
QUASITRIVIAL SEMIMODULES III

Khaldoun Al-Zoubi, Tomáš Kepka and Petr Němec

Abstract. The paper continues the investigation of semimodules. Main emphasis
is laid on minimal (i.e., every proper subsemimodule has just one element), almost
minimal and congruence-simple semimodules.

This paper is a continuation of [1] and [2] and we use the same notation. When
referring to these two papers, we use e.g. I.4.1 for Proposition 4.1 from [1] and II.2
for section 2 from [2].

1. Almost minimal semimodules (a)

A left semimodule SM will be called almost minimal if it has both an additively
absorbing element oM and an additively neutral element 0M and if So = o 6= 0 =
S0, Sx = M for every x ∈ M \ P , P = {o, 0}, |P | = 2. Throughout this section,
let M be almost minimal.

1.1 Lemma. (i) {o}, {0}, P and M are just all subsemimodules of SM .
(ii) SM has either three (iff |M | = 2) or four (iff |M | ≥ 3) different subsemimodules.

(iii) P = P (SM) = Q(SM).
(iv) SM is quasitrivial if and only if it is minimal and if and only if |M | = 2 (then
SM ' Q1,S - see I.3.2).

Proof. Easy. ¤

1.2 Lemma. x + y 6= 0 for all x, y ∈ M , x 6= 0.

Proof. Assume, on the contrary, that x + y = 0. Then x /∈ P , and hence sx = o for
some s ∈ S. Now, o = o + sy = sx + sy = s(x + y) = s0 = 0, a contradiction. ¤

1.3 Lemma. Put η = η0 (see II.2). Then:
(i) η is a congruence of SM and (x, y) ∈ η if and only if { s |xs = 0 } = { s | sy = 0 }.
(ii) (x, 0) /∈ η for every x 6= 0.
(iii) (y, o) /∈ η for every y 6= o.
(iv) η 6= M ×M .
(v) η = ηo.
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(vi) (x, 2x) ∈ η for every x ∈ M .
(vii) η is the unique (proper) maximal congruence of SM .

Proof. By 1.2 and II.2.2, η is a congruence of SM . Moreover, (0 : 0) = S, (o : 0) = ∅
and ∅ 6= (x : 0) 6= S for every x /∈ P . Now, the assertions (i) – (iv) are clear.

Let (x, y) ∈ η. If s ∈ (x : o) then (o, sy) = (sx, sy) ∈ η, sy = o by (iii) and
s ∈ (y : o). We have shown that (x : o) ⊆ (y : o). Symmetrically, (y : o) ⊆ (x : o),
so that (x : o) = (y : o) and (x, y) ∈ ηo. Thus η ⊆ ηo.

Let (u, v) ∈ ηo. If s ∈ (u : 0) then (0, sv) = (su, sv) ∈ ηo. That is, ∅ = (0 : o) =
(sv : o), and therefore sv = 0 and s ∈ (v : 0). We have shown that (u : 0) ⊆ (v : 0).
Symmetrically, (v : 0) ⊆ (u : 0), so that (u : 0) = (v : 0) and (u, v) ∈ η0 = η. Thus
ηo ⊆ η.

Let x ∈ M . If sx = 0 then s2x = 2sx = 0. Conversely, if r2x = 0 then
rx + rx = 0 and rx = 0 by 1.2. Thus (x, 2x) ∈ η.

Finally, let σ be a proper congruence of SM . If (o, 0) ∈ σ then(o, x) = (o +
x, 0 + x) ∈ σ for every x ∈ M , so that σ = M × M , a contradiction. It follows
that (o, 0) /∈ σ. Similarly, if (o, x) ∈ σ for some x 6= o then sx = 0, s ∈ S, and we
get (o, 0) = (so, sx) ∈ σ, a contradiction. Consequently, if (x, y) ∈ σ, x 6= y, then
x 6= o 6= y. Moreover, if tx = o then (o, ty) ∈ σ and ty = o. Similarly the other
case and we see that (x, y) ∈ ηo = η (by (v)). Thus σ ⊆ η. ¤

1.4 Proposition. SN = SM/η is an (additively) idempotent congruence-simple
almost minimal semimodule. If SM is not quasitrivial then the same is true for
SN .

Proof. Combine 1.3 and 1.1(i). ¤

1.5 Corollary. The following conditions are equivalent:

(i) SM is congruence-simple.
(ii) η = idM .

(iii) If x, y ∈ M \ P are such that x 6= y then 0 ∈ {sx, sy} and sx 6= sy for at
least one s ∈ S. ¤

1.6 Lemma. If (x, y) ∈ η then {u |x + u = o } = { v | y + v = o}.

Proof. If x + u = o then (o, y + u) = (x + u, y + u) ∈ η, and hence y + u = o. ¤

1.7 Lemma. Either M(+) is idempotent or Id(M(+)) = P .

Proof. Id(M(+)) is a subsemimodule of SM and P ⊆ Id(M(+)). ¤

1.8 Lemma. ηw * η for every w ∈ M \ P .

Proof. If w /∈ P then (0 : w) = ∅ = (o : w), and hence (0, o) ∈ ηw. ¤

2. Almost minimal semimodules (b)

This section is an immediate continuation of the preceding one.

2.1 Lemma. (i) The set (x : 0) is a left ideal of the semiring S for every x ∈
M \ {o}.
(ii) (x : 0)y is a subsemimodule of SM for all x, y ∈ M , x 6= o.
(iii) (x : 0) ∩ (y : 0) = (x + y : 0) for all x, y ∈ M .
(iv) (x : 0)y = {o} if and only if x 6= o = x + y.
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Proof. (i) and (ii) are checked easily, while (iii) follows from 1.2. As concerns (iv),
assume first that (x : 0)y = o. Then (x : 0) 6= ∅, and so x 6= o. Moreover, by
(iii), ∅ = (x : 0) ∩ (y : 0) = (x + y : 0), and therefore x + y = o. Conversely, if
x 6= o = x + y then (x : 0) ∩ (y : 0) = (o : 0) = ∅ by (iii), and hence 0 /∈ (x : 0)y.
By (ii), (x : 0)y is a subsemimodule of SM and (x : 0)y = o now follows from
1.1(i). ¤
2.2 Lemma. The following conditions are equivalent for x, y ∈ M :

(i) (x : 0)y ⊆ {0}.
(ii) (x : 0) ⊆ (y : 0).

(iii) (x, x + y) ∈ η.

Moreover, if SM is congruence-simple then these conditions are equivalent to:

(iv) x + y = x.

Proof. (i) implies (ii) trivially.
(ii) implies (iii). By 2.1(iii), (x + y : 0) = (x : 0), so that (x + y, x) ∈ η.
(iii) implies (i). We have (x : 0) = (x + y : 0) = (x : 0) ∩ (y : 0), and hence
(x : 0) ⊆ (y : 0) and (x : 0)y ⊆ {0}.

Assume, finally, that SM is congruence-simple. Then η = idM by 1.5, and
therefore the conditions (iii) and (iv) coincide in this case. ¤
2.3 Lemma. The following conditions are equivalent for x, y ∈ M :

(i) (x : 0)y = {0}.
(ii) x 6= o and (x : 0) ⊆ (y : 0).

(iii) x 6= o and (x, x + y) ∈ η.

Moreover, if SM is congruence-simple then these conditions are euiqvalent to:

(iv) x + y = x 6= o.

Proof. We have (x : 0) 6= ∅ for x 6= o and the rest is clear from 2.2. ¤
2.4 Lemma. Assume that SM is congruence-simple. If x, y ∈ M are such that
x + y 6= x then there is at least one t ∈ S with tx = 0 and ty = o.

Proof. Since x + y 6= x, we have x 6= o and (x : 0) 6= ∅. Now, it follows from 2.1(ii)
and 2.2 that o ∈ (x : 0)y and our result is clear. ¤
2.5 Lemma. (i) The set (x : o) is a left ideal of the semiring S for every x ∈
M \ {0}.
(ii) (x : o) + S ⊆ (x : o) for every x ∈ M \ {0}.
(iii) (x : o)y is a subsemimodule of SM for all x, y ∈ M , x 6= 0.
(iv) (x : o)y + M ⊆ (x : o)y for all x, y ∈ M , x 6= 0 6= y.

Proof. (i), (ii) and (iii). Since x 6= 0, we have (x : o) 6= ∅ and the remaining
assertions are easy to check.
(iv) If y = o then (x : o)y = {o}. If y 6= o, s ∈ (x : o) and z ∈ M then z = ry for
some r ∈ S and sy + z = sy + ry = (s + r)y ∈ (x : o)y, since s + r ∈ (x : o) by
(ii). ¤
2.6 Lemma. (i) (0 : o)y = ∅ for every y ∈ M .
(ii) (o : o)o = {o}.
(iii) (o : o)0 = {0}.
(iv) (o : o)y = M for every y ∈ M \ P .
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Proof. We have (0 : o) = ∅, (o : o) = S and the rest is clear. ¤
2.7 Lemma. Let x ∈ M \ P . Then:
(i) (x : o)o = {o}.
(ii) (x : o)0 = {0}.
(iii) If (x : o) ⊆ (y : o), y ∈ M , then (x : o)y = {o}.

Proof. We have (x : o) 6= ∅ and the rest is clear. ¤
2.8 Lemma. Assume that SM is congruence-simple. If x, y ∈ M , y 6= 0, then
either (x : o)y = ∅ or (x : o)y = {o} or (x : o)y = M .

Proof. Put K = (x : o)y and α = (K ×K) ∪ idM . By 2.5(iii) and 2.5(iv), we see
that α is a congruence of SM . If α = idM then either K = ∅ or K = {o}. If
α−M ×M then K = M . ¤
2.9 Lemma. Assume that SM is congruence-simple. Let x, y ∈ M \ {0}. If
(x : o) * (y : o) then (x : o)y = M (and hence for every z ∈ M there is at least one
t ∈ S with tx = o and ty = z).

Proof. Since x 6= 0, we have (x : o) 6= ∅. Moreover, (x : o) * (y : o), and hence
(x : o)y 6= {o}. Now, (x : o)y = M by 2.8. ¤
2.10 Lemma. Assume that SM is congruence-simple. Let x, y ∈ M be such that
x + y = x 6= y. Then:
(i) x 6= 0, y 6= o and (x : o) * (y : o).
(ii) If y 6= 0 then for every z ∈ M there is at least one t ∈ S with tx = o and ty = z.

Proof. (i) Since x+y = x 6= y, we have x 6= 0 and y 6= o. Moreover, (y : o) ⊆ (x : o).
But η = idM and x 6= y. Thus (x : o) * (y : o).
(ii) Combine (i) and 2.9. ¤

3. Almost minimal semimodules (c)

Throughout this section, let SM be an almost minimal semimodule that is not
quasitrivial (see 1.1(iv)).

3.1 Lemma. (i) The semiring S is not left quasitrivial.
(ii) The semiring S contains no left multiplicatively absorbing element.
(iii) The homomorphism ϕ : S → End(M(+)) given by (ϕ(s))(x) = sx (see II.4.1)
is injective, provided that S is congruence-simple.

Proof. (i) and (ii). Since SM is not quasitrivial, we can find x ∈ M \ P and then
SM = Sx is a homomorphic image of SS. Now, if q ∈ S were left multiplicatively
absorbing then qM = qSx = qx, and so |qM | = 1. But q0 = 0 6= o = qo,
a contradiction.
(iii) Use II.4.1(v). ¤
3.2 Lemma. Assume that M is finite. Then there is at least one q ∈ S such that:
(i) qx = o for every x ∈ M \ {0}.
(ii) qy = (q + s)y for all s ∈ S and y ∈ M .
(iii) qz = tqz for all t ∈ S and z ∈ M .

Proof. For every x ∈ M \ {0} there is qx ∈ S with qxx = o. Put q =
∑

qx, x ∈ M ,
x 6= 0. Then q(M \{0}) = o. Moreover, if y 6= 0 then (q+s)y = qy+sy = o+sy = o.
Of course, (q + s)0 = 0 = qy. Similarly, if z 6= 0 then sqz = so = o = qz. Again,
sq0 = 0 = q0. ¤
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3.3 Proposition. Assume that S is congruence-simple and M is finite. Then S
contains an additively absorbing element oS such that oS is right multiplicatively
absorbing. On the other hand, S has no left multiplicatively absorbing element.

Proof. Combine 3.1(ii), 3.1(iii), 3.2(ii) and 3.2 (iii). ¤
3.4 Lemma. Assume that SM is finite and congruence-simple. Then for every
u ∈ M \ {o} there is at least one t ∈ S such that tx = 0 if x + u = u and tx = o if
x + u 6= u.

Proof. Put L = {x |x + u 6= u }. Then L is a non-empty finite set (we have o ∈ L
and 0 /∈ L) and for every x ∈ L there is tx ∈ S with txx = o and txu = 0.
Put t =

∑
tx, x ∈ L. Then tL = o and tu = 0. Now, if y + u = u then

0 = tu = ty + tu = ty. ¤
3.5 Lemma. Assume that SM is finite and congruence-simple. Then for all u ∈
M \ P and v ∈ M there is at least one s ∈ S such that su = v, sx + v = v if
x + u = u and sx = o if x + u 6= u.

Proof. By 3.4, there is t ∈ S with tx = 0 if x+u = u and tx = o if x+u 6= u. Since
u /∈ P , there is r ∈ S with ru = v. Put s = r + t. Then su = ru + tu = v + 0 = v.
If x + u = u then v = su = sx + su = sx + v. If x + u 6= u then sx = rx + tx =
rx + o = o. ¤

4. A sort of minimal semimodules (a)

In this section, let SM be a minimal semimodule such that o = oM ∈ M and
So = o (i.e., o ∈ P (SM)). If SM is quasitrivial then |M | = 2 and SM is isomorphic
to one of the semimodules Q1,S , Q2,S and Q4,S (see I.4.1). Now, we will assume
that SM is not quasitrivial. Then Q(SM) = P (SM) = {o}.
4.1 Lemma. (i) {o} and M are just all subsemimodules of SM .
(ii) For all x, y ∈ M , x 6= o, there is at least one s ∈ S with sx = y.

Proof. It is easy. ¤
4.2 Lemma. (i) ηo is an equivalence (see II.2).
(ii) If (x, y) ∈ ηo then (sx, sy) ∈ ηo for every s ∈ S.
(iii) (x, o) /∈ ηo for every x ∈ M , x 6= o.

Proof. It is easy. ¤
4.3 Lemma. Define a relation λo on M by (x, y) ∈ λ if and only if (x : o) ⊆ (y : o).
Then:
(i) λo is a quasiordering (i.e., it is reflexive and transitive).
(ii) ker(λo) = ηo.
(iii) (x, o) ∈ λo for every x ∈ M .
(iv) (o, y) /∈ λo for every y ∈ M \ {o}.
(v) (x, x + y) ∈ λo for all x, y ∈ M .

Proof. It is easy. ¤
4.4 Lemma. The following conditions are equivalent for x, y ∈ M :

(i) (x, y) ∈ λo.
(ii) (x : o)y = {o}.

(iii) (x : o)y 6= M .
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Proof. Use the fact that (x : o)y is a subsemimodule of SM . ¤
4.5 Lemma. Let x ∈ M , x 6= o, be such that the set L = { y ∈ M | (y, x) /∈ λo }
is finite. Then for every z ∈ M there is at least one s ∈ S such that sx = z and
sy = o for every y ∈ L.

Proof. By 4.4, (y : o)x = M , and so there is sy ∈ S with syy = o and syx = z.
Now, we put s =

∑
sy, y ∈ L. ¤

4.6 Lemma. Assume that M is finite. Then tM = {o} for at least one t ∈ S.

Proof. For every x ∈ M , there is tx ∈ S with txx = o. Now, we put t =
∑

tx,
x ∈ M . ¤
4.7 Lemma. Assume that the semiring S is congruence-simple and M is finite.
Then S contains a bi-absorbing element oS such that oSM = {o}.

Proof. See II.4.3. ¤

5. Partial summary

5.1 Lemma. Let SM be a semimodule such that I = M whenever I is a sub-
semimodule of SM with I + M ⊆ I and |I| ≥ 2 (e.g., SM congruence-simple). If
w ∈ P (SM) (i.e., Sw = w) then either w = 0M or w = oM .

Proof. Put I = M +w. Then (I +M)∪SI ⊆ I and w ∈ I. If I = M then w = 0M .
If |I| = 1 then w = oM . ¤
5.2 Corollary. Let SM be a semimodule as in 5.1. Then |P (SM)| ≤ 2. ¤
5.3 Lemma. Let S be a bi-ideal-simple semiring (e.g., S congruence-simple). If
q ∈ S is multiplicatively absorbing then either q = 0S is additively neutral or q = oS

is bi-absorbing.

Proof. The set S + q is a bi-ideal of S. ¤
5.4 Proposition. The following conditions are equivalent for a congruence-simple
semiring S:

(i) S is finite, not left quasitrivial and S has the multiplicatively absorbing
element q (then either q = 0S is additively neutral or q = oS is bi-absorbing
- see 5.3).

(ii) There is a finite non-quasitrivial minimal semimodule SM with Q(SM) 6= ∅.
(iii) There is a finite non-quasitrivial congruence-simple minimal semimodule

SN with Q(SN) 6= ∅.

Proof. (i) implies (ii). By I.7.5, there exists a finite minimal semimodule SM that
is not quasitrivial. Moreover, by I.7.6(ii), we have P (SM) 6= ∅.
(ii) implies (iii). By I.6.3, there is a congruence % of SM such that SN = SM/%
is minimal, congruence-simple and not quasitrivial. Obviously, N is finite and
Q(SM)/% ⊆ Q(SN).
(iii) implies (i). By I.5.9, the semiring S is finite and it is not left quasitrivial due to
I.5.8(ii). Furthermore, by II.3.1, Q(SN) = P (SN) = {w}, Sw = w and, by II.3.4,
either w = 0M or w = oM (see also II.4.4(ii)). Finally, by II.4.4(iii) and II.4.4(iv),
the semiring S contains the multiplicatively absorbing element q and either q = 0S

or q = oS . ¤
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5.5 Proposition. Let S be a semiring satisfying the equivalent conditions of 5.4
and let SM be a (finite) non-quasitrivial congruence-simple minimal semimodule.
Then just one of the following two cases holds:

(1) S contains the additively neutral and multiplicatively absorbing element 0S,
Ann(SM) = {0S}, Q(SM) = P (SM) = {0M} and S · 0M = 0M = 0S ·M ;

(2) S contains the bi-absorbing element oS, Ann(SM) = {oS}, Q(SM) =
P (SM) = {oM} and S · oM = oM = oS ·M .

Proof. We have M = Sx for any x ∈ M \ Q(SM). The rest is clear from 5.4 and
II.4.4. ¤

5.6 Lemma. Let SM be a finite minimal semimodule such that Q(SM) = ∅.
(i) If M(+) is idempotent then M(+) has an absorbing element oM .
(ii) If oM ∈ M then qM = oM for at least one q ∈ S.
(iii) If S is congruence-simple then q is uniquely determined, q is both additively
and left multiplicatively absorbing in S and q is not right multiplicatively absorbing
(consequently, S has no right multiplicatively absorbing element at all).

Proof. (i) We have oM =
∑

x, x ∈ M .
(ii) We have Sx = M for every x ∈ M , and so qxx = oM for some qx ∈ S. If
q =

∑
qx, x ∈ M , then qM = oM .

(iii) By II.4.3(i) and II.4.3(v), q is both additively and left multiplicatively absorbing
in S. In particular, q is uniquely determined. On the other hand, it follows from
II.4.5(ii) that S has no right multiplicatively absorbing element. ¤

5.7 Lemma. Let S be a congruence-simple semiring. Then at least one of the
following two cases holds:

(1) Q(SM) 6= ∅ for every finite minimal left semimodule SM ;
(2) Q(NS) 6= ∅ for every finite minimal right semimodule NS.

Proof. Let SM be a finite minimal left semimodule with Q(SM) = ∅. Since M(+)
is a finite (commutative) semigroup, the set I of idempotent elements of M(+)
is non-empty. Moreover, I is a subsemimodule of SM . Now, if I = {w} is one-
element then Sw = w and w ∈ Q(SM) = ∅, a contradiction. Thus |I| ≥ 2 and we
get I = M , since M is minimal. That is, M(+) is idempotent and it follows from
5.6 that S has a left multiplicatively absorbing element but no right one. The rest
is clear. ¤

5.8 Lemma. (i) If S is a finite semiring then every minimal (left, right) semi-
module is finite.
(ii) If S is a congruence-simple semiring such that there exists a non-quasitrivial
finite (left, right) semimodule then S is finite.

Proof. See I.5.10 and I.5.9. ¤

5.9 Classification. Now, (finite congruence-simple) semirings S will be divided
into the following four pair-wise disjoint classes:

(A) There exists at least one non-quasitrivial minimal left S-semimodule and at
least one non-quasitrivial minimal right S-semimodule.

(B) There exists at least one non-quasitrivial minimal left semimodule and all
minimal right semimodules are quasitrivial.
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(C) There exists at least one non-quasitrivial minimal right semimodule and all
minimal left semimodules are quasitrivial.

(D) All minimal left or right semimodules are quasitrivial.

(Notice that the classes (B) and (C) are dual via forming the opposite semirings.)

5.10 Proposition. Let S be a finite congruence-simple semiring of type (A).
Then:
(i) S is neither left nor right quasitrivial.
(ii) S contains the multiplicatively absorbing element q such that either q = 0S is
additively neutral or q = oS is bi-absorbing.
(iii) If q = 0S then either S is additively idempotent or S is a ring.
(iv) If q = oS then either S is additively idempotent or S + S = {oS}.
(v) If SM (NS, resp.) is a non-quasitrivial minimal left (right, resp.) semimodule
then M (N , resp.) is finite and Q(SM) 6= ∅ (Q(NS) 6= ∅, resp.) (see 5.5 and
II.4.4).

Proof. First, it follows from I.5.8(ii) (and its dual) that S is neither left nor right
quasitrivial. Now, let SM (NS , resp.) be a non-quasitrivial minimal left (right,
resp.) seminodule. By 5.8(i), M (N , resp.) is finite. Moreover, taking into account
5.7, we can assume that Q(SM) 6= ∅ (the other case being dual). Now, by 5.4, S
has the multiplicatively absorbing element q such that either q = 0S is additively
neutral or q = oS is bi-absorbing.

Assume that q = 0S and that SM is congruence-simple (see I.6.3). By 5.5(1),
we have 0M ∈ M and S0M = 0M = 0SM . Define a relation κ on M by (x, y) ∈ κ
iff x + u = my and y + v = nx for some u, v ∈ M and positive integers m,n. It
is easy to check that κ is a congruence of SM and (z, 2z) ∈ κ for every z ∈ M . If
κ = idM then z = 2z and M(+) is idempotent. On the other hand, if κ 6= idM then
κ = M ×M , (z, 0M ) ∈ κ for every z ∈ M and this fact easily implies that M(+) is
a group, i.e., M is a module. However, by II.4.1(v), the semiring S is isomorphic
to a subsemiring of the (finite) semiring End(M(+)) and we conclude that either
S is additively idempotent or it is a ring.

Next, assume that q = oS and that SM is congruence-simple (see I.6.3). By
5.5(2), SoM = oM = oSM . Consider the congruence κ of SM . If κ = idM then
M(+) is idempotent and the same is true for S(+). If κ = M × M then, for
every z ∈ M , (z, 0M ) ∈ κ, and so mz = oM for a positive integer m. The set
J = { z | 2z = oM } is a subsemimodule of SM . If |J | = 1 then J = {oM} and
2w 6= oM for every w ∈ M \ {oM}. Now, if n is the smallest positive integer with
nw = oM then w ≥ 3, (n − 1)w 6= oM and (n − 1)w ∈ J , a contradiction. Thus
|J | ≥ 2 and we have J = M , since M is minimal. We have shown that 2x = oM

for every x ∈ M . Further, put θ = ((M + M) × (M + M)) ∪ idM . Again, θ is
a congruence of SM . If θ = idM then M + M = {oM} and S + S = {oS} by
II.4.1(v). If θ = M ×M then M + M = M and M(+) is a non-trivial commutative
nil-semigroup of index 2 and without irreducible elements. However, any such
semigroup is infinite, a contradiction.

Finally, if Q(NS) = ∅ then, proceeding similarly as in the proof of 5.7, we can
show that N(+) is idempotent and S has no left multiplicatively absorbing element,
a contradiction. ¤

5.11 Remark. Let S be a finite congruence-simple semiring of type (A) (see 5.10).
(i) If S is a ring then S is a copy of a matrix ring over a (finite) field (use I.5.7 and
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the fact that S is not quasitrivial). Non-quasitrivial minimal semimodules are just
the usual simple modules.
(ii) If S + S = {oS} then the multiplicative semigroup S(·) is congruence-simple
(see e.g. [???]).
(iii) Let S be additively idempotent. Then S has the multiplicatively absorbing
element q and either q = 0S is additively neutral or q = oS is bi-absorbing.

Assume that q = 0S (the subtype (A1)). If SM (NS , resp.) is a non-quasitrivial
minimal semimodule then 0M ∈ M (0N ∈ N , resp.) and S · 0M = {0M} = 0S ·M
(0N ·S = {0N} = N ·0S , resp.). Moreover, SM (NS , resp.) is additively idempotent.

Now, assume that q = oS (the subtype (A2)). If SM (NS , resp.) is a non-
quasitrivial minimal semimodule then oM ∈ M (oN ∈ N , resp.) and S · oM =
{oM} = oS · M (oN · S = {oN} = N · oS , resp.). Moreover, SM (NS , resp.) is
additively idempotent.

5.12 Proposition. Let S be a finite congruence-simple semiring of type (B).
Then:
(i) S is not left quasitrivial.
(ii) If S is right quasitrivial then S ' Kop

1 .
(iii) If |S| ≥ 3 then S is neither left nor right quasitrivial.
(iv) S contains the additively absorbing element q such that q is left multiplicatively
absorbing.
(v) S has no right multiplicatively absorbing element.
(vi) S is additively idempotent.
(vii) If SM is a non-quasitrivial minimal left semimodule then M is finite and
Q(SM) = ∅.
(viii) Sop is of type (C).

Proof. First, it follows from I.5.8(ii) that S is not left quasitrivial. If S is right
quasitrivial then S is not commutative and it follows from the right-hand form of
I.5.7 that S ' Kop

1 . Combining this with the right-hand form of I.7.5, we conclude
that S has no right multiplicatively absorbing element. Now, let SM be a non-
quasitrivial minimal left semimodule. By 5.8(i), M is finite. By I.6.3, there is
a congruence % of SM such that SN = SM/% is non-quasitrivial, minimal and
congruence-simple. If Q(SM) 6= ∅ then Q(SN) 6= ∅. On the other hand, it follows
from II.4.4 that Q(SN) = ∅. Thus Q(SM) = ∅ as well. Moreover, proceeding
similarly as in the proof of 5.7, we can show that M(+) and N(+) are idempotent.
Then, of course, S is additively idempotent (use II.4.1(v)). We have proved the
assertions (i), (ii), (iii), (v), (vi) and (vii). Finally, (iv) follows from 5.6 and (viii)
is clear. ¤
5.13 Remark. Let S be a finite congruence-simple semiring of type (B) (see 5.12).
Then S is additively idempotent and S has the additively absorbing element q such
that q is left multiplicatively absorbing but not right muliplicatively absorbing.
Moreover, there exists a non-quasitrivial congruence-simple minimal left semimod-
ule SM with Q(SM) = ∅; we have Sx = M for every x ∈ M (i.e., S acts transitively
on M). Further, if S is not isomorphic to Kop

1 then, according to I.7.3 (and 1.4),
there exists a non-quasitrivial congruence-simple almost minimal right semimodule
NS . Both semimodules SM and NS are additively idempotent.

5.14 Proposition. Let S be a finite congruence-simple semiring of type (D). Then
S is commutative, quasitrivial and either S is isomorphic to one of K2, K3, K4 or
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S is a zero multiplication ring of prime order (see I.5.7).

Proof. Assume that S is not left quasitrivial. Let SM be a non-quasitrivial finite
semimodule with minimal |M | (see I.6.8). Since S is of type (D), the semimodule
SM is not minimal. Then, by I.6.8(i) and I.6.8(iv), we see that SM is congruence-
simple and P (SM) = Q(SM) ' Q1,S . Moreover, using I.7.3 and its proof, we con-
clude that SM is almost minimal. Now, by 3.3, S contains the additively absorbing
element 0S such that 0S is also right multiplicatively absorbing. Consequently, ap-
plying the dual of I.7.5, we see finally that S is right quasitrivial. The rest is clear
from I.5.7 and its dual. ¤
5.15 Remark. Let S be a finite additively idempotent congruence-simple semiring.
The element oS =

∑
x, x ∈ S, is additively absorbing. If oS is neither left nor right

multiplicatively absorbing then 0S ∈ S and 0S is multiplicatively absorbing.
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