ADDITIVELY DIVISIBLE COMMUTATIVE SEMIRINGS

TOMÁŠ KEPKA AND MIROSLAV KORBELÁŘ

 $\ensuremath{\mathsf{ABSTRACT}}$. Commutative semirings with divisible additive semigroup are studied.

1. Preliminaries

Throughout the paper, all semigroup, groups, semirings, rings and fields are assumed to be commutative (but, possibly, without additively and/or multiplicatively neutral elements). Furthermore, the following notation will be used in the sequel:

- \mathbb{N} ... the semiring of positive integers;
- \mathbb{N}_0 ... the semiring of non-negative integers;
- \mathbb{Z} ... the ring of integers;
- \mathbb{Q}^+ ... the parasemifield of positive rationals.

2. Congruences of \mathbb{N}

Define a relation $\rho(k,t)$ on \mathbb{N} for all $k,t \in N$ by $(m,n) \in \rho(k,t)$ iff $m-n \in \mathbb{Z}t$ and either m = n or $m \geq k$ and $n \geq k$.

Lemma 2.1. $\rho(k, y)$ is a congruence of the semiring \mathbb{N} .

Proof. It is easy to check that the relation $\rho(k,t)$ is an equivalence and that it is stable under addition and multiplication.

Lemma 2.2. The congruence $\rho(k,t)$ has exactly k + t - 1 blocks and these are just the following subsets of \mathbb{N} : $\{1\}, \{2\}, \ldots, \{k-1\}, \{m+lt| \ l \in \mathbb{N}_0\}, \ m \in \mathbb{N}, k \leq m \leq k+t-1$.

Proof. The assertion follows easily from the definition of the congruence $\rho(k, t)$.

Lemma 2.3. $(k, k + t) \in \rho(k, t)$.

Proof. The assertion follows directly from the definition of the congruence $\rho(k, t)$.

Lemma 2.4. Let $m \in \mathbb{N}$. Then $(m, 2m) \in \rho(k, t)$ iff $k \leq m$ and t divides m.

Proof. The assertion follows immediately from the definition of the congruence $\rho(k,t)$.

Lemma 2.5. (i) $(kt, 2kt) \in \rho(k, t)$.

(ii) $(l, 2l) \in \rho(k, t)$, where l = lcm(k, t).

(iii) $(k+t-s,2(k+t-s)) \in \rho(k,t)$, where $r,s \in \mathbb{N}_0$ are such that k = rt+s and s < t.

²⁰⁰⁰ Mathematics Subject Classification. 16Y60.

Key words and phrases. commutative semiring, divisible semigroup.

This work is a part of the research project MSM00210839 financed by MŠMT.

Proof. Use 2.4.

Lemma 2.6. Let $m_1, m_2 \in \mathbb{N}$ be such that $(m_1, 2m_1) \in \rho(k, t)$ and $(m_2, 2m_2) \in \rho(k, t)$. Then $(m_1, m_2) \in \rho(k, t)$.

Proof. Combine 2.4 and the definition of $\rho(k, t)$.

Lemma 2.7. Let $w \in \mathbb{N}$ be such that $(w, 2w) \in \rho(k, t)$ (see 2.4, 2.5 and 2.6). Then $(m, m + w) \in \rho(k, t)$ for every $m \in \mathbb{N}$, $m \ge k$.

Proof. By 2.4, $w \ge k$ and t divides w. The rest is clear.

Lemma 2.8. Let $w \in \mathbb{N}$ be such that $(w, 2w) \in \rho(k, t)$ (see 2.4, 2.5, 2.6 and 2.7). *Then:*

- (i) For every $m \in \mathbb{N}$, $m \ge k$, there exists at least one $n \in \mathbb{N}$ such that $n \ge k$ and $(m+n,w) \in \rho(k,t)$.
- (ii) If $m, n_1, n_2 \in \mathbb{N}$ are such that $m \ge k, n_1 \ge k, n_2 \ge k, (m+n_1, w) \in \rho(k, t)$ and $(m+n_2, w) \in \rho(k, t)$, then $(n_1, n_2) \in \rho(k, t)$.

Proof. (i) Choose $l \in \mathbb{N}$ such that $m+k \leq lw$ and put n = lw - m. Then $n \geq k$ and m+n = lw. But $(w, 2w) \in \rho(k, t), (2w, 3w) \in \rho(k, l), \dots, ((l-1)w, lw) \in \rho(k, t)$ (for $l \geq 2$) and we have $(w, lw) \in \rho(k, t)$. Thus $(m+n, w) \in \rho(k, t)$.

(ii) We have $(m + n_1, w) \in \rho(k, t)$, $(m + n_2, w) \in \rho(k, t)$, and hence $(m + n_1, m + n_2) \in \rho(k, t)$. Furthermore, $(m + 2n_1, w + n_1) \in \rho(k, t)$, $(m + n_1 + n_2, w + n_2) \in \rho(k, t)$ and $(m + 2n_1, m + n_1 + n_2) \in \rho(k, t)$. Consequently, $(w + n_1, w + n_2) \in \rho(k, t)$. Now, $(n_1, n_2) \in \rho(k, t)$ follows from 2.7.

Lemma 2.9. $\rho(k,t)$, as a congruence of the additive semigroup $\mathbb{N}(+)$ is generated by the single pair (k, k+t).

Proof. Denote by ρ the congruence of $\mathbb{N}(+)$ generated by the ordered pair (k, k+t). Since $(k, k+t) \in \rho(k, t)$, we have $\rho \subseteq \rho(k+t)$. Conversely, we have to show that $(m, n) \in \rho(k, t)$ implies $(m, n) \in \rho$; we can assume that m < n. Then m = k + l and n = k + l + rt for some $l \in \mathbb{N}_0$ and $r \in \mathbb{N}$. Of course, $(m, m+t) = (k + l, k+l+t) = (k, k+t) + (l, l) \in \rho$, $(m+t, m+2t) = (k+l+t, k+l+2t) = (k, k+t) + (l+t, l+t) \in \rho, \ldots, (m+(r-1)t, m+rt) \in \rho$. Using transitivity, we get $(m, n) = (m, m+rt) \in \rho$.

3. Cyclic semigroups

It is well known, that every congruence of $\mathbb{N}(+)$ is either identity or $\rho(k,t)$ for some $k, t \in \mathbb{N}$.

Proposition 3.1. The congruences $id_{\mathbb{N}}$ and $\rho(k,t)$, $k,t \in \mathbb{N}$, are just all congruences of the semiring $\mathbb{N}(+,\cdot)$ of positive integers.

Proof. Easy to verify.

Lemma 3.2. Let t(S) denote the set elements of finite order of a semigroup S. If $t(S) \neq 0$, then t(S) is a subsemigroup. of S

Proof. It is easy.

A semigroup S will be called torsion if every element of S has finite order.

Lemma 3.3. Let A be a non-empty subset of a semigroup S such that there exists $m \in \mathbb{N}$ with $\operatorname{ord}_S(a) \leq m$ for every $a \in A$. Then there exists $n \in \mathbb{N}$ such that 2nb = nb for every $b \in \langle A \rangle_S$.

 $\mathbf{2}$

Proof. For every $a \in A$ there are $k_a, t_a \in \mathbb{N}$ with $\langle A \rangle_S \cong C(k_a, t_a) \cong \mathbb{N}(+)/\rho(k_a, t_a)$. Of course, $k_a + t_a \leq m + 1$. By 2.5(ii), $2m_a a = m_a a$ for some $m_a \in \mathbb{N}$, $m_a \leq m + 1$. Now, it suffices to put n = (m + 1)!.

Lemma 3.4. Let A be a non-empty subset of a semigroup S such that there exists $m \in \mathbb{N}$ with $\operatorname{ord}_{S}(a) \leq m$ for every $a \in A$. Then there exists $l \in \mathbb{N}$ with $\operatorname{ord}_{S}(b) \leq l$ for every $b \in \langle A \rangle_{S}$.

Proof. By 4.6, 2nb = nb for some $n \in \mathbb{N}$ and all $b \in \langle A \rangle_S$. We have $\langle b \rangle_S \cong C(k_b, t_b)$ and $\operatorname{ord}_S(b) = k_b + t_b - 1$. Since nb = 2nb, $n \ge k_b$ and t_b divides 2n - n = n. Consequently, $k_b + t_b - 1 \le 2n - 1$.

Lemma 3.5. Let S be a semigroup and let $a, b \in S$ be such that ka = la + b for some $k, l \in \mathbb{N}, k \neq l$. If $\operatorname{ord}_{S}(b)$ is finite, then $\operatorname{ord}_{S}(a)$ is so.

Proof. We have mb = nb for some $m, n \in \mathbb{N}$, m < n. Now, nka = nla + nb = nla + mb = (n - m)la + m(la + b) = (n - m)la + mka = ((n - m)l + mk)a. Since $k \neq l$, we have $(n - m)k \neq (n - m)l$ and $nk \neq (n - m)l + mk$. Consequently, $\langle a \rangle_S$ is finite.

4. Divisible semigroups

A (commutative) semigroup S(=S(+)) is called divisible if S = mS for every $m \in \mathbb{N}$.

Proposition 4.1. (i) The class of divisible semigroups is closed under homomorphic images and cartesian products.

- (ii) The class of divisible semigroups contains all semilattices (i.e., idempotent commutative semigroups) and all divisible abelian groups.
- (iii) The additive semigroup $\mathbb{Q}^+(+)$ ($\mathbb{Q}^+_0(+)$, resp.) of positive (non-negative, resp.) rational numbers are divisible.

Proof. It is easy to see.

Proposition 4.2. A finite semigroup is divisible if and only if it is idempotent (*i.e.*, it is a semilattice).

Proof. All semilattices are divisible. On the other hand, if S is a finite semigroup, then for every $a \in S$ there is $m_a \in \mathbb{N}$ with $2m_a a = m_a a$ (4.6). If $m = \prod m_a, a \in S$, then 2ma = ma for every $a \in S$. Finally, if S is divisible, then mS = S and S is idempotent.

Lemma 4.3. Let S be a semigroup and $a \in S$. Define a relation ρ_a on S by $(u, v) \in \rho_a$ iff u + ka = v + la for some $k, l \in \mathbb{N}$. Then ρ_a is a congruence of S and $(a, 2a) \in \rho_a$.

Proof. Clearly, ρ_a is reflexive, symmetric and stable under the addition of the semigroup S. It remains to show that ρ_a is transitive. If u + ka = v + la and v + ra = w + sa, $k, l, r, s \in \mathbb{N}$, then u + (k+r)a = v + la + ra = w + (l+s)a. \Box

Proposition 4.4. Let S be a semigroup. Then S is finitely generated and divisible if and only if S is a finite semilattice.

Proof. Assume that S is divisible and generated by a finite set A. Let m be the set number of non-idempotent element of A. We proceed by induction on m.

If m = 0, then S is generated by a set of idempotents and if follows easily that S is idempotent itself. Of course, a finitely generated semilattice is finite. Now, assume that $m \ge 1$. If $a \in A$ is such that $a \ne 2a$, then S/ρ_a is a (finite) semilattice by induction (see 5.3). Since S is divisible, we have a = 2b for some $b \in S$ and

 $(a,b) = (2a,b) \in \rho_a$ (since S/ρ_a is idempotent). Then ka = b + la for some $k, l \in \mathbb{N}$ and we get 2ka = 2b + 2la = (2l + 1)a. Since $2k \neq 2l + 1$, we conclude that the cyclic subsemigroup $\langle a \rangle_S$ generated by $\{a\}$ is finite.

We have proved that $\langle a \rangle_S$ is finite for every $a \in A$. Since A is finite and S is generated by A, one checks easily that S is finite, too. By 5.2, S is a finite semilattice.

Lemma 4.5. Let S be a semigroup. Define a relation $\sigma(S)$ on S by $(u, v) \in \sigma(S)$ iff mu = mv for some $m \in \mathbb{N}$. Then $\sigma(S)$ is a congruence of S and $\sigma(S/\sigma(S)) = id$.

Proof. Clearly, $\sigma(S)$ is reflexive, symmetric and stable under the addition. If mu = mv and nv = nw, then mnu = mnw, and hence $\sigma(S)$ is transitive as well. Thus $\sigma(S)$ is a congruence of the semigroup. Finally, if $(mu, mv) \in \sigma(S)$, then kmu = kmv and $(u, v) \in \sigma(S)$.

Corollary 4.6. If S is a divisible semigroup, then $S/\sigma(S)$ is a uniquely divisible semigroup.

Lemma 4.7. Let S be a semigroup. Define a relation $\tau(S)$ on S by $(u, v) \in \tau(S)$ iff mu = nv for some $m, n \in \mathbb{N}$. Then $\tau(S)$ is a congruence of S, $\sigma(S) \subseteq \tau(S)$ and $\tau(S/\tau(S)) = id$.

Proof. Similar to 5.5.

Corollary 4.8. If S is a divisible semigroup, then $S/\tau(S)$ is a uniquely divisible semigroup.

Lemma 4.9. Let S be a semigroup such that the factor-semigroup $S/\sigma(S)$ is torsion. Then S is torsion.

Proof. For every $a \in S$ there are $k, l \in \mathbb{N}$ such that $(ka, la) \in \sigma(S)$ and k < l. Furthermore, there is $m \in \mathbb{N}$ with mka = mla. Clearly, mk < ml, and hence $\operatorname{ord}_{S}(a)$ is finite.

Proposition 4.10. Let S be a divisible semigroup such that there exists $m \in \mathbb{N}$ with $\operatorname{ord}_{S}(a) \leq m$ for every $a \in S$. Then S is a semilattice.

Proof. By 4.6, there is $n \in \mathbb{N}$ such that 2na = na for every $a \in S$. Now, a = nb, and hence 2a = 2nb = nb = a.

Lemma 4.11. Let S be a uniquely divisible semigroup. If $a \in S$ is such that $\operatorname{ord}_{S}(a)$ is finite, then 2a = a.

Proof. There is $m \in \mathbb{N}$ with 2ma = ma. Then 2a = a, since S is uniquely divisible.

5. Additively divisible semirings

Lemma 5.1. Let S be a semiring. Then:

- (i) $\sigma(S)$ is a congruence of S and $\sigma(S/\sigma(S)) = id$.
- (ii) $\tau(S)$ is a congruence of S and $\tau(S/\tau(S)) = id$.

Proof. Clearly, both $\sigma(S)$ and $\tau(S)$ are stable under the multiplication of the semiring S and the rest follows from 5.5 and 5.7.

Corollary 5.2. Let S be an additively divisible semiring. Then both $S/\sigma(S)$ and $S/\tau(S)$ are additively uniquely divisible semirings.

Remark 5.3. Let S be an additively uniquely divisible semiring.

(i) For all $m, n \in \mathbb{N}$ and $a \in S$, there is a uniquely determined $b \in S$ with ma = nband we put (m/n)a = b. If $m_1, n_1 \in \mathbb{N}$ and $b_1 \in S$ are such that $m/n = m_1/n_1$ and $m_1a = n_1b_1$, then $k = mn_1 = m_1n$ and $kb_1 = mm_1a = kb$ and $b_1 = b$. Consequently, we get a (scalar) multiplication $\mathbb{Q}^+ \times S \to S$ (one checks easily that $q(a_1 + a_2) = qa_1 + qa_2, (q_1 + q_2)a = q_1a + q_2a, q_1(q_2a) = (q_1q_2)a$ and 1a = afor all $q_1, q_2 \in \mathbb{Q}^+$ and $a_1, a_2, a \in S$) and S becomes a unitary \mathbb{Q}^+ -semimodule. Furthermore, $qa_1 \cdot a_2 = a_1 \cdot qa_2$ for all $q \in \mathbb{Q}^+$ and $a_1, a_2 \in S$, and therefore S is a unitary \mathbb{Q}^+ -algebra.

(ii) Let $a \in S$ be multiplicatively but not additively idempotent (i.e., $a^2 = a \neq 2a$). Put $Q = \mathbb{Q}^+ a$. Then Q is a subalgebra of the \mathbb{Q}^+ -algebra S and the mapping $\varphi : q \mapsto qa$ ia a homomorphism of the \mathbb{Q}^+ -algebras and, of course, of the semirings as well. Since $a \neq 2a$, we have $\ker(\varphi) \neq \mathbb{Q}^+ \times \mathbb{Q}^+$. But \mathbb{Q}^+ is a congruence-simple semiring and it follows that $\ker(\varphi) = id$. Consequently, $Q \cong \mathbb{Q}^+$.

Put T = Sa. Then T is an ideal of the \mathbb{Q}^+ -algebra S, $Q \subseteq T$ (we have $qa = a \cdot qa \in T$) and $a = 1_Q = 1_T$ is a multiplicatively neutral element of T. The mapping $s \mapsto sa$ is a homomorphism of the \mathbb{Q}^+ -algebras. Consequently, T is additively uniquely divisible. Furthermore, T is a finitely generated semiring, provided that S is so.

Proposition 5.4. Let S be an additively divisible semiring with $1_S \in S$. Then:

- (i) S is additively uniquely divisible.
- (ii) Either S is additively idempotent or S contains a subsemiring Q such that Q ≃ Q⁺ and 1_S = 1_Q.
- (iii) If $\operatorname{ord}_{S(+)}(1_S)$ is finite, then S is additively idempotent.

Proof. For every $m \in \mathbb{N}$, there is $w_m \in S$ such that $1_S = mw_m$. That is, $w_m = (m1_S)^{-1}$. If ma = mb, then $a = w_m ma = w_m nb = b$ and we see that S is additively uniquely divisible. The rest is clear from 6.3.

Lemma 5.5. Let S be a semiring such that $t(S) = t(S(+)) \neq \emptyset$. Then t(S) is an ideal of S. Moreover, if S is additively divisible, then t(S) is so.

Proof. By 4.5, t(S) is a subsemigroup of S(+). Furthermore, if $a \in t(S)$, then ka = la for some $k, l \in \mathbb{N}, k < l$, and then kab = lab for every $b \in S$. It means that $ab \in t(S)$ and t(S) becomes an ideal of the semiring S. Finally, if $a = mc, m \in \mathbb{N}, c \in S$, then kmc = ka = la = lmc and km < lm. Thus $c \in t(S)$.

Proposition 5.6. Let a semiring S be generated as a (left) S-semimodule by a subset A such that $\operatorname{ord}_{S(+)}(a) \leq m$ for some $m \in \mathbb{N}$ and all $a \in A$. If S is additively divisible, then S is additively idempotent.

Proof. Put $B = \{b \in S | \operatorname{ord}_{S(+)}(b) \leq m\}$. Then $A \subseteq B$ and $b \in B$ for all $s \in S$ and $b \in B$. Furthermore, $\langle B \rangle_{S(+)} = S$, and hence there is $l \in \mathbb{N}$ with $\operatorname{ord}_{S(+)}(r) \leq l$ for every $r \in S$ (by 4.7). Now, it remains to use 5.10.

Corollary 5.7. Let an additively divisible semiring S be generated as an S-semimodule by a finite set of elements of finite additive orders. Then S is additively idempotent.

Corollary 5.8. Every additively divisible and torsion finitely generated semiring is additively idempotent.

Remark 5.9. The zero multiplicative ring defined on $\mathbb{Z}_{p^{\infty}}$ is both additively divisible and additively torsion. Of course, the ring is neither additively idempotent nor finitely generated. The (semi)group $\mathbb{Z}_{p^{\infty}}(+)$ is not uniquely divisible. Remark 5.10. Let R be a (non-zero) finitely generated ring. Then R has at least one maximal ideal I and the factor R/I is a finitely generated simple ring. However, any such a ring is finite and consequently, R is not additively divisible.

Proposition 5.11. Let S be a non-trivial additively cancellative and divisible semiring. Then S is not finitely generated.

Proof. Consider the difference ring R = S - S of S. It is easy to check that R is additively divisible. According to 6.10, R is not finitely generated. Then S is not finitely generated either.

6. One-generated additively divisible semirings

Lemma 6.1. Let S be a semiring such that $1_s \in S$ (1_S being multiplicatively neutral). Let $w \in S$, $a, b, c \in \langle w \rangle_S$ and $m \in \mathbb{N}$ be such that ma = nb and mc = w. Then a = b.

Proof. We have $\langle w \rangle_S = \langle w, w^2, w^3, \dots \rangle_{S(+)}$ and it follows easily that for every $d \in \langle w \rangle_S$ there is $d' \in S$ with d = wd'. Now, a = wa' = mca' = mwc'a' = mac' = mbc' = mwc'b' = mcb' = wb' = b.

Proposition 6.2. Every additively divisible one-generated semiring is uniquely divisible.

Proof. Let S be an additively divisible semiring generated by a single element w. First, put $T = S \cup \{0_T\}$, where 0_T is additively neutral and multiplicatively absorbing. Then T becomes an additively divisible semiring and S a subsemiring of T. Next, let $R = T \times \mathbb{N}_0$ be the Dorroh extension. That is, (r, m) + (s, n) = (r + s, m + n) and (r, m)(s, n) = (rs + nr + ms, mn). Clearly, $T(= T \times \{0\})$ is a subsemiring of R, $0_R = (0_T, 0)$ is additively neutral and multiplicatively absorbing in R and $1_R = (0_T, 1)$ is multiplicatively neutral in R. Now, if $a, b \in S$ and $m \in \mathbb{N}$ are such that ma = mb, then w = mc for some $c \in S$ and we get a = b by 7.1.

Lemma 6.3. Let S be an additively divisible semiring generated by an element w. If $\operatorname{ord}_{S(+)}(w^m)$ is finite for some $m \in \mathbb{N}$, then S is additively idempotent.

Proof. If $\operatorname{ord}_{S(+)}(w)$ is finite, then *S* is additively idempotent by 6.7. Consequently, assume that $n \geq 2$, where $n \in \mathbb{N}$ is the smallest number with $\operatorname{ord}_{S(+)}(w^n)$ finite. Since S(+) is divisible, we have w = 2v for some $v \in S$. Moreover, there are $1 \leq i_1 < i_2 < \cdots < i_k$, $k \in \mathbb{N}$, such that $v = n_{i_1}w^{i_1} + n_{i_2}w^{i_2} + \cdots + n_{i_k}w^{i_k}$ for some $n_{i_j} \in \mathbb{N}$. From this we see that $w^{n-1} = 2n_{i_1}w^{i_1+n-2} + 2n_{i_2}w^{i_2+n-2} + \cdots + 2n_{i_k}w^{i_k+n-2}$. If k = 1, then $w^{n-1} = 2n_{i_1}w^{i_1+n-2}$, where $i_1+n-2 \geq n-1$. If $i_1 = 1$, then $w^{n-1} = 2n_{i_1}w^{n-1}$ and $\operatorname{ord}_{S(+)}(w^{n-1})$ is finite, a contradiction. If $i_1 \geq 2$, then $w^{n-1} = 2n_{i_1}w^{n}w^{i_1-2}$, and $\operatorname{ord}_{S(+)}(w^{n-1})$ is finite, too. If $k \geq 2$, then $3 \leq i_2$ and $\operatorname{ord}_{S(+)}(2n_{i_1}w^{i_1+n-2})$ is finite, and so the same is true for $\operatorname{ord}_{S(+)}(w^{n-1})$. Finally, if $i_1 = 1$, then $w^{n-1} = 2n_{i_1}w^{n-1} + u$ and $\operatorname{ord}_{S(+)}(w^{n-1})$ is finite by 4.8, the final contradiction. □

Remark 6.4. Let S be an additively divisible semiring generated by an element w (see 7.2 and 7.3). There exists $v \in S$ with 2v = w and $v = n_1 w^{i_1} + \cdots + n_k w^{i_k}$ for some $n_1, \ldots, n_k, k \in \mathbb{N}$ and $1 \leq i_1 < i_2 < \cdots < i_k$. Then $w = 2n_1 w^{i_1} + \cdots + 2n_k w^{i_k}$.

(i) Assume that $i_1 \geq 2$. Then w = we, where $e = 2n_1w^{i_1-1} + \cdots + 2n_kw^{i_k-1}$ and we conclude easily that $e = 1_S$ is the multiplicatively neutral element of S. Furthermore, $1_S = e = wf$, $f = 2n_1w^{i_1-2} + \cdots + 2n_kw^{i_k-2}$ (here, $w^0 = 1_S$), and hence $f = w^{-1}$. Thus w^{S^*} , where S^* denotes the group of multiplicatively invertible elements of S. (ii) Assume that $i_1 = 1$. Then $k \ge 2$ by 7.3 and w = w + u, $u = (2n_1 - 1)w + 2n_2w^{i_2} + \cdots + 2n_kw^{i_k}$. Now, it is easy to see that for every $r \in S$ there is at least one $s \in S$ with r + s = r.

Remark 6.5. Let S be a non-trivial additively divisible semiring generated by an element w (see 7.2,7.3 and 7.4). Consider a maximal congruence ρ of S. Then $T = S/\rho$ is a congruence-simple semiring and, of course, T is additively divisible and one-generated. According to [1, 10.1], T is additively idempotent and either $T \cong Z_3, Z_4$ or $T \cong V(G)$ for a finite cyclic group G.

(i) If $T \cong \mathbb{Z}_3$, then the congruence ρ has just two blocks A and B, where A is a bi-ideal of S, $SS \subseteq A$ and $w \in B$, $B + B \subseteq B$. Then $w^2, w^3, \dots \in A$ and it follows that $B = \langle w \rangle_{S(+)} = \{w, 2w, 3w, \dots\}$. On the other hand, w = 2v for some $v \in S$ and $v \in B$. This means that $\operatorname{ord}_{S(+)}(w)$ is finite and it follows from 7.3 that S is additively idempotent.

(ii) If $T \cong Z_4$, then the congruence ρ has just two blocks A and B, where $A + S \subseteq A$, $w \in A$, $AA \subseteq B$, B is an ideal of S and $SS \subseteq B$. Then $w^2, w^3, \dots \in B$ and, in fact, $A = \{n_1w + n_2w^2 + \dots + n_kw^k | k \in \mathbb{N}, n_i \in \mathbb{N}_0, n_1 \neq 0\}$. Notice that B, as a semiring, is generated by the set $\{w^2, w^3\}$. Finally, notice that S possesses no multiplicatively neutral element.

(iii) Finally, assume that $T \cong V(\mathbb{Z}_m(+))$ for some $m \in \mathbb{N}$ and denote by φ a projection of S onto $V(\mathbb{Z}_m)$. We have $V(\mathbb{Z}_m(+)) = \mathbb{Z}_m \cup \{o\} = \{o, 0, 1, \ldots, m-1\}$. Put $A = \varphi^{-1}(o)$ and $B_k = \varphi^{-1}(k)$ for every $k = 0, 1, \ldots, m-1$. Then A is a bi-ideal of S, B_0 is a subsemiring of S and B_1, \ldots, B_{m-1} are subsemigroups of S(+). Furthermore, $B_k B_l \subseteq B_t$, $t = k + l \pmod{m}$ for all $0 \leq k, l \leq m-1$, and $B_k + B_l \subseteq A$ for $k \neq l$. Without loss of generality, we can assume that $w \in B_1, w^2 \in B_2, \ldots, w^{m-1} \in B_{m-1}$ and $w^m \in B_0$. Now, it is clear that $B_k = \{n_1 w^k + n_2 w^{k+m} + \cdots + n_j w^{k+(j-1)m} | j \in \mathbb{N}, n_i \in \mathbb{N}_0, \sum n_i \neq 0\}$ for every $1 \leq k leqm - 1$ and $B_0 = \{n_1 w^k + n_2 w^{2m} + \cdots + n_j w^{jm} | j \in \mathbb{N}, n_i \in \mathbb{N}_0, \sum n_i \neq 0\}$. Consequently, B_0 , as a semiring, is generated by w^m . Of course, all B_0, \ldots, B_{m-1} are additively divisible.

Since B_0 is a subsemiring of S, we have $w \notin B_0$ and $m \ge 2$.

(iv) Consider the situation from (iii) and assume that $1_S \in S$. Then $1_S \in B_0$ and $1_S = a_1 w^m + a_2 w^{2m} + \cdots + a_j w^{jm}$, where $j \in \mathbb{N}$, $a_i \in \mathbb{N}_0$ and $\sum a_i \neq 0$. Consequently, $1_S = w(a_1 w^{m-1} + a_2 w^{2m-1} + \cdots + a_j w^{jm-1})$ and it follows that $w^{-1} = a_1 w^{m-1} + \cdots + a_j w^{jm-1} \in S$, $w^{-1} \in B_{m-1}$, $w^{-m} = a_1 1_S + a_2 w^m + \cdots + a_j w^{(j-1)m} \in B_0$. notice also that S is additively idempotent if and only if B_0 is so (i.e., iff $1_S = 2_S$). If $w^t = 1_S$ for some $t \in \mathbb{N}$, then m divides t.

(v) Consider that situation from (iv) and assume that S is not additively idempotent. We are going to show that $w^t \neq 1_S$ for every $t \in \mathbb{N}$.

Let, on the contrary, $w^t = 1_S$ for some $t \in \mathbb{N}$. We will proceed by induction on t. As we know from (iv), $t = t_1 m$, $t_1 \in \mathbb{N}$. If $t_1 = 1$, that $w^m = 1_S$ and then $B_0 = \{n 1_S | n \in \mathbb{N}\}$ is not additively divisible, a contradiction.

Thus $2 \leq t_1 < t$. But B_0 is additively divisible, it is not additively idempotent, and B_0 is generated by w^m . Since $(w^m)^{t_1} = 1_{B_0}$, we get a contradiction (see (i),(ii) and (iii)).

Lemma 6.6. Let S be a semiring generated by an element w. Then S is additively divisible if and only if for every prime integer p there is $v_p \in S$ with $w = pv_p$.

Proof. The direct implication is trivial. Conversely, if $w = pv_p$, then $w \in pS$, and so pS = S, since pS is an ideal of the semiring S. Furthermore, given $m \in \mathbb{N}$, $m \ge 2$, we have $m = p_1^{k_1} \dots p_n^{k_n}$, and hence mS = S as well. \Box

T. KEPKA AND M. KORBELÁŘ

7. A FEW CONJECTURES

Consider the following assertion:

- (A) A finitely generated semiring is additively idempotent, provided that it is additively divisible.
- (A1) A finitely generated semiring is additively idempotent, provided that it is additively uniquely divisible.
- (B) A finitely generated semiring contains no subsemiring isomorphic to \mathbb{Q}^+ .
- (B1) A finitely generated semiring with a unit element contains no subsemiring having the unit and isomorphic to \mathbb{Q}^+ .
- (C) A finitely generated semiring is additively idempotent, provided that it is ideal-simple and infinite.
- (C1) A finitely generated semiring is additively idempotent, provided that it is a parasemifield.

Proposition 7.1. (A) \Leftrightarrow (A1) \Rightarrow (B) \Leftrightarrow (B1) \Rightarrow (C) \Leftrightarrow (C1).

Proof. First, it is clear that $(A) \Rightarrow (A1)$ and $(B) \Rightarrow (B1)$. Furthermore, $(C) \Leftrightarrow (C1)$ by [2, 3.5]. Now, assume that (A1) is true and let S be a finitely generated additively divisible semiring. By 6.2, $S/\sigma(S)$ is additively uniquely divisible and, of course, this semiring inherits the property of being finitely generated. By (A1), the semiring $S/\sigma(S)$ is additively idempotent, and hence the semiring S is additively torsion by 5.9. Finally, S is additively idempotent by 6.8. We have shown that $(A1) \Rightarrow (A)$ and consequently, $(A) \Leftrightarrow (A1)$.

Next, let (B1) be true and let S be a finitely generated semiring containing a subsemiring $Q \cong \mathbb{Q}^+$. Put $T = S1_Q$. Then T is an ideal of S, $1_Q = 1_T$, $Q \subseteq T$ and the map $s \mapsto s1_Q$ is a homomorphism of S onto T. Thus T is a finitely generated semiring and this is a contradiction with (B1). We have shown that (B1) \Rightarrow (B) and consequently, (B) \Leftrightarrow (B1).

Now, we are going to show that (A) \Rightarrow (B1). Indeed, let S be a finitely generated semiring such that $1_S \in S$ and S contains a subsemiring Q with $1_S \in Q$ and $Q \cong \mathbb{Q}^+$. If $a \in S$ and $m \in \mathbb{N}$, then $b = (m1_S)^{-1}a \in S$ and mb = a. It follows that S is additively divisible, and hence additively idempotent by (A). But Q is not so, a contradiction. We have shown that (A) \Rightarrow (B1).

It remains to show that (B1) \Rightarrow (C1). Let S be a parasemifield that is not additively idempotent and let Q denote the subparasemifield generated by 1_S . Then $Q \cong \mathbb{Q}^+$, $1_Q = 1_S$ and S is not finitely generated due to (B1).

References

 R. El Bashir, J. Hurt, A. Jančařík and T. Kepka, Simple commutative semirings, J. Algebra 236(2001), 277-306.

 $\left[2\right]$ V. Kala, T. Kepka and M. Korbelář, Notes on commutative parasemifields (preprint)

Charles University, Faculty of Mathematics and Physics, Department of Algebra, Sokolovská 83, 18675 Prague 8, Czech Republic

E-mail address: kepka@karlin.mff.cuni.cz

CHARLES UNIVERSITY, FACULTY OF MATHEMATICS AND PHYSICS, DEPARTMENT OF ALGEBRA, SOKOLOVSKÁ 83, 186 75 PRAGUE 8, CZECH REPUBLIC

E-mail address: miroslav.korbelar@gmail.com