈ S with w = pvp.

Proof. The direct implication is trivial. Conversely, if w = pvp, then w ∈ pS, and
so pS = S, since pS is an ideal of the semiring S. Furthermore, given m ∈ N,
m ≥ 2, we have m = pk1

1 . . . pkn
n , and hence mS = S as well. ¤
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7. A few conjectures

Consider the following assertion:
(A) A finitely generated semiring is additively idempotent, provided that it is

additively divisible.
(A1) A finitely generated semiring is additively idempotent, provided that it is

additively uniquely divisible.
(B) A finitely generated senmiring contains no subsemiring isomorphic to Q+.

(B1) A finitely generated semiring with a unit element contains no subsemiring
having the unit and isomorphic to Q+.

(C) A finitely generated semiring is additively idempotent, provided that it is
ideal-simple and infinite.

(C1) A finitely generated semiring is additively idempotent, provided that it is
a parasemifield.

Proposition 7.1. (A) ⇔ (A1) ⇒ (B) ⇔ (B1) ⇒ (C) ⇔ (C1).

Proof. First, it is clear that (A) ⇒ (A1) and (B) ⇒ (B1). Furthermore, (C) ⇔ (C1)
by [2, 3.5]. Now, assume that (A1) is true and let S be a finitely generated additively
divisible semiring. By 6.2, S/σ(S) is additively uniquely divisible and, of course,
this semiring inherits the property of being finitely generated. By (A1), the semiring
S/σ(S) is additively idempotent, and hence the semiring S is additively torsion by
5.9. Finally, S is additively idempotent by 6.8. We have shown that (A1) ⇒ (A)
and consequently, (A) ⇔ (A1).

Next, let (B1) be true and let S be a finitely generated semiring containing a
subsemiring Q ∼= Q+. Put T = S1Q. Then T is an ideal of S, 1Q = 1T , Q ⊆ T and
the map s 7→ s1Q is a homomorphism of S onto T . Thus T is a finitely generated
semiring and this is a contradiction with (B1). We have shown that (B1) ⇒ (B)
and consequently, (B) ⇔ (B1).

Now, we are going to show that (A) ⇒ (B1). Indeed, let S be a finitely generated
semiring such that 1S ∈ S and S contains a subsemiring Q with 1S ∈ Q and
Q ∼= Q+. If a ∈ S and m ∈ N, then b = (m1S)−1a ∈ S and mb = a. It follows that
S is additively divisible, and hence additively idempotent by (A). But Q is not so,
a contradiction. We have shown that (A) ⇒ (B1).

It remains to show that (B1) ⇒ (C1). Let S be a parasemifield that is not
additively idempotent and let Q denote the subparasemifield generated by 1S . Then
Q ∼= Q+, 1Q = 1S and S is not finitely generated due to (B1). ¤
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