ADDITIVELY DIVISIBLE COMMUTATIVE SEMIRINGS

TOMÁŠ KEPKA AND MIROSLAV KORBELÁŘ

Abstract. Commutative semirings with divisible additive semigroup are studied.

1. Preliminaries

Throughout the paper, all semigroup, groups, semirings, rings and fields are assumed to be commutative (but, possibly, without additively and/or multiplicatively neutral elements). Furthermore, the following notation will be used in the sequel:
\mathbb{N}... the semiring of positive integers;
$\mathbb{N}_{0} \ldots$ the semiring of non-negative integers;
$\mathbb{Z} \ldots$ the ring of integers;
$\mathbb{Q}^{+} \ldots$ the parasemifield of positive rationals.

2. Congruences of \mathbb{N}

Define a relation $\rho(k, t)$ on \mathbb{N} for all $k, t \in N$ by $(m, n) \in \rho(k, t)$ iff $m-n \in \mathbb{Z} t$ and either $m=n$ or $m \geq k$ and $n \geq k$.

Lemma 2.1. $\rho(k, y)$ is a congruence of the semiring \mathbb{N}.
Proof. It is easy to check that the relation $\rho(k, t)$ is an equivalence and that it is stable under addition and multiplication.

Lemma 2.2. The congruence $\rho(k, t)$ has exactly $k+t-1$ blocks and these are just the following subsets of \mathbb{N} : $\{1\},\{2\}, \ldots,\{k-1\},\left\{m+l t \mid l \in \mathbb{N}_{0}\right\}, m \in \mathbb{N}$, $k \leq m \leq k+t-1$.

Proof. The assertion follows easily from the definition of the congruence $\rho(k, t)$.
Lemma 2.3. $(k, k+t) \in \rho(k, t)$.
Proof. The assertion follows directly from the definition of the congruence $\rho(k, t)$.

Lemma 2.4. Let $m \in \mathbb{N}$. Then $(m, 2 m) \in \rho(k, t)$ iff $k \leq m$ and t divides m.
Proof. The assertion follows immediately from the definition of the congruence $\rho(k, t)$.

Lemma 2.5. (i) $(k t, 2 k t) \in \rho(k, t)$.
(ii) $(l, 2 l) \in \rho(k, t)$, where $l=\operatorname{lcm}(k, t)$.
(iii) $(k+t-s, 2(k+t-s)) \in \rho(k, t)$, where $r, s \in \mathbb{N}_{0}$ are such that $k=r t+s$ and $s<t$.

Proof. Use 2.4.
Lemma 2.6. Let $m_{1}, m_{2} \in \mathbb{N}$ be such that $\left(m_{1}, 2 m_{1}\right) \in \rho(k, t)$ and $\left(m_{2}, 2 m_{2}\right) \in$ $\rho(k, t)$. Then $\left(m_{1}, m_{2}\right) \in \rho(k, t)$.

Proof. Combine 2.4 and the definition of $\rho(k, t)$.
Lemma 2.7. Let $w \in \mathbb{N}$ be such that $(w, 2 w) \in \rho(k, t)$ (see 2.4, 2.5 and 2.6). Then $(m, m+w) \in \rho(k, t)$ for every $m \in \mathbb{N}, m \geq k$.
Proof. By 2.4, $w \geq k$ and t divides w. The rest is clear.
Lemma 2.8. Let $w \in \mathbb{N}$ be such that $(w, 2 w) \in \rho(k, t)$ (see 2.4, 2.5, 2.6 and 2.7). Then:
(i) For every $m \in \mathbb{N}, m \geq k$, there exists at least one $n \in \mathbb{N}$ such that $n \geq k$ and $(m+n, w) \in \rho(k, t)$.
(ii) If $m, n_{1}, n_{2} \in \mathbb{N}$ are such that $m \geq k, n_{1} \geq k, n_{2} \geq k,\left(m+n_{1}, w\right) \in \rho(k, t)$ and $\left(m+n_{2}, w\right) \in \rho(k, t)$, then $\left(n_{1}, n_{2}\right) \in \rho(k, t)$.

Proof. (i) Choose $l \in \mathbb{N}$ such that $m+k \leq l w$ and put $n=l w-m$. Then $n \geq k$ and $m+n=l w$. But $(w, 2 w) \in \rho(k, t),(2 w, 3 w) \in \rho(k, l), \ldots,((l-1) w, l w) \in \rho(k, t)$ (for $l \geq 2$) and we have $(w, l w) \in \rho(k, t)$. Thus $(m+n, w) \in \rho(k, t)$.
(ii) We have $\left(m+n_{1}, w\right) \in \rho(k, t),\left(m+n_{2}, w\right) \in \rho(k, t)$, and hence $\left(m+n_{1}, m+\right.$ $\left.n_{2}\right) \in \rho(k, t)$. Furthermore, $\left(m+2 n_{1}, w+n_{1}\right) \in \rho(k, t),\left(m+n_{1}+n_{2}, w+n_{2}\right) \in \rho(k, t)$ and $\left(m+2 n_{1}, m+n_{1}+n_{2}\right) \in \rho(k, t)$. Consequently, $\left(w+n_{1}, w+n_{2}\right) \in \rho(k, t)$. Now, $\left(n_{1}, n_{2}\right) \in \rho(k, t)$ follows from 2.7.

Lemma 2.9. $\rho(k, t)$, as a congruence of the additive semigroup $\mathbb{N}(+)$ is generated by the single pair $(k, k+t)$.
Proof. Denote by ρ the congruence of $\mathbb{N}(+)$ generated by the ordered pair $(k, k+t)$. Since $(k, k+t) \in \rho(k, t)$, we have $\rho \subseteq \rho(k+t)$. Conversely, we have to show that $(m, n) \in \rho(k, t)$ implies $(m, n) \in \rho$; we can assume that $m<n$. Then $m=k+l$ and $n=k+l+r t$ for some $l \in \mathbb{N}_{0}$ and $r \in \mathbb{N}$. Of course, $(m, m+t)=(k+$ $l, k+l+t)=(k, k+t)+(l, l) \in \rho,(m+t, m+2 t)=(k+l+t, k+l+2 t)=$ $(k, k+t)+(l+t, l+t) \in \rho, \ldots,(m+(r-1) t, m+r t) \in \rho$. Using transitivity, we get $(m, n)=(m, m+r t) \in \rho$.

3. CyClic semigroups

It is well known, that every congruence of $\mathbb{N}(+)$ is either identity or $\rho(k, t)$ for some $k, t \in \mathbb{N}$.

Proposition 3.1. The congruences $i d_{\mathbb{N}}$ and $\rho(k, t), k, t \in \mathbb{N}$, are just all congruences of the semiring $\mathbb{N}(+, \cdot)$ of positive integers.
Proof. Easy to verify.
Lemma 3.2. Let $t(S)$ denote the set elements of finite order of a semigroup S. If $t(S) \neq 0$, then $t(S)$ is a subsemigroup. of S

Proof. It is easy.
A semigroup S will be called torsion if every element of S has finite order.
Lemma 3.3. Let A be a non-empty subset of a semigroup S such that there exists $m \in \mathbb{N}$ with $\operatorname{ord}_{S}(a) \leq m$ for every $a \in A$. Then there exists $n \in \mathbb{N}$ such that $2 n b=n b$ for every $b \in\langle A\rangle_{S}$.

Proof. For every $a \in A$ there are $k_{a}, t_{a} \in \mathbb{N}$ with $\langle A\rangle_{S} \cong C\left(k_{a}, t_{a}\right) \cong \mathbb{N}(+) / \rho\left(k_{a}, t_{a}\right)$. Of course, $k_{a}+t_{a} \leq m+1$. By 2.5(ii), $2 m_{a} a=m_{a} a$ for some $m_{a} \in \mathbb{N}, m_{a} \leq m+1$. Now, it suffices to put $n=(m+1)$!.

Lemma 3.4. Let A be a non-empty subset of a semigroup S such that there exists $m \in \mathbb{N}$ with $\operatorname{ord}_{S}(a) \leq m$ for every $a \in A$. Then there exists $l \in \mathbb{N}$ with $\operatorname{ord}_{S}(b) \leq l$ for every $b \in\langle A\rangle_{S}$.

Proof. By 4.6, $2 n b=n b$ for some $n \in \mathbb{N}$ and all $b \in\langle A\rangle_{S}$. We have $\langle b\rangle_{S} \cong C\left(k_{b}, t_{b}\right)$ and $\operatorname{ord}_{S}(b)=k_{b}+t_{b}-1$. Since $n b=2 n b, n \geq k_{b}$ and t_{b} divides $2 n-n=n$. Consequently, $k_{b}+t_{b}-1 \leq 2 n-1$.
Lemma 3.5. Let S be a semigroup and let $a, b \in S$ be such that $k a=l a+b$ for some $k, l \in \mathbb{N}, k \neq l$. If $\operatorname{ord}_{S}(b)$ is finite, then $\operatorname{ord}_{S}(a)$ is so.

Proof. We have $m b=n b$ for some $m, n \in \mathbb{N}, m<n$. Now, $n k a=n l a+n b=$ $n l a+m b=(n-m) l a+m(l a+b)=(n-m) l a+m k a=((n-m) l+m k) a$. Since $k \neq l$, we have $(n-m) k \neq(n-m) l$ and $n k \neq(n-m) l+m k$. Consequently, $\langle a\rangle_{S}$ is finite.

4. Divisible semigroups

A (commutative) semigroup $S(=S(+))$ is called divisible if $S=m S$ for every $m \in \mathbb{N}$.

Proposition 4.1. (i) The class of divisible semigroups is closed under homomorphic images and cartesian products.
(ii) The class of divisible semigroups contains all semilattices (i.e., idempotent commutative semigroups) and all divisible abelian groups.
(iii) The additive semigroup $\mathbb{Q}^{+}(+)\left(\mathbb{Q}_{0}^{+}(+)\right.$, resp.) of positive (non-negative, resp.) rational numbers are divisible.

Proof. It is easy to see.
Proposition 4.2. A finite semigroup is divisible if and only if it is idempotent (i.e., it is a semilattice).

Proof. All semilattices are divisible. On the other hand, if S is a finite semigroup, then for every $a \in S$ there is $m_{a} \in \mathbb{N}$ with $2 m_{a} a=m_{a} a$ (4.6). If $m=\prod m_{a}, a \in S$, then $2 m a=m a$ for every $a \in S$. Finally, if S is divisible, then $m S=S$ and S is idempotent.

Lemma 4.3. Let S be a semigroup and $a \in S$. Define a relation ρ_{a} on S by $(u, v) \in \rho_{a}$ iff $u+k a=v+l a$ for some $k, l \in \mathbb{N}$. Then ρ_{a} is a congruence of S and $(a, 2 a) \in \rho_{a}$.

Proof. Clearly, ρ_{a} is reflexive, symmetric and stable under the addition of the semigroup S. It remains to show that ρ_{a} is transitive. If $u+k a=v+l a$ and $v+r a=w+s a, k, l, r, s \in \mathbb{N}$, then $u+(k+r) a=v+l a+r a=w+(l+s) a$.
Proposition 4.4. Let S be a semigroup. Then S is finitely generated and divisible if and only if S is a finite semilattice.

Proof. Assume that S is divisible and generated by a finite set A. Let m be the set number of non-idempotent element of A. We proceed by induction on m.

If $m=0$, then S is generated by a set of idempotents and if follows easily that S is idempotent itself. Of course, a finitely generated semilattice is finite. Now, assume that $m \geq 1$. If $a \in A$ is such that $a \neq 2 a$, then S / ρ_{a} is a (finite) semilattice by induction (see 5.3). Since S is divisible, we have $a=2 b$ for some $b \in S$ and
$(a, b)=(2 a, b) \in \rho_{a}$ (since S / ρ_{a} is idempotent). Then $k a=b+l a$ for some $k, l \in \mathbb{N}$ and we get $2 k a=2 b+2 l a=(2 l+1) a$. Since $2 k \neq 2 l+1$, we conclude that the cyclic subsemigroup $\langle a\rangle_{S}$ generated by $\{a\}$ is finite.

We have proved that $\langle a\rangle_{S}$ is finite for every $a \in A$. Since A is finite and S is generated by A, one checks easily that S is finite, too. By $5.2, S$ is a finite semilattice.

Lemma 4.5. Let S be a semigroup. Define a relation $\sigma(S)$ on S by $(u, v) \in \sigma(S)$ iff $m u=m v$ for some $m \in \mathbb{N}$. Then $\sigma(S)$ is a congruence of S and $\sigma(S / \sigma(S))=i d$.

Proof. Clearly, $\sigma(S)$ is reflexive, symmetric and stable under the addition. If $m u=$ $m v$ and $n v=n w$, then $m n u=m n w$, and hence $\sigma(S)$ is transitive as well. Thus $\sigma(S)$ is a congruence of the semigroup. Finally, if $(m u, m v) \in \sigma(S)$, then $k m u=$ $k m v$ and $(u, v) \in \sigma(S)$.

Corollary 4.6. If S is a divisible semigroup, then $S / \sigma(S)$ is a uniquely divisible semigroup.

Lemma 4.7. Let S be a semigroup. Define a relation $\tau(S)$ on S by $(u, v) \in \tau(S)$ iff $m u=n v$ for some $m, n \in \mathbb{N}$. Then $\tau(S)$ is a congruence of $S, \sigma(S) \subseteq \tau(S)$ and $\tau(S / \tau(S))=i d$.

Proof. Similar to 5.5.
Corollary 4.8. If S is a divisible semigroup, then $S / \tau(S)$ is a uniquely divisible semigroup.

Lemma 4.9. Let S be a semigroup such that the factor-semigroup $S / \sigma(S)$ is torsion. Then S is torsion.

Proof. For every $a \in S$ there are $k, l \in \mathbb{N}$ such that $(k a, l a) \in \sigma(S)$ and $k<l$. Furthermore, there is $m \in \mathbb{N}$ with $m k a=m l a$. Clearly, $m k<m l$, and hence $\operatorname{ord}_{S}(a)$ is finite.

Proposition 4.10. Let S be a divisible semigroup such that there exists $m \in \mathbb{N}$ with $\operatorname{ord}_{S}(a) \leq m$ for every $a \in S$. Then S is a semilattice.

Proof. By 4.6, there is $n \in \mathbb{N}$ such that $2 n a=n a$ for every $a \in S$. Now, $a=n b$, and hence $2 a=2 n b=n b=a$.

Lemma 4.11. Let S be a uniquely divisible semigroup. If $a \in S$ is such that $\operatorname{ord}_{S}(a)$ is finite, then $2 a=a$.

Proof. There is $m \in \mathbb{N}$ with $2 m a=m a$. Then $2 a=a$, since S is uniquely divisible.

5. Additively divisible semirings

Lemma 5.1. Let S be a semiring. Then:
(i) $\sigma(S)$ is a congruence of S and $\sigma(S / \sigma(S))=i d$.
(ii) $\tau(S)$ is a congruence of S and $\tau(S / \tau(S))=i d$.

Proof. Clearly, both $\sigma(S)$ and $\tau(S)$ are stable under the multiplication of the semiring S and the rest follows from 5.5 and 5.7.

Corollary 5.2. Let S be an additively divisible semiring. Then both $S / \sigma(S)$ and $S / \tau(S)$ are additively uniquely divisible semirings.

Remark 5.3. Let S be an additively uniquely divisible semiring.
(i) For all $m, n \in \mathbb{N}$ and $a \in S$, there is a uniquely determined $b \in S$ with $m a=n b$ and we put $(m / n) a=b$. If $m_{1}, n_{1} \in \mathbb{N}$ and $b_{1} \in S$ are such that $m / n=m_{1} / n_{1}$ and $m_{1} a=n_{1} b_{1}$, then $k=m n_{1}=m_{1} n$ and $k b_{1}=m m_{1} a=k b$ and $b_{1}=b$. Consequently, we get a (scalar) multiplication $\mathbb{Q}^{+} \times S \rightarrow S$ (one checks easily that $q\left(a_{1}+a_{2}\right)=q a_{1}+q a_{2},\left(q_{1}+q_{2}\right) a=q_{1} a+q_{2} a, q_{1}\left(q_{2} a\right)=\left(q_{1} q_{2}\right) a$ and $1 a=a$ for all $q_{1}, q_{2} \in \mathbb{Q}^{+}$and $\left.a_{1}, a_{2}, a \in S\right)$ and S becomes a unitary \mathbb{Q}^{+}-semimodule. Furthermore, $q a_{1} \cdot a_{2}=a_{1} \cdot q a_{2}$ for all $q \in \mathbb{Q}^{+}$and $a_{1}, a_{2} \in S$, and therefore S is a unitary \mathbb{Q}^{+}-algebra.
(ii) Let $a \in S$ be multiplicatively but not additively idempotent (i.e., $a^{2}=a \neq$ $2 a)$. Put $Q=\mathbb{Q}^{+} a$. Then Q is a subalgebra of the \mathbb{Q}^{+}-algebra S and the mapping $\varphi: q \mapsto q a$ ia a homomorphism of the \mathbb{Q}^{+}-algebras and, of course, of the semirings as well. Since $a \neq 2 a$, we have $\operatorname{ker}(\varphi) \neq \mathbb{Q}^{+} \times \mathbb{Q}^{+}$. But \mathbb{Q}^{+}is a congruence-simple semiring and it follows that $\operatorname{ker}(\varphi)=i d$. Consequently, $Q \cong \mathbb{Q}^{+}$.

Put $T=S a$. Then T is an ideal of the \mathbb{Q}^{+}-algebra $S, Q \subseteq T$ (we have $q a=$ $a \cdot q a \in T$) and $a=1_{Q}=1_{T}$ is a multiplicatively neutral element of T. The mapping $s \mapsto s a$ is a homomorphism of the \mathbb{Q}^{+}-algebras. Consequently, T is additively uniquely divisible. Furthermore, T is a finitely generated semiring, provided that S is so.

Proposition 5.4. Let S be an additively divisible semiring with $1_{S} \in S$. Then:
(i) S is additively uniquely divisible.
(ii) Either S is additively idempotent or S contains a subsemiring Q such that $Q \cong \mathbb{Q}^{+}$and $1_{S}=1_{Q}$.
(iii) If $\operatorname{ord}_{S(+)}\left(1_{S}\right)$ is finite, then S is additively idempotent.

Proof. For every $m \in \mathbb{N}$, there is $w_{m} \in S$ such that $1_{S}=m w_{m}$. That is, $w_{m}=$ $\left(m 1_{S}\right)^{-1}$. If $m a=m b$, then $a=w_{m} m a=w_{m} n b=b$ and we see that S is additively uniquely divisible. The rest is clear from 6.3.

Lemma 5.5. Let S be a semiring such that $t(S)=t(S(+)) \neq \emptyset$. Then $t(S)$ is an ideal of S. Moreover, if S is additively divisible, then $t(S)$ is so.

Proof. By 4.5, $t(S)$ is a subsemigroup of $S(+)$. Furthermore, if $a \in t(S)$, then $k a=l a$ for some $k, l \in \mathbb{N}, k<l$, and then $k a b=l a b$ for every $b \in S$. It means that $a b \in t(S)$ and $t(S)$ becomes an ideal of the semiring S. Finally, if $a=m c, m \in \mathbb{N}$, $c \in S$, then $k m c=k a=l a=l m c$ and $k m<l m$. Thus $c \in t(S)$.

Proposition 5.6. Let a semiring S be generated as a (left) S-semimodule by a subset A such that $\operatorname{ord}_{S(+)}(a) \leq m$ for some $m \in \mathbb{N}$ and all $a \in A$. If S is additively divisible, then S is additively idempotent.
Proof. Put $B=\left\{b \in S \mid \operatorname{ord}_{S(+)}(b) \leq m\right\}$. Then $A \subseteq B$ and $b \in B$ for all $s \in S$ and $b \in B$. Furthermore, $\langle B\rangle_{S(+)}=S$, and hence there is $l \in \mathbb{N}$ with $\operatorname{ord}_{S(+)}(r) \leq l$ for every $r \in S$ (by 4.7). Now, it remains to use 5.10.

Corollary 5.7. Let an additively divisible semiring S be generated as an S-semimodule by a finite set of elements of finite additive orders. Then S is additively idempotent.

Corollary 5.8. Every additively divisible and torsion finitely generated semiring is additively idempotent.

Remark 5.9. The zero multiplicative ring defined on $\mathbb{Z}_{p^{\infty}}$ is both additively divisible and additively torsion. Of course, the ring is neither additively idempotent nor finitely generated. The (semi)group $\mathbb{Z}_{p^{\infty}}(+)$ is not uniquely divisible.

Remark 5.10. Let R be a (non-zero) finitely generated ring. Then R has at least one maximal ideal I and the factor R / I is a finitely generated simple ring. However, any such a ring is finite and consequently, R is not additively divisible.
Proposition 5.11. Let S be a non-trivial additively cancellative and divisible semiring. Then S is not finitely generated.

Proof. Consider the difference ring $R=S-S$ of S. It is easy to check that R is additively divisible. According to $6.10, R$ is not finitely generated. Then S is not finitely generated either.

6. One-GEnERated additively divisible semirings

Lemma 6.1. Let S be a semiring such that $1_{s} \in S$ (1_{S} being multiplicatively neutral). Let $w \in S, a, b, c \in\langle w\rangle_{S}$ and $m \in \mathbb{N}$ be such that $m a=n b$ and $m c=w$. Then $a=b$.

Proof. We have $\langle w\rangle_{S}=\left\langle w, w^{2}, w^{3}, \ldots\right\rangle_{S(+)}$ and it follows easily that for every $d \in\langle w\rangle_{S}$ there is $d^{\prime} \in S$ with $d=w d^{\prime}$. Now, $a=w a^{\prime}=m c a^{\prime}=m w c^{\prime} a^{\prime}=m a c^{\prime}=$ $m b c^{\prime}=m w c^{\prime} b^{\prime}=m c b^{\prime}=w b^{\prime}=b$.

Proposition 6.2. Every additively divisible one-generated semiring is uniquely divisible.

Proof. Let S be an additively divisible semiring generated by a single element w. First, put $T=S \cup\left\{0_{T}\right\}$, where 0_{T} is additively neutral and multiplicatively absorbing. Then T becomes an additively divisible semiring and S a subsemiring of T. Next, let $R=T \times \mathbb{N}_{0}$ be the Dorroh extension. That is, $(r, m)+(s, n)=$ $(r+s, m+n)$ and $(r, m)(s, n)=(r s+n r+m s, m n)$. Clearly, $T(=T \times\{0\})$ is a subsemiring of $R, 0_{R}=\left(0_{T}, 0\right)$ is additively neutral and multiplicatively absorbing in R and $1_{R}=\left(0_{T}, 1\right)$ is multiplicatively neutral in R. Now, if $a, b \in S$ and $m \in \mathbb{N}$ are such that $m a=m b$, then $w=m c$ for some $c \in S$ and we get $a=b$ by 7.1.

Lemma 6.3. Let S be an additively divisible semiring generated by an element w. If $\operatorname{ord}_{S(+)}\left(w^{m}\right)$ is finite for some $m \in \mathbb{N}$, then S is additively idempotent.
Proof. If $\operatorname{ord}_{S(+)}(w)$ is finite, then S is additively idempotent by 6.7. Consequently, assume that $n \geq 2$, where $n \in \mathbb{N}$ is the smallest number with $\operatorname{ord}_{S(+)}\left(w^{n}\right)$ finite. Since $S(+)$ is divisible, we have $w=2 v$ for some $v \in S$. Moreover, there are $1 \leq i_{1}<i_{2}<\cdots<i_{k}, k \in \mathbb{N}$, such that $v=n_{i_{1}} w^{i_{1}}+n_{i_{2}} w^{i_{2}}+\cdots+n_{i_{k}} w^{i_{k}}$ for some $n_{i_{j}} \in \mathbb{N}$. From this we see that $w^{n-1}=2 n_{i_{1}} w^{i_{1}+n-2}+2 n_{i_{2}} w^{i_{2}+n-2}+\cdots+$ $2 n_{i_{k}} w^{i_{k}+n-2}$. If $k=1$, then $w^{n-1}=2 n_{i_{1}} w^{i_{1}+n-2}$, where $i_{1}+n-2 \geq n-1$. If $i_{1}=1$, then $w^{n-1}=2 n_{i_{1}} w^{n-1}$ and $\operatorname{ord}_{S(+)}\left(w^{n-1}\right)$ is finite, a contradiction. If $i_{1} \geq 2$, then $w^{n-1}=2 n_{i_{1}} w^{n} w^{i_{1}-2}$, and $\operatorname{ord}_{S(+)}\left(w^{n-1}\right)$ is finite, too. If $k \geq 2$, then $3 \leq i_{2}$ and $\operatorname{ord}_{S(+)}(u)$ is finite, where $u=2 n_{i_{2}} w^{i_{2}+n-2}+\cdots+2 n_{i_{k}} w^{i_{k}+n-2}$. If $i_{1} \geq 2$, then $\operatorname{ord}_{S(+)}\left(2 n_{i_{1}} w^{i_{1}+n-2}\right)$ is finite, and so the same is true for $\operatorname{ord}_{S(+)}\left(w^{n-1}\right)$. Finally, if $i_{1}=1$, then $w^{n-1}=2 n_{i_{1}} w^{n-1}+u$ and $\operatorname{ord}_{S(+)}\left(w^{n-1}\right)$ is finite by 4.8 , the final contradiction.

Remark 6.4. Let S be an additively divisible semiring generated by an element w (see 7.2 and 7.3). There exists $v \in S$ with $2 v=w$ and $v=n_{1} w^{i_{1}}+\cdots+n_{k} w^{i_{k}}$ for some $n_{1}, \ldots, n_{k}, k \in \mathbb{N}$ and $1 \leq i_{1}<i_{2}<\cdots<i_{k}$. Then $w=2 n_{1} w^{i_{1}}+\cdots+2 n_{k} w^{i_{k}}$.
(i) Assume that $i_{1} \geq 2$. Then $w=w e$, where $e=2 n_{1} w^{i_{1}-1}+\cdots+2 n_{k} w^{i_{k}-1}$ and we conclude easily that $e=1_{S}$ is the multiplicatively neutral element of S. Furthermore, $1_{S}=e=w f, f=2 n_{1} w^{i_{1}-2}+\cdots+2 n_{k} w^{i_{k}-2}$ (here, $w^{0}=1_{S}$), and hence $f=w^{-1}$. Thus $w^{S^{*}}$, where S^{*} denotes the group of multiplicatively invertible elements of S.
(ii) Assume that $i_{1}=1$. Then $k \geq 2$ by 7.3 and $w=w+u, u=\left(2 n_{1}-1\right) w+$ $2 n_{2} w^{i_{2}}+\cdots+2 n_{k} w^{i_{k}}$. Now, it is easy to see that for every $r \in S$ there is at least one $s \in S$ with $r+s=r$.

Remark 6.5. Let S be a non-trivial additively divisible semiring generated by an element w (see 7.2,7.3 and 7.4). Consider a maximal congruence ρ of S. Then $T=S / \rho$ is a congruence-simple semiring and, of course, T is additively divisible and one-generated. According to [1, 10.1], T is additively idempotent and either $T \cong Z_{3}, Z_{4}$ or $T \cong V(G)$ for a finite cyclic group G.
(i) If $T \cong \mathbb{Z}_{3}$, then the congruence ρ has just two blocks A and B, where A is a bi-ideal of $S, S S \subseteq A$ and $w \in B, B+B \subseteq B$. Then $w^{2}, w^{3}, \cdots \in A$ and it follows that $B=\langle w\rangle_{S(+)}=\{w, 2 w, 3 w, \ldots\}$. On the other hand, $w=2 v$ for some $v \in S$ and $v \in B$. This means that $\operatorname{ord}_{S(+)}(w)$ is finite and it follows from 7.3 that S is additively idempotent.
(ii) If $T \cong Z_{4}$, then the congruence ρ has just two blocks A and B, where $A+S \subseteq A, w \in A, A A \subseteq B, B$ is an ideal of S and $S S \subseteq B$. Then $w^{2}, w^{3}, \cdots \in B$ and, in fact, $A=\left\{n_{1} w+n_{2} w^{2}+\cdots+n_{k} w^{k} \mid k \in \mathbb{N}, n_{i} \in \mathbb{N}_{0}, n_{1} \neq 0\right\}$. Notice that B, as a semiring, is generated by the set $\left\{w^{2}, w^{3}\right\}$. Finally, notice that S possesses no multiplicatively neutral element.
(iii) Finally, assume that $T \cong V\left(\mathbb{Z}_{m}(+)\right)$ for some $m \in \mathbb{N}$ and denote by φ a projection of S onto $V\left(\mathbb{Z}_{m}\right)$. We have $V\left(\mathbb{Z}_{m}(+)\right)=\mathbb{Z}_{m} \cup\{o\}=\{o, 0,1, \ldots, m-1\}$. Put $A=\varphi^{-1}(o)$ and $B_{k}=\varphi^{-1}(k)$ for every $k=0,1, \ldots, m-1$. Then A is a bi-ideal of S, B_{0} is a subsemiring of S and B_{1}, \ldots, B_{m-1} are subsemigroups of $S(+)$. Furthermore, $B_{k} B_{l} \subseteq B_{t}, t=k+l(\bmod (m))$ for all $0 \leq k, l \leq m-1$, and $B_{k}+B_{l} \subseteq A$ for $k \neq l$. Without loss of generality, we can assume that $w \in B_{1}, w^{2} \in B_{2}, \ldots, w^{m-1} \in B_{m-1}$ and $w^{m} \in B_{0}$. Now, it is clear that $B_{k}=$ $\left\{n_{1} w^{k}+n_{2} w^{k+m}+\cdots+n_{j} w^{k+(j-1) m} \mid j \in \mathbb{N}, n_{i} \in \mathbb{N}_{0}, \sum n_{i} \neq 0\right\}$ for every $1 \leq$ kleqm -1 and $B_{0}=\left\{n_{1} w^{k}+n_{2} w^{2 m}+\cdots+n_{j} w^{j m} \mid j \in \mathbb{N}, n_{i} \in \mathbb{N}_{0}, \sum n_{i} \neq 0\right\}$. Consequently, B_{0}, as a semiring, is generated by w^{m}. Of course, all B_{0}, \ldots, B_{m-1} are additively divisible.

Since B_{0} is a subsemiring of S, we have $w \notin B_{0}$ and $m \geq 2$.
(iv) Consider the situation from (iii) and assume that $1_{S} \in S$. Then $1_{S} \in B_{0}$ and $1_{S}=a_{1} w^{m}+a_{2} w^{2 m}+\cdots+a_{j} w^{j m}$, where $j \in \mathbb{N}, a_{i} \in \mathbb{N}_{0}$ and $\sum a_{i} \neq 0$. Consequently, $1_{S}=w\left(a_{1} w^{m-1}+a_{2} w^{2 m-1}+\cdots+a_{j} w^{j m-1}\right)$ and it follows that $w^{-1}=a_{1} w^{m-1}+\cdots+a_{j} w^{j m-1} \in S, w^{-1} \in B_{m-1}, w^{-m}=a_{1} 1_{S}+a_{2} w^{m}+\cdots+$ $a_{j} w^{(j-1) m} \in B_{0}$. notice also that S is additively idempotent if and only if B_{0} is so (i.e., iff $1_{S}=2_{S}$). If $w^{t}=1_{S}$ for some $t \in \mathbb{N}$, then m divides t.
(v) Consider that situation from (iv) and assume that S is not additively idempotent. We are going to show that $w^{t} \neq 1_{S}$ for every $t \in \mathbb{N}$.

Let, on the contrary, $w^{t}=1_{S}$ for some $t \in \mathbb{N}$. We will proceed by induction on t. As we know from (iv), $t=t_{1} m, t_{1} \in \mathbb{N}$. If $t_{1}=1$, that $w^{m}=1_{S}$ and then $B_{0}=\left\{n 1_{S} \mid n \in \mathbb{N}\right\}$ is not additively divisible, a contradiction.

Thus $2 \leq t_{1}<t$. But B_{0} is additively divisible, it is not additively idempotent, and B_{0} is generated by w^{m}. Since $\left(w^{m}\right)^{t_{1}}=1_{B_{0}}$, we get a contradiction (see (i),(ii) and (iii)).

Lemma 6.6. Let S be a semiring generated by an element w. Then S is additively divisible if and only if for every prime integer p there is $v_{p} \in S$ with $w=p v_{p}$.

Proof. The direct implication is trivial. Conversely, if $w=p v_{p}$, then $w \in p S$, and so $p S=S$, since $p S$ is an ideal of the semiring S. Furthermore, given $m \in \mathbb{N}$, $m \geq 2$, we have $m=p_{1}^{k_{1}} \ldots p_{n}^{k_{n}}$, and hence $m S=S$ as well.

7. A few conjectures

Consider the following assertion:
(A) A finitely generated semiring is additively idempotent, provided that it is additively divisible.
(A1) A finitely generated semiring is additively idempotent, provided that it is additively uniquely divisible.
(B) A finitely generated senmiring contains no subsemiring isomorphic to \mathbb{Q}^{+}.
(B1) A finitely generated semiring with a unit element contains no subsemiring having the unit and isomorphic to \mathbb{Q}^{+}.
(C) A finitely generated semiring is additively idempotent, provided that it is ideal-simple and infinite.
(C1) A finitely generated semiring is additively idempotent, provided that it is a parasemifield.
Proposition 7.1. (A) $\Leftrightarrow(\mathrm{A} 1) \Rightarrow(\mathrm{B}) \Leftrightarrow(\mathrm{B} 1) \Rightarrow(\mathrm{C}) \Leftrightarrow(\mathrm{C} 1)$.
Proof. First, it is clear that $(\mathrm{A}) \Rightarrow(\mathrm{A} 1)$ and $(\mathrm{B}) \Rightarrow(\mathrm{B} 1)$. Furthermore, $(\mathrm{C}) \Leftrightarrow(\mathrm{C} 1)$ by $[2,3.5]$. Now, assume that (A1) is true and let S be a finitely generated additively divisible semiring. By $6.2, S / \sigma(S)$ is additively uniquely divisible and, of course, this semiring inherits the property of being finitely generated. By (A1), the semiring $S / \sigma(S)$ is additively idempotent, and hence the semiring S is additively torsion by 5.9. Finally, S is additively idempotent by 6.8 . We have shown that (A1) \Rightarrow (A) and consequently, $(\mathrm{A}) \Leftrightarrow$ (A1).

Next, let (B1) be true and let S be a finitely generated semiring containing a subsemiring $Q \cong \mathbb{Q}^{+}$. Put $T=S 1_{Q}$. Then T is an ideal of $S, 1_{Q}=1_{T}, Q \subseteq T$ and the map $s \mapsto s 1_{Q}$ is a homomorphism of S onto T. Thus T is a finitely generated semiring and this is a contradiction with (B1). We have shown that $(\mathrm{B} 1) \Rightarrow(\mathrm{B})$ and consequently, (B) \Leftrightarrow (B1).

Now, we are going to show that $(\mathrm{A}) \Rightarrow(\mathrm{B} 1)$. Indeed, let S be a finitely generated semiring such that $1_{S} \in S$ and S contains a subsemiring Q with $1_{S} \in Q$ and $Q \cong \mathbb{Q}^{+}$. If $a \in S$ and $m \in \mathbb{N}$, then $b=\left(m 1_{S}\right)^{-1} a \in S$ and $m b=a$. It follows that S is additively divisible, and hence additively idempotent by (A). But Q is not so, a contradiction. We have shown that $(\mathrm{A}) \Rightarrow(\mathrm{B} 1)$.

It remains to show that $(\mathrm{B} 1) \Rightarrow(\mathrm{C} 1)$. Let S be a parasemifield that is not additively idempotent and let Q denote the subparasemifield generated by 1_{S}. Then $Q \cong \mathbb{Q}^{+}, 1_{Q}=1_{S}$ and S is not finitely generated due to (B1).

References

[1] R. El Bashir, J. Hurt, A. Jančařík and T. Kepka, Simple commutative semirings, J. Algebra 236(2001), 277-306.
[2] V. Kala, T. Kepka and M. Korbelář, Notes on commutative parasemifields (preprint)
Charles University, Faculty of Mathematics and Physics, Department of Algebra, Sokolovská 83, 18675 Prague 8, Czech Republic

E-mail address: kepka@karlin.mff.cuni.cz
Charles University, Faculty of Mathematics and Physics, Department of Algebra, Sokolovská 83, 18675 Prague 8, Czech Republic

E-mail address: miroslav.korbelar@gmail.com

