
Proceedings of the

International Conference on Modules and Representation Theory
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ROOTS OF EXT, THEIR ABSTRACT ELEMENTARY

CLASSES, DECONSTRUCTION, AND APPLICATIONS

JAN TRLIFAJ

Abstract. We start by surveying the tools of set–theoretic homological
algebra that make it possible to deconstruct roots of the contravariant
Ext functor, ie., express them as transfinite extensions of small roots
(where small stands for countably or finitely generated).

Then we present several applications to structure theory of modules.
In detail, we give a simple proof for the recent result of Bazzoni and
Herbera [9] characterizing modules of projective dimension ≤ 1 over
semiprime Goldie rings.

We also recall [7] that the roots of Ext yield natural examples of
abstract elementary classes in the sense of Shelah, and present their basic
model–theoretic properties. The final section consists of open problems.

1. Basic notions and properties

Let R be a ring and C a class of (right R–) modules. A module M is a
root of Ext for C provided Ext1R(M, C) = 0 for all C ∈ C. Given a ring R
and a class of modules C, we will denote by ⊥C the class of all roots of Ext
for C, that is, ⊥C = KerExt1R(−, C).

We will also deal with the subclass, ⊥∞C, of ⊥C consisting of all higher
roots of Ext for C. A module M is a higher root of Ext for C provided that
Exti

R(M, C) = 0 for all 1 ≤ i < ω and all C ∈ C. Notice that ⊥∞C =
⊥(

⋃
n<ω Cn) where Cn is the class of all nth cosyzygies of the modules in C.

Classes of the form ⊥C are ubiquituos in module and representation the-
ory. For example, for each n < ω, the class Pn (Fn) of all modules of
projective (flat) dimension ≤ n is of this form. So are the classes of all
torsion–free, Whitehead, and Baer modules; moreover, various classes of
roots of Ext naturally arise in (infinite dimensional) tilting theory, see [19].

Any class of the form ⊥C is closed under extensions and arbitrary di-
rect sums. These are particular instances of the more general notion of a
transfinite extension.
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For a class of modules A, a module M is a transfinite extension of modules
in A provided there is an increasing chain (Mα | α ≤ λ) of submodules of M
such that M0 = 0, M = Mλ, Mα =

⋃
β<α Mβ for each limit ordinal α ≤ λ,

and for each α < λ, Mα+1/Mα is isomorphic to an element of A. We will say
that (Mα | α ≤ λ) is a witnessing chain for M being a transfinite extension
of modules in A.

A basic fact, known as the Eklof lemma, says that the classes of all roots
of Ext are closed under transfinite extensions.

Lemma 1.1. (Eklof Lemma) [12, XII.1.5] Let R be a ring and C a class
of right R–modules. Then the class ⊥C contains all transfinite extensions of
modules in ⊥C.

In particular, the following are necessary conditions for a class of modules
A to be of the form ⊥C: A is closed under direct summands, transfinite
extensions, and R ∈ A. These conditions are not sufficient in general.

Example 1.2. Let R = Z and let D denote the class of all ℵ1–free (abelian)
groups (ie., the groups M such that each countable subgroup of M is free).

Then D contains all free groups, D is closed under direct summands, and
by Pontryagin’s criterion, D is closed under transfinite extensions (cf. [12,
IV.2.3]). The Baer–Specker theorem says that any direct product of copies
of Z is ℵ1–free (cf. [12, IV.2.8]). Now, by [18, Lemma 1.2], if C is a group
such that Ext1

Z
(P, C) = 0 for any direct product P of copies of Z, then C

is a cotorsion group, so ⊥{C} contains all torsion–free groups; in particular
Q ∈ ⊥{C}, but Q is not ℵ1–free. It follows that there exists no class of
groups C such that D = ⊥C.

In the example above, the groups in D behave ’locally’ like free groups,
and the class of all free groups does form a class of all roots of Ext. So the
phenomenon cannot be captured ’locally’.

In order to formulate a sufficient condition, we will need more definitions.
Given a cardinal κ, we will use the notation (Mod-R)<κ for the class of

all modules that possess a projective resolution consisting of < κ–generated
projective modules. We also define mod-R = (Mod-R)<ℵ0 . Notice that
if the ring R is right coherent, then mod-R is just the class of all finitely
presented modules. For an arbitrary class of modules A, we define A<κ =
A ∩ (Mod-R)<κ.

Definition 1.3. Let R be a ring and A a class of modules.
Let κ be a cardinal. Then A is κ–deconstructible provided that each

module M ∈ A is a transfinite extension of modules in A<κ.
A is called deconstructible in case there exists a cardinal κ such that A is

κ–deconstructible.

By definition, any member M of a deconstructible class A is equipped
with a chain witnessing that M is a transfinite extension of ’small’ modules
from A. The surprising fact, known as the Hill Lemma, says that there
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is actually a large family of such chains available with several remarkable
properties.

Lemma 1.4. (Hill Lemma) [21], [19, 4.2.6] Let R be a ring, κ a regular
infinite cardinal, and C a class of < κ–presented modules.

Let M be a transfinite extension of modules in C, and M = (Mα | α ≤ λ)
be a witnessing chain. Then there is a family H consisting of submodules of
M such that

(1) M ⊆ H,
(2) H is closed under arbitrary sums and intersections,
(3) P/N is a transfinite extension of modules in C for all N, P ∈ H such

that N ⊆ P , and
(4) If N ∈ H and S is a subset of M of cardinality < κ, then there exists

P ∈ H such that N ∪ S ⊆ P and P/N is < κ–presented.

Typical applications of the Hill Lemma employ the family H in replacing
the original witnessing chain M by a more suitable one, M′ ⊆ H, which
respects additional properties of the module M . In this way, one can eg.
prove the following lemma (where, for a class of modules C, we define C⊥ =
KerExt1R(C,−)).

Lemma 1.5. [31, §2] Let R be a ring and S be a set of modules such that
R ∈ S. Let A = ⊥(S⊥). Let κ be a regular uncountable cardinal such that
S ⊆ (Mod-R)<κ. Then the following are equivalent:

(1) M ∈ A;
(2) M is a direct summand in a transfinite extension of modules in S;
(3) M is a transfinite extension of modules in A<κ.

In particular, A is κ–deconstructible.

Now, we will see that deconstructibility yields a sufficient condition for
being a class of all roots of Ext.

Lemma 1.6. Let R be a ring and A a class of modules closed under direct
summands, transfinite extensions, and containing R.

Then A is deconstructible if and only if there is a subset S ⊆ A such that
A⊥ = S⊥. In this case, there is a class of modules C such that A = ⊥C.

Proof. The ’only if part’ follows by the Eklof Lemma 1.1. For the ’if part’,
note that A ⊆ ⊥(S⊥) by assumption; the latter class is contained in A by
the closure properties of A and by Lemma 1.5. The final claim thus holds
for C = S⊥. �

Most classes of roots of Ext are deconstructible in ZFC, but there are some
whose deconstructibility is known to be independent of ZFC (However, it is
not known whether there is an extension of ZFC in which each class of roots
of Ext is deconstructible, see Open Problem 1.)

Example 1.7. Let R be a countable Dedekind domain which is not a field,
and let W1 denote the class of all Whitehead modules (ie., the modules M
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such that Ext1R(M, R) = 0). Then the deconstructibility of W1 is indepen-
dent of ZFC + GCH, cf. [13].

Let R be an IC–valuation domain, ie., a valuation domain whose quotient
field Q has projective dimension 1 as R–module, such that R has global
dimension 2, and Ext1R(R/I, Q/R) 6= 0 for each non–principal ideal I of
R. Let W2 denote the class of all modules M satisfying Ext2R(M, R) = 0.
Then the deconstructibility of W2 is independent of ZFC + GCH. For more
details, we refer to [19, 10.2.14].

Example 1.8. On the positive side, we note that the class of all projective
modules, P0, is ℵ1 deconstructible by a classic result of Kaplansky [12, I.2.4].
Moreover, for each 1 ≤ n < ℵ0, the class Pn is κ+–deconstructible where κ is
the least infinite cardinal such that each right ideal of R is ≤ κ–generated.
For each n < ℵ0, the class Fn is κ+–deconstructible where κ is the least
infinite cardinal ≥ card(R), see eg. [19, §3.2 and §4.1].

Further examples of deconstructible classes of all roots of Ext and their
applications will be presented in the following sections.

2. Deconstructibility and some of its applications

A remarkable property of deconstructible classes of all roots of Ext is their
close connection to special approximations of modules.

Definition 2.1. Let R be a ring and C be a class of modules. Then C is
a special approximation class provided that for each module M there exist

short exact sequences 0 → D → C
f
→ M → 0 and 0 → M

g
→ D′ → C ′ → 0

where C, C ′ ∈ C and D, D′ ∈ C⊥.

Applying the functor HomR(−, M) to the first exact sequence we see that
each homomorphism f : C → M with C ∈ C has a (not necessarily unique)
factorization through f ; so f is called a C–precover of M . Dually, applying
HomR(M,−) to the latter sequence, we infer that each homomorphism g :
M → D with D ∈ C⊥ has a (not necessarily unique) factorization through
g; so g is called a C⊥–preenvelope of M .

Theorem 2.2. [14] Let R be a ring and C a class of all roots of Ext. If C
is deconstructible then C is a special approximation class.

In particular, in view of Example 1.8, all the classes Pn and Fn (n ≥ 0)
are special approximation classes. We note that the reverse implication in
Theorem 2.2 remains open (see Open Problem 3 below).

Deconstructibility of a class of all roots of Ext is often shown by proving
the ℵ1–deconstructibility. We will now present three results of this kind,
each of which has a rather different proof. First we need a definition.

Definition 2.3. Let X be the class of all modules N of the following form: N
is a submodule of a direct product

∏
α<λ Iα of injective modules such that

there is a regular uncountable cardinal κN ≤ λ such that N consists of all
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sequences z ∈
∏

α<λ Iα which are zero on a ’large’ subset Iz ⊆ λ (ie., on a
subset Iz satisfying card(λ \ Iz) < κN ).

Notice that N is a directed union of injective modules, hence a pure
epimorphic image of a direct sum of injective modules. Moreover, N is
injective in case each right ideal of R is countably generated.

Lemma 2.4. [30, Theorem 15] (see also [19, 5.2.9]) Let R be a ring, T be
a class of modules closed under direct sums, and C = ⊥∞T . Assume that
all modules in C have bounded projective dimension (ie., C ⊆ Pn for some
n < ω), and that C ⊆ ⊥∞X . Then C is ℵ1–deconstructible.

In particular, C is ℵ1–deconstructible whenever C is the class of all higher
roots of Ext for a class T closed under direct sums, such that C consists of
modules of bounded projective dimension, and R is right noetherian.

A dual result also holds true:

Lemma 2.5. [28, Theorem 1.9] Let R be a right noetherian ring, T
be a class of modules closed under direct sums, and C = ⊥∞T . Assume
that all modules in T have bounded injective dimension. Then C is ℵ1–
deconstructible.

A different argument yields the following (where a class of modules T
is called cogenerating provided that each module embeds into a product of
modules from T ):

Lemma 2.6. [27, Theorem and Remark 3.5] Let R be a ring and T be
a cogenerating class of modules closed under direct products and unions of
well–ordered chains. Let C = ⊥∞T . Then C is ℵ1–deconstructible.

In order to understand the structure of the countably presented roots of
Ext, the next result going back to [1] and [8] is very useful.

Lemma 2.7. [27, Proposition 2.7] Let R be a ring and B be a class of
modules closed under countable direct sums. Let M ∈ ⊥B be a countably
presented module, and N be a pure submodule of a direct product of modules
from B. Then Ext1R(M, N) = 0.

As a sample application of the deconstruction tools above, we consider
a class of modules T which is a torsion class (ie., T is closed under direct
sums, homomorphic images and extensions). The roots of Ext for T are
then called the relative Baer modules for T .

If R is an integral domain and T is the class of all torsion modules, then
the relative Baer modules for T are simply called the Baer modules. Kaplan-
sky showed already in 1962 that Baer modules have projective dimension
≤ 1, but only recently Angeleri, Bazzoni, and Herbera have proved that Baer
modules are actually projective [1]. A short direct proof, by an application
of Lemmas 2.4 and 2.7, appears in [33, §3].

In general, relative Baer modules may have a rather complex structure.
This is the case of Baer modules for artin algebras, for example: let R
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be an arbitrary artin algebra, S a class of finitely generated modules of
projective dimension ≤ 1 containing R and closed under extensions and
direct summands, and L = (mod-R) ∩ S⊥. Let TS denote the torsion class
of all homomorphic images of direct sums of copies of elements of L. The
deconstruction tools above then yield

Theorem 2.8. [4] Let R be an artin algebra. Then the relative Baer mod-
ules for TS coincide with the transfinite extensions of modules in S. In other
words, the class of all relative Baer modules for TS is ℵ0–deconstructible.

In particular, when R is an indecomposable hereditary artin algebra, p

its preprojective component, and S = add(p), then B = TS is the class of all
Baer modules in the sense of Ringel, Okoh and Lukas (see eg. [25], [26]). If
R is moreover tame, then one can describe all countably generated modules
in B more precisely, see [26, §4] and [3, §3]. But even in this particular case,
the characterization in Theorem 2.8 (saying that M ∈ B is equivalent to M
being a transfinite extension of modules in p) is the only one available for
all uncountably generated modules in B.

Now we turn to applications to (infinite dimensional) tilting theory.

Definition 2.9. Let R be a ring. A module T is called tilting privided that

(T1) T has finite projective dimension;

(T2) Exti
R(T, T (I)) = 0 for each set I and each 1 ≤ i < ω;

(T3) There exists a finite exact sequence 0 → R → T0 → · · · → Tr → 0
such that Ti is a direct summand in a direct sum of copies of T for
each i ≤ r.

If T is tilting then the class T = T⊥∞ is the tilting class induced by T .

Lemmas 2.4 and 2.6 are instrumental in proving

Theorem 2.10. [30], [10] Let T be a tilting class. Then the class A = ⊥T
is ℵ1–deconstructible.

Moreover, there is a tilting module T such that T is a transfinite extension
of modules in A ∩ mod-R, and T induces T .

The second assertion of Theorem 2.10 implies that tilting classes can be
classified by resolving subcategories of mod-R (ie., the subclasses S ⊆ mod-R
of bounded projective dimension, containing R, closed under extensions and
direct summands, and containing the first term of any exact sequence once
they contain the second and third). This classification takes a tilting class
T to the resolving subcategory S = ⊥T ∩ mod-R, cf. [19, §5.2].

The main applications of tilting modules and classes in the representa-
tion theory of artin algebras concern finitely generated modules (see eg. [5,
Chap.VI]). The picture changes completely when considering applications
to commutative rings. The point is the following result by Bazzoni, Colpi
and Menini (cf. [11]) which we present here with a short alternative proof
based on an idea from [32].
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Lemma 2.11. Let R be a commutative ring and T ∈ mod-R.

(1) Let T be of finite projective dimension n ≥ 1. Then ExtnR(T, T ) 6= 0.
(2) If T is a tilting module then T is projective.

Proof. (1) Let O be a projective resolution of T such that O consists of
finitely generated modules. Denote by M the (n − 1)th syzygy of T in O.
Then M is a finitely presented module of projective dimension 1, so there
is a maximal ideal m of R such that Mm has projective dimension 1 as
Rm–module. Moreover, Mm is the (n− 1)th syzygy of Tm in Om where Om

is the free resolution of the Rm–module Tm obtained by applying the exact
(localization) functor −⊗R Rm to O .

Assume that Extn
R(T, T ) = 0. Then Ext1R(M, T ) ∼= Extn

R(T, T ) = 0, so
Ext1Rm

(Mm, Tm) = 0 by [16, 3.2.5]. Since 0 6= Tm is finitely generated, Tm

has a maximal Rm–submodule, and because Mm has projective dimension
1, we infer that Ext1Rm

(Mm, Rm/mm) = 0.
Since Rm is a local ring, the finitely presented Rm–module Mm has a

projective (= free) cover, so there is an exact sequence 0 → K ⊆ F →
Mm → 0 where 0 6= K is a finitely generated superfluos submodule of the
finitely generated free module F . In particular, K ⊆ Rad(F ), and there
is an Rm–epimorphism f : K → Rm/mm. As Ext1Rm

(Mm, Rm/mm) = 0,
f can be extended to an Rm–epimorphism g : F → Rm/mm. Then Kerg
is a maximal submodule of F , so K ⊆ Rad(F ) ⊆ Kerg. This implies that
f = g ↾ K = 0, a contradiction.

(2) By part (1), each module T ∈ mod-R satisfying the conditions (T1)
and (T2) of Definition 2.9 is projective. �

So applications of tilting theory to the commutative setting necessarily
rest in the infinitely generated case. We finish by one such application,
concerning the structure of localizations of commutative rings. It clarifies
the case when the classical localization of a commutative ring R modulo R
decomposes into a direct sum of countably presented R–modules. Its proof
uses Theorem 2.10 and appears in [2]. (Recall that an element r ∈ R is a
non–zero–divisor if for each s ∈ R, s = 0 whenever s.r = 0 or r.s = 0.)

Theorem 2.12. Let R be a commutative ring, and Σ be some multiplicative
subset of R consisting of non–zero–divisors. Denote by RΣ the localization
of R at Σ. Then the following are equivalent:

(1) RΣ has projective dimension ≤ 1 as R–module.
(2) RΣ ⊕ RΣ/R is a tilting R–module of projective dimension ≤ 1.
(3) The R–module RΣ/R decomposes into a direct sum of countably pre-

sented submodules.

3. Modules of projective dimension ≤ 1

In this section, we apply the tools of Section 2 to a short alternative proof
of the following recent result by Bazzoni and Herbera, whose particular
instances for Prüfer and Matlis domains were proved in [24].
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Theorem 3.1. [9, Corollary 8.1] Let R be a semiprime Goldie ring.

(1) Let M be a module. Then M has projective dimension ≤ 1 if and
only if Ext1R(M, D) = 0 for each divisible module D.

(2) P1 coincides with the class of all direct summands of transfinite ex-
tensions of cyclically presented modules.

Before proving the result, we explain the notation and recall several well–
known facts.

Let R be any ring. If r is a non–zero–divisor or r = 0, then the module
R/rR is called cyclically presented. Clearly, cyclically presented modules
are finitely presented and have projective dimension ≤ 1. The set of all
cyclically presented modules will be denoted by R.

Extending the standard notation from commutative domains, we call a
module M divisible provided that M.r = M for each non–zero–divisor r ∈ R.
Equivalently, M is divisible if and only if M ∈ R⊥. We will denote by D
the class of all divisible modules, and define S = ⊥D. Clearly, R ⊆ S ⊆
P1. (The modules in S were called semi–Baer in [24]; so Theorem 3.1 just
says that if R is a semiprime Goldie ring then semi–Baer = of projective
dimension ≤ 1, ie., S = P1.)

We will also need the dual notion of a torsion–free module: a left R–
module M is torsion–free provided that r.m = 0 implies m = 0 for each
non–zero–divisor r ∈ R and each m ∈ M . Applying the functor −⊗R M to
the exact sequence 0 → R → R → R/rR → 0 for a non–zero–divisor r ∈ R,
we see that {m ∈ M | r.m = 0} ∼= Tor1R(R/rR, M), so M is torsion–free if
and only if Tor1R(R, M) = 0.

For a right (left) R–module M , we denote by M∗ = HomZ(M, Q/Z) the
character module of M , so M∗ is a left (right) R–module. The well–known
Ext–Tor relations give that a (right R–) module D is divisible if and only if
the left R–module D∗ is torsion–free, and D is flat iff D∗ is injective.

A ring R is called right Goldie provided that R contains no infinite direct
sum of right ideals and has ACC on right annihilators. Similarly, left Goldie
and Goldie (= left and right Goldie) rings are defined. By a classical result
of Goldie, a ring R is semiprime right Goldie if and only if R has a classical
right quotient ring Qr which is semisimple artinian, and similarly on the left.
Moreover, the classical left and right quotient rings of a semiprime Goldie
ring R coincide: Q = Qr = Ql, and Q is flat both as a left and as a right
R–module, see e.g. [20, 6.20 and Ex. 7G].

Let R be a semiprime right Goldie ring. Then any direct sum of copies of
Qr is injective, and these direct sums are exactly the divisible torsion–free
modules, see [20, 7.12 and 7.13].

A module M is called h–divisible provided that M is a homomorphic
image of an injective module. Any h–divisible module is divisible, but the
converse fails in general (for integral domains R, h–divisible = divisible if
and only if R is a Matlis domain, see [17, VII.2.8]). We denote by H the
class of all h–divisible modules.
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Since H is just the class of all first cosyzygies of all modules, we have
P1 = ⊥H = ⊥∞H for any ring R. So the question of whether S = P1

just asks whether the (in general distinct) classes of all divisible and all
h–divisible modules have the same classes of all roots of Ext.

Now, we can present the proof of Theorem 3.1.

Proof. Since D = R⊥ = S⊥, by Lemma 1.5, it suffices to show that P1 ⊆ S.
First, we only assume that R is a semiprime right Goldie ring. Then the

class X from Definition 2.3 satisfies X ⊆ H, because in this case h–divisible
modules coincide with homomorphic images of direct sums of copies of Q.
So Lemma 2.4 applies to T = H, and yields the ℵ1–deconstructibility of
P1. Since S = ⊥(R⊥) is ℵ1–deconstructible by Lemma 1.5, our claim is

equivalent to proving that P<ℵ1

1 ⊆ S<ℵ1 .

Now, we will also assume that R is left Goldie. Let M ∈ P<ℵ1

1 . It remains
to show that Ext1R(M, D) = 0 for each divisible module D.

First we prove that D∗∗ is h–divisible: since D∗ is a torsion–free left R–
module, the injective envelope E = E(D∗) is an injective torsion–free left

R–module, hence E ∼= Q(X) for a set X. Then E is a flat left R-module,
and D∗∗ is a homomorphic image of the injective module E∗, so D∗∗ ∈ H.

Finally, D is a pure submodule in D∗∗ and Ext1R(M, D∗∗) = 0 because

M ∈ P<ℵ1

1 , so Ext1R(M, D) = 0 by Lemma 2.7. �

4. Abstract elementary classes

Abstract elementary classes were designed by Shelah in [29] in order to
extend classical model theory of first order structures to a much more general
abstract setting.

Definition 4.1. A pair (K,≺K ) is said to be an abstract elementary class
(AEC) if K is a class of τ–structures (for some fixed vocabulary τ), ≺K is
a binary relation on K, both K and ≺K are closed under isomorphism and
satisfy the following axioms:

Ax 1. If M ≺K N then M is a substructure of N (or M ⊆ N , for short).
Ax 2. ≺K is a partial order on K.
Ax 3. If (Ai | i < δ) is a continuous ≺K–increasing chain then

(1)
⋃

i<δ Ai ∈ K;
(2) For each j < δ, Aj ≺K

⋃
i<δ Ai;

(3) If each Ai ≺K M ∈ K then
⋃

i<δ Ai ≺K M .
Ax 4. If A, B, C ∈ K, A ≺K C, B ≺K C and A ⊆ B then A ≺K B.
Ax 5. There is a cardinal LS(K) such that if A ⊆ B ∈ K there is A′ ∈ K

with A ⊆ A′ ≺K B and card(A′) ≤ card(A) + LS(K).

LS(K) is called the Löwenheim–Skolem number of K, cf. [6].
Recall that (Ai | i < δ) is a continuous ≺K–increasing chain provided

• Ai ∈ K,
• Ai ≺K Ai+1 for all i < δ, and
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• Ai =
⋃

j<i Aj for all limit ordinals i < δ.

Also, the closure of ≺K under isomorphism means that if M ≺K N and
f : N → N ′ is an isomorphism taking M to M ′ then M ′ ≺K N ′.

If M ≺K N we will say that M is a strong substructure of N . An
embedding f : M → N is called strong provided that Im(f) ≺K N .

Example 4.2. The following are examples of AECs:

(1) The class of all models of a first–order theory with the relation of
being an elementary submodel.

(2) The class of all modules over a ring with the relation of being a pure
submodule.

In view of Example 4.2, it may come as a surprise that there exist AECs
of a rather different sort, consisting of all higher roots of Ext. They were
introduced in [7].

Definition 4.3. Let R be a ring and C a class of modules. Consider the
pair (⊥∞C,≺C) where A≺CB denotes that A is a submodule of B such that
A, B, B/A ∈ ⊥∞C.

In general (⊥∞C,≺C) will not be an AEC, but the following result from
[7] clarifies when this is the case. (Notice that the class ⊥∞C always has the
resolving property, that is, A ∈ ⊥∞C whenever there is an exact sequence of
modules 0 → A → B → C → 0 such that B, C ∈ ⊥∞C. This easily follows
from the long exact sequence for Ext.)

Theorem 4.4. Let R be a ring, κ an infinite cardinal ≥ card(R), C a class
of modules, and A = ⊥∞C. Then the following conditions are equivalent:

(1) (A,≺C) is an AEC with LS(A) = κ;
(2) A is κ+–deconstructible and closed under direct limits.

Proof. We follow the proof in [7, §1].
(1) implies (2): First we show that A is closed under direct limits. It

suffices to show that if (Mα, fβα | α ≤ β < σ) is a well–ordered direct
system of modules such that Mα ∈ A for all α < σ, then lim

−→
Mα ∈ A. This

is clear when σ is a non–limit ordinal, since then lim
−→

Mα = Mσ−1 ∈ A by
assumption.

Assume σ is a limit ordinal. Let 0 → K →֒ A → M → 0 be the canonical
presentation of M = lim

−→
Mα, so A =

⊕
α<σ Mα ∈ A and K is the submodule

of A generated by all elements of the form xβα = m − fβα(m) where α ≤
β < σ and m ∈ Mα. Let Kγ denote the submodule of K generated only
by the xβα’s with β < γ. Then (Kγ | 1 ≤ γ ≤ σ) is a continuous chain of
submodules of A, and Kσ = K.

By induction on γ ≤ σ, we prove that Kγ , A/Kγ ∈ ⊥∞C. This is clear for
K1 = 0. If γ is non–limit, then Kγ +Mγ−1 ⊇

⊕
α<γ Mα, hence A = Kγ ⊕Lγ

where Lγ denotes the direct summand of A generated by all Mα’s with
γ − 1 ≤ α < σ. Since A/Kγ

∼= Lγ is a direct sum of elements of A, we have
A/Kγ ∈ A. Then Kγ ∈ A by the resolving property of the class A.
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Let γ be a limit ordinal. By the inductive premise, Kδ, A/Kδ ∈ A for each
δ < γ. Then Kδ+1/Kδ ∈ A by the resolving property, so Kγ =

⋃
δ<γ Kδ ∈ A

by the Eklof Lemma 1.1, and A/Kγ = A/
⋃

δ<γ Kδ ∈ A by Ax 3.(3).

In particular, for γ = σ, we conclude that M ∼= A/Kσ ∈ A.

Next, we show that A is κ+–deconstructible. Let A ∈ A and let X be a set
of R–generators of A. By induction, we will construct a chain (Aα | α ≤ σ)
consisting of strong submodules of A that will witness that A is a transfinite

extension of modules in A<κ+

.
A0 = 0, and if Aα is defined and there is x ∈ A \ Aα then applying

Ax 5 to A/Aα gives a submodule Aα+1 containing Aα + xR and such that
Aα+1/Aα, A/Aα+1 ∈ A and card(Aα+1/Aα) ≤ card((Aα + xR)/Aα) + κ.
Since (Aα + xR)/Aα

∼= xR/(Aα ∩xR), also card((Aα + xR)/Aα) ≤ κ, hence
card(Aα+1/Aα) ≤ κ. The resolving property of A gives Aα+1 ∈ A.

For a limit ordinal α we define Aα =
⋃

β<α Aβ , so Aα ∈ A by the Eklof

Lemma 1.1, and A/Aα ∈ A by Ax 3.(3).

(2) implies (1): Ax 1 is clear from the definition, and Ax 2 from A being
closed under extensions. Ax 3.(1) and Ax 3.(2) follow from the Eklof Lemma
1.1.

Ax 3.(3) is where closure under direct limits is needed: for
⋃

i<δ Ai ≺K
M , we have to prove that M/

⋃
i<δ Ai ∈ A, but M/

⋃
i<δ Ai

∼= lim
−→i

M/Ai

and M/Ai ∈ A by assumption. Ax 4 follows by the resolving property.
In order to prove Ax 5 we take an infinite cardinal κ ≥ card(R) such

that A is κ+–deconstructible, and consider a chain (Bi | i ≤ δ) witnessing

that B is a transfinite extension of modules in A<κ+

. Let H denote the
family corresponding to this witnessing chain by the Hill Lemma 1.4. Let
{aα | α < λ} be a minimal generating subset of A.

By induction, we select from H an increasing chain (Aα | α < λ) as
follows: A0 = 0; Aα+1 = P where P is the module from Condition (4) of
Lemma 1.4 for N = Aα and S = {aα}, and Aα =

⋃
β<α Aβ when α < λ

is a limit ordinal (this is possible by Condition (2) of Lemma 1.4). Let
A′ =

⋃
α<λ Aα. By Condition (3) of Lemma 1.4 and by Lemma 1.1, we have

A′ ∈ H, and clearly A ⊆ A′. Since card(Aα+1/Aα) ≤ κ by construction, we
have card(A′) ≤ λ × κ ≤ card(A) + κ, so we can take LS(A) = κ. �

The AEC (A,≺C) from Theorem 4.4 is called the AEC of the roots of Ext
for C.

Of course, a question remains of how to express the properties of ⊥∞C
being deconstructible and closed under direct limits in terms of properties
of the class C. A property that guarantess this to hold is given by the
following theorem.

Theorem 4.5. [15] Let R be a ring and κ = max(card(R),ℵ0). Let C be
any class of pure–injective modules. Then ⊥∞C is κ+–deconstructible and
closed under direct limits, ie., (⊥∞C,≺C) is an AEC with LS(A) = κ.
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Remark 4.6. Assume A = ⊥∞C is closed under direct limits. Then A con-
tains all flat modules, and hence C consists of cotorsion modules (in the
sense of Enochs [16]).

If moreover R is right noetherian and right hereditary, then the modules
in C can be replaced by their pure–injective envelopes by [7, Lemma 1.10],
so A = ⊥∞E for a class of pure–injective modules E , and Theorem 4.5
applies. Whether this extends to an arbitrary ring R remains open (see
Open Problem 4 below).

Next, we consider model–theoretic properties of the AECs of the roots of
Ext. First we recall the relevant definitions in the general setting of arbitrary
AECs.

Definition 4.7. Let A = (K,≺K ) be an AEC.

(1) A has a prime model provided there is A ∈ K such that for each
B ∈ K there is a strong embedding A → B.

(2) A has arbitrary large models provided there is a cardinal κ such that
for each λ ≥ κ there exists Aλ ∈ K of cardinality λ.

(3) A has disjoint amalgamation if the following holds true: if A, B, C ∈
K satisfy A ≺K B, A ≺K C and A = B ∩ C then there are D ∈ K
and f : B∪C → D such that f ↾ B and f ↾ C are strong embeddings,
and f(A) = f(B) ∩ f(C).

(4) A is said to admit closures if cl(X) =
⋂
{B | X ⊆ B ≺K A} ≺K A

whenever X is a subset of A ∈ K.

Lemma 4.8. Let R be a ring, C be a class of modules such that A =
(⊥∞C,≺C) is an AEC. Then

(1) A has a prime model, and has arbitrary large models.
(2) A has disjoint amalgamation.
(3) Assume C consists of modules of injective dimension ≤ 1. Then A

admits closures if and only if ⊥∞C is closed under direct products.

Proof. (1) is clear, because always 0 ∈ ⊥∞C and ⊥∞C contains all free mod-
ules, and (2) holds because D can be constructed by a pushout of the strong
embeddings A → C and B → C. (3) is proved in [7, Lemma 2.8]. �

As an example, we examine the case of Dedekind domains in more detail.

Example 4.9. [7] Let R be a Dedekind domain. Then the AECs of the
roots of Ext correspod 1–1 to sets of maximal ideals:

If P is a set of maximal ideals, we let AP denote the class of all modules
M that are p–torsion–free for all p ∈ P (ie., Tor1R(R/p, M) = 0 for each
p ∈ P ). Then the AEC of the roots of Ext correspondig to P is (AP ,≺)
where A ≺ B if and only if A, B, B/A ∈ AP .

By Lemma 4.8, these AECs of the roots of Ext have all the properties
(1)-(4) defined in 4.7.

An important model–theoretic property of general AECs is the finite char-
acter property introduced by Hyttinen and Kesälä in [22].
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Definition 4.10. An AEC (K,≺K ) has finite character provided that for
each A ⊆ B we have A ≺K B whenever for each finite subset F of A there
exists C ∈ K and strong embeddings f : A → C and g : B → C such that
f ↾ F = g ↾ F .

There is a handy test for finite character due to Kueker.

Lemma 4.11. [23] If (K,≺K ) has amalgamation, then (K,≺K ) has finite
character if and only if for each A ⊆ B we have A ≺K B whenever for each
finite subset F of A there is a strong embedding f : A → B such that
f ↾ F = idF .

Finite character is often studied jointly with further properties: an AEC
A = (K,≺K ) is called finitary provided that A has a prime model and
arbitrary large models, A has has disjoint amalgamation and finite character,
and both the vocabulary τ and the Löwenheim–Skolem number LS(K) are
countable, cf. [22, §§2-6] and [23, §§2-6].

We finish by stating a recent result by the author extending the main
result from [34] (cf. Theorem 4.5). Notice that here there are no assumptions
on the size of the vocabulary or the Löwenheim–Skolem number (ie., no
restriction on the size of the ring R).

Theorem 4.12. Let R be a ring and C be a class of pure–injective modules.
The the AEC (⊥∞C,≺C) has finite character.

In view of Remark 4.6, Theorems 4.5 and 4.12 imply that all AECs of
the roots of Ext over any right noetherian and right hereditary ring R have
finite character (in particular, this holds when R is a Dedekind domain, cf.
Example 4.9). It follows that if R is a countable right noetherian and right
hereditary ring then all AECs of the roots of Ext are finitary. Whether this
extends to non–noetherian or non–hereditary rings remains open (see Open
Problem 5).

5. Open problems

1. Is there an extension of ZFC in which all classes of the roots of Ext are
deconstructible? In particular, does this happen assuming Gödel’s Axiom of
Constructibility (V = L)?

In [28, Theorem 1.7] it is proved assuming V = L that the class of all
higher roots of Ext for C, where C is any set of modules of bounded injective
dimension, is deconstructible.

2. Assume that R is a right perfect ring (ie., R contains no infinite strictly
decreasing chain of principal left ideals). Are all classes of the roots of Ext
deconstructible?

3. Let R be any ring and A be a special approximation class of all roots
of Ext. Is A deconstructible?
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4. Does each AEC of the roots of Ext have the form (⊥∞C,≺C) for a class
of pure–injective modules C?

The answer is positive when R is right noetherian and right hereditary (see
Remark 4.6).

5. (i) Does each AEC of the roots of Ext have finite character?
(ii) Is each AEC of the roots of Ext over a countable ring R finitary?

By Theorem 4.12 a positive answer to 4. implies a positive answer to 5.(i),
and the latter clearly implies a positive answer to 5.(ii).
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[22] T. Hyttinen and M. Kesälä, Independence in finitary abstract elementary classes,
Annals of Pure Appl. Logic 143(2006), 103–138.

[23] D. W. Kueker, Abstract Elementary Classes and Infinitary Logics, preprint (2008).
[24] S.B. Lee, Semi–Baer modules over domains, Bull. Austral. Math. Soc. 64 (2001),

21–26.
[25] F. Lukas, Infinite-dimensional modules over wild hereditary algebras, J. London

Math. Soc. 44 (1991), 401–419.
[26] F. Lukas, A class of infinite-rank modules over tame hereditary algebras, J. Algebra

158 (1993), 18–30.
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[31] J. Šťov́ıček and J. Trlifaj, Generalized Hill lemma, Kplansky theorem for cotorsion

pairs, and some applications, to appear in Rocky Mountain J. Math. 39 (2009).
[32] J. Trlifaj, Whitehead test modules, Trans. Amer. Math. Soc. 348 (1996), 1521–1554.
[33] J. Trlifaj, Filtrations for the roots of Ext, Milan J. Math. 75 (2007), 61–90.
[34] J. Trlifaj, Abstract elementary classes induced by tilting and cotilting modules have

finite character, to appear in Proc. Amer. Math. Soc. 137 (2009).

Charles University, Faculty of Mathematics and Physics, Department of
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