COMMUTATIVE ZEROPOTENT SEMIGROUPS WITH FEW INVARIANT CONGRUENCES

ROBERT EL BASHIR AND TOMÁŠ KEPKA

Abstract

Commutative semigroups satisfying the equation $2 x+y=2 x$ and having only two G-invariant congruences for an automorphism group G are considered. Some classes of these semigroups are characterized and some other examples are constructed.

Every congruence-simple (i.e., possesing just two congruence relations) commutative semigroup is finite and either two-element or a group of prime order. The class of (non-trivial) commutative semigroups having only trivial invariant congruences is considerably more opulent. These semigroups are easily divided into four pair-wise disjoint subclasses (see 1.3). The fourth one contains commutative semigroups that are nil of index two and have no irreducible elements. This subclass is enigmatic a bit and it is the purpose of the present note to construct various examples of the indicated semigroups (called zs-semigroups in the sequel). Among others, we show that if S is a non-trivial commutative zs-semigroup without nontrivial invariant congruences, then the group of automorphisms of S contains a non-commutative free subsemigroup.

1. Introduction

Let G be a multiplicative group. By a (unitary left G-) semimodule we mean a commutative semigroup $S(=S(+))$ together with a G-scalar multiplication $G \times$ $S \rightarrow S$ such that $a(x+y)=a x+a y, a(b x)=(a b) x$ and $1 x=x$ for all $a, b \in G$ and $x, y \in S$.

Let S be a semimodule. An element $w \in S$ is called absorbing if $G w=w=S+w$. There exists at most one absorbing element in S and, if it exists, it will usually be denoted by the symbol o_{S} (or only o); we will also write $o \in S$.

A non-empty subset I of S is an ideal if $G I \subseteq I$ and $S+I \subseteq I$. The semimodule S will be called ideal-simple (or only id-simple) if $|S| \geq 2$ and $I=S$ whenever I is an ideal of S such that $|I| \geq 2$.
Lemma 1.1. Let S be a semimodule and $w \in S$. The one-element set $\{w\}$ is an ideal of S if and only if $w=o_{S}$ is an absorbing element of S.

Proof. Obvious.
A semimodule S will be called congruence-simple (or only cg-simple) if S has just two congruence relations (i.e., equivalences compatible with the addition and the scalar multiplication).
Proposition 1.2. Every cg-simple semimodule is id-simple.

[^0]Proof. If S is cg-simple, then S is non-trivial and, if I is an ideal of S, then $r=$ $(I \times I) \cup \mathrm{id}_{S}$ is a congruence of S. Now, either $r=\operatorname{id}_{S}$ and $|I|=1$ (see 1.1) or $r=S \times S$ and $I=S$. Thus S is id-simple.

Let S be a (commutative) semigroup/semimodule. We will say that S is

- a semigroup/semimodule with zero addition (a za-semigroup/za-semimodule) if $|S+S|=1$ (then $o \in S$ and $S+S=o$);
- a zeropotent semigroup/semimodule (a zp-semigroup/zp-semimodule) if $2 x+$ $y=2 x$ for all $x, y \in S$ (then $o \in S$ and $2 x=o$);
- a zp-semigroup/zp-semimodule without irreducible elements (a zs-semigroup/zssemimodule) if S is a zp-semigroup/zp-semimodule and $\mathrm{S}=\mathrm{S}+\mathrm{S}$;
- idempotent if $x+x=x$ for every $x \in S$;
- cancellative if $x+y \neq x+z$ for all $x, y, z \in S, y \neq z$.

The following basic classification of cg-simple semimodules is given in [1]:
Theorem 1.3. Let S be a cg-simple semimodule. Then just one of the following four cases takes place:
(1) S is a two-element za-semimodule;
(2) S is idempotent;
(3) S is cancellative;
(4) S is a zs-semimodule.

There exists only one two-element za-semimodule up to isomorphism. Cg-simple idempotent semimodules over a commutative group are fully characterized in [1] (see also [3], [4] and [5]) and cg-simple chains (and the corresponding groups) are studied in [6] and [7]. Some information on cg-simple cancellative semimodules is also available from [1] and various examples of non-trivial commutative zs-semigroups are collected in [2]. The aim of this note is to initiate a study of cg-simple zssemimodules. The following starting result restricts our choice of groups in the zeropotent case:

Proposition 1.4. Let no subsemigroup of a group G be a free semigroup of rank (at least) 2. Then there exist no cg-simple zs-semimodules over G.

Proof. Let S be a non-trivial zs-semimodule and let $x, y, z \in S$ be such that $x=$ $y+z \neq o$. Denote by A (B, resp.) the set of $a \in G$ ($b \in G$, resp.) such that $a x=y$ or $a x+v=y, v \in S(b x=z$ or $b x+v=z$, resp. $)$. Then $A \cap B=\emptyset$, $A A \cup A B \subseteq A$ and $B B \cup B A \subseteq B$. Now, if $a \in A$ and $b \in B$, then the subsemigroup of G generated by $\{a, b\}$ is free, a contradiction. Thus either $A=\emptyset$ or $B=\emptyset$ and we will assume $A=\emptyset$, the other case being similar.

Put $I=G x \cup(G x+S)$. Then I is an ideal of $S, y \notin I$ and $I \neq S$. On the other hand, $\{x, o\} \subseteq I$ and $|I| \geq 2$. Consequently, the semimodule S is not id-simple and, according to 1.2 , it is not cg-simple either.

Notice that among the groups from 1.4 we find all periodic groups and all locally nilpotent groups (but not all metabelian groups).

Now, let R be a subsemigroup of a group G and let $\mathbf{M}=\{A \mid A \subseteq G, A \neq$ $\emptyset, A R \subseteq A\}$. The set \mathbf{M} is closed under unions and non-empty intersections, $R \in \mathbf{M}$ and $G \in \mathbf{M}$. Now, we define an addition + on \mathbf{M} by $A+B=A \cup B$ if $A \cap B=\emptyset$ and $A+B=G$ otherwise.

Lemma 1.5. $\mathbf{M}(+)$ is a commutative zp-semigroup and $o_{\mathbf{M}}=G$.
Proof. Easy to check.
Moreover, we define a scalar multiplication on \mathbf{M} by $(a, A) \rightarrow a A=\{a x \mid x \in A\}$, $a \in G, A \in \mathbf{M}$.

Lemma 1.6. \mathbf{M} is a zp-semimodule over the group G.
Proof. Easy to check.
Define a relation ξ on \mathbf{M} by $(A, B) \in \xi$ iff $\{M \in \mathbf{M} \mid A \cap M=\emptyset\}=\{M \in$ $\mathbf{M} \mid B \cap M=\emptyset\}$.

Lemma 1.7. ξ is a congruence of the semimodule \mathbf{M}.
Proof. Easy to check.
Lemma 1.8. Let η be a congruence of \mathbf{M} such that $\xi \subseteq \eta$ and $(R, G) \in \eta$. Then $\eta=\mathbf{M} \times \mathbf{M}$.

Proof. Clearly, $(x R, G)=(x R, x G) \in \eta$ for every $x \in G$. Let $A \in \mathbf{M}$ and $a \in A$. If $a R \cap B \neq \emptyset$ for every $B \in \mathbf{M}$ such that $B \subseteq A$, then $(a R, A) \in \xi \subseteq \eta$, and so $(A, G) \in \eta$. On the other hand, if $B \in \mathbf{M}$ is maximal with respect to $B \subseteq A$ and $a R \cap B=\emptyset$, then $(A, B \cup a R) \in \xi$. Since $(G, B \cup a R) \in \eta$, we get $(A, G) \in \eta$ again.

Lemma 1.9. $(R, G) \in \xi$ if and only if $G=R R^{-1}$ (then R is right uniform).
Proof. If $(R, G) \in \xi$, then $R \cap A \neq \emptyset$ for every $A \in \mathbf{M}$. In particular, $R \cap x R \neq \emptyset$ for every $x \in G$, and hence $x \in R R^{-1}$. To show the other implication, we just proceed conversely.

Lemma 1.10. (i) If R is not right uniform, then $(R, G) \notin \xi$.
(ii) If G is not generated by R, then $(R, G) \notin \xi$.

Proof. (i) There exist $a, b \in R$ such that $a R \cap b R=\emptyset$. Then $R \cap a^{-1} b R=\emptyset$, $a b^{-1} R \in \mathbf{M}$ and, of course, $G \cap a^{-1} b R=a^{-1} b R \neq \emptyset$. Thus $(R, G) \notin \xi$.
(ii) Use 1.9.

Lemma 1.11. Assume that R is not right uniform. Then $(R, G) \notin \xi$ and, if κ is a congruence of \mathbf{M} maximal with respect to $\xi \subseteq \kappa$ and $(R, G) \notin \kappa$, then $\mathbf{N}=\mathbf{M} / \kappa$ is a cg-simple zs-semimodule.

Proof. \mathbf{N} is non-trivial and it follows readily from 1.8 that \mathbf{N} is a cg-simple zpsemimodule. Since R is not right uniform, there are right ideals A and B of R such that B is maximal with respect to $A \cap B=\emptyset$. Then $A+B=A \cup B$, $(A \cup B, R) \in \xi \subseteq \kappa,(A \cup B, G) \notin \kappa$ and $A / \kappa+B / \kappa \neq o_{\mathbf{N}}$. Thus \mathbf{N} is not a za-semimodule, and hence \mathbf{N} is a zs-semimodule by 1.3.

Proposition 1.12. If R is not right uniform, then a factorsemimodule of \mathbf{M} is a congruence-simple zs-semimodule.

Proof. See 1.11.
Theorem 1.13. There exists at least one cg-simple zs-semimodule over G if and only if the group G contains at least one subsemigroup that is a free semigroup of rank (at least) 2.

Proof. The direct implication is shown in 1.4. As concerns the inverse implication, the existence of cg-simple zs -semimodule is shown in 1.12 .

2. BASIC PROPERTIES OF ZEROPOTENT SEMIMODULES

Throughout this secion, let S be a zp-semimodule over a group G. Firstly, define a relation \preceq_{S} on S by $x \preceq_{S} y$ if and only if $x=y$ or $y=x+v$ for some $v \in S$.

Lemma 2.1. (i) The relation \preceq_{S} is an ordering compatible with the addition and scalar multiplication.
(ii) o_{S} is a greatest element of the ordered set $\left(S, \preceq_{S}\right)$.
(iii) If $|S| \geq 2$, then $S \backslash(S+S)$ is the set of minimal elements of $\left(S, \preceq_{S}\right)$.
(iv) If $x, y, z \in S$ are such that $x \preceq_{S} y$ and $x \preceq_{S} z$, then $y+z=o$.

Proof. Easy.
Proposition 2.2. Assume that S is a non-trivial zs-semimodule. Then:
(i) The ordered set $\left(S, \preceq_{S}\right)$ has no minimal elements.
(ii) $S(+)$ is not finitely generated (and hence S is infinite).

Proof. (i) This follows immediately from 2.1(iii).
(ii) If $S(+)$ were generated by s finite number m of elements, then S should contain at most 2^{m} elements, a contradiction with (i).

Lemma 2.3. The following conditions are equivalent:
(i) If $x, y, z, u, v \in S$ are such that $x+y \neq o \neq z$ and $x+u=z=y+v$, then either $z=x+y$ or $z=x+y+w$ for some $w \in S$.
(ii) If $x, y, z \in S$ are such that $x+y \neq o \neq z$ and $x \preceq_{S} z, y \preceq_{S} z$, then $x+y \preceq_{S} z$.
(iii) If $x, y \in S$ are such that $x+y \neq o$, then $x+y=\sup (x, y)$ in $\left(S, \preceq_{S}\right)$.

Proof. Easy.
The semimodule S will be called downwards-regular if the equivalent conditions of 2.3 are satisfied.

For every $x \in S$, let $\operatorname{Ann}_{S}(x)=\{y \in S \mid x+y=o\}$. Further, let $\operatorname{Ann}_{S}(S)=$ $\{x+S \mid S+x=o\}$.

Lemma 2.4. (i) For every $x \in S$, the annihilator $\operatorname{Ann}_{S}(x)$ is an ideal of the additive semigroup $S(+)$.
(ii) $\operatorname{Ann}_{S}(S)$ is an ideal of the semimodule S.

Proof. Obvious.
Define a relation \dashv_{S} on S by $x \dashv_{S} y$ if and only if $\operatorname{Ann}_{S}(x) \subseteq \operatorname{Ann}_{S}(y)$.
Lemma 2.5. (i) The relation \dashv_{S} is a quasiordering compatible with the addition and scalar multiplication.
(ii) If $x \preceq_{S} y$, then $x \dashv_{S} y$.
(iii) $\pi_{S}=\operatorname{ker}\left(\dashv_{S}\right)$ is a congruence of the semimodule S.
(iv) $\pi_{S}=S \times S$ if and only if S is a za-semimodule.

Proof. Easy.

The semimodule S will be called separable if $\pi_{S}=\mathrm{id}_{S}$.
The semimodule S will be called upwards-regular if $\operatorname{Ann}_{S}(x+y) \subseteq \operatorname{Ann}_{S}(z)$ whenever $x, y, z \in S$ are such that $x+y \neq o \neq z$ and $\operatorname{Ann}_{S}(x) \cup \operatorname{Ann}_{S}(y) \subseteq \operatorname{Ann}_{S}(z)$.

In the sequel, let $\tau_{S}=\{(x, y) \in S \times S \mid x+y \neq o\}$ and $\sigma_{S}=\{(x, y) \mid x+y=$ $o\}=S \times S \backslash \tau_{S}$. Further, define μ_{S} (ν_{S}, resp.) by $(x, y) \in \mu_{S}\left((x, y) \in \nu_{S}\right.$, resp.) if and only if $z \preceq_{S} x, z \preceq_{S} y\left(z \dashv_{S} x, z \dashv_{S} y\right.$, resp.) for at least one $z \in S$.

Lemma 2.6. (i) The relations $\tau_{S}, \sigma_{S}, \mu_{S}$ and ν_{S} are symmetric.
(ii) The relations σ_{S}, μ_{S} and ν_{S} are reflexive.
(iii) τ_{S} is irreflexive.
(iv) $\pi_{S} \subseteq \sigma_{S}$.
(v) $\mu_{S} \subseteq \nu_{S} \subseteq \sigma_{S}$.

Proof. Easy.
The semimodule S will be called (strongly) balanced if $\sigma_{S}=\nu_{S}\left(\sigma_{S}=\mu_{S}\right)$.
The semimodule S will be called transitive if the group G operates transitively on the set $S \backslash\left\{o_{S}\right\}$.

Proposition 2.7. If S is non-trivial and transitive, then S is id-simple.
Proof. Easy.
Proposition 2.8. Assume that S is id-simple and either $S+S \neq S$ or $\operatorname{Ann}_{S}(S) \neq$ $\left\{o_{S}\right\}$. Then:
(i) $S+S=\left\{o_{S}\right\}, \operatorname{Ann}_{S}(S)=S$ and S is a $z a$-semimodule.
(ii) $x \preceq_{S} y$ if and only if either $x=y$ or $y=o_{S}$.
(iii) $\pi_{S}=S \times S=\dashv_{S}$.
(iv) G operates transitively on $R=S \backslash\left\{o_{S}\right\}$ (i.e., S is transitive).
(v) $\nu_{S}=(R \times R) \cup \mathrm{id}_{S}$ is a congruence of S.
(vi) G operates primitively on R if and only if id_{S}, ν_{S} and $S \times S$ are the only congruences of S.
Proof. Easy.
Proposition 2.9. Assume that S is cg-simple and $|S| \geq 3$. Then:
(i) $\operatorname{Ann}_{S}(S)=\left\{o_{S}\right\}$ and S is separable.
(ii) \dashv_{S} is a compatible ordering of S.

Proof. It follows from 2.5 (iii) that either $\pi_{S}=S \times S$ or $\pi_{S}=\operatorname{id}$. If $\pi_{S}=S \times S$, then S is a za-semimodule by $2.5(\mathrm{iv})$ and S is id-simple by 1.2. Now, it follows from $2.8(\mathrm{v})$ that $|R|=1$ and $|S|=2$, a contradiction. Consequently, $\pi_{S}=\mathrm{id}_{S}$ and \dashv_{S} is transitive. The rest follows from 2.5.

Proposition 2.10. Assume that $|S| \geq 3$. Then S is cg-simple if and only if S is separable and id-simple.

Proof. The direct implication follows from 1.2 and 2.9. Now, assume that S is separable and id-simple.

Let r be a congruence of S and $I=\{x \mid(x, o) \in r\}$. Then I is an ideal of S and $r=S \times S$, provided that $I=S$.

Let $(x, y) \in r, x \neq y$. Since S is separable, $(x, y) \notin \pi_{S}$ and we can assume that $x \dashv_{S} y$ is not true. Then $\operatorname{Ann}_{S}(x) \nsubseteq \operatorname{Ann}_{S}(y)$ and there is $z \in S$ such that $x+z=o \neq y+z$. Now, $y+z \in I, I \neq\{o\}, I=S$, since S is id-simple, and $r=S \times S$.

Proposition 2.11. Assume that S is transitive and $|S| \geq 3$. The following conditions are equivalent:
(i) S is cg-simple.
(ii) S is separable.

Proof. (i) implies (ii) by 2.9 (i) and (ii) implies (i) by 2.7 and 2.10 .
Proposition 2.12. Assume that S is id-simple, take $w \in S, w \neq o$, and consider a congruence r of S maximal with respect to $(w, o) \notin r$. Then S / r is a cg-simple $z p$-semimodule.

Proof. Clearly, $T=S / r$ is a non-trivial zp-semimodule. Now, let s be a congruence of S such that $r \subseteq s, r \neq s$, and put $I=\{x \in S \mid(x, o) \in s\}$. Then I is an ideal of S and $\{o, w\} \subseteq I$. Thus $I=S$, since S is id-simple, and we conclude that $s=S \times S$. It follows easily that T is cg-simple.

Corollary 2.13. Assume that S is id-simple and $S+S \neq\left\{o_{S}\right\}$. Then at least one factorsemimodule of S is a cg-simple zs-semimodule.

Corollary 2.14. Assume that S is transitive and $S+S \neq\left\{o_{S}\right\}$. Then at least one factorsemimodule of S is a cg-simple zs-semimodule.

3. Examples of congruence-simple Zs-SEmimodules

Example 3.1. Let S be a non-trivial commutative zs-semigroup and $G=\operatorname{Aut}(S)$ (the automorphism group of S). Then S becomes a G-semimodule. If S is separable and G operates transitively on $S \backslash\left\{o_{S}\right\}$, then S is cg-simple semimodule.

Example 3.2. Let (R, \leq) be a non-empty ordered set together with an irreflective and symmetric relation τ defined on R. For $x, y \in R$, let $x \vee y=\sup (x, y)$, provided that this supremum exists. Now, assume that the following three conditions are satisfied:
(α) If $x, y \in R$ are such that $(x, y) \in \tau$, then $x \vee y$ exists;
(β) If $(x, y) \in \tau$ and $(z, x \vee y) \in \tau$, then $(x, z) \in \tau$ and $(y, x \vee z) \in \tau$;
(γ) For every $x \in R$ there exist $y, z \in R$ such that $(y, z) \in \tau$ and $x=y \vee z$.
Further, let $o \notin R, S=R \cup\{o\}, x+y=x \vee y$ if $x, y \in R,(x, y) \in \tau$ and $x+y=o$ otherwise. Then $S(=S(+))$ becomes a commutative zs-semigroup.

Let G be a group operating on R (i.e., a mapping $G \times R \rightarrow R$ is defined such that $a(b x)=(a b) x$ and $1 x=x)$ and assume that $(a x, a y) \in \tau$ for every $(x, y) \in \tau$ and that $u \leq v$ implies $a u \leq a v$. Then $a x \vee a y=a(x \vee y)$ for $(x, y) \in \tau$ and S becomes a G-semimodule $(a o=o)$. If G operates transitively on R, then S is a transitive semimodule. In such a case, by 2.14, at least one factorsemimodule of S is a cg-simple zs-semimodule. Furthermore, if S is transitive, then S is cg-simple iff it is separable (2.11). Finally, S is separable iff the following two conditions are satisfied:
(δ) For every $x \in R$ there exists $y \in R$ with $(x, y) \in \tau$;
(ϵ) For all $x, y \in R, x \neq y,(x, y) \notin \tau$, there exists $z \in R$ such that either $(x, z) \in \tau,(y, z) \notin \tau$ or $(x, z) \notin \tau,(y, z) \in \tau$.
(Notice that (δ) is true, provided that S is transitive.)

Example 3.3. (cf. 3.2). Let $T(=T(\wedge, \vee))$ be a distributive lattice with a smallest element 0_{T} and a greatest element 1_{T} such that $|T| \geq 3$. Consider the basic order \leq defined on T and also the ordered set $(R, \leq), R=T \backslash\left\{0_{T}, 1_{T}\right\}$. Assume that the following two conditions are satisfied:
(μ) If $x, y \in R$ and $x \wedge y=0_{T}$, then $x \vee y \neq 1_{T}$;
(ν) For every $x \in R$ there exist $y, z \in R$ such that $y \wedge z=0_{T}$ and $y \vee z=x$.
Put $S=T \backslash\left\{1_{T}\right\}$ and define an addition on S by $x+y=x \vee y$ if $x \wedge y=0_{T}$ and $x+y=1_{T}$ otherwise. Then $S(=S(+))$ is a commutative zs-semigroup. Further, let a group G operate on $R(a(b x)=(a b) x$ and $1 x=x)$ in such a way that $x \leq y$ implies $a x \leq a y$. Then S becomes a G-semimodule $\left(a 1_{T}=1_{T}\right)$. If G operates transitively on R, then S is a cg-simple zs-semimodule iff the following is true:
(σ) For all $x, y \in R, x \neq y, x \wedge y \neq 0_{T}$, there exists $z \in R$ such that either $x \wedge z=0_{T} \neq y \wedge z$ or $x \wedge z \neq 0_{T}=y \wedge z$.

Example 3.4. Let I be an infinite set with $|I| \geq \aleph_{1}$ and let \aleph be an infinite cardinal number such that $\aleph<|I|$. Denote by J the set $\{A|A \subseteq I,|A|=\aleph\} \cup\{I\}$ and define an operation \oplus on \mathbf{J} by $A \oplus B=A \cup B$ if $A \cap B=\emptyset$ and $A \oplus B=I$ otherwise. Then \mathbf{J} is a non-trivial commutative zs-semigroup and \mathbf{J} becomes a G-semimodule, $G=\operatorname{Aut}(\mathbf{J}(\oplus))$. It is easy to check that the semimodule \mathbf{J} is transitive, separable and upwards-regular, but neither downwards-regular non balanced. By 2.11, \mathbf{J} is cg-simple.

Example 3.5. Let I be an infinite set, \mathbf{K} a (non-principal) maximal ideal of the Boolean algebra of subsets of I such that $K \in \mathbf{K}$ for every $K \subseteq I,|K|=|I|$, and let $\mathbf{L}=\{A \in \mathbf{K}| | A|=|I|\} \cup\{I\}$. Define an addition \oplus on \mathbf{L} by $A \oplus B=A \cup B$ if $A \cap B=\emptyset$ and $A \oplus B=I$ otherwise and put $G=\operatorname{Aut}(\mathbf{L}(\oplus))$. Then $\mathbf{L}(=\mathbf{L}(\oplus))$ is a non-trivial separable commutative zs-semigroup and G operates transitively on $\mathbf{L} \backslash\{o\}$. Consequently, \mathbf{L} is a cg-simple zs-semimodule over G.

Example 3.6. Let I be an infinite set and \mathbf{I} the set of infinite subsets of I. Define an operation \boxplus on \mathbf{I} by $A \boxplus B=A \cup B$ if $A \cap B$ is finite and $A \boxplus B=I$ otherwise. Then $\mathbf{I}(=\mathbf{I}(\boxplus))$ is a non-trivial commutative zs-semigroup and r is a congruence of \mathbf{I}, where $(A, B) \in r$ iff the symmetric difference $(A \cup B) \backslash(A \cap B)$ is finite. Then $\mathbf{J}=\mathbf{I} / r$ is a non-trivial (commutative) zs-semigroup. Moreover, if $|I|=\aleph_{0}$ and $G=\operatorname{Aut}(\mathbf{J})$, then \mathbf{J} is a separable, upwards- and downwards-regular transitive G-semimodule (\mathbf{J} is not balanced). Consequently, \mathbf{J} is a cg-simple zs-semimodule.

Assume that $|I| \geq \aleph_{1}$ and put $\mathbf{P}=\left\{A \in \mathbf{I}| | A \mid=\aleph_{0}\right\} \cup\{I\}$. Then \mathbf{P} is a subsemigroup of \mathbf{I} and $\mathbf{Q}=\mathbf{P} / r$ is a non-trivial (commutative) zs-semigroup. Moreover, if $H=\operatorname{Aut}(\mathbf{Q})$, then \mathbf{Q} is a transitive H-semimodule and it is easy to check that \mathbf{Q} is an upwards- and downwards-regular strongly balanced cg-simple zs-semimodule.

4. Fractional Left ideals and zeropotent semimodules

In this section, let R be a subsemigroup of a group G such that $1 \in R$. We denote by $\mathbf{F}(=\mathbf{F}(G, R))$ the set of fractional left R-ideals of G. That is, $A \in \mathbf{F}$ iff $A \subseteq G$, $A \neq \emptyset, R A \subseteq A$ and $A \subseteq R a$ for some $a \in G$. The set $(\mathbf{G}(G, R)=) \mathbf{G}=\mathbf{F} \cup\{\emptyset\}$ is closed under arbitrary intersections and G operates on \mathbf{G} via $a * A=A a^{-1}, A \in \mathbf{G}$, $a \in G$. The set $(\mathbf{P}(G, R)=) \mathbf{P}=\{R a \mid a \in G\}$ of principal fractional left R-ideals
is contained in \mathbf{F} and we put $(\mathbf{Q}(G, R)=) \mathbf{Q}=\mathbf{P} \cup\{\emptyset\}$. Notice that G operates transitively on \mathbf{P}.
Construction 4.1. Assume that the following condition is satisfied:
(f1) If $a \in G$ is such that $R \cap a R=\emptyset$, then $R \cap R a=R b$ for some $b \in G$ (then $b \in R)$.

Now, define an addition on the set \mathbf{Q} in the following way:
(1) $R a+R b=R a \cap R b$ for all $a, b \in G$ such that $R \cap a b^{-1} R=\emptyset$ (by (f1), we have $R a \cap R b \in \mathbf{P}$);
(2) $R a+R b=\emptyset$ for all $a, b \in G$ such that $R \cap a b^{-1} R \neq \emptyset$;
(3) $R a+\emptyset=\emptyset=\emptyset+R a$ for every $a \in G$;
(4) $\emptyset+\emptyset=\emptyset$.

Now, we have obtained a groupoid $\mathbf{Q}=\mathbf{Q}(+)$.
Lemma 4.1.1. $A+B=B+A, A+A=\emptyset$ and $A+\emptyset=\emptyset$ for all $A, B \in \mathbf{Q}$.
Proof. Obvious.
Lemma 4.1.2. For every $a \in G$, the transformation $A \rightarrow a * A\left(=A a^{-1}\right)$ is an automorphism of $\mathbf{Q}(+)$.

Proof. Easy to check.
Lemma 4.1.3. \mathbf{Q} is a semigroup if and only if the following condition is satisfied:
(f2) If $a, b, c \in G$ are such that $R \cap a R=\emptyset=R \cap b c^{-1} R$ and $R \cap R a=R c$, then $R \cap d R=\emptyset=R \cap a b^{-1} R$, where $R a \cap R b=R d$.

Proof. (i) Let $\mathbf{Q}(+)$ be associative. Then $(R+R a)+R b=R+(R a+R b)$. But $(R+R a)+R b=(R \cap R a)+R b=R c+R b=R c \cap R b=R \cap R a \cap R b \neq \emptyset$, and hence $R \cap a b^{-1} R=\emptyset, R a \cap R b=R d$ by (f1), $R+R d \neq \emptyset$ and $R \cap d R=\emptyset$.
(ii) Let (f2) be satisfied. Firstly, if $a, b \in G$ are such that $(R+R a)+R b \neq \emptyset$, then (f2) implies $(R+R a)+R b=R+(R a+R b)$. Next, if $a, b, c \in G$ are such that $(R a+R b)+R c \neq \emptyset$, then $\left(R+R b a^{-1}\right)+R c a^{-1}=a *((R a+R b)+R c) \neq \emptyset$, and hence $\left(R+R b a^{-1}\right)+R c a^{-1}=R+\left(R b a^{-1}+R c a^{-1}\right)=a *(R a+(R b+R c))$. Consequently, $(R a+R b)+R c=a^{-1} *(a *((R a+R b)+R c))=a^{-1} *(a *(R a+(R b+$ $R c))=R a+(R b+R c)$. Finally, if $a, b, c \in G$ are such that $R a+(R b+R c) \neq \emptyset$, then $(R c+R b)+R a=R a+(R b+R c) \neq \emptyset$, and therefore $R a+(R b+R c)=$ $(R c+R b)+R a=R c+(R b+R a)=(R a+R b)+R c$ by the commutativity of the addition and the preceding part of the proof. The rest is clear.

Assume that (f2) is true. It follows from 4.1.1, 4.1.2 and 4.1.3 that \mathbf{Q} becomes non-trivial transitive zp-semimodule over the group G.

Lemma 4.1.4. \mathbf{Q} is a (non-trivial) zs-semimodule if and only if the following condition is satisfied:
(f3) $R \cap a R=\emptyset$ for at least one $a \in G$.
Proof. Use the transitivity of \mathbf{Q}.
Proposition 4.1.5. Assume that the conditions (f1), (f2) and (f3) are satisfied. Then:
(i) $\mathbf{Q}=\mathbf{Q}(+, *)$ is a non-trivial transitive zs-semimodule over G.
(ii) \mathbf{Q} is ideal-simple.
(iii) If $R a \preceq_{\mathbf{Q}} R b$, then $R b \subseteq R a$.
(iv) $\operatorname{Ann}_{\mathbf{Q}}(R a)=\left\{R b \mid R \cap a b^{-1} R \neq \emptyset\right\} \cup\{\emptyset\}$.
(v) If $R b \subseteq R a$, then $R a \dashv_{\mathbf{Q}} R b$.
(vi) $\mathrm{Ann}_{\mathbf{Q}}(\mathbf{Q})=\{\emptyset\}$.
(vii) \mathbf{Q} is balanced.

Proof. See 4.1.1, 4.1.2, 4.1.3 and 4.1.4 to show (i), ..., (vi). Finally, if $R \cap a b^{-1} R \neq \emptyset$, then $a b^{-1} r \in R$ for some $r \in R$ and we have $R a \cup R b \subseteq R r^{-1} b$. Now, using (v), we show easily that \mathbf{Q} is balanced.

Finally, assume that the conditions (f1), (f2) and (f3) are satisfied (see 4.1.5) and consider two more conditions:
(f4) For every $a \in R \backslash R^{-1}$ there exists $b \in G$ such that $R \cap b R=\emptyset$ and $R a=R \cap R b ;$
(f5) For every $a \in\left(R R^{-1}\right) \backslash R^{-1}$ there exists $b \in G$ such that $R \cap b R=\emptyset \neq$ $R \cap a b R$.

Lemma 4.1.6. The following conditions are equivalent:
(i) If $a, b \in G$, then $R a \preceq_{\mathbf{Q}} R b$ if and only if $R b \subseteq R a$ (see 4.1.5(iii)).
(ii) The condition (f4) is satisfied.

Proof. Easy to check.
Lemma 4.1.7. If (f4) is true, then \mathbf{Q} is downwards-regular and strongly balanced.

Proof. Use 4.1.6.
Lemma 4.1.8. $\operatorname{Ann}_{\mathbf{Q}}(R)=\left\{R b \mid b \in R R^{-1}\right\} \cup\{\emptyset\}$.
Proof. Easy to check.
Lemma 4.1.9. The following conditions are equivalent:
(i) If $a, b \in G$, then $R a \dashv_{\mathbf{Q}} R b$ if and only if $R b \subseteq R a$ (see 4.1.5(v)).
(ii) The condition (f5) is satisfied.

Proof. (i) implies (ii). Let $a \in G$ be such that $R \cap a b R=\emptyset$ whenever $b \in G$ is such that $R \cap b R=\emptyset$. It follows from 4.1.7(iv) and 4.1.8 that $R_{a} \dashv_{\mathbf{Q}} R$. Now, by (i), $R \subseteq R a$, and hence $a \in R^{-1}$.
(ii) implies (i). Let $a, b \in G$ be such that $R a \dashv_{\mathbf{Q}} R b$ and $R a \neq R b$. Then $R c \dashv_{\mathbf{Q}} R, c=a b^{-1}$ and $R c \neq R$. Now, assume that $R \nsubseteq R c$. Then $c \notin R^{-1}$ and, by (f5), $R \cap d R=\emptyset \neq R \cap c d R$ for some $d \in G$. Consequently, $R d^{-1} \in \operatorname{Ann}_{\mathbf{Q}}(R c) \subseteq$ $\operatorname{Ann}_{\mathbf{Q}}(R)$ and $R d^{-1}=R e$ for some $e \in R R^{-1}$ (4.1.8). Thus $d^{-1}=r s^{-1}, r, s \in R$, $d R=s r^{-1} R$ and $s \in R \cap d R$, a contradiction. It follows $R \subseteq R c$ and $R b \subseteq R a$.

Lemma 4.1.10. If (f5) is true, then \mathbf{Q} is separable and upwards-regular.
Proof. Use 4.1.9.
4.2. Consider the conditions (f1), ..., (f5) defined in 4.1.

Lemma 4.2.1. (i) If (f1) is true, then $G=R R^{-1} \cup R^{-1} R$ (and hence the group G is generated by R).
(ii) If $G=R R^{-1} \cup R^{-1} R$ and every left ideal of R is principal, then (f1) is true.
(iii) (f3) is true if and only if $G \neq R R^{-1}$.

Proof. Easy to see.
Corollary 4.2.2. If G is generated by R, R is left uniform, not right uniform and every left ideal of R is principal, then the conditions (f1) and (f3) are satisfied.

5. ZEROPOTENT SEMIMODULES AND FRACTIONAL LEFT IDEALS

In this section, let S be an ideal-simple zeropotent G-semimodule such that $\operatorname{Ann}_{S}(S)=\left\{o_{S}\right\}$ (or, equivalently, $S+S \neq\left\{o_{S}\right\}$). For $u, v \in S$, put (u:v)=\{a, $\left.G \mid a u \preceq_{S} v\right\}$ and $[u: v]=\left\{a \in G \mid a u \dashv_{S} v\right\}$.

Lemma 5.1. (i) $(u: v) \subseteq[u: v]$ for all $u, v \in S$.
(ii) $(u: o)=[u: o]=G$ for every $u \in S$.
(iii) $(o: w)=[o: w]=\emptyset$ for every $w \in S, w \neq o$.
(iv) $(u: a v)=a(u: v)$ and $(a u: v)=(u: v) a^{-1}$ for all $a \in G$ and $u, v \in S$.
(v) $[u: a v]=a[u: v]$ and $[a u: v]=[u: v] a^{-1}$ for all $a \in G$ and $u, v \in S$.
(vi) $(a u: a u)=a(u: u) a^{-1}$ for all $a \in G$ and $u \in S$.
(vii) $[a u: a u]=a[u: u] a^{-1}$ for all $a \in G$ and $u \in S$.

Proof. The inclusion $(u: v) \subseteq[u: v]$ follows from 2.5(ii) and the remaining assertions can be checked readily.

Lemma 5.2. (i) $\left(u: v_{1}\right)\left(v_{2}: u\right) \subseteq\left(v_{2}: v_{1}\right)$ and $\left[u: v_{1}\right]\left[v_{2}: u\right] \subseteq\left[v_{2}: v_{1}\right]$ for all $u, v_{1}, v_{2} \in S$.
(ii) $(u: u)(v: u) \subseteq(v: u)$ and $[u: u][v: u] \subseteq[v: u]$ for all $u, v \in S$.
(iii) $(u: u)(u: u) \subseteq(u: u)$ and $[u: u][u: u] \subseteq[u: u]$ for every $u \in S$.

Proof. Easy to check directly.
Lemma 5.3. Let $u_{1}, u_{2}, u, v_{1}, v_{2}, v \in S$.
(i) If $u_{1} \preceq_{S} u_{2}$, then $\left(u_{2}: v\right) \subseteq\left(u_{1}: v\right)$.
(ii) If $v_{1} \preceq_{S} v_{2}$, then $\left(u: v_{1}\right) \subseteq\left(u: v_{2}\right)$.
(iii) If $v_{2} \preceq_{S} u_{1}$, then $\left(u_{1}: v_{1}\right)\left(u_{2}: v_{2}\right) \subseteq\left(u_{2}: v_{1}\right)$.

Proof. Easy to check directly.
Lemma 5.4. Let $u_{1}, u_{2}, u, v_{1}, v_{2}, v \in S$.
(i) If $u_{1} \dashv_{S} u_{2}$, then $\left[u_{2}: v\right] \subseteq\left[u_{1}: v\right]$.
(ii) If $v_{1} \dashv_{S} v_{2}$, then $\left[u: v_{1}\right] \subseteq\left[u: v_{2}\right]$.
(iii) If $v_{2} \dashv_{S} u_{1}$, then $\left[u_{1}: v_{1}\right]\left[u_{2}: v_{2}\right] \subseteq\left[u_{2}: v_{1}\right]$.

Proof. Easy to check directly.
Lemma 5.5. $(u: v) \neq \emptyset \neq[u: v]$ for all $u, v \in S, u \neq o$.
Proof. Denote by I the set of $z \in S$ such that $a u \preceq_{S} z$ for some $a \in G$. Then $\{o, u\} \subseteq I$ and I is an ideal of S. Since S is id-simple, we get $I=S, v \in I$, and therefore $(u: v) \neq \emptyset$. Since $(u: v) \subseteq[u: v]$, we have $[u: v] \neq \emptyset$, too.

In the remaining part of this section, fix an element $w \in S, w \neq o_{S}$. It follows from 5.1(i), 5.2 (iii) and 5.5 that both $R_{1}=(w: w)$ and $R_{2}=[w: w]$ are subsemigroups of G and $1 \in R_{1} \subseteq R_{2}$. We put $\mathbf{F}_{i}=\mathbf{F}\left(G, R_{i}\right), \mathbf{G}_{i}=\mathbf{G}\left(G, R_{i}\right)$, $\mathbf{P}_{i}=\mathbf{P}\left(G, R_{i}\right)$ and $\mathbf{Q}_{\mathbf{i}}=\mathbf{Q}\left(G, R_{i}\right), i=1,2$ (see the preceding section).

Lemma 5.6. (i) $R_{1}^{*}=R_{1} \cap R_{1}^{-1}=\{a \in G \mid a w=w\}$.
(ii) $R_{2}^{*}=R_{2} \cap R_{2}^{-1}=\left\{a \in G \mid(w, a w) \in \pi_{S}\right\}$.
(iii) If S is separeble, then $R_{1}^{*}=R_{2}^{*}$.

Proof. (i) If $a w=w$, then $a^{-1} w=w, a, a^{-1} \in R_{1}$ and $a \in R_{1}^{*}$. Conversely, if $a \in R_{1}^{*}$, then $a, a^{-1} \in R_{1}$. Now, if $w \neq a w$, then $w=a w+u=a^{-1} w+v, u, v \in S$, and we get $a w=w+a v, w=w+z, z=a v+u, w=w+2 z=w+o=o$, a contradiction.
(ii) Easy to check.
(iii) Since S is separable, we have $\pi_{S}=\mathrm{id}_{S}$ and the assertion follows by combination of (i) and (ii).

Lemma 5.7. Let $v \in S$. Then:
(i) $R_{1}(v: w) \subseteq(v: w)$.
(ii) $R_{2}[v: w] \subseteq[v: w]$.
(iii) $(w: v) \neq \emptyset=[w: v]$.
(iv) $(v: w) \subseteq R_{1} a^{-1}$ for every $a \in(w: v)$.
(v) $[v: w] \subseteq R_{2} a^{-1}$ for every $a \in[w: v]$.
(vi) If $v \neq o_{S}$, then $(v: w) \neq \emptyset \neq[v: w]$.
(vii) $(v: w)(v: v) \subseteq(v: w)$.
(viii) $[v: w][v: v] \subseteq[v: w]$.

Proof. (i) If $a \in R_{1}$ and $b \in(v: w)$, then $a w=w, b v \preceq_{S} w$, and so $a b v \preceq_{S} a w=w$ and $a b \in(v: w)$.
(ii) Similar to (i).
(iii) See 5.5.
(iv) By $5.2(\mathrm{i}),(v: w)(w: v) \subseteq(w: w)=R_{1}$, and so $(v: w) \subseteq R_{1}(w: v)^{-1}$.
(v) Similar to (iv).
(vi) See 5.5.
(vii) Use 5.2(i).
(viii) Similar to (vii).

Using the foregoing lemma, we get mappings $\left(\varphi_{w}=\right) \varphi: S \rightarrow \mathbf{G}_{1}$ and $\left(\psi_{w}=\right)$ $\psi: S \rightarrow \mathbf{G}_{2}$ defined by $\varphi(v)=(v: w)$ and $\psi(v)=[v: w]$ for every $v \in S$ (5.7(i), (ii)).

Lemma 5.8. (i) $\varphi(S \backslash\{o\}) \subseteq \mathbf{F}_{1}$.
(ii) $\varphi(a v)=\varphi(v) a^{-1}=a * \varphi(v)$ for all $a \in G$ and $v \in S$.
(iii) If $u \preceq_{S} v$, then $\varphi(v) \subseteq \varphi(u)$.

Proof. (i) This follows from 5.5.
(ii) We have $\varphi(a v)=(a v: w)=(v: w) a^{-1}=\varphi(v) a^{-1}=a * \varphi(v)$ by 5.1(iv).
(iii) If $a \in \varphi(v)$, then $a v \preceq_{S} w$, and, of course, $a u \preceq_{S} a v$. Thus $a u \preceq_{S} w$ and $a \in \varphi(u)$.
Lemma 5.9. (i) $\psi(S \backslash\{o\}) \subseteq \mathbf{F}_{2}$.
(ii) $\psi(a v)=\psi(v) a^{-1}=a * \psi(v)$ for all $a \in G$ and $v \in S$.
(iii) If $u \dashv_{S} v$, then $\psi(v) \subseteq \psi(u)$.

Proof. Similar to that of 5.8.
Lemma 5.10. (i) $\varphi(v) \subseteq \psi(v)$ for every $v \in S$.
(ii) $\varphi(w)=R_{1}$ and $\psi(w)=R_{2}$.
(iii) $\varphi\left(o_{S}\right)=\emptyset=\psi\left(o_{S}\right)$.

Proof. Obvious.
Lemma 5.11. Assume that S is transitive. Then:
(i) φ is a bijection of S onto \mathbf{Q}_{1}.
(ii) $u \preceq_{S} v$ if and only if $\varphi(v) \subseteq \varphi(u)$.

Proof. (i) Let $u, v \in S$ be such that $\varphi(u)=\varphi(v)$. If $u=o$ or $v=o$, then $\varphi(u)=$ $\emptyset=\varphi(v)$ and $u=o=v$ by 5.8(i). Hence, assume that $u \neq o \neq v$. Then $u=a w$ and $v=b w$ for some $a, b \in G$. Now, $R_{1} a^{-1}=\varphi(a w)=\varphi(u)=\varphi(v)=\varphi(b w)=R_{1} b^{-1}$, $R_{1} a^{-1} b=R_{1}, a^{-1} b \in R_{1}^{*}, w=a^{-1} b w$ and, finally, $u=a w=b w=v$ (use 5.8(ii) and $5.6(\mathrm{i}))$. We have proved that φ is an injective mapping.

If $a \in G$, then $\varphi\left(a^{-1} w\right)=(w: w) a=R_{1} a$ by 5.1 (iv). It follows that φ is a projective mapping. Consequently, $\varphi: S \rightarrow \mathbf{Q}_{1}$ is a bijection.
(ii) If $u \preceq_{S} v$, then $\varphi(v) \subseteq \varphi(u)$ by 5.8(iii). Conversely, if $\varphi(v) \subseteq \varphi(u), v \neq o$, $u=a w, v=b w$, then $R_{1} b^{-1}=\varphi(v) \subseteq \varphi(u)=R_{1} a^{-1}, R_{1} \subseteq R_{1} a^{-1} b=\varphi\left(b^{-1} a w\right)=$ $\left(b^{-1} a w: w\right), 1 \in\left(b^{-1} a w: w\right), b^{-1} a w \preceq_{S} w$ and, finally, $u=a w \preceq_{S} b w=v$.

Lemma 5.12. Assume that S is transitive. Then:
(i) ψ is a projection of S onto \mathbf{Q}_{2}.
(ii) $\operatorname{ker}(\psi)=\pi_{S}$.
(iii) $u \dashv_{S} v$ if and only if $\psi(v) \subseteq \psi(u)$.

Proof. Similar to that of 5.11 .
Corollary 5.13. Assume that S is transitive. Then $\psi: S \rightarrow \mathbf{Q}_{2}$ is a bijection if and only if S is separable.
Lemma 5.14. If S is downwards-regular, then $\varphi(u+v)=\varphi(u) \cap \varphi(v)$ for all $u, v \in S$ such that $u+v \neq o_{S}$.

Proof. The inclusion $\varphi(u+v) \subseteq \varphi(u) \cap \varphi(v)$ is clear from the definitions. Conversely, if $a \in \varphi(u) \cap \varphi(v)$, then $a u \preceq_{S} w, a v \preceq_{S} w$, and hence $a(u+v) \preceq_{S} w$, since S is downwards-regular. Thus $a \in \varphi(u+v)$.

Lemma 5.15. If S is upwards-regular, then $\psi(u+v)=\psi(u) \cap \psi(v)$ for all $u, v \in S$ such that $u+v \neq o_{S}$.

Proof. Similar to that of 5.14 .
Theorem 5.16. Let S be a transitive zeropotent G-semimodule such that $S+S \neq$ $\left\{o_{S}\right\}$ (see 2.8). Let $w \in S, w \neq o_{S}, R_{1}=\left\{a \in G \mid a w \preceq_{S} w\right\}$ and $R_{2}=\{a \in$ $\left.G \mid a w \dashv_{S} w\right\}$. Then:
(i) S is ideal-simple, $S+S=S$ and $\operatorname{Ann}_{S}(S)=\left\{o_{S}\right\}$.
(ii) Both R_{1} and R_{2} are subsemigroups of G and $1 \in R_{1} \subseteq R_{2}$.
(iii) The mapping $\varphi: v \rightarrow\left\{a \in G \mid a v \preceq_{S} w\right\}$ is a bijection of S onto $\mathbf{Q}\left(G, R_{1}\right)$ such that $u \preceq_{S} v$ if and only if $\varphi(v) \subseteq \varphi(u)$.
(iv) If S is downwards-regular, then $\varphi(u+v)=\varphi(u) \cap \varphi(v)$ for all $u, v \in S$ such that $u+v \neq o_{S}$.
(v) The mapping $\psi: v \rightarrow\left\{a \in G \mid a v \dashv_{S} w\right\}$ is a projection of S onto $\mathbf{Q}\left(G, R_{2}\right)$ such that $\operatorname{ker}(\psi)=\pi_{S}$ and $u \dashv_{S} v$ if and only if $\psi(v) \subseteq \psi(u)$.
(vi) If S is separable, then ψ is a bijection of S onto $\mathbf{Q}\left(G, R_{2}\right)$.
(vii) If S is upwards-regular, then $\psi(u+v)=\psi(u) \cap \psi(v)$ for all $u, v \in S$ such that $u+v \neq o_{S}$.

Proof. See 2.7, 2.8, 5.1(i), 5.2(iii), 5.5, 5.11, 5.14, 5.12 and 5.15.
Lemma 5.17. Let $a, b \in G, u=a w$ and $v=b w$. Then:
(i) $\varphi(u) \cap \varphi(v) \neq \emptyset$ if and only if $R_{1} \cap R_{1} a^{-1} b \neq \emptyset$.
(ii) $R_{1} \cap a^{-1} b R_{1} \neq \emptyset$ if and only if there exists $c \in G$ with $c w \preceq_{S} u$ and $c w \preceq_{S} v$.

Proof. (i) We have $\varphi(u)=R_{1} a^{-1}$ and $\varphi(v)=R_{1} b^{-1}$. The rest is clear.
(ii) If $d=a^{-1} b e$, where $d, e \in R_{1}$, then $a d=c=b e, c w=a d w \preceq_{S} a w=u$ and $c w=b e w \preceq_{S} b w=v$. Similarly the converse implication.

Lemma 5.18. Assume that S is strongly balanced. If $a, b \in G$ are such that $a w+b w=o$, then $R_{1} \cap a^{-1} b R_{1} \neq \emptyset$.

Proof. Use 5.17(ii).
Lemma 5.19. Let $a, b \in G, u=a w$ and $v=b w$. Then:
(i) $\psi(u) \cap \psi(v) \neq \emptyset$ if and only if $R_{2} \cap R_{2} a^{-1} b \neq \emptyset$.
(ii) $R_{2} \cap a^{-1} b R_{2} \neq \emptyset$ if and only if there exists $c \in G$ with $c w \dashv_{S} u$ and $c w \dashv_{S} v$.

Proof. Similar to that of 5.17.
Lemma 5.20. Assume that S is balanced. If $a, b \in G$ are such that $a w+b w=o$, then $R_{2} \cap a^{-1} b R_{2} \neq \emptyset$.

Proof. Use 5.19(ii).
Lemma 5.21. Assume that S is transitive. If $a \in G$ is such that $w+a w \neq o$, then $a \in R_{1}^{-1} R_{1}$.
Proof. We have $w+a w=b w$ for some $b \in G, a w \preceq_{S} b w, b^{-1} a \in R_{1}, w \preceq_{S} b w$, $b^{-1} \in R_{1}$. Consequently, $a \in R_{1}^{-1} R_{1}$.

Lemma 5.22. Assume that S is strongly balanced. If $a \in G$ is such that $w+a w=o$, then $a \in R_{1} R_{1}^{-1}$.

Proof. This follows immediately from 5.18.
Lemma 5.23. If S is transitive and strongly balanced, then $G=R_{1}^{-1} R_{1} \cup R_{1} R_{1}^{-1}$.

Proof. Combine 5.21 and 5.22 .

6. A FEW CONSEQUENCES

6.1. Let S be a non-trivial transitive zp-semimodule over a group G such that S is downwards-regular and strongly balanced. By 2.7 and $2.8, S$ is ideal-simple, $\operatorname{Ann}_{S}(S)=\left\{o_{S}\right\}$ and $S+S=S$, i.e., S is a zs-semimodule.

Now, choose $w \in S, w \neq o_{S}$, and put $R=R_{1, w}=\left\{a \in G \mid a w \preceq_{S} w\right\}$ and $\varphi=\varphi_{w}$, where $\varphi_{w}(v)=\left\{a \in G \mid a v \preceq_{S} w\right\}$ for every $v \in S$. According to 5.2(iii), 5.5 and $5.11, R$ is a subsemigroup of the group $G, 1 \in R$ and φ is a bijection of S onto $\mathbf{Q}=\mathbf{Q}(G, R)$ such that $u \preceq_{S} v$ iff $\varphi(v) \subseteq \varphi(u)$. Moreover, by 5.8 and 5.14, $\varphi(a v)=\varphi(v) a^{-1}, \varphi(a w)=R a^{-1}, a \in G$, and if $u, v \in S$ are such that $u+v \neq o_{S}$, then $\varphi(u+v)=\varphi(u) \cap \varphi(v)$.

Lemma 6.1.1. The condition (f1) (see 4.1) is satisfied.

Proof. Let $a \in G$ be such that $R \cap R a=\emptyset$. It follows from 5.18 that $a^{-1} w+w \neq o$, and hence $a^{-1} w+w=b^{-1} w$ for some $b \in G$. Now, $R b=\varphi\left(b^{-1} w\right)=\varphi\left(a^{-1} w+w\right)=$ $\varphi\left(a^{-1} w\right) \cap \varphi(w)=R a \cap R$.

The condition (f1) is true, and so we get groupoid $\mathbf{Q}=\mathbf{Q}(+)$ due to 4.1.
Lemma 6.1.2. φ is an isomorphism of $S(+)$ onto $\mathbf{Q}(+)$.
Proof. Since φ is a bijection, we have to show that φ is a homomorphism of the additive structures. For, let $u, v \in S$. We have $\varphi\left(o_{S}\right)=\emptyset$, and hence $\varphi(u+v)=$ $\emptyset=\varphi(u)+\varphi(v)$, provided that either $u=o$ or $v=o$. Now, assume $u \neq o \neq v$. Then $u=a w$ and $v=b w, a, b \in G$.

Firstly, let $u+v \neq o$. If $R \cap a^{-1} b R \neq \emptyset$, then $c w \preceq_{S} u$ and $c w \preceq_{S} v$ for some $c \in G$ by 5.17 (ii) and it follows that $u+v=o$, a contradiction. Thus $R \cap a^{-1} b R=\emptyset$, $R a^{-1}+R b^{-1}=R a^{-1} \cap R b^{-1} \neq \emptyset$ in $\mathbf{Q}(+)$ and we get $\varphi(u+v)=\varphi(u) \cap \varphi(v)=$ $R a^{-1} \cap R b^{-1}=R a^{-1}+R b^{-1}=\varphi(u)+\varphi(v)$.

Next, let $u+v=o$. Then $R \cap a^{-1} b R \neq \emptyset$ by 5.18, and therefore $\varphi(u+v)=$ $\varphi(o)=\emptyset=R a^{-1}+R b^{-1}=\varphi(u)+\varphi(v)$, too.

Lemma 6.1.3. The condition (f2) is satisfied.
Proof. By 6.1.2, $S(+)$ is isomorphic to $\mathbf{Q}(+)$. Consequently, $\mathbf{Q}(+)$ is a semigroup and (f2) follows by 4.1.3.

Lemma 6.1.4. \mathbf{Q} is a non-trivial transitive zs-semimodule and $\varphi: S \rightarrow \mathbf{Q}$ is an isomorphism of the semimodules.

Proof. See 4.1, 6.1.2 and 6.1.3.
Lemma 6.1.5. The conditions (f3) and (f4) are satisfied.
Proof. By 6.1.4, $\mathbf{Q}(\cong S$) is a non-trivial zs-semimodule. Now, (f3) follows from 4.1.4 and (f4) is clear from 4.1.6 and 5.11(ii).

Theorem 6.1.6. The conditions (f1), (f2), (f3) and (f4) are satisfied (see 4.1) and the semimodules S and $\mathbf{Q}(G, R)$ are isomorphic.

Proof. See 6.1.2, ..., 6.1.5.
6.2. Let S be a non-trivial transitive zp-semimodule over a group G such that S is upwards-regular and balanced. By 2.7 and $2.8, S$ is ideal-simple, $\operatorname{Ann}_{S}(S)=\left\{o_{S}\right\}$ and $S+S=S$, i.e., S is a zs-semimodule.

Now, choose $w \in S, w \neq o_{S}$, and put $R=R_{2, w}=\left\{a \in G \mid a w \dashv_{S} w\right\}$ and $\psi=\psi_{w}$, where $\psi_{w}(v)=\left\{a \in G \mid a v \dashv_{S} w\right\}$ for every $v \in S$. According to 5.2(iii), 5.5 and $5.12, R$ is a subsemigroup of the group $G, 1 \in R$ and ψ is a projection of S onto $\mathbf{Q}=\mathbf{Q}(G, R)$ such that $\operatorname{ker}(\psi)=\pi_{S}$ and $u \dashv_{S} v$ iff $\psi(v) \subseteq \psi(u)$. Moreover, by 5.9 and $5.15, \psi(a v)=\psi(v) a^{-1}, \psi(a w)=R a^{-1}, a \in G$, and if $u, v \in S$ are such that $u+v \neq o_{S}$, then $\psi(u+v)=\psi(u) \cap \psi(v)$.
Lemma 6.2.1. The condition (f1) (see 4.1) is satisfied.
Proof. Similar to that of 6.1.1 (use 5.20).
The condition (f1) is true, and so we get the groupoid $\mathbf{Q}=\mathbf{Q}(+$) due to 4.1.
Lemma 6.2.2. ψ is a homomorphism of $S(+)$ onto $\mathbf{Q (+) .}$

Proof. We have to show that ψ is a homomorphism of the additive structures. For, let $u, v \in S$. We have $\psi\left(o_{S}\right)=\emptyset$, and hence $\psi(u+v)=\emptyset=\psi(u)+\psi(v)$, provided that either $u=o$ or $v=o$. Now, assume that $u \neq o \neq v$. Then $u=a w$ and $v=b w$, $a, b \in G$.

Firstly, let $u+v \neq o$. If $R \cap a^{-1} b R \neq \emptyset$, then $c w \dashv_{S} u$ and $c w \dashv_{S} v$ for some $c \in G$ by 5.19(ii). Consequently, $\operatorname{Ann}_{S}(c w) \subseteq \operatorname{Ann}_{S}(u) \cap \operatorname{Ann}_{S}(v), c w \in \operatorname{Ann}_{S}(c w)$ implies $c w+u=o, u \in \operatorname{Ann}_{S}(c w)$ and, finally, $u \in \operatorname{Ann}_{S}(v), u+v=o$, a contradiction. Thus $R \cap a^{-1} b R=\emptyset, R a^{-1}+R b^{-1}=R a^{-1} \cap R b^{-1} \neq \emptyset$ in $\mathbf{Q}(+)$ and we get $\psi(u+v)=\psi(u) \cap \psi(v)=R a^{-1} \cap R b^{-1}=R a^{-1}+R b^{-1}=\psi(u)+\psi(v)$.

Next, let $u+v=o$. Then $R \cap a^{-1} b R \neq \emptyset$ by 5.20 , and therefore $\psi(u+v)=$ $\psi(o)=\emptyset=R a^{-1}+R b^{-1}=\psi(u)+\psi(v)$, too.

Lemma 6.2.3. The condition (f2) is satisfied.
Proof. By 6.2.2, $\mathbf{Q}(+)$ is a homomorphic image of $S(+)$. Consequently, $\mathbf{Q}(+)$ is a semigroup and (f2) follows by 4.1.3.

Lemma 6.2.4. \mathbf{Q} is a non-trivial transitive zs-semimodule and $\psi: S \rightarrow \mathbf{Q}$ is a projective homomorphism of the semimodules.

Proof. We have $\pi_{S} \neq S \times S$, and hence \mathbf{Q} is non-trivial. The rest is clear from 4.1, 6.2.2 and 6.2.3.

Lemma 6.2.5. The conditions (f3) and (f5) are satisfied.
Proof. By 6.2.4, \mathbf{Q} is a non-trivial zs-semimodule and (f3) follows from 4.1.4. Now, consider the condition (f5). According to 4.1.9 and 4.1.5(v), it suffices to show that $R b \subseteq R a$ whenever $a, b \in G$ are such that $R a \dashv_{\mathbf{Q}} R b$. We have $R a=\psi(u)$ and $R b=\psi(v), u=a^{-1} w, v=b^{-1} w$. If $z \in \operatorname{Ann}_{S}(u)$, then $\psi(z) \in \operatorname{Ann}_{\mathbf{Q}}(R a)$, and so $\psi(z) \in \operatorname{Ann}_{\mathbf{Q}}(R b)$ and $\psi(z+v)=\psi(z)+\psi(v)=\emptyset\left(=o_{\mathbf{Q}}\right)$. Thus $\left(z+v, o_{S}\right) \in \pi_{S}$, $z+v \in \operatorname{Ann}_{S}(S)=\left\{o_{S}\right\}, z+v=o_{S}$ and $z \in \operatorname{Ann}_{S}(v)$. It follows that $u \dashv_{S} v$ and $R b=\psi(v) \subseteq \psi(u)=R a$ by 5.12.

Theorem 6.2.6. The conditions (f1), (f2), (f3) and (f5) are satisfied and there exists a projection of the semimodule S onto the semimodule $\mathbf{Q}(G, R)$. This projection is an isomorphism if and only if S is separable.

Proof. See 6.2.1, ..., 6.2.5.

References

[1] R. El Bashir and T. Kepka, Commutative semigroups with few invariant congruences, Semigroup Forum 64 (2002), 453-471. Zbl 0996.20042
[2] V. Flaška and T. Kepka, Commutative zeropotent semigroups, Acta Univ. Carolinae 47/1 (2006), 3-14. Zbl pre05258249
[3] J. Ježek, Simple semilattices with two commuting automorphisms, Algebra Univ. 15 (1982), 162-175. Zbl 0512.06006
[4] J. Ježek and T. Kepka, Medial groupoids, Rozpravy ČSAV 93 (1983), 93pp. Zbl 0527.20044
[5] M. Maróti, Semilattices with a group of automorphisms, Algebra Univ. 38 (1997), 238-265. Zbl 0934.08001
[6] S. H. McCleary, o-Primitive ordered permutation groups, Pacific J. Math. 40 (1972), 349-372.
[7] S. H. McCleary, o-Primitive ordered permutation groups (II), Pacific J. Math. 49 (1973), 431-445.

MFF UK, Sokolovská 83, Praha 8, 186 75, Czech Republic
bashir@karlin.mff.cuni.cz kepka@karlin.mff.cuni.cz

[^0]: The first author was supported by the Grant Agency of Czech Republic, grant no. 201/01/D047. This work is a part of the research project MSM 0021620839 financed by MŠMT.

