COMMUTATIVE ZEROPOTENT SEMIGROUPS WITH FEW INVARIANT CONGRUENCES

ROBERT EL BASHIR AND TOMÁŠ KEPKA

ABSTRACT. Commutative semigroups satisfying the equation 2x + y = 2xand having only two *G*-invariant congruences for an automorphism group *G* are considered. Some classes of these semigroups are characterized and some other examples are constructed.

Every congruence-simple (i.e., possessing just two congruence relations) commutative semigroup is finite and either two-element or a group of prime order. The class of (non-trivial) commutative semigroups having only trivial invariant congruences is considerably more opulent. These semigroups are easily divided into four pair-wise disjoint subclasses (see 1.3). The fourth one contains commutative semigroups that are nil of index two and have no irreducible elements. This subclass is enigmatic a bit and it is the purpose of the present note to construct various examples of the indicated semigroups (called zs-semigroups in the sequel). Among others, we show that if S is a non-trivial commutative zs-semigroup without nontrivial invariant congruences, then the group of automorphisms of S contains a non-commutative free subsemigroup.

1. INTRODUCTION

Let G be a multiplicative group. By a (unitary left G-) semimodule we mean a commutative semigroup S (= S(+)) together with a G-scalar multiplication $G \times S \to S$ such that a(x+y) = ax + ay, a(bx) = (ab)x and 1x = x for all $a, b \in G$ and $x, y \in S$.

Let S be a semimodule. An element $w \in S$ is called absorbing if Gw = w = S + w. There exists at most one absorbing element in S and, if it exists, it will usually be denoted by the symbol o_S (or only o); we will also write $o \in S$.

A non-empty subset I of S is an ideal if $GI \subseteq I$ and $S + I \subseteq I$. The semimodule S will be called ideal-simple (or only id-simple) if $|S| \ge 2$ and I = S whenever I is an ideal of S such that $|I| \ge 2$.

Lemma 1.1. Let S be a semimodule and $w \in S$. The one-element set $\{w\}$ is an ideal of S if and only if $w = o_S$ is an absorbing element of S.

Proof. Obvious.

A semimodule S will be called congruence-simple (or only cg-simple) if S has just two congruence relations (i.e., equivalences compatible with the addition and the scalar multiplication).

Proposition 1.2. Every cg-simple semimodule is id-simple.

The first author was supported by the Grant Agency of Czech Republic, grant no. 201/01/D047. This work is a part of the research project MSM 0021620839 financed by MŠMT.

Proof. If S is cg-simple, then S is non-trivial and, if I is an ideal of S, then $r = (I \times I) \cup id_S$ is a congruence of S. Now, either $r = id_S$ and |I| = 1 (see 1.1) or $r = S \times S$ and I = S. Thus S is id-simple.

Let S be a (commutative) semigroup/semimodule. We will say that S is

- a semigroup/semimodule with zero addition (a za-semigroup/za-semimodule) if |S + S| = 1 (then $o \in S$ and S + S = o);

- a zeropotent semigroup/semimodule (a zp-semigroup/zp-semimodule) if 2x + y = 2x for all $x, y \in S$ (then $o \in S$ and 2x = o);

- a zp-semigroup/zp-semimodule without irreducible elements (a zs-semigroup/zs-semimodule) if S is a zp-semigroup/zp-semimodule and S=S+S;

- idempotent if x + x = x for every $x \in S$;

- cancellative if $x + y \neq x + z$ for all $x, y, z \in S, y \neq z$.

The following basic classification of cg-simple semimodules is given in [1]:

Theorem 1.3. Let S be a cg-simple semimodule. Then just one of the following four cases takes place:

- (1) S is a two-element za-semimodule;
- (2) S is idempotent;
- (3) S is cancellative;
- (4) S is a zs-semimodule.

There exists only one two-element za-semimodule up to isomorphism. Cg-simple idempotent semimodules over a commutative group are fully characterized in [1] (see also [3], [4] and [5]) and cg-simple chains (and the corresponding groups) are studied in [6] and [7]. Some information on cg-simple cancellative semimodules is also available from [1] and various examples of non-trivial commutative zs-semigroups are collected in [2]. The aim of this note is to initiate a study of cg-simple zs-semimodules. The following starting result restricts our choice of groups in the zeropotent case:

Proposition 1.4. Let no subsemigroup of a group G be a free semigroup of rank (at least) 2. Then there exist no cg-simple zs-semimodules over G.

Proof. Let S be a non-trivial zs-semimodule and let $x, y, z \in S$ be such that $x = y + z \neq o$. Denote by A (B, resp.) the set of $a \in G$ ($b \in G$, resp.) such that ax = y or ax + v = y, $v \in S$ (bx = z or bx + v = z, resp.). Then $A \cap B = \emptyset$, $AA \cup AB \subseteq A$ and $BB \cup BA \subseteq B$. Now, if $a \in A$ and $b \in B$, then the subsemigroup of G generated by $\{a, b\}$ is free, a contradiction. Thus either $A = \emptyset$ or $B = \emptyset$ and we will assume $A = \emptyset$, the other case being similar.

Put $I = Gx \cup (Gx + S)$. Then I is an ideal of $S, y \notin I$ and $I \neq S$. On the other hand, $\{x, o\} \subseteq I$ and $|I| \ge 2$. Consequently, the semimodule S is not id-simple and, according to 1.2, it is not cg-simple either.

Notice that among the groups from 1.4 we find all periodic groups and all locally nilpotent groups (but not all metabelian groups).

Now, let R be a subsemigroup of a group G and let $\mathbf{M} = \{A \mid A \subseteq G, A \neq \emptyset, AR \subseteq A\}$. The set \mathbf{M} is closed under unions and non-empty intersections, $R \in \mathbf{M}$ and $G \in \mathbf{M}$. Now, we define an addition + on \mathbf{M} by $A + B = A \cup B$ if $A \cap B = \emptyset$ and A + B = G otherwise.

Lemma 1.5. $\mathbf{M}(+)$ is a commutative zp-semigroup and $o_{\mathbf{M}} = G$.

Proof. Easy to check.

Moreover, we define a scalar multiplication on \mathbf{M} by $(a, A) \to aA = \{ax \mid x \in A\}, a \in G, A \in \mathbf{M}.$

Lemma 1.6. M is a zp-semimodule over the group G.

Proof. Easy to check.

Define a relation ξ on \mathbf{M} by $(A, B) \in \xi$ iff $\{M \in \mathbf{M} \mid A \cap M = \emptyset\} = \{M \in \mathbf{M} \mid B \cap M = \emptyset\}.$

Lemma 1.7. ξ is a congruence of the semimodule **M**.

Proof. Easy to check.

 \square

Lemma 1.8. Let η be a congruence of \mathbf{M} such that $\xi \subseteq \eta$ and $(R,G) \in \eta$. Then $\eta = \mathbf{M} \times \mathbf{M}$.

Proof. Clearly, $(xR, G) = (xR, xG) \in \eta$ for every $x \in G$. Let $A \in \mathbf{M}$ and $a \in A$. If $aR \cap B \neq \emptyset$ for every $B \in \mathbf{M}$ such that $B \subseteq A$, then $(aR, A) \in \xi \subseteq \eta$, and so $(A, G) \in \eta$. On the other hand, if $B \in \mathbf{M}$ is maximal with respect to $B \subseteq A$ and $aR \cap B = \emptyset$, then $(A, B \cup aR) \in \xi$. Since $(G, B \cup aR) \in \eta$, we get $(A, G) \in \eta$ again.

Lemma 1.9. $(R,G) \in \xi$ if and only if $G = RR^{-1}$ (then R is right uniform).

Proof. If $(R, G) \in \xi$, then $R \cap A \neq \emptyset$ for every $A \in \mathbf{M}$. In particular, $R \cap xR \neq \emptyset$ for every $x \in G$, and hence $x \in RR^{-1}$. To show the other implication, we just proceed conversely.

Lemma 1.10. (i) If R is not right uniform, then $(R, G) \notin \xi$. (ii) If G is not generated by R, then $(R, G) \notin \xi$.

Proof. (i) There exist $a, b \in R$ such that $aR \cap bR = \emptyset$. Then $R \cap a^{-1}bR = \emptyset$, $ab^{-1}R \in \mathbf{M}$ and, of course, $G \cap a^{-1}bR = a^{-1}bR \neq \emptyset$. Thus $(R, G) \notin \xi$. (ii) Use 1.9.

Lemma 1.11. Assume that R is not right uniform. Then $(R, G) \notin \xi$ and, if κ is a congruence of **M** maximal with respect to $\xi \subseteq \kappa$ and $(R, G) \notin \kappa$, then $\mathbf{N} = \mathbf{M}/\kappa$ is a cg-simple zs-semimodule.

Proof. **N** is non-trivial and it follows readily from 1.8 that **N** is a cg-simple zpsemimodule. Since R is not right uniform, there are right ideals A and B of Rsuch that B is maximal with respect to $A \cap B = \emptyset$. Then $A + B = A \cup B$, $(A \cup B, R) \in \xi \subseteq \kappa$, $(A \cup B, G) \notin \kappa$ and $A/\kappa + B/\kappa \neq o_{\mathbf{N}}$. Thus **N** is not a za-semimodule, and hence **N** is a zs-semimodule by 1.3.

Proposition 1.12. If R is not right uniform, then a factors mimodule of M is a congruence-simple zs-semimodule.

Proof. See 1.11.

Theorem 1.13. There exists at least one cg-simple zs-semimodule over G if and only if the group G contains at least one subsemigroup that is a free semigroup of rank (at least) 2.

Proof. The direct implication is shown in 1.4. As concerns the inverse implication, the existence of cg-simple zs-semimodule is shown in 1.12. \Box

2. Basic properties of zeropotent semimodules

Throughout this section, let S be a zp-semimodule over a group G. Firstly, define a relation \preceq_S on S by $x \preceq_S y$ if and only if x = y or y = x + v for some $v \in S$.

Lemma 2.1. (i) The relation \preceq_S is an ordering compatible with the addition and scalar multiplication.

- (ii) o_S is a greatest element of the ordered set (S, \preceq_S) .
- (iii) If $|S| \ge 2$, then $S \setminus (S+S)$ is the set of minimal elements of (S, \preceq_S) .
- (iv) If $x, y, z \in S$ are such that $x \preceq_S y$ and $x \preceq_S z$, then y + z = o.

Proof. Easy.

Proposition 2.2. Assume that S is a non-trivial zs-semimodule. Then:

- (i) The ordered set (S, \leq_S) has no minimal elements.
- (ii) S(+) is not finitely generated (and hence S is infinite).

Proof. (i) This follows immediately from 2.1(iii).

(ii) If S(+) were generated by s finite number m of elements, then S should contain at most 2^m elements, a contradiction with (i).

Lemma 2.3. The following conditions are equivalent:

(i) If $x, y, z, u, v \in S$ are such that $x + y \neq o \neq z$ and x + u = z = y + v, then either z = x + y or z = x + y + w for some $w \in S$.

(ii) If $x, y, z \in S$ are such that $x+y \neq o \neq z$ and $x \preceq_S z, y \preceq_S z$, then $x+y \preceq_S z$. (iii) If $x, y \in S$ are such that $x+y \neq o$, then $x+y = \sup(x,y)$ in (S, \preceq_S) .

Proof. Easy.

The semimodule S will be called downwards-regular if the equivalent conditions of 2.3 are satisfied.

For every $x \in S$, let $\operatorname{Ann}_S(x) = \{y \in S \mid x + y = o\}$. Further, let $\operatorname{Ann}_S(S) = \{x + S \mid S + x = o\}$.

Lemma 2.4. (i) For every $x \in S$, the annihilator $Ann_S(x)$ is an ideal of the additive semigroup S(+).

(ii) $\operatorname{Ann}_{S}(S)$ is an ideal of the semimodule S.

Proof. Obvious.

Define a relation \dashv_S on S by $x \dashv_S y$ if and only if $\operatorname{Ann}_S(x) \subseteq \operatorname{Ann}_S(y)$.

Lemma 2.5. (i) The relation \dashv_S is a quasiordering compatible with the addition and scalar multiplication.

- (ii) If $x \preceq_S y$, then $x \dashv_S y$.
- (iii) $\pi_S = \ker(\dashv_S)$ is a congruence of the semimodule S.
- (iv) $\pi_S = S \times S$ if and only if S is a za-semimodule.

Proof. Easy.

The semimodule S will be called separable if $\pi_S = id_S$.

The semimodule S will be called upwards-regular if $\operatorname{Ann}_S(x+y) \subseteq \operatorname{Ann}_S(z)$ whenever $x, y, z \in S$ are such that $x+y \neq o \neq z$ and $\operatorname{Ann}_S(x) \cup \operatorname{Ann}_S(y) \subseteq \operatorname{Ann}_S(z)$.

In the sequel, let $\tau_S = \{(x, y) \in S \times S \mid x + y \neq o\}$ and $\sigma_S = \{(x, y) \mid x + y = o\} = S \times S \setminus \tau_S$. Further, define μ_S (ν_S , resp.) by $(x, y) \in \mu_S$ ($(x, y) \in \nu_S$, resp.) if and only if $z \preceq_S x, z \preceq_S y$ ($z \dashv_S x, z \dashv_S y$, resp.) for at least one $z \in S$.

Lemma 2.6. (i) The relations τ_S, σ_S, μ_S and ν_S are symmetric.

(ii) The relations σ_S, μ_S and ν_S are reflexive.

(iii) τ_S is irreflexive.

(iv) $\pi_S \subseteq \sigma_S$.

(v) $\mu_S \subseteq \nu_S \subseteq \sigma_S$.

Proof. Easy.

The semimodule S will be called (strongly) balanced if $\sigma_S = \nu_S$ ($\sigma_S = \mu_S$). The semimodule S will be called transitive if the group G operates transitively on the set $S \setminus \{o_S\}$.

Proposition 2.7. If S is non-trivial and transitive, then S is id-simple.

Proof. Easy.

Proposition 2.8. Assume that S is id-simple and either $S + S \neq S$ or $Ann_S(S) \neq \{o_S\}$. Then:

- (i) $S + S = \{o_S\}$, $\operatorname{Ann}_S(S) = S$ and S is a za-semimodule.
- (ii) $x \preceq_S y$ if and only if either x = y or $y = o_S$.

(iii) $\pi_S = S \times S = \dashv_S$.

(iv) G operates transitively on $R = S \setminus \{o_S\}$ (i.e., S is transitive).

(v) $\nu_S = (R \times R) \cup \mathrm{id}_S$ is a congruence of S.

(vi) G operates primitively on R if and only if id_S , ν_S and $S \times S$ are the only congruences of S.

Proof. Easy.

Proposition 2.9. Assume that S is cq-simple and |S| > 3. Then:

- (i) $\operatorname{Ann}_S(S) = \{o_S\}$ and S is separable.
- (ii) \dashv_S is a compatible ordering of S.

Proof. It follows from 2.5(iii) that either $\pi_S = S \times S$ or $\pi_S = \text{id}_S$. If $\pi_S = S \times S$, then S is a za-semimodule by 2.5(iv) and S is id-simple by 1.2. Now, it follows from 2.8(v) that |R| = 1 and |S| = 2, a contradiction. Consequently, $\pi_S = \text{id}_S$ and \neg_S is transitive. The rest follows from 2.5.

Proposition 2.10. Assume that $|S| \ge 3$. Then S is cg-simple if and only if S is separable and id-simple.

Proof. The direct implication follows from 1.2 and 2.9. Now, assume that S is separable and id-simple.

Let r be a congruence of S and $I = \{x \mid (x, o) \in r\}$. Then I is an ideal of S and $r = S \times S$, provided that I = S.

Let $(x, y) \in r$, $x \neq y$. Since S is separable, $(x, y) \notin \pi_S$ and we can assume that $x \dashv_S y$ is not true. Then $\operatorname{Ann}_S(x) \not\subseteq \operatorname{Ann}_S(y)$ and there is $z \in S$ such that $x + z = o \neq y + z$. Now, $y + z \in I$, $I \neq \{o\}$, I = S, since S is id-simple, and $r = S \times S$.

Proposition 2.11. Assume that S is transitive and $|S| \ge 3$. The following conditions are equivalent:

(i) S is cg-simple.

(ii) S is separable.

Proof. (i) implies (ii) by 2.9(i) and (ii) implies (i) by 2.7 and 2.10.

Proposition 2.12. Assume that S is id-simple, take $w \in S$, $w \neq o$, and consider a congruence r of S maximal with respect to $(w, o) \notin r$. Then S/r is a cg-simple zp-semimodule.

Proof. Clearly, T = S/r is a non-trivial zp-semimodule. Now, let s be a congruence of S such that $r \subseteq s, r \neq s$, and put $I = \{x \in S \mid (x, o) \in s\}$. Then I is an ideal of S and $\{o, w\} \subseteq I$. Thus I = S, since S is id-simple, and we conclude that $s = S \times S$. It follows easily that T is cg-simple.

Corollary 2.13. Assume that S is id-simple and $S + S \neq \{o_S\}$. Then at least one factorsemimodule of S is a cg-simple zs-semimodule.

Corollary 2.14. Assume that S is transitive and $S + S \neq \{o_S\}$. Then at least one factors emimodule of S is a cg-simple zs-semimodule.

3. Examples of congruence-simple zs-semimodules

Example 3.1. Let S be a non-trivial commutative zs-semigroup and $G = \operatorname{Aut}(S)$ (the automorphism group of S). Then S becomes a G-semimodule. If S is separable and G operates transitively on $S \setminus \{o_S\}$, then S is cg-simple semimodule.

Example 3.2. Let (R, \leq) be a non-empty ordered set together with an irreflective and symmetric relation τ defined on R. For $x, y \in R$, let $x \lor y = \sup(x, y)$, provided that this supremum exists. Now, assume that the following three conditions are satisfied:

(a) If $x, y \in R$ are such that $(x, y) \in \tau$, then $x \lor y$ exists;

(β) If $(x, y) \in \tau$ and $(z, x \lor y) \in \tau$, then $(x, z) \in \tau$ and $(y, x \lor z) \in \tau$;

 (γ) For every $x \in R$ there exist $y, z \in R$ such that $(y, z) \in \tau$ and $x = y \lor z$.

Further, let $o \notin R$, $S = R \cup \{o\}$, $x + y = x \lor y$ if $x, y \in R$, $(x, y) \in \tau$ and x + y = o otherwise. Then S (= S(+)) becomes a commutative zs-semigroup.

Let G be a group operating on R (i.e., a mapping $G \times R \to R$ is defined such that a(bx) = (ab)x and 1x = x) and assume that $(ax, ay) \in \tau$ for every $(x, y) \in \tau$ and that $u \leq v$ implies $au \leq av$. Then $ax \vee ay = a(x \vee y)$ for $(x, y) \in \tau$ and S becomes a G-semimodule (ao = o). If G operates transitively on R, then S is a transitive semimodule. In such a case, by 2.14, at least one factorsemimodule of S is a cg-simple zs-semimodule. Furthermore, if S is transitive, then S is cg-simple iff it is separable (2.11). Finally, S is separable iff the following two conditions are satisfied:

(δ) For every $x \in R$ there exists $y \in R$ with $(x, y) \in \tau$;

(ϵ) For all $x, y \in R$, $x \neq y$, $(x, y) \notin \tau$, there exists $z \in R$ such that either $(x, z) \in \tau$, $(y, z) \notin \tau$ or $(x, z) \notin \tau$, $(y, z) \in \tau$.

(Notice that (δ) is true, provided that S is transitive.)

Example 3.3. (cf. 3.2). Let $T (= T(\land, \lor))$ be a distributive lattice with a smallest element 0_T and a greatest element 1_T such that $|T| \ge 3$. Consider the basic order \le defined on T and also the ordered set (R, \le) , $R = T \setminus \{0_T, 1_T\}$. Assume that the following two conditions are satisfied:

- (μ) If $x, y \in R$ and $x \wedge y = 0_T$, then $x \vee y \neq 1_T$;
- (ν) For every $x \in R$ there exist $y, z \in R$ such that $y \wedge z = 0_T$ and $y \vee z = x$.

Put $S = T \setminus \{1_T\}$ and define an addition on S by $x + y = x \lor y$ if $x \land y = 0_T$ and $x + y = 1_T$ otherwise. Then S (= S(+)) is a commutative zs-semigroup. Further, let a group G operate on R (a(bx) = (ab)x and 1x = x) in such a way that $x \le y$ implies $ax \le ay$. Then S becomes a G-semimodule $(a1_T = 1_T)$. If G operates transitively on R, then S is a cg-simple zs-semimodule iff the following is true:

(σ) For all $x, y \in R$, $x \neq y$, $x \wedge y \neq 0_T$, there exists $z \in R$ such that either $x \wedge z = 0_T \neq y \wedge z$ or $x \wedge z \neq 0_T = y \wedge z$.

Example 3.4. Let I be an infinite set with $|I| \ge \aleph_1$ and let \aleph be an infinite cardinal number such that $\aleph < |I|$. Denote by \mathbf{J} the set $\{A \mid A \subseteq I, |A| = \aleph\} \cup \{I\}$ and define an operation \oplus on \mathbf{J} by $A \oplus B = A \cup B$ if $A \cap B = \emptyset$ and $A \oplus B = I$ otherwise. Then \mathbf{J} is a non-trivial commutative zs-semigroup and \mathbf{J} becomes a G-semimodule, $G = \operatorname{Aut}(\mathbf{J}(\oplus))$. It is easy to check that the semimodule \mathbf{J} is transitive, separable and upwards-regular, but neither downwards-regular non balanced. By 2.11, \mathbf{J} is cg-simple.

Example 3.5. Let *I* be an infinite set, **K** a (non-principal) maximal ideal of the Boolean algebra of subsets of *I* such that $K \in \mathbf{K}$ for every $K \subseteq I$, |K| = |I|, and let $\mathbf{L} = \{A \in \mathbf{K} \mid |A| = |I|\} \cup \{I\}$. Define an addition \oplus on **L** by $A \oplus B = A \cup B$ if $A \cap B = \emptyset$ and $A \oplus B = I$ otherwise and put $G = \operatorname{Aut}(\mathbf{L}(\oplus))$. Then $\mathbf{L} (= \mathbf{L}(\oplus))$ is a non-trivial separable commutative zs-semigroup and *G* operates transitively on $\mathbf{L} \setminus \{o\}$. Consequently, **L** is a cg-simple zs-semimodule over *G*.

Example 3.6. Let I be an infinite set and \mathbf{I} the set of infinite subsets of I. Define an operation \boxplus on \mathbf{I} by $A \boxplus B = A \cup B$ if $A \cap B$ is finite and $A \boxplus B = I$ otherwise. Then $\mathbf{I} (= \mathbf{I}(\boxplus))$ is a non-trivial commutative zs-semigroup and r is a congruence of \mathbf{I} , where $(A, B) \in r$ iff the symmetric difference $(A \cup B) \setminus (A \cap B)$ is finite. Then $\mathbf{J} = \mathbf{I}/r$ is a non-trivial (commutative) zs-semigroup. Moreover, if $|I| = \aleph_0$ and $G = \operatorname{Aut}(\mathbf{J})$, then \mathbf{J} is a separable, upwards- and downwards-regular transitive G-semimodule (\mathbf{J} is not balanced). Consequently, \mathbf{J} is a cg-simple zs-semimodule.

Assume that $|I| \ge \aleph_1$ and put $\mathbf{P} = \{A \in \mathbf{I} \mid |A| = \aleph_0\} \cup \{I\}$. Then \mathbf{P} is a subsemigroup of \mathbf{I} and $\mathbf{Q} = \mathbf{P}/r$ is a non-trivial (commutative) zs-semigroup. Moreover, if $H = \operatorname{Aut}(\mathbf{Q})$, then \mathbf{Q} is a transitive *H*-semimodule and it is easy to check that \mathbf{Q} is an upwards- and downwards-regular strongly balanced cg-simple zs-semimodule.

4. FRACTIONAL LEFT IDEALS AND ZEROPOTENT SEMIMODULES

In this section, let R be a subsemigroup of a group G such that $1 \in R$. We denote by $\mathbf{F} (= \mathbf{F}(G, R))$ the set of fractional left R-ideals of G. That is, $A \in \mathbf{F}$ iff $A \subseteq G$, $A \neq \emptyset$, $RA \subseteq A$ and $A \subseteq Ra$ for some $a \in G$. The set $(\mathbf{G}(G, R) =) \mathbf{G} = \mathbf{F} \cup \{\emptyset\}$ is closed under arbitrary intersections and G operates on \mathbf{G} via $a * A = Aa^{-1}, A \in \mathbf{G}$, $a \in G$. The set $(\mathbf{P}(G, R) =) \mathbf{P} = \{Ra \mid a \in G\}$ of principal fractional left R-ideals is contained in **F** and we put $(\mathbf{Q}(G, R) =) \mathbf{Q} = \mathbf{P} \cup \{\emptyset\}$. Notice that G operates transitively on **P**.

Construction 4.1. Assume that the following condition is satisfied:

(f1) If $a \in G$ is such that $R \cap aR = \emptyset$, then $R \cap Ra = Rb$ for some $b \in G$ (then $b \in R$).

Now, define an addition on the set \mathbf{Q} in the following way:

(1) $Ra + Rb = Ra \cap Rb$ for all $a, b \in G$ such that $R \cap ab^{-1}R = \emptyset$ (by (f1), we have $Ra \cap Rb \in \mathbf{P}$);

- (2) $Ra + Rb = \emptyset$ for all $a, b \in G$ such that $R \cap ab^{-1}R \neq \emptyset$;
- (3) $Ra + \emptyset = \emptyset = \emptyset + Ra$ for every $a \in G$;
- $(4) \ \emptyset + \emptyset = \emptyset.$

Now, we have obtained a groupoid $\mathbf{Q} = \mathbf{Q}(+)$.

Lemma 4.1.1. A + B = B + A, $A + A = \emptyset$ and $A + \emptyset = \emptyset$ for all $A, B \in \mathbf{Q}$.

Proof. Obvious.

Lemma 4.1.2. For every $a \in G$, the transformation $A \to a * A$ (= Aa^{-1}) is an automorphism of $\mathbf{Q}(+)$.

Proof. Easy to check.

Lemma 4.1.3. Q is a semigroup if and only if the following condition is satisfied: (f2) If $a, b, c \in G$ are such that $R \cap aR = \emptyset = R \cap bc^{-1}R$ and $R \cap Ra = Rc$, then $R \cap dR = \emptyset = R \cap ab^{-1}R$, where $Ra \cap Rb = Rd$.

Proof. (i) Let $\mathbf{Q}(+)$ be associative. Then (R + Ra) + Rb = R + (Ra + Rb). But $(R + Ra) + Rb = (R \cap Ra) + Rb = Rc + Rb = Rc \cap Rb = R \cap Ra \cap Rb \neq \emptyset$, and hence $R \cap ab^{-1}R = \emptyset$, $Ra \cap Rb = Rd$ by (f1), $R + Rd \neq \emptyset$ and $R \cap dR = \emptyset$.

(ii) Let (f2) be satisfied. Firstly, if $a, b \in G$ are such that $(R + Ra) + Rb \neq \emptyset$, then (f2) implies (R + Ra) + Rb = R + (Ra + Rb). Next, if $a, b, c \in G$ are such that $(Ra + Rb) + Rc \neq \emptyset$, then $(R + Rba^{-1}) + Rca^{-1} = a * ((Ra + Rb) + Rc) \neq \emptyset$, and hence $(R + Rba^{-1}) + Rca^{-1} = R + (Rba^{-1} + Rca^{-1}) = a * (Ra + (Rb + Rc))$. Consequently, $(Ra + Rb) + Rc = a^{-1} * (a * ((Ra + Rb) + Rc)) = a^{-1} * (a * (Ra + (Rb + Rc)))$ Consequently, $(Ra + Rb) + Rc = a^{-1} * (a * ((Ra + Rb) + Rc)) = a^{-1} * (a * (Ra + (Rb + Rc))) = Ra + (Rb + Rc)$. Finally, if $a, b, c \in G$ are such that $Ra + (Rb + Rc) \neq \emptyset$, then $(Rc + Rb) + Ra = Ra + (Rb + Rc) \neq \emptyset$, and therefore Ra + (Rb + Rc) = (Rc + Rb) + Ra = Rc + (Rb + Ra) = (Ra + Rb) + Rc by the commutativity of the addition and the preceding part of the proof. The rest is clear.

Assume that (f2) is true. It follows from 4.1.1, 4.1.2 and 4.1.3 that \mathbf{Q} becomes non-trivial transitive zp-semimodule over the group G.

Lemma 4.1.4. \mathbf{Q} is a (non-trivial) zs-semimodule if and only if the following condition is satisfied:

(f3) $R \cap aR = \emptyset$ for at least one $a \in G$.

Proof. Use the transitivity of \mathbf{Q} .

Proposition 4.1.5. Assume that the conditions (f1), (f2) and (f3) are satisfied. Then:

- (i) $\mathbf{Q} = \mathbf{Q}(+,*)$ is a non-trivial transitive zs-semimodule over G.
- (ii) \mathbf{Q} is ideal-simple.

(iii) If $Ra \preceq_{\mathbf{Q}} Rb$, then $Rb \subseteq Ra$. (iv) $\operatorname{Ann}_{\mathbf{Q}}(Ra) = \{Rb \mid R \cap ab^{-1}R \neq \emptyset\} \cup \{\emptyset\}$. (v) If $Rb \subseteq Ra$, then $Ra \dashv_{\mathbf{Q}} Rb$. (vi) $\operatorname{Ann}_{\mathbf{Q}}(\mathbf{Q}) = \{\emptyset\}$. (vii) \mathbf{Q} is balanced.

Proof. See 4.1.1, 4.1.2, 4.1.3 and 4.1.4 to show (i), ..., (vi). Finally, if $R \cap ab^{-1}R \neq \emptyset$, then $ab^{-1}r \in R$ for some $r \in R$ and we have $Ra \cup Rb \subseteq Rr^{-1}b$. Now, using (v), we show easily that **Q** is balanced.

Finally, assume that the conditions (f1), (f2) and (f3) are satisfied (see 4.1.5) and consider two more conditions:

(f4) For every $a \in R \setminus R^{-1}$ there exists $b \in G$ such that $R \cap bR = \emptyset$ and $Ra = R \cap Rb$;

(f5) For every $a \in (RR^{-1}) \setminus R^{-1}$ there exists $b \in G$ such that $R \cap bR = \emptyset \neq R \cap abR$.

Lemma 4.1.6. The following conditions are equivalent:

(i) If a, b ∈ G, then Ra ≤_Q Rb if and only if Rb ⊆ Ra (see 4.1.5(iii)).
(ii) The condition (f4) is satisfied.

Proof. Easy to check.

Lemma 4.1.7. If (f4) is true, then \mathbf{Q} is downwards-regular and strongly balanced.

Proof. Use 4.1.6.

Lemma 4.1.8. Ann_{**Q**}(R) = { $Rb \mid b \in RR^{-1}$ } \cup { \emptyset }.

Proof. Easy to check.

Lemma 4.1.9. The following conditions are equivalent:

(i) If $a, b \in G$, then $Ra \dashv_{\mathbf{Q}} Rb$ if and only if $Rb \subseteq Ra$ (see 4.1.5(v)).

(ii) The condition (f5) is satisfied.

Proof. (i) implies (ii). Let $a \in G$ be such that $R \cap abR = \emptyset$ whenever $b \in G$ is such that $R \cap bR = \emptyset$. It follows from 4.1.7(iv) and 4.1.8 that $R_a \dashv_{\mathbf{Q}} R$. Now, by (i), $R \subseteq Ra$, and hence $a \in R^{-1}$.

(ii) implies (i). Let $a, b \in G$ be such that $Ra \dashv_{\mathbf{Q}} Rb$ and $Ra \neq Rb$. Then $Rc \dashv_{\mathbf{Q}} R, c = ab^{-1}$ and $Rc \neq R$. Now, assume that $R \nsubseteq Rc$. Then $c \notin R^{-1}$ and, by (f5), $R \cap dR = \emptyset \neq R \cap cdR$ for some $d \in G$. Consequently, $Rd^{-1} \in \operatorname{Ann}_{\mathbf{Q}}(Rc) \subseteq \operatorname{Ann}_{\mathbf{Q}}(R)$ and $Rd^{-1} = Re$ for some $e \in RR^{-1}$ (4.1.8). Thus $d^{-1} = rs^{-1}$, $r, s \in R$, $dR = sr^{-1}R$ and $s \in R \cap dR$, a contradiction. It follows $R \subseteq Rc$ and $Rb \subseteq Ra$. \Box

Lemma 4.1.10. If (f5) is true, then \mathbf{Q} is separable and upwards-regular.

Proof. Use 4.1.9.

4.2. Consider the conditions (f1), ..., (f5) defined in 4.1.

Lemma 4.2.1. (i) If (f1) is true, then $G = RR^{-1} \cup R^{-1}R$ (and hence the group G is generated by R).

(ii) If $G = RR^{-1} \cup R^{-1}R$ and every left ideal of R is principal, then (f1) is true. (iii) (f3) is true if and only if $G \neq RR^{-1}$.

Proof. Easy to see.

Corollary 4.2.2. If G is generated by R, R is left uniform, not right uniform and every left ideal of R is principal, then the conditions (f1) and (f3) are satisfied.

5. Zeropotent semimodules and fractional left ideals

In this section, let S be an ideal-simple zeropotent G-semimodule such that $\operatorname{Ann}_S(S) = \{o_S\}$ (or, equivalently, $S + S \neq \{o_S\}$). For $u, v \in S$, put $(u : v) = \{a \in G \mid au \preceq_S v\}$ and $[u : v] = \{a \in G \mid au \dashv_S v\}$.

Lemma 5.1. (i) $(u:v) \subseteq [u:v]$ for all $u, v \in S$. (ii) (u:o) = [u:o] = G for every $u \in S$. (iii) $(o:w) = [o:w] = \emptyset$ for every $w \in S$, $w \neq o$. (iv) (u:av) = a(u:v) and $(au:v) = (u:v)a^{-1}$ for all $a \in G$ and $u, v \in S$. (v) [u:av] = a[u:v] and $[au:v] = [u:v]a^{-1}$ for all $a \in G$ and $u, v \in S$. (vi) $(au:au) = a(u:u)a^{-1}$ for all $a \in G$ and $u \in S$. (vii) $[au:au] = a[u:u]a^{-1}$ for all $a \in G$ and $u \in S$.

Proof. The inclusion $(u:v) \subseteq [u:v]$ follows from 2.5(ii) and the remaining assertions can be checked readily.

Lemma 5.2. (i) $(u : v_1)(v_2 : u) \subseteq (v_2 : v_1)$ and $[u : v_1][v_2 : u] \subseteq [v_2 : v_1]$ for all $u, v_1, v_2 \in S$.

(ii) $(u:u)(v:u) \subseteq (v:u)$ and $[u:u][v:u] \subseteq [v:u]$ for all $u, v \in S$.

(iii) $(u:u)(u:u) \subseteq (u:u)$ and $[u:u][u:u] \subseteq [u:u]$ for every $u \in S$.

Proof. Easy to check directly.

Lemma 5.3. Let $u_1, u_2, u, v_1, v_2, v \in S$.

- (i) If $u_1 \preceq_S u_2$, then $(u_2 : v) \subseteq (u_1 : v)$.
- (ii) If $v_1 \preceq_S v_2$, then $(u:v_1) \subseteq (u:v_2)$.
- (iii) If $v_2 \preceq_S u_1$, then $(u_1 : v_1)(u_2 : v_2) \subseteq (u_2 : v_1)$.

Proof. Easy to check directly.

Lemma 5.4. Let $u_1, u_2, u, v_1, v_2, v \in S$. (i) If $u_1 \dashv_S u_2$, then $[u_2 : v] \subseteq [u_1 : v]$. (ii) If $v_1 \dashv_S v_2$, then $[u : v_1] \subseteq [u : v_2]$. (iii) If $v_2 \dashv_S u_1$, then $[u_1 : v_1][u_2 : v_2] \subseteq [u_2 : v_1]$.

Proof. Easy to check directly.

Lemma 5.5. $(u:v) \neq \emptyset \neq [u:v]$ for all $u, v \in S, u \neq o$.

Proof. Denote by I the set of $z \in S$ such that $au \preceq_S z$ for some $a \in G$. Then $\{o, u\} \subseteq I$ and I is an ideal of S. Since S is id-simple, we get $I = S, v \in I$, and therefore $(u:v) \neq \emptyset$. Since $(u:v) \subseteq [u:v]$, we have $[u:v] \neq \emptyset$, too. \Box

In the remaining part of this section, fix an element $w \in S$, $w \neq o_S$. It follows from 5.1(i), 5.2(iii) and 5.5 that both $R_1 = (w : w)$ and $R_2 = [w : w]$ are subsemigroups of G and $1 \in R_1 \subseteq R_2$. We put $\mathbf{F}_i = \mathbf{F}(G, R_i)$, $\mathbf{G}_i = \mathbf{G}(G, R_i)$, $\mathbf{P}_i = \mathbf{P}(G, R_i)$ and $\mathbf{Q}_i = \mathbf{Q}(G, R_i)$, i = 1, 2 (see the preceding section).

Lemma 5.6. (i) $R_1^* = R_1 \cap R_1^{-1} = \{a \in G \mid aw = w\}.$ (ii) $R_2^* = R_2 \cap R_2^{-1} = \{a \in G \mid (w, aw) \in \pi_S\}.$

(iii) If S is separable, then $R_1^* = R_2^*$.

Proof. (i) If aw = w, then $a^{-1}w = w$, $a, a^{-1} \in R_1$ and $a \in R_1^*$. Conversely, if $a \in R_1^*$, then $a, a^{-1} \in R_1$. Now, if $w \neq aw$, then $w = aw + u = a^{-1}w + v$, $u, v \in S$, and we get aw = w + av, w = w + z, z = av + u, w = w + 2z = w + o = o, a contradiction.

(ii) Easy to check.

(iii) Since S is separable, we have $\pi_S = id_S$ and the assertion follows by combination of (i) and (ii).

Lemma 5.7. Let $v \in S$. Then:

(i) $R_1(v:w) \subseteq (v:w)$. (ii) $R_2[v:w] \subseteq [v:w]$. (iii) $(w:v) \neq \emptyset = [w:v].$ (iv) $(v:w) \subseteq R_1 a^{-1}$ for every $a \in (w:v)$. (v) $[v:w] \subseteq R_2 a^{-1}$ for every $a \in [w:v]$. (vi) If $v \neq o_S$, then $(v:w) \neq \emptyset \neq [v:w]$. (vii) $(v:w)(v:v) \subseteq (v:w)$. (viii) $[v:w][v:v] \subseteq [v:w].$

Proof. (i) If $a \in R_1$ and $b \in (v:w)$, then aw = w, $bv \preceq_S w$, and so $abv \preceq_S aw = w$ and $ab \in (v:w)$.

(ii) Similar to (i). (iii) See 5.5. (iv) By 5.2(i), $(v:w)(w:v) \subseteq (w:w) = R_1$, and so $(v:w) \subseteq R_1(w:v)^{-1}$. (v) Similar to (iv). (vi) See 5.5. (vii) Use 5.2(i). (viii) Similar to (vii).

Using the foregoing lemma, we get mappings $(\varphi_w =) \varphi : S \to \mathbf{G}_1$ and $(\psi_w =)$ $\psi: S \to \mathbf{G}_2$ defined by $\varphi(v) = (v:w)$ and $\psi(v) = [v:w]$ for every $v \in S$ (5.7(i), (ii)).

Lemma 5.8. (i) $\varphi(S \setminus \{o\}) \subseteq \mathbf{F}_1$.

(ii) $\varphi(av) = \varphi(v)a^{-1} = a * \varphi(v)$ for all $a \in G$ and $v \in S$.

(iii) If $u \preceq_S v$, then $\varphi(v) \subseteq \varphi(u)$.

Proof. (i) This follows from 5.5.

(ii) We have $\varphi(av) = (av: w) = (v: w)a^{-1} = \varphi(v)a^{-1} = a * \varphi(v)$ by 5.1(iv).

(iii) If $a \in \varphi(v)$, then $av \preceq_S w$, and, of course, $au \preceq_S av$. Thus $au \preceq_S w$ and $a \in \varphi(u).$

Lemma 5.9. (i) $\psi(S \setminus \{o\}) \subseteq \mathbf{F}_2$.

(ii) $\psi(av) = \psi(v)a^{-1} = a * \psi(v)$ for all $a \in G$ and $v \in S$. (iii) If $u \dashv_S v$, then $\psi(v) \subseteq \psi(u)$.

Proof. Similar to that of 5.8.

Lemma 5.10. (i) $\varphi(v) \subseteq \psi(v)$ for every $v \in S$. (ii) $\varphi(w) = R_1$ and $\psi(w) = R_2$. (iii) $\varphi(o_S) = \emptyset = \psi(o_S).$

Proof. Obvious.

Lemma 5.11. Assume that S is transitive. Then:

(i) φ is a bijection of S onto \mathbf{Q}_1 .

(ii) $u \preceq_S v$ if and only if $\varphi(v) \subseteq \varphi(u)$.

Proof. (i) Let $u, v \in S$ be such that $\varphi(u) = \varphi(v)$. If u = o or v = o, then $\varphi(u) = \emptyset = \varphi(v)$ and u = o = v by 5.8(i). Hence, assume that $u \neq o \neq v$. Then u = aw and v = bw for some $a, b \in G$. Now, $R_1 a^{-1} = \varphi(aw) = \varphi(u) = \varphi(v) = \varphi(bw) = R_1 b^{-1}$, $R_1 a^{-1}b = R_1$, $a^{-1}b \in R_1^*$, $w = a^{-1}bw$ and, finally, u = aw = bw = v (use 5.8(ii) and 5.6(i)). We have proved that φ is an injective mapping.

If $a \in G$, then $\varphi(a^{-1}w) = (w : w)a = R_1a$ by 5.1(iv). It follows that φ is a projective mapping. Consequently, $\varphi : S \to \mathbf{Q}_1$ is a bijection.

(ii) If $u \leq_S v$, then $\varphi(v) \subseteq \varphi(u)$ by 5.8(iii). Conversely, if $\varphi(v) \subseteq \varphi(u), v \neq o$, u = aw, v = bw, then $R_1b^{-1} = \varphi(v) \subseteq \varphi(u) = R_1a^{-1}, R_1 \subseteq R_1a^{-1}b = \varphi(b^{-1}aw) = (b^{-1}aw : w), 1 \in (b^{-1}aw : w), b^{-1}aw \leq_S w$ and, finally, $u = aw \leq_S bw = v$. \Box

Lemma 5.12. Assume that S is transitive. Then:

- (i) ψ is a projection of S onto \mathbf{Q}_2 .
- (ii) $\ker(\psi) = \pi_S$.
- (iii) $u \dashv_S v$ if and only if $\psi(v) \subseteq \psi(u)$.

Proof. Similar to that of 5.11.

Corollary 5.13. Assume that S is transitive. Then $\psi : S \to \mathbf{Q}_2$ is a bijection if and only if S is separable.

Lemma 5.14. If S is downwards-regular, then $\varphi(u + v) = \varphi(u) \cap \varphi(v)$ for all $u, v \in S$ such that $u + v \neq o_S$.

Proof. The inclusion $\varphi(u+v) \subseteq \varphi(u) \cap \varphi(v)$ is clear from the definitions. Conversely, if $a \in \varphi(u) \cap \varphi(v)$, then $au \preceq_S w$, $av \preceq_S w$, and hence $a(u+v) \preceq_S w$, since S is downwards-regular. Thus $a \in \varphi(u+v)$.

Lemma 5.15. If S is upwards-regular, then $\psi(u+v) = \psi(u) \cap \psi(v)$ for all $u, v \in S$ such that $u + v \neq o_S$.

Proof. Similar to that of 5.14.

Theorem 5.16. Let S be a transitive zeropotent G-semimodule such that $S + S \neq \{o_S\}$ (see 2.8). Let $w \in S$, $w \neq o_S$, $R_1 = \{a \in G \mid aw \preceq_S w\}$ and $R_2 = \{a \in G \mid aw \dashv_S w\}$. Then:

(i) S is ideal-simple, S + S = S and $Ann_S(S) = \{o_S\}$.

(ii) Both R_1 and R_2 are subsemigroups of G and $1 \in R_1 \subseteq R_2$.

(iii) The mapping $\varphi : v \to \{a \in G \mid av \preceq_S w\}$ is a bijection of S onto $\mathbf{Q}(G, R_1)$ such that $u \preceq_S v$ if and only if $\varphi(v) \subseteq \varphi(u)$.

(iv) If S is downwards-regular, then $\varphi(u+v) = \varphi(u) \cap \varphi(v)$ for all $u, v \in S$ such that $u + v \neq o_S$.

(v) The mapping $\psi : v \to \{a \in G \mid av \dashv_S w\}$ is a projection of S onto $\mathbf{Q}(G, R_2)$ such that ker $(\psi) = \pi_S$ and $u \dashv_S v$ if and only if $\psi(v) \subseteq \psi(u)$.

(vi) If S is separable, then ψ is a bijection of S onto $\mathbf{Q}(G, R_2)$.

(vii) If S is upwards-regular, then $\psi(u+v) = \psi(u) \cap \psi(v)$ for all $u, v \in S$ such that $u + v \neq o_S$.

Proof. See 2.7, 2.8, 5.1(i), 5.2(iii), 5.5, 5.11, 5.14, 5.12 and 5.15.

Lemma 5.17. Let $a, b \in G$, u = aw and v = bw. Then: (i) $\varphi(u) \cap \varphi(v) \neq \emptyset$ if and only if $R_1 \cap R_1 a^{-1}b \neq \emptyset$. (ii) $R \cap a^{-1}bR \neq \emptyset$ if and only if there exists $a \in C$ with an $\forall a \in U$ and an $\forall a \in U$.

(ii) $R_1 \cap a^{-1}bR_1 \neq \emptyset$ if and only if there exists $c \in G$ with $cw \preceq_S u$ and $cw \preceq_S v$.

Proof. (i) We have $\varphi(u) = R_1 a^{-1}$ and $\varphi(v) = R_1 b^{-1}$. The rest is clear.

(ii) If $d = a^{-1}be$, where $d, e \in R_1$, then ad = c = be, $cw = adw \preceq_S aw = u$ and $cw = bew \preceq_S bw = v$. Similarly the converse implication.

Lemma 5.18. Assume that S is strongly balanced. If $a, b \in G$ are such that aw + bw = o, then $R_1 \cap a^{-1}bR_1 \neq \emptyset$.

Lemma 5.19. Let $a, b \in G$, u = aw and v = bw. Then:

(i) $\psi(u) \cap \psi(v) \neq \emptyset$ if and only if $R_2 \cap R_2 a^{-1} b \neq \emptyset$.

(ii) $R_2 \cap a^{-1}bR_2 \neq \emptyset$ if and only if there exists $c \in G$ with $cw \dashv_S u$ and $cw \dashv_S v$.

Proof. Similar to that of 5.17.

Lemma 5.20. Assume that S is balanced. If $a, b \in G$ are such that aw + bw = o, then $R_2 \cap a^{-1}bR_2 \neq \emptyset$.

Proof. Use 5.19(ii).

Lemma 5.21. Assume that S is transitive. If $a \in G$ is such that $w + aw \neq o$, then $a \in R_1^{-1}R_1$.

Proof. We have w + aw = bw for some $b \in G$, $aw \preceq_S bw$, $b^{-1}a \in R_1$, $w \preceq_S bw$, $b^{-1} \in R_1$. Consequently, $a \in R_1^{-1}R_1$.

Lemma 5.22. Assume that S is strongly balanced. If $a \in G$ is such that w+aw = o, then $a \in R_1R_1^{-1}$.

Proof. This follows immediately from 5.18.

Lemma 5.23. If S is transitive and strongly balanced, then $G = R_1^{-1}R_1 \cup R_1R_1^{-1}$.

Proof. Combine 5.21 and 5.22.

6. A few consequences

6.1. Let S be a non-trivial transitive zp-semimodule over a group G such that S is downwards-regular and strongly balanced. By 2.7 and 2.8, S is ideal-simple, $Ann_S(S) = \{o_S\}$ and S + S = S, i.e., S is a zs-semimodule.

Now, choose $w \in S$, $w \neq o_S$, and put $R = R_{1,w} = \{a \in G \mid aw \leq_S w\}$ and $\varphi = \varphi_w$, where $\varphi_w(v) = \{a \in G \mid av \leq_S w\}$ for every $v \in S$. According to 5.2(iii), 5.5 and 5.11, R is a subsemigroup of the group G, $1 \in R$ and φ is a bijection of S onto $\mathbf{Q} = \mathbf{Q}(G, R)$ such that $u \leq_S v$ iff $\varphi(v) \subseteq \varphi(u)$. Moreover, by 5.8 and 5.14, $\varphi(av) = \varphi(v)a^{-1}$, $\varphi(aw) = Ra^{-1}$, $a \in G$, and if $u, v \in S$ are such that $u + v \neq o_S$, then $\varphi(u + v) = \varphi(u) \cap \varphi(v)$.

Lemma 6.1.1. The condition (f1) (see 4.1) is satisfied.

Proof. Let $a \in G$ be such that $R \cap Ra = \emptyset$. It follows from 5.18 that $a^{-1}w + w \neq o$, and hence $a^{-1}w + w = b^{-1}w$ for some $b \in G$. Now, $Rb = \varphi(b^{-1}w) = \varphi(a^{-1}w + w) = \varphi(a^{-1}w) \cap \varphi(w) = Ra \cap R$.

The condition (f1) is true, and so we get groupoid $\mathbf{Q} = \mathbf{Q}(+)$ due to 4.1.

Lemma 6.1.2. φ is an isomorphism of S(+) onto $\mathbf{Q}(+)$.

Proof. Since φ is a bijection, we have to show that φ is a homomorphism of the additive structures. For, let $u, v \in S$. We have $\varphi(o_S) = \emptyset$, and hence $\varphi(u+v) = \emptyset = \varphi(u) + \varphi(v)$, provided that either u = o or v = o. Now, assume $u \neq o \neq v$. Then u = aw and v = bw, $a, b \in G$.

Firstly, let $u + v \neq o$. If $R \cap a^{-1}bR \neq \emptyset$, then $cw \leq_S u$ and $cw \leq_S v$ for some $c \in G$ by 5.17(ii) and it follows that u + v = o, a contradiction. Thus $R \cap a^{-1}bR = \emptyset$, $Ra^{-1} + Rb^{-1} = Ra^{-1} \cap Rb^{-1} \neq \emptyset$ in $\mathbf{Q}(+)$ and we get $\varphi(u + v) = \varphi(u) \cap \varphi(v) = Ra^{-1} \cap Rb^{-1} = Ra^{-1} + Rb^{-1} = \varphi(u) + \varphi(v)$.

Next, let u + v = o. Then $R \cap a^{-1}bR \neq \emptyset$ by 5.18, and therefore $\varphi(u + v) = \varphi(o) = \emptyset = Ra^{-1} + Rb^{-1} = \varphi(u) + \varphi(v)$, too.

Lemma 6.1.3. The condition (f2) is satisfied.

Proof. By 6.1.2, S(+) is isomorphic to $\mathbf{Q}(+)$. Consequently, $\mathbf{Q}(+)$ is a semigroup and (f2) follows by 4.1.3.

Lemma 6.1.4. Q is a non-trivial transitive zs-semimodule and $\varphi : S \to \mathbf{Q}$ is an isomorphism of the semimodules.

Proof. See 4.1, 6.1.2 and 6.1.3.

Lemma 6.1.5. The conditions (f3) and (f4) are satisfied.

Proof. By 6.1.4, $\mathbf{Q} \cong S$ is a non-trivial zs-semimodule. Now, (f3) follows from 4.1.4 and (f4) is clear from 4.1.6 and 5.11(ii).

Theorem 6.1.6. The conditions (f1), (f2), (f3) and (f4) are satisfied (see 4.1) and the semimodules S and Q(G, R) are isomorphic.

Proof. See 6.1.2, ..., 6.1.5.

6.2. Let S be a non-trivial transitive zp-semimodule over a group G such that S is upwards-regular and balanced. By 2.7 and 2.8, S is ideal-simple, $\operatorname{Ann}_{S}(S) = \{o_{S}\}$ and S + S = S, i.e., S is a zs-semimodule.

Now, choose $w \in S$, $w \neq o_S$, and put $R = R_{2,w} = \{a \in G \mid aw \dashv_S w\}$ and $\psi = \psi_w$, where $\psi_w(v) = \{a \in G \mid av \dashv_S w\}$ for every $v \in S$. According to 5.2(iii), 5.5 and 5.12, R is a subsemigroup of the group G, $1 \in R$ and ψ is a projection of S onto $\mathbf{Q} = \mathbf{Q}(G, R)$ such that $\ker(\psi) = \pi_S$ and $u \dashv_S v$ iff $\psi(v) \subseteq \psi(u)$. Moreover, by 5.9 and 5.15, $\psi(av) = \psi(v)a^{-1}$, $\psi(aw) = Ra^{-1}$, $a \in G$, and if $u, v \in S$ are such that $u + v \neq o_S$, then $\psi(u + v) = \psi(u) \cap \psi(v)$.

Lemma 6.2.1. The condition (f1) (see 4.1) is satisfied.

Proof. Similar to that of 6.1.1 (use 5.20).

The condition (f1) is true, and so we get the groupoid $\mathbf{Q} = \mathbf{Q}(+)$ due to 4.1.

Lemma 6.2.2. ψ is a homomorphism of S(+) onto $\mathbf{Q}(+)$.

Proof. We have to show that ψ is a homomorphism of the additive structures. For, let $u, v \in S$. We have $\psi(o_S) = \emptyset$, and hence $\psi(u + v) = \emptyset = \psi(u) + \psi(v)$, provided that either u = o or v = o. Now, assume that $u \neq o \neq v$. Then u = aw and v = bw, $a, b \in G$.

Firstly, let $u + v \neq o$. If $R \cap a^{-1}bR \neq \emptyset$, then $cw \dashv_S u$ and $cw \dashv_S v$ for some $c \in G$ by 5.19(ii). Consequently, $\operatorname{Ann}_S(cw) \subseteq \operatorname{Ann}_S(u) \cap \operatorname{Ann}_S(v)$, $cw \in \operatorname{Ann}_S(cw)$ implies cw + u = o, $u \in \operatorname{Ann}_S(cw)$ and, finally, $u \in \operatorname{Ann}_S(v)$, u + v = o, a contradiction. Thus $R \cap a^{-1}bR = \emptyset$, $Ra^{-1} + Rb^{-1} = Ra^{-1} \cap Rb^{-1} \neq \emptyset$ in $\mathbf{Q}(+)$ and we get $\psi(u + v) = \psi(u) \cap \psi(v) = Ra^{-1} \cap Rb^{-1} = Ra^{-1} + Rb^{-1} = \psi(u) + \psi(v)$.

Next, let u + v = o. Then $R \cap a^{-1}bR \neq \emptyset$ by 5.20, and therefore $\psi(u + v) = \psi(o) = \emptyset = Ra^{-1} + Rb^{-1} = \psi(u) + \psi(v)$, too.

Lemma 6.2.3. The condition (f2) is satisfied.

Proof. By 6.2.2, $\mathbf{Q}(+)$ is a homomorphic image of S(+). Consequently, $\mathbf{Q}(+)$ is a semigroup and (f2) follows by 4.1.3.

Lemma 6.2.4. Q is a non-trivial transitive zs-semimodule and $\psi : S \to \mathbf{Q}$ is a projective homomorphism of the semimodules.

Proof. We have $\pi_S \neq S \times S$, and hence **Q** is non-trivial. The rest is clear from 4.1, 6.2.2 and 6.2.3.

Lemma 6.2.5. The conditions (f3) and (f5) are satisfied.

Proof. By 6.2.4, **Q** is a non-trivial zs-semimodule and (f3) follows from 4.1.4. Now, consider the condition (f5). According to 4.1.9 and 4.1.5(v), it suffices to show that $Rb \subseteq Ra$ whenever $a, b \in G$ are such that $Ra \dashv_{\mathbf{Q}} Rb$. We have $Ra = \psi(u)$ and $Rb = \psi(v), u = a^{-1}w, v = b^{-1}w$. If $z \in \operatorname{Ann}_{S}(u)$, then $\psi(z) \in \operatorname{Ann}_{\mathbf{Q}}(Ra)$, and so $\psi(z) \in \operatorname{Ann}_{\mathbf{Q}}(Rb)$ and $\psi(z+v) = \psi(z) + \psi(v) = \emptyset (= o_{\mathbf{Q}})$. Thus $(z+v, o_{S}) \in \pi_{S}$, $z+v \in \operatorname{Ann}_{S}(S) = \{o_{S}\}, z+v = o_{S}$ and $z \in \operatorname{Ann}_{S}(v)$. It follows that $u \dashv_{S} v$ and $Rb = \psi(v) \subseteq \psi(u) = Ra$ by 5.12.

Theorem 6.2.6. The conditions (f1), (f2), (f3) and (f5) are satisfied and there exists a projection of the semimodule S onto the semimodule $\mathbf{Q}(G, R)$. This projection is an isomorphism if and only if S is separable.

Proof. See 6.2.1, ..., 6.2.5.

References

- R. El Bashir and T. Kepka, Commutative semigroups with few invariant congruences, Semigroup Forum 64 (2002), 453-471. Zbl 0996.20042
- [2] V. Flaška and T. Kepka, Commutative zeropotent semigroups, Acta Univ. Carolinae 47/1 (2006), 3-14. Zbl pre05258249

[4] J. Ježek and T. Kepka, Medial groupoids, Rozpravy ČSAV 93 (1983), 93pp. Zbl 0527.20044

[5] M. Maróti, Semilattices with a group of automorphisms, Algebra Univ. 38 (1997), 238-265.
 Zbl 0934.08001

[6] S. H. McCleary, o-Primitive ordered permutation groups, Pacific J. Math. 40 (1972), 349-372.
[7] S. H. McCleary, o-Primitive ordered permutation groups (II), Pacific J. Math. 49 (1973), 431-445.

 ^[3] J. Ježek, Simple semilattices with two commuting automorphisms, Algebra Univ. 15 (1982), 162-175. Zbl 0512.06006

MFF UK, Sokolovská 83, Praha 8, 186 75, Czech Republic bashir@karlin.mff.cuni.cz kepka@karlin.mff.cuni.cz