ADDITIVELY DIVISIBLE COMMUTATIVE SEMIRINGS

TOMAS KEPKA AND MIROSLAV KORBELAR

ABSTRACT. Commutative semirings with divisible additive semigroup are stud-
ied.

1. PRELIMINARIES

Throughout the paper, all semigroup, groups, semirings, rings and fields are as-
sumed to be commutative (but, possibly, without additively and/or multiplicatively
neutral elements). Furthermore, the following notation will be used in the sequel:

N... the semiring of positive integers;

Np ... the semiring of non-negative integers;
Z ... the ring of integers;

QT ... the parasemifield of positive rationals.

2. CONGRUENCES OF N

Define a relation p(k,t) on N for all k,t € N by (m,n) € p(k,t) iff m —n € Zt
and either m =norm > k and n > k.

Lemma 2.1. p(k,y) is a congruence of the semiring N.

Proof. Tt is easy to check that the relation p(k,t) is an equivalence and that it is
stable under addition and multiplication. O

Lemma 2.2. The congruence p(k,t) has exactly k +t — 1 blocks and these are
Just the following subsets of N: {1},{2},...,{k — 1},{m + l¢| | € No}, m € N,
E<m<k+t—1.

Proof. The assertion follows easily from the definition of the congruence p(k,t). O
Lemma 2.3. (k,k+1t) € p(k,t).

Proof. The assertion follows directly from the definition of the congruence p(k,t).
O

Lemma 2.4. Let m € N. Then (m,2m) € p(k,t) iff k < m and t divides m.

Proof. The assertion follows immediately from the definition of the congruence
p(k,t). O

Lemma 2.5. (i) (kt,2kt) € p(k,t).
(i) (L,210) € p(k,t), where | =lcm(k,t).
(iii) (k+t—s,2(k+t—ys)) € p(k,t), where r,s € Ny are such that k =rt+s
and s < 1.
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Proof. Use 2.4. O

Lemma 2.6. Let my,mg € N be such that (my,2mq) € p(k,t) and (mg,2msz) €
p(k,t). Then (myi,msa) € p(k,t).

Proof. Combine 2.4 and the definition of p(k,t). O

Lemma 2.7. Let w € N be such that (w,2w) € p(k,t) (see 2.4, 2.5 and 2.6). Then
(m,m + w) € p(k,t) for every m € N, m > k.

Proof. By 2.4, w > k and t divides w. The rest is clear. O

Lemma 2.8. Let w € N be such that (w,2w) € p(k,t) (see 2.4, 2.5, 2.6 and 2.7).
Then:

(i) For every m € N, m > k, there exists at least one n € N such that n > k
and (m + n,w) € p(k,t).

(ii) If m,n1,ng € N are such that m >k, ny > k, na > k, (m+n1,w) € p(k,t)
and (m + ng,w) € p(k,t), then (n1,n2) € p(k,t).

Proof. (i) Choose | € N such that m+ k& < lw and put n = lw—m. Then n > k and
m+n = lw. But (w,2w) € p(k,t), (2w,3w) € p(k,1),...,((I — Dw,lw) € p(k,t)
(for I > 2) and we have (w,lw) € p(k,t). Thus (m+n,w) € p(k,t).

(ii) We have (m+nq1,w) € p(k,t), (m+na,w) € p(k,t), and hence (m+ny,m+
ny) € p(k,t). Furthermore, (m+2n1,w+ny) € p(k,t), (m+ny+nq, w+nz) € p(k,t)
and (m + 2n1,m + ny + na) € p(k,t). Consequently, (w + ni,w + no) € p(k,t).
Now, (n1,n2) € p(k,t) follows from 2.7. O

Lemma 2.9. p(k,t), as a congruence of the additive semigroup N(+) is generated
by the single pair (k,k +t).

Proof. Denote by p the congruence of N(+) generated by the ordered pair (k, k+t).
Since (k,k +1t) € p(k,t), we have p C p(k +t). Conversely, we have to show that
(m,n) € p(k,t) implies (m,n) € p; we can assume that m < n. Then m =k +1
and n = k + 1+ rt for some [ € Ny and r € N. Of course, (m,m +t) = (k +
Lk+l+t) = (kk+t)+ 01 €p, (m+t,m+2t) = (k+1+tk+1+2t) =
(k,k+t)+({+tl+t) €p,....,(m+ (r—1)t,m+rt) € p. Using transitivity, we
get (m,n) = (m,m +1t) € p. O

3. CYCLIC SEMIGROUPS

It is well known, that every congruence of N(+4) is either identity or p(k,t) for
some k,t € N.

Proposition 3.1. The congruences idy and p(k,t), k,t € N, are just all congru-
ences of the semiring N(+, ) of positive integers.

Proof. Easy to verify. O

Lemma 3.2. Let t(S) denote the set elements of finite order of a semigroup S. If
t(S) # 0, then t(S) is a subsemigroup. of S

Proof. 1t is easy. O
A semigroup S will be called torsion if every element of S has finite order.

Lemma 3.3. Let A be a non-empty subset of a semigroup S such that there exists
m € N with ordg(a) < m for every a € A. Then there exists n € N such that
2nb = nb for every b € (A)g.
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Proof. For every a € A there are kq,t, € Nwith (A)s = C(kq,te) = N(+)/p(ka, ta)-
Of course, k, +t, < m+1. By 2.5(ii), 2mqa = mga for some m, € N, m, < m+1.
Now, it suffices to put n = (m + 1)\ O

Lemma 3.4. Let A be a non-empty subset of a semigroup S such that there exists
m € N with ordg(a) < m for every a € A. Then there exists | € N with ordg(b) <1
for every b € (A)s.

Proof. By 4.6, 2nb = nb for some n € N and all b € (A)g. We have (b)s = C(ks, ts)
and ordg(b) = ky + ¢, — 1. Since nb = 2nb, n > k;, and ¢, divides 2n — n = n.
Consequently, k, +t, — 1 < 2n — 1. O

Lemma 3.5. Let S be a semigroup and let a,b € S be such that ka = la + b for
some k,l € N, k # 1. If ordg(b) is finite, then ordg(a) is so.

Proof. We have mb = nb for some m,n € N, m < n. Now, nka = nla + nb =
nla +mb= (n —m)la+ m(la +b) = (n — m)la + mka = ((n — m)l + mk)a. Since
k # 1, we have (n —m)k # (n — m)l and nk # (n — m)l + mk. Consequently, (a)s
is finite. O

4. DIVISIBLE SEMIGROUPS

A (commutative) semigroup S(= S(+)) is called divisible if S = mS for every
m € N.

Proposition 4.1. (i) The class of divisible semigroups is closed under homo-
morphic images and cartesian products.
(ii) The class of divisible semigroups contains all semilattices (i.e., idempotent
commutative semigroups) and all divisible abelian groups.
(iil) The additive semigroup Q*(+) (Qg (+), resp.) of positive (non-negative,
resp.) rational numbers are divisible.

Proof. Tt is easy to see. U

Proposition 4.2. A finite semigroup is divisible if and only if it is idempotent
(i.e., it is a semilattice).

Proof. All semilattices are divisible. On the other hand, if S is a finite semigroup,
then for every a € S there is m, € N with 2m,a = mga (4.6). f m =[[mg, a € S,
then 2ma = ma for every a € S. Finally, if S is divisible, then mS = S and S is
idempotent. O

Lemma 4.3. Let S be a semigroup and a € S. Define a relation p, on S by
(u,v) € pa iff u+ka =v+la for some k,l € N. Then p, is a congruence of S and
(a,2a) € pqg.

Proof. Clearly, p, is reflexive, symmetric and stable under the addition of the
semigroup S. It remains to show that p, is transitive. If u + ka = v + la and
v+ra=w+sa, k,l,r,s €N thenu+ (k+rja=v+la+ra=w+ (I+s)a. O

Proposition 4.4. Let S be a semigroup. Then S is finitely generated and divisible
if and only if S is a finite semilattice.

Proof. Assume that S is divisible and generated by a finite set A. Let m be the set
number of non-idempotent element of A. We proceed by induction on m.

If m = 0, then S is generated by a set of idempotents and if follows easily that
S is idempotent itself. Of course, a finitely generated semilattice is finite. Now,
assume that m > 1. If a € A is such that a # 2a, then S/p, is a (finite) semilattice
by induction (see 5.3). Since S is divisible, we have a = 2b for some b € S and
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(a,b) = (2a,b) € p, (since S/p, is idempotent). Then ka = b+ la for some k,l € N
and we get 2ka = 2b + 2la = (2] + 1)a. Since 2k # 2] + 1, we conclude that the
cyclic subsemigroup (a)s generated by {a} is finite.

We have proved that (a)s is finite for every a € A. Since A is finite and S
is generated by A, one checks easily that S is finite, too. By 5.2, S is a finite
semilattice. O

Lemma 4.5. Let S be a semigroup. Define a relation o(S) on S by (u,v) € o(S5)
iff mu = muv for some m € N. Then o(S) is a congruence of S and o(S/o(S)) = id.

Proof. Clearly, o(5) is reflexive, symmetric and stable under the addition. If mu =
mv and nv = nw, then mnu = mnw, and hence o(9) is transitive as well. Thus
o(S) is a congruence of the semigroup. Finally, if (mu,mv) € o(5), then kmu =
kmv and (u,v) € o(S). O

Corollary 4.6. If S is a divisible semigroup, then S/o(S) is a uniquely divisible
semigroup.

Lemma 4.7. Let S be a semigroup. Define a relation 7(S) on S by (u,v) € 7(5)
iff mu = nv for some m,n € N. Then 7(S) is a congruence of S, o(S) C 7(S) and
T7(S/7(S)) = id.

Proof. Similar to 5.5. O

Corollary 4.8. If S is a divisible semigroup, then S/7(S) is a uniquely divisible
semigroup.

Lemma 4.9. Let S be a semigroup such that the factor-semigroup S/o(S) is tor-
sion. Then S is torsion.

Proof. For every a € S there are k,I € N such that (ka,la) € o(S) and k < I.
Furthermore, there is m € N with mka = mla. Clearly, mk < ml, and hence
ordg(a) is finite. O

Proposition 4.10. Let S be a divisible semigroup such that there exists m € N
with ordg(a) < m for every a € S. Then S is a semilattice.

Proof. By 4.6, there is n € N such that 2na = na for every a € S. Now, a = nb,
and hence 2a = 2nb = nb = a. (]

Lemma 4.11. Let S be a uniquely divisible semigroup. If a € S is such that
ordg(a) is finite, then 2a = a.

Proof. There is m € N with 2ma = ma. Then 2a = a, since S is uniquely divisible.
O

5. ADDITIVELY DIVISIBLE SEMIRINGS

Lemma 5.1. Let S be a semiring. Then:
(i) o(S) is a congruence of S and o(S/o(S)) = id.
(ii) 7(S5) is a congruence of S and 7(S/7(S)) = id.

Proof. Clearly, both o(S) and 7(S) are stable under the multiplication of the semi-
ring S and the rest follows from 5.5 and 5.7. O

Corollary 5.2. Let S be an additively divisible semiring. Then both S/o(S) and
S/7(S) are additively uniquely divisible semirings.
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Remark 5.3. Let S be an additively uniquely divisible semiring.

(i) For all m,n € Nand a € S, there is a uniquely determined b € S with ma = nb
and we put (m/n)a = b. If my,ny € N and by € S are such that m/n = my/ny
and mia = niby, then £ = mn; = myn and kby = mmqa = kb and b; = b.
Consequently, we get a (scalar) multiplication QT x S — S (one checks easily that
q(a1 + az) = qar + qaz, (@1 + q2)a = qra + qa, q1(g2a) = (q1g2)a and la = a
for all ¢1,¢q2 € Q" and aj,az,a € S) and S becomes a unitary QT -semimodule.
Furthermore, qa; - as = a; - qas for all ¢ € Q" and a1,as € S, and therefore S is a
unitary QT-algebra.

(ii) Let a € S be multiplicatively but not additively idempotent (i.e., a*? = a #
2a). Put @ = Q"a. Then Q is a subalgebra of the Q"-algebra S and the mapping
¢ : ¢ — qa ia a homomorphism of the QT-algebras and, of course, of the semirings
as well. Since a # 2a, we have ker(¢) # Q1 x QT. But QT is a congruence-simple
semiring and it follows that ker(y) = id. Consequently, @ = Q.

Put T = Sa. Then T is an ideal of the QT-algebra S, Q C T (we have qa =
a-qa € T') and a = 1 = 1¢ is a multiplicatively neutral element of 7. The mapping
s + sa is a homomorphism of the Q%t-algebras. Consequently, T is additively
uniquely divisible. Furthermore, 7" is a finitely generated semiring, provided that
S is so.

Proposition 5.4. Let S be an additively divisible semiring with 1g € S. Then:
(i) S is additively uniquely divisible.
(ii) Either S is additively idempotent or S contains a subsemiring Q such that
Q EQ+ and 15 = lQ.
(iii) If ordg(4y(1s) is finite, then S is additively idempotent.

Proof. For every m € N, there is w,, € S such that 1g = mw,,. That is, w,, =
(mlg)~t. If ma = mb, then a = w,,ma = w,,nb = b and we see that S is additively
uniquely divisible. The rest is clear from 6.3. (|

Lemma 5.5. Let S be a semiring such that t(S) = t(S(+)) # 0. Then t(S) is an
ideal of S. Moreover, if S is additively divisible, then t(S) is so.

Proof. By 4.5, t(S) is a subsemigroup of S(+). Furthermore, if a € t(S), then
ka = la for some k,l € N, k < [, and then kab = lab for every b € S. It means that
ab € t(S) and t(S) becomes an ideal of the semiring S. Finally, if a = me, m € N,
c € 8, then kmc = ka = la = Imc and km < Im. Thus ¢ € t(95). O

Proposition 5.6. Let a semiring S be generated as a (left) S-semimodule by a
subset A such that ordg(y(a) < m for some m € N and all a € A. If S is
additively divisible, then S is additively idempotent.

Proof. Put B = {b € S| ordg(4)(b) < m}. Then A C B and b € B for all s € S and
b € B. Furthermore, (B)g) = 5, and hence there is [ € N with ordg(4)(r) <1 for
every r € S (by 4.7). Now, it remains to use 5.10. O

Corollary 5.7. Let an additively divisible semiring S be generated as an S-semimodule
by a finite set of elements of finite additive orders. Then S is additively idempotent.

Corollary 5.8. Fvery additively divisible and torsion finitely generated semiring
is additively idempotent.

Remark 5.9. The zero multiplicative ring defined on Z, is both additively divisible
and additively torsion. Of course, the ring is neither additively idempotent nor
finitely generated. The (semi)group Zpe(+) is not uniquely divisible.
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Remark 5.10. Let R be a (non-zero) finitely generated ring. Then R has at least
one maximal ideal I and the factor R/I is a finitely generated simple ring. However,
any such a ring is finite and consequently, R is not additively divisible.

Proposition 5.11. Let S be a non-trivial additively cancellative and divisible semi-
ring. Then S is not finitely generated.

Proof. Consider the difference ring R = S — S of S. It is easy to check that R is
additively divisible. According to 6.10, R is not finitely generated. Then S is not
finitely generated either. O

6. ONE-GENERATED ADDITIVELY DIVISIBLE SEMIRINGS

Lemma 6.1. Let S be a semiring such that 14 € S (lg being multiplicatively
neutral). Let w € S, a,b,c € (w)g and m € N be such that ma = nb and mc = w.
Then a = b.

Proof. We have (w)s = (w,w? w?,...)g) and it follows easily that for every
d € {(w)g there is d’ € S with d = wd'. Now, a = wa' = mca’ = mwc'a’ = mac =
mbcd = mwd'b = meb’ = wb’ = b. O

Proposition 6.2. Fvery additively divisible one-generated semiring is uniquely
divisible.

Proof. Let S be an additively divisible semiring generated by a single element
w. First, put T = S U {07}, where Or is additively neutral and multiplicatively
absorbing. Then T becomes an additively divisible semiring and S a subsemiring
of T. Next, let R = T x Ny be the Dorroh extension. That is, (r,m) + (s,n) =
(r+s,m+n) and (r,m)(s,n) = (rs + nr + ms,mn). Clearly, T(= T x {0}) is a
subsemiring of R, 0z = (0r,0) is additively neutral and multiplicatively absorbing
in R and 1 = (07, 1) is multiplicatively neutral in R. Now, if a,b € S and m € N
are such that ma = mb, then w = mc for some ¢ € S and we get a =b by 7.1. O

Lemma 6.3. Let S be an additively divisible semiring generated by an element w.
If ordg(4)(w™) is finite for some m € N, then S is additively idempotent.

Proof. 1f ordg(4)(w) is finite, then S is additively idempotent by 6.7. Consequently,
assume that n > 2, where n € N is the smallest number with ordg)(w™) finite.
Since S(+) is divisible, we have w = 2v for some v € S. Moreover, there are
1<y <ig < -+ <ig, k€N, such that v = nilwi1 + nizwi2 4+ -+ nlkw“ for
some n;; € N. From this we see that w" ™1 = 2n; w" "2 4 2n;,w>T""2 4 ... 4
2nik_wik+”72. Ifk =1, thenw™ ! = 2ni1w“+”72, where i1 +n—2 >n—1. Ifi; =1,
then w™ ™! = 2n;, w" ™! and ordg(4)(w™!) is finite, a contradiction. If iy > 2, then
w"t = 2n; w"w" 2, and ordg(4)(w" 1) is finite, too. If k > 2, then 3 < iy and
ordg(4)(u) is finite, where u = 2n, w2 T2 44 2n; w T2 If 4 > 2, then
ordg(4)(2n;, w" T"=2) is finite, and so the same is true for ordg()(w™™'). Finally,
if iy = 1, then w"™ = 2n;, w" ! 4+ u and ordg(4)(w™ ') is finite by 4.8, the final
contradiction. O

Remark 6.4. Let S be an additively divisible semiring generated by an element w
(see 7.2 and 7.3). There exists v € S with 2v = w and v = nyw™ + - - - + npw® for
some nq,...,np, k€ Nand 1 <4y < iy < -+ <. Then w = 2njw® +- - -+ 2n,w.

(i) Assume that i; > 2. Then w = we, where e = 2njw™ =1 4 .-+ + 2npwi* 1
and we conclude easily that e = 1g is the multiplicatively neutral element of S.
Furthermore, 1g = e = wf, f = 2njw" =2 + -+ + 2npw =2 (here, v’ = 1g),
and hence f = w™'. Thus w®", where S* denotes the group of multiplicatively

invertible elements of S.
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(ii) Assume that 49 = 1. Then £k > 2 by 7.3 and w = w+u, u = (2n; — Dw +
2naw' 4 - - 4 2w . Now, it is easy to see that for every r € S there is at least
one s € S with r+s=r.

Remark 6.5. Let S be a non-trivial additively divisible semiring generated by an
element w (see 7.2,7.3 and 7.4). Consider a maximal congruence p of S. Then
T = S/p is a congruence-simple semiring and, of course, T is additively divisible
and one-generated. According to [1, 10.1], T is additively idempotent and either
T >Z5,Zy or T 2 V(G) for a finite cyclic group G.

(i) If T = Zs, then the congruence p has just two blocks A and B, where A is a
bi-ideal of S, SS C A and w € B, B+ B C B. Then w? w?,--- € A and it follows
that B = (w)g(4) = {w,2w,3w,...}. On the other hand, w = 2v for some v € S
and v € B. This means that ordg)(w) is finite and it follows from 7.3 that S is
additively idempotent.

(ii) If T = Z,, then the congruence p has just two blocks A and B, where
A+SCA weA AAC B, Bis an ideal of S and SS C B. Then w?,w?,--- € B
and, in fact, A = {njw + now? + - -- + npw”| k € N,n; € Ng,ny # 0}. Notice that
B, as a semiring, is generated by the set {w?, w?®}. Finally, notice that S possesses
no multiplicatively neutral element.

(iii) Finally, assume that T = V(Z,,(+)) for some m € N and denote by ¢ a
projection of S onto V(Z,,). We have V(Z,(+)) = Z, U{o} = {0,0,1,...,m—1}.
Put A = ¢~ 1(0) and By = ¢~ !(k) for every k = 0,1,...,m — 1. Then A is a
bi-ideal of S, By is a subsemiring of S and By,..., B;,—1 are subsemigroups of
S(+). Furthermore, ByB; C By, t = k+ 1 (mod(m)) for all 0 < k,l < m — 1,
and By + By C A for k # . Without loss of generality, we can assume that
w € Bi,w? € By,...,w™ ' € B,,_; and w™ € By. Now, it is clear that By, =
{niwk + ngwk*+m™ 4 ... 4 njwk+(j*1)m| j € Nyn; € No, Y n; # 0} for every 1 <
klegm — 1 and By = {njw* + naw?™ + - + nwi™| j € N,n; € N, > n; # 0}.
Consequently, By, as a semiring, is generated by w™. Of course, all By, ..., B,_1
are additively divisible.

Since By is a subsemiring of S, we have w ¢ By and m > 2.

(iv) Consider the situation from (iii) and assume that 1g € S. Then 1g € By
and 1lg = a;w™ + aw?™ + -+ + a;wi™, where j € N, a; € Ny and > a; # 0.
Consequently, 15 = w(ajw™ ! + agw?™ ! + ... + ajwjm’l) and it follows that
wl=aqwm 4.+ ajwjmfl €S, wleBy_1,w™=alg+aw”+- -+
ajw(j —Dm e By. notice also that S is additively idempotent if and only if By is so
(i.e., iff 1g = 2g). If w! = 1g for some t € N, then m divides ¢.

(v) Consider that situation from (iv) and assume that S is not additively idem-
potent. We are going to show that wt # 1g for every ¢ € N.

Let, on the contrary, w* = 1g for some ¢t € N. We will proceed by induction
on t. As we know from (iv), t = tym, t; € N. If t; = 1, that w™ = 1g and then
By = {nlg| n € N} is not additively divisible, a contradiction.

Thus 2 < t; < t. But By is additively divisible, it is not additively idempotent,
and By is generated by w™. Since (w™)! = 1pg,, we get a contradiction (see (i), (ii)
and (iii)).

Lemma 6.6. Let S be a semiring generated by an element w. Then S is additively
divisible if and only if for every prime integer p there is v, € S with w = pvy,.

Proof. The direct implication is trivial. Conversely, if w = pv,,, then w € pS, and
so pS = S, since pS is an ideal of the semiring S. Furthermore, given m € N,
m > 2, we have m = p¥* ... pFr and hence mS = S as well. O
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7. A FEW CONJECTURES

Consider the following assertion:
(A) A finitely generated semiring is additively idempotent, provided that it is
additively divisible.
(Al) A finitely generated semiring is additively idempotent, provided that it is
additively uniquely divisible.
(B) A finitely generated senmiring contains no subsemiring isomorphic to Q.
(B1) A finitely generated semiring with a unit element contains no subsemiring
having the unit and isomorphic to Q7.
(C) A finitely generated semiring is additively idempotent, provided that it is
ideal-simple and infinite.
(C1) A finitely generated semiring is additively idempotent, provided that it is
a parasemifield.

Proposition 7.1. (A) & (Al) = (B) & (B1) = (C) & (C1).

Proof. First, it is clear that (A) = (Al) and (B) = (B1). Furthermore, (C) < (C1)
by [2, 3.5]. Now, assume that (A1) is true and let S be a finitely generated additively
divisible semiring. By 6.2, S/c(S) is additively uniquely divisible and, of course,
this semiring inherits the property of being finitely generated. By (A1), the semiring
S/o(S) is additively idempotent, and hence the semiring S is additively torsion by
5.9. Finally, S is additively idempotent by 6.8. We have shown that (A1) = (A)
and consequently, (A) < (Al).

Next, let (B1) be true and let S be a finitely generated semiring containing a
subsemiring @ = Q. Put T'= S1g. Then T is an ideal of S, 1o = 17, Q C T and
the map s — slg is a homomorphism of S onto 7. Thus T is a finitely generated
semiring and this is a contradiction with (B1). We have shown that (B1) = (B)
and consequently, (B) < (B1).

Now, we are going to show that (A) = (B1). Indeed, let S be a finitely generated
semiring such that 1g € S and S contains a subsemiring @ with 1¢ € @ and
Q=QF. Ifae Sand m €N, then b = (mlg) " 'a € S and mb = a. It follows that
S is additively divisible, and hence additively idempotent by (A). But @ is not so,
a contradiction. We have shown that (A) = (B1).

It remains to show that (Bl) = (C1). Let S be a parasemifield that is not
additively idempotent and let () denote the subparasemifield generated by 1g. Then
Q=Q", 1o =1g and S is not finitely generated due to (B1). O
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