COMMUTATIVE ZEROPOTENT SEMIGROUPS WITH FEW
INVARIANT CONGRUENCES

ROBERT EL BASHIR AND TOMAS KEPKA

ABSTRACT. Commutative semigroups satisfying the equation 2z + y = 2z
and having only two G-invariant congruences for an automorphism group G
are considered. Some classes of these semigroups are characterized and some
other examples are constructed.

Every congruence-simple (i.e., possesing just two congruence relations) commu-
tative semigroup is finite and either two-element or a group of prime order. The
class of (non-trivial) commutative semigroups having only trivial invariant congru-
ences is considerably more opulent. These semigroups are easily divided into four
pair-wise disjoint subclasses (see 1.3). The fourth one contains commutative semi-
groups that are nil of index two and have no irreducible elements. This subclass
is enigmatic a bit and it is the purpose of the present note to construct various
examples of the indicated semigroups (called zs-semigroups in the sequel). Among
others, we show that if S is a non-trivial commutative zs-semigroup without non-
trivial invariant congruences, then the group of automorphisms of S contains a
non-commutative free subsemigroup.

1. INTRODUCTION

Let G be a multiplicative group. By a (unitary left G-) semimodule we mean a
commutative semigroup S (= S(+)) together with a G-scalar multiplication G x
S — S such that a(x +y) = ax + ay, a(bz) = (ab)x and lx = z for all a,b € G and
x,y €8S.

Let S be a semimodule. An element w € S is called absorbing if Gw = w = S+w.
There exists at most one absorbing element in S and, if it exists, it will usually be
denoted by the symbol og (or only 0); we will also write o € S.

A non-empty subset I of S is an ideal if GI C I and S+ I C I. The semimodule
S will be called ideal-simple (or only id-simple) if |S| > 2 and I = S whenever [ is
an ideal of S such that |I| > 2.

Lemma 1.1. Let S be a semimodule and w € S. The one-element set {w} is an
ideal of S if and only if w = og is an absorbing element of S.

Proof. Obvious. O

A semimodule S will be called congruence-simple (or only cg-simple) if S has
just two congruence relations (i.e., equivalences compatible with the addition and
the scalar multiplication).

Proposition 1.2. FEvery cg-simple semimodule is id-simple.
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Proof. If S is cg-simple, then S is non-trivial and, if I is an ideal of S, then r =
(I x I)Uidg is a congruence of S. Now, either r = idg and |I| = 1 (see 1.1) or
r=.5xS5and I =S. Thus § is id-simple. O

Let S be a (commutative) semigroup/semimodule. We will say that S is

- a semigroup/semimodule with zero addition (a za-semigroup/za-semimodule)
if |[S+S]=1 (thenoe S and S+ 5 =o);

- a zeropotent semigroup/semimodule (a zp-semigroup/zp-semimodule) if 2z +
y =2z for all z,y € S (then o € S and 2z = 0);

- a zp-semigroup/zp-semimodule without irreducible elements (a zs-semigroup/zs-
semimodule) if S is a zp-semigroup/zp-semimodule and S=S+S;

- idempotent if x + x = x for every = € S;

- cancellative if x +y # x + z for all x,y,z2 € S, y # z.

The following basic classification of cg-simple semimodules is given in [1]:

Theorem 1.3. Let S be a cg-simple semimodule. Then just one of the following
four cases takes place:

(1) S is a two-element za-semimodule;

(2) S is idempotent;

(3) S is cancellative;

(4) S is a zs-semimodule.

There exists only one two-element za-semimodule up to isomorphism. Cg-simple
idempotent semimodules over a commutative group are fully characterized in [1] (see
also [3], [4] and [5]) and cg-simple chains (and the corresponding groups) are studied
in [6] and [7]. Some information on cg-simple cancellative semimodules is also
available from [1] and various examples of non-trivial commutative zs-semigroups
are collected in [2]. The aim of this note is to initiate a study of cg-simple zs-
semimodules. The following starting result restricts our choice of groups in the
zeropotent case:

Proposition 1.4. Let no subsemigroup of a group G be a free semigroup of rank
(at least) 2. Then there exist no cg-simple zs-semimodules over G.

Proof. Let S be a non-trivial zs-semimodule and let x,y,z € S be such that z =
y+ 2z # o. Denote by A (B, resp.) the set of a € G (b € G, resp.) such that
axr =yorar+v=y,veES (bxr=zorbr+uv=zresp.) Then AN B = {,
AAUAB C Aand BBUBA C B. Now, ifa € A and b € B, then the subsemigroup
of G generated by {a,b} is free, a contradiction. Thus either A =0 or B = ) and
we will assume A = (), the other case being similar.

Put I = Gz U (Gx +S). Then I is an ideal of S, y ¢ I and I # S. On the other
hand, {x,0} C I and |I| > 2. Consequently, the semimodule S is not id-simple
and, according to 1.2, it is not cg-simple either. ([

Notice that among the groups from 1.4 we find all periodic groups and all locally
nilpotent groups (but not all metabelian groups).

Now, let R be a subsemigroup of a group G and let M = {A | A C G, A #
(), AR C A}. The set M is closed under unions and non-empty intersections, R € M
and G € M. Now, we define an addition + on M by A+ B=AUBIf ANB =1
and A + B = G otherwise.
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Lemma 1.5. M(+) is a commutative zp-semigroup and op = G.
Proof. Easy to check. O

Moreover, we define a scalar multiplication on M by (a, A) — aA = {azx | z € A},
acG, Ae M.

Lemma 1.6. M is a zp-semimodule over the group G.
Proof. Easy to check. O

Define a relation ¢ on M by (A,B) e £ it (M e M| AnNM =0} ={M €
M| BNM =0}.

Lemma 1.7. £ is a congruence of the semimodule M.
Proof. Easy to check. O

Lemma 1.8. Let i be a congruence of M such that £ C n and (R,G) € 5. Then
n=M x M.

Proof. Clearly, (zR,G) = (zR,zG) € n for every z € G. Let A € M and a € A.
If aRN B # () for every B € M such that B C A, then (aR,A) € £ C 1, and so
(A,G) € n. On the other hand, if B € M is maximal with respect to B C A and
aRNB = 0, then (4, BUaR) € £ Since (G,BUaR) € n, we get (A,G) € n
again. ([l

Lemma 1.9. (R,G) € € if and only if G = RR™! (then R is right uniform).

Proof. If (R, G) € &, then RNA # () for every A € M. In particular, RNaR # {) for
every ¢ € G, and hence 2 € RR™'. To show the other implication, we just proceed
conversely. O

Lemma 1.10. (i) If R is not right uniform, then (R,G) ¢ .
(i) If G is not generated by R, then (R,G) ¢ &.

Proof. (i) There exist a,b € R such that aR N bR = (. Then RNa bR = 0,
ab™'R € M and, of course, GNa bR =a 'bR # 0. Thus (R,G) ¢ ¢.
(ii) Use 1.9. O

Lemma 1.11. Assume that R is not right uniform. Then (R,G) ¢ £ and, if k is
a congruence of M mazimal with respect to & C k and (R,G) ¢ K, then N = M/k
is a cg-simple zs-semimodule.

Proof. N is non-trivial and it follows readily from 1.8 that N is a cg-simple zp-
semimodule. Since R is not right uniform, there are right ideals A and B of R
such that B is maximal with respect to AN B = (). Then A+ B = AU B,
(AUB,R) € £ C k, (AUB,G) ¢ k and A/k + B/k # on. Thus N is not a
za-semimodule, and hence N is a zs-semimodule by 1.3. ]

Proposition 1.12. If R is not right uniform, then a factorsemimodule of M is a
congruence-simple zs-semimodule.

Proof. See 1.11. O

Theorem 1.13. There exists at least one cg-simple zs-semimodule over G if and
only if the group G contains at least one subsemigroup that is a free semigroup of
rank (at least) 2.
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Proof. The direct implication is shown in 1.4. As concerns the inverse implication,
the existence of cg-simple zs-semimodule is shown in 1.12. O

2. BASIC PROPERTIES OF ZEROPOTENT SEMIMODULES

Throughout this secion, let .S be a zp-semimodule over a group G. Firstly, define
a relation <g on S by x <g y if and only if x =y or y = x + v for some v € S.

Lemma 2.1. (i) The relation =g is an ordering compatible with the addition and
scalar multiplication.

(il) og is a greatest element of the ordered set (S, =<g).

(iii) If |S] > 2, then S\ (S + S) is the set of minimal elements of (S, =<g).

(iv) If x,y,2 € S are such that x <gy and x <g z, then y + z = o.

Proof. Easy. O

Proposition 2.2. Assume that S is a non-trivial zs-semimodule. Then:
(1) The ordered set (S, =<g) has no minimal elements.
(ii) S(+) is not finitely generated (and hence S is infinite).

Proof. (i) This follows immediately from 2.1(iii).
(ii) If S(+) were generated by s finite number m of elements, then S should
contain at most 2™ elements, a contradiction with (i). O

Lemma 2.3. The following conditions are equivalent:
(i) If x,y,z,u,v € S are such that x +y # 0 # z and r +u = z = y + v, then
either z=x +y or z=x +y +w for some w € S.
(ii) If z,y,z € S are such that x+y # 0 # z and x =g z, y =g z, then t+y =g 2.
(i) If x,y € S are such that x + y # o, then x +y = sup(z,y) n (S, <g).

Proof. Easy. O

The semimodule S will be called downwards-regular if the equivalent conditions
of 2.3 are satisfied.

For every x € S, let Anng(z) = {y € S | z + y = o}. Further, let Anng(S) =
{x+S5]|S5+x=o0}

Lemma 2.4. (i) For every x € S, the annihilator Anng(x) is an ideal of the
additive semigroup S(+).
(i1) Anng(S) is an ideal of the semimodule S.

Proof. Obvious. O

Define a relation 4g on S by = g y if and only if Anng(x) C Anng(y).

Lemma 2.5. (i) The relation s is a quasiordering compatible with the addition
and scalar multiplication.

(il) If x <5 y, then x 1g y.

(iii) ms = ker(-g) is a congruence of the semimodule S.

(iv) ms = S x S if and only if S is a za-semimodule.

Proof. Easy. O
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The semimodule S will be called separable if 7g = idg.

The semimodule S will be called upwards-regular if Anng(z + y) C Anng(z)
whenever x,y, 2 € S are such that z+y # 0 # z and Anng(z)UAnng(y) C nns( ).

In the sequel, let 7¢ = {(z,y) € Sx S |z +y # o} and 05 = {(x,y) |z +y =
o} = S x S\ 7g. Further, define pug (vg, resp.) by (z,y) € ps ((z,y) € vs, resp.)
if and only if z <g z, z Xg y (z 4 @, z 15 y, resp.) for at least one z € S.

Lemma 2.6. (i) The relations 75,05, ts and vs are symmetric.
(ii) The relations og, us and vs are reflecive.
(iii) 7g is irreflexive.
(iv) s C 0.
(v) s Cvs Cos.
Proof. Easy. O

The semimodule S will be called (strongly) balanced if og = vg (05 = pg).
The semimodule S will be called transitive if the group G operates transitively
on the set S\ {os}.

Proposition 2.7. If S is non-trivial and transitive, then S is id-simple.

Proof. Easy. O
Proposition 2.8. Assume that S is id-simple and either S+S # S or Anng(S) #
{os}. Then:

(i) S+ 5 ={os}, Anng(S) =S and S is a za-semimodule.
i) ¢ <g y if and only if either x =y ory = og.
iii) mg = S x S =g.
iv) G operates transitively on R = S\ {os} (i.e., S is transitive).
v) vs = (R x R)Uidg is a congruence of S.
(vi) G operates primitively on R if and only if idg, vs and S x S are the only
congruences of S.

Proof. Easy. O

(i
(
(
(

Proposition 2.9. Assume that S is cg-simple and |S| > 3. Then:
(i) Anng(S) = {os} and S is separable.
(ii) s s a compatible ordering of S.

Proof. Tt follows from 2.5(iii) that either 7g = S x S or 7g = idg. If 7g =5 x 5,
then S is a za-semimodule by 2.5(iv) and S is id-simple by 1.2. Now, it follows
from 2.8(v) that |R| = 1 and |S| = 2, a contradiction. Consequently, s = idg and
g is transitive. The rest follows from 2.5. ([l

Proposition 2.10. Assume that |S| > 3. Then S is cg-simple if and only if S is
separable and id-simple.

Proof. The direct implication follows from 1.2 and 2.9. Now, assume that S is
separable and id-simple.

Let r be a congruence of S and I = {x | (z,0) € r}. Then [ is an ideal of S and
r =8 xS, provided that I = S.

Let (z,y) € r, x # y. Since S is separable, (z,y) ¢ ms and we can assume
that = —|s y is not true. Then Anng(z ,@ Anng(y) and there is z € S such that
r+z=0#y+z2 Now, y+z€l, I # {o}, I = S, since S is id-simple, and
r=.5x5. (]
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Proposition 2.11. Assume that S is transitive and |S| > 3. The following condi-
tions are equivalent:

(i) S is cg-simple.

(i1) S is separable.

Proof. (i) implies (ii) by 2.9(i) and (ii) implies (i) by 2.7 and 2.10. O

Proposition 2.12. Assume that S is id-simple, take w € S, w # o, and consider
a congruence r of S maximal with respect to (w,0) ¢ r. Then S/r is a cg-simple
zp-semimodule.

Proof. Clearly, T = S/r is a non-trivial zp-semimodule. Now, let s be a congruence
of S such that r C s, 7 # s, and put I = {z € S| (x,0) € s}. Then I is an ideal of S
and {o,w} C I. Thus I = S, since S is id-simple, and we conclude that s =5 x S.
It follows easily that T is cg-simple. O

Corollary 2.13. Assume that S is id-simple and S+ S # {og}. Then at least one
factorsemimodule of S is a cg-simple zs-semimodule.

Corollary 2.14. Assume that S is transitive and S+ S # {og}. Then at least one
factorsemimodule of S is a cg-simple zs-semimodule.

3. EXAMPLES OF CONGRUENCE-SIMPLE ZS-SEMIMODULES

Example 3.1. Let S be a non-trivial commutative zs-semigroup and G = Aut(S)
(the automorphism group of S). Then S becomes a G-semimodule. If S is separable
and G operates transitively on S\ {og}, then S is cg-simple semimodule.

Example 3.2. Let (R, <) be a non-empty ordered set together with an irreflective
and symmetric relation 7 defined on R. For z,y € R, let xVy = sup(x, y), provided
that this supremum exists. Now, assume that the following three conditions are
satisfied:

(o) If z,y € R are such that (z,y) € 7, then z V y exists;
(B) If (z,y) € 7 and (2,2 Vy) € 7, then (z,2) € 7 and (y,z V z) € T;
(v) For every x € R there exist y, 2 € R such that (y,2) e r and x =y V 2.

Further,let 0 ¢ R, S = RU{o}, 24y =zVyifz,y € R, (z,y) ETandz+y =0
otherwise. Then S (= S(+4)) becomes a commutative zs-semigroup.

Let G be a group operating on R (i.e., a mapping G x R — R is defined such
that a(bx) = (ab)x and 1z = z) and assume that (az,ay) € 7 for every (z,y) € 7
and that v < v implies au < av. Then ax V ay = a(z V y) for (z,y) € 7 and S
becomes a G-semimodule (a0 = 0). If G operates transitively on R, then S is a
transitive semimodule. In such a case, by 2.14, at least one factorsemimodule of S
is a cg-simple zs-semimodule. Furthermore, if S is transitive, then S is cg-simple
iff it is separable (2.11). Finally, S is separable iff the following two conditions are
satisfied:

(0) For every « € R there exists y € R with (x,y) € 7;
(e) For all z,y € R, z # vy, (z,y) ¢ 7, there exists z € R such that either
(x,2z) €T, (y,2)¢Tor(z,2)¢T, (y,2) ET.

(Notice that () is true, provided that S is transitive.)
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Example 3.3. (cf. 3.2). Let T' (= T'(A, V)) be a distributive lattice with a smallest
element Or and a greatest element 17 such that |T'| > 3. Consider the basic order
< defined on T and also the ordered set (R,<), R =T \ {Or,17}. Assume that
the following two conditions are satisfied:

(u) f z,y € Rand x Ay = Op, then zVy # 1p;
(v) For every x € R there exist y,2 € R such that y Az =0r and y V 2z = x.

Put S =T\ {17} and define an addition on S by x+y =2 Vy if z Ay = 07 and
x +y = 17 otherwise. Then S (= S(+4)) is a commutative zs-semigroup. Further,
let a group G operate on R (a(bx) = (ab)x and 1z = z) in such a way that z <y
implies ax < ay. Then S becomes a G-semimodule (alr = 17). If G operates
transitively on R, then S is a cg-simple zs-semimodule iff the following is true:

(o) For all z,y € R, x # y, x Ay # Op, there exists z € R such that either
cANz=0p#yANzorxAz#0r=yAz.

Example 3.4. Let I be an infinite set with |I| > X; and let X be an infinite cardinal
number such that X < |I|. Denote by J the set {4 | A C I,|A] = X} U {I} and
define an operation @ on J by A®@B = AUB if ANB = () and A® B = I otherwise.
Then J is a non-trivial commutative zs-semigroup and J becomes a G-semimodule,
G = Aut(J(@)). Tt is easy to check that the semimodule J is transitive, separable
and upwards-regular, but neither downwards-regular non balanced. By 2.11, J is
cg-simple.

Example 3.5. Let I be an infinite set, K a (non-principal) maximal ideal of the
Boolean algebra of subsets of I such that K € K for every K C I, |K| = |I|, and
let L={A €K ||A|l =|I|} U{I}. Define an addition ® on Lby A® B = AUB if
ANB=0and A® B = I otherwise and put G = Aut(L(®)). Then L (= L(&)) is
a non-trivial separable commutative zs-semigroup and G operates transitively on
L\ {o}. Consequently, L is a cg-simple zs-semimodule over G.

Example 3.6. Let I be an infinite set and I the set of infinite subsets of I. Define
an operation Hon I by ABB = AU B if AN B is finite and AH B = I otherwise.
Then I (= I(H)) is a non-trivial commutative zs-semigroup and r is a congruence
of I, where (4, B) € r iff the symmetric difference (A U B) \ (A N B) is finite.
Then J = I/r is a non-trivial (commutative) zs-semigroup. Moreover, if |I| = R
and G = Aut(J), then J is a separable, upwards- and downwards-regular transitive
G-semimodule (J is not balanced). Consequently, J is a cg-simple zs-semimodule.

Assume that |I| > Ny and put P = {4 € I | |A] = No} U {I}. Then P is
a subsemigroup of I and Q = P/r is a non-trivial (commutative) zs-semigroup.
Moreover, if H = Aut(Q), then Q is a transitive H-semimodule and it is easy to
check that Q is an upwards- and downwards-regular strongly balanced cg-simple
zs-semimodule.

4. FRACTIONAL LEFT IDEALS AND ZEROPOTENT SEMIMODULES

In this section, let R be a subsemigroup of a group G such that 1 € R. We denote
by F (= F(G, R)) the set of fractional left R-ideals of G. That is, A € F iff A C G,
A#0, RAC Aand A C Ra for some a € G. The set (G(G,R) =) G=FU{0} is
closed under arbitrary intersections and G operates on G viaax A = Aa~!, A € G,
a € G. The set (P(G,R) =) P ={Ra | a € G} of principal fractional left R-ideals
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is contained in F and we put (Q(G,R) =) Q = P U {0}. Notice that G operates
transitively on P.

Construction 4.1. Assume that the following condition is satisfied:

(f1) If @ € G is such that RNaR = @, then RN Ra = Rb for some b € G (then
beR).

Now, define an addition on the set Q in the following way:

(1) Ra+ Rb = Ran Rb for all a,b € G such that RNab™'R = 0 (by (f1), we
have Ra N Rb € P);

(2) Ra+ Rb =0 for all a,b € G such that RNab 'R # (;

(3) Ra+0 =0 =0+ Ra for every a € G,

4)0+0=0.

Now, we have obtained a groupoid Q = Q(+).
Lemma 4.1.1. A+ B=B+ A, A+A=0and A+0 =0 for all A,B € Q.
Proof. Obvious. O

Lemma 4.1.2. For every a € G, the transformation A — a* A (= Aa™"') is an
automorphism of Q(+).

Proof. Easy to check. O

Lemma 4.1.3. Q is a semigroup if and only if the following condition is satisfied:
(f2) If a,b,c € G are such that RNaR =0 = RNbc 'R and RN Ra = Rc, then
RNdR=0=RnNab 'R, where Ra N Rb = Rd.

Proof. (i) Let Q(+) be associative. Then (R + Ra) + Rb = R + (Ra + Rb). But
(R+ Ra) + Rb = (RN Ra) + Rb = Rc+ Rb = ReN Rb = RN RaN Rb # 0, and
hence RNab 'R =0, RaN Rb= Rd by (f1), R+ Rd # () and RNdR = {).

(i) Let (f2) be satisfied. Firstly, if a,b € G are such that (R + Ra) + Rb # 0,
then (f2) implies (R + Ra) + Rb = R + (Ra + Rb). Next, if a,b,¢ € G are such
that (Ra + Rb) + Rc # (), then (R + Rba™') + Rca™' = a * ((Ra + Rb) + Rc) # 0,
and hence (R + Rba™1) + Rea™! = R+ (Rba~! + Rea™ ') = a * (Ra + (Rb+ Rc)).
Consequently, (Ra+ Rb)+ Rc = a1+ (a* ((Ra+ Rb)+ Rc)) = a~ ' * (a* (Ra+ (Rb+
Rc))) = Ra+ (Rb + Rc). Finally, if a,b,c € G are such that Ra + (Rb + Rc) # (),
then (Rc + Rb) + Ra = Ra + (Rb + Rc) # 0, and therefore Ra + (Rb + Rc) =
(Rc+ Rb)+ Ra = Rc+ (Rb+ Ra) = (Ra + Rb) + Rc by the commutativity of the
addition and the preceding part of the proof. The rest is clear. [l

Assume that (f2) is true. It follows from 4.1.1, 4.1.2 and 4.1.3 that Q becomes
non-trivial transitive zp-semimodule over the group G.

Lemma 4.1.4. Q is a (non-trivial) zs-semimodule if and only if the following
condition is satisfied:
(f3) RNaR =0 for at least one a € G.

Proof. Use the transitivity of Q. O

Proposition 4.1.5. Assume that the conditions (f1), (f2) and (3) are satisfied.
Then:

(i) Q = Q(+, %) is a non-trivial transitive zs-semimodule over G.

(ii) Q is ideal-simple.
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(iii) If Ra <q Rb, then Rb C Ra.

(iv) Anng(Ra) = {Rb | RNab 'R # 0} U {0}.
(v) If Rb C Ra, then Ra -q Rb.

(vi) Anng(Q) = {0}.

(vil) Q is balanced.

Proof. See 4.1.1,4.1.2, 4.1.3 and 4.1.4 to show (i), ..., (vi). Finally, if RNab='R # 0,

then ab=!r € R for some r € R and we have RaU Rb C Rr—1b. Now, using (v), we
show easily that Q is balanced. O

Finally, assume that the conditions (f1), (f2) and (f3) are satisfied (see 4.1.5)
and consider two more conditions:

(f4) For every a € R\ R™! there exists b € G such that R N bR = ) and
Ra = RN Rb;

(f5) For every a € (RR™') \ R™! there exists b € G such that RNOR = 0 #
RN abR.

Lemma 4.1.6. The following conditions are equivalent:
(i) If a,b € G, then Ra <q Rb if and only if Rb C Ra (see 4.1.5(%ii)).
(ii) The condition (f4) is satisfied.

Proof. Easy to check. O

Lemma 4.1.7. If (f4) is true, then Q is downwards-regular and strongly balanced.

Proof. Use 4.1.6. (]
Lemma 4.1.8. Anng(R) = {Rb | be RR™1} U {0}.
Proof. Easy to check. O

Lemma 4.1.9. The following conditions are equivalent:
(i) If a,b € G, then Ra -q Rb if and only if Rb C Ra (see 4.1.5(v)).
(i1) The condition (f5) is satisfied.

Proof. (i) implies (ii). Let a € G be such that RN abR = (§ whenever b € G is such
that RN bR = 0. It follows from 4.1.7(iv) and 4.1.8 that R, Iq R. Now, by (i),
R C Ra, and hence a € R™1.

(ii) implies (i). Let a,b € G be such that Ra 4q Rb and Ra # Rb. Then
RcHq R, ¢ = ab™! and Rc # R. Now, assume that R ¢ Rc. Then ¢ ¢ R™! and,
by (f5), RNdR = () # RNecdR for some d € G. Consequently, Rd~' € Anng(Re) C
Anng(R) and Rd~! = Re for some e € RR™! (4.1.8). Thus d~' =rs™!, r,s € R,
dR=sr'Rand s € RN dR, a contradiction. It follows R C Rc and Rb C Ra. [

Lemma 4.1.10. If (f5) is true, then Q is separable and upwards-regular.
Proof. Use 4.1.9. (]

4.2. Consider the conditions (f1), ..., (f5) defined in 4.1.

Lemma 4.2.1. (i) If (f1) is true, then G = RR™' U R™'R (and hence the group
G is generated by R).
(i) If G = RR™YUR™'R and every left ideal of R is principal, then (f1) is true.
(iii) (f3) is true if and only if G # RR™L.
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Proof. Easy to see. O

Corollary 4.2.2. If G is generated by R, R is left uniform, not right uniform and
every left ideal of R is principal, then the conditions (f1) and (£3) are satisfied.

5. ZEROPOTENT SEMIMODULES AND FRACTIONAL LEFT IDEALS

In this section, let S be an ideal-simple zeropotent G-semimodule such that
Anng(S) = {og} (or, equivalently, S+ S # {os}). For u,v € S, put (u:v) ={a €
G| au=gv}and [u:v]={a € G| au-s v}

Lemma 5.1. (i) (u:v) Clu:v] for all u,v € S.
(i) (u:0)=[u:0] =G for everyu € S.
(iii) (0:w) =[o:w]| =10 for every w € S, w # o.
(iv) (u:av) = a(u:v) and (au:v) = (u:v)a™! for alla € G and u,v € S.
(v) [u:av] = afu:v] and [au : v] = [u:v]a™! for alla € G and u,v € S.
(vi) (au:au) = a(u:u)a=t foralla € G andu € S.
(vii) [au : au] = afu : ula™! for alla € G andu € S.

Proof. The inclusion (u : v) C [u : v] follows from 2.5(ii) and the remaining asser-
tions can be checked readily. O

Lemma 552. (1) (u:wv)(v2 :u) C (vg:v1) and [u: v1][ve : u] C [ve : v1] for all
U, V1,V € 0.

(i) (w:u)(v:u) C(v:u) and [u:ullv:u] Cv:u] for all u,v € S.

(ili) (w:uw)(u:u) C (u:u) and [u: ulfu: u] C [u:u] for everyu € S.

Proof. Easy to check directly. O

Lemma 5.3. Let uy, us, u,v1,v2,v € 5.
(i) If ur =5 ua, then (uz : v) C (uq : v).
(ii) If v1 2g va, then (u:v1) C (u: ve).
(iil) If vo <g w1, then (u1 : v1)(ug : v2) C (ug : v1).

Proof. Easy to check directly. O

Lemma 5.4. Let uy,us, u,v1,v2,v € 5.
(1) If uy ds uga, then [ug : v] C [ug : v].
(ii) If v1 s va, then [u:v1] C [u: va].
(iil) If va s w1, then [uy : vi]uz : v2] C [ug : v1].

Proof. Easy to check directly. O

Lemma 5.5. (u:v) # 0 # [u:v] for all u,v € S, u # o.

Proof. Denote by I the set of z € S such that au =g z for some a € G. Then
{o,u} C I and I is an ideal of S. Since S is id-simple, we get I = S, v € I, and
therefore (u : v) # 0. Since (u: v) C [u: v], we have [u : v] # 0, too. O

In the remaining part of this section, fix an element w € S, w # og. It fol-
lows from 5.1(i), 5.2(iii) and 5.5 that both Ry = (w : w) and Ry = [w : w] are
subsemigroups of G and 1 € Ry C Rs. We put F; = F(G,R;), G; = G(G, R;),
P, =P(G,R;) and Q; = Q(G, R;), i = 1,2 (see the preceding section).
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Lemma 5.6. (i) Rf = RiNR;' ={a € G | aw = w}.
(i) Ry = ReN Ry ' = {a € G | (w,aw) € 7s}.
(iii) If S is separeble, then R} = Rj.

Proof. (i) If aw = w, then a 'w = w, a,a™! € Ry and a € R}. Conversely, if
a € R}, then a,a™! € Ry. Now, if w # aw, then w = aw +u = a " 'w+v, u,v € S,
and we get aw = w+av, w=w+ 2,z =av+u, w=w+2z2=w+0 =0, a
contradiction.

(ii) Easy to check.

(iii) Since S is separable, we have ms = idg and the assertion follows by combi-
nation of (i) and (ii). O

1

Lemma 5.7. Letv € S. Then:
(i) Ri(v:w) C (v:w).
ii) Rafv:w] C [v: wl.
ii) (w:v) #0=[w:v.
iv) (v:w) C Rya™?! for every a € (w: v).
v) [v:w] C Rea™! for every a € [w: v].
vi) If v # og, then (v:w) # 0 # [v: w)].
vii) (v:w)(v:v) C (v:w).
(viil) [v: w]lv:v] C[v: w].
Proof. (i) If a € Ry and b € (v : w), then aw = w, bv <g w, and so abv <g aw = w
and ab € (v : w).
(ii) Similar to (i).
(iii) See 5.5.
(iv) By 5.2(i), (v : w)(w : v) C (w: w) = Ry, and so (v : w) C Ry(w :v)~ L,
(v) Similar to (iv).
(vi) See 5.5.
(vii) Use 5.2(i).
(viii) Similar to (vii). O
Using the foregoing lemma, we get mappings (¢, =) ¢ : S — G1 and (¢, =)
P : S — Gg defined by ¢(v) = (v : w) and P (v) = [v : w] for every v € S (5.7(i),
(i)
Lemma 5.8. (i) ¢(S\ {o}) C F;.
(i) ¢(av) = p(v)a=t = ax p(v) for alla € G and v € S.
(iii) If u <5 v, then p(v) C p(u).
Proof. (i) This follows from 5.5.
(ii) We have ¢(av) = (av: w) = (v: w)a™t = p(v)a™! = a * p(v) by 5.1(iv).
(iii) If a € ¢(v), then av <g w, and, of course, au <g av. Thus au <g w and
a € o(u). O
Lemma 5.9. (i) ¥(S\ {o}) C Fs.
(ii) v (av) = Y(v)a~t = a*Y(v) for alla € G and v € S.
(iii) If u g v, then ¥(v) C ¥(u).
Proof. Similar to that of 5.8. O
Lemma 5.10. (i) ¢(v) C ¢ (v) for every v € S.
(i) p(w) = Ry and P(w) = R.
(i) ¢(0s) = 0 = ¥(0s).
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Proof. Obvious. O

Lemma 5.11. Assume that S is transitive. Then:
(i) ¢ is a bijection of S onto Q.
(il) w =g v if and only if p(v) C v(u).

Proof. (i) Let u,v € S be such that ¢(u) = ¢(v). If u =0 or v = o, then p(u) =
0 = p(v) and u = 0 = v by 5.8(i). Hence, assume that u # o0 # v. Then u = aw and
v = bw for some a,b € G. Now, Ria~! = p(aw) = ¢(u) = ¢(v) = p(bw) = R1b™1,
Ria™'b = Ry, a™'b € R}, w = a'bw and, finally, u = aw = bw = v (use 5.8(ii)
and 5.6(1)). We have proved that ¢ is an injective mapping.

If a € G, then p(a~'w) = (w : w)a = Rya by 5.1(iv). It follows that ¢ is a
projective mapping. Consequently, ¢ : .S — Q is a bijection.

(il) If u =g v, then p(v) C (u) by 5.8(iii). Conversely, if p(v) C p(u), v # o,
u = aw, v = bw, then R1b~! = p(v) C p(u) = Ria™', Ry C Ria"'b = p(b~law) =
(b~taw : w), 1 € (b"law : w), b~ raw =g w and, finally, u = aw =g bw = v. O

Lemma 5.12. Assume that S is transitive. Then:
(i) ¥ is a projection of S onto Qs.
(ii) ker(v)) = 7g.
(iii) u ds v if and only if ¥ (v) C Y(u).

Proof. Similar to that of 5.11. O

Corollary 5.13. Assume that S is transitive. Then v : S — Qg is a bijection if
and only if S is separable.

Lemma 5.14. If S is downwards-regular, then ¢(u + v) = @(u) N @(v) for all
u,v € S such that u+v # og.

Proof. The inclusion p(u+v) C p(u)Ne(v) is clear from the definitions. Conversely,
it a € p(u) Ne(v), then au <g w, av <g w, and hence a(u + v) <g w, since S is
downwards-regular. Thus a € ¢(u + v). O

Lemma 5.15. If S is upwards-reqular, then ¥(u+v) = ¥(u)N(v) for allu,v € S
such that u 4+ v # og.

Proof. Similar to that of 5.14. O

Theorem 5.16. Let S be a transitive zeropotent G-semimodule such that S+ S #
{os} (see 2.8). Let w € S, w # o5, R1 = {a € G | aw =g w} and Ry = {a €
G | aw Hs w}. Then:

(i) S is ideal-simple, S+ S =S and Anng(S) = {os}.

(ii) Both Ry and Ry are subsemigroups of G and 1 € Ry C Ra.

(iii) The mapping ¢ : v — {a € G | av <g w} is a bijection of S onto Q(G, Ry)
such that w =g v if and only if (v) C v(u).

(iv) If S is downwards-regular, then ¢(u+v) = p(u) Np(v) for all u,v € S such
that u + v # og.

(v) The mapping ¢ : v — {a € G | av g w} is a projection of S onto Q(G, Rz)
such that ker(¢) = s and u -s v if and only if Y(v) C P(u).

(vi) If S is separable, then ¢ is a bijection of S onto Q(G, Ra).

(vii) If S is upwards-regular, then ¥(u+ v) = ¥(u) NY(v) for all u,v € S such
that u + v # og.
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Proof. See 2.7, 2.8, 5.1(i), 5.2(iii), 5.5, 5.11, 5.14, 5.12 and 5.15. O

Lemma 5.17. Let a,b € G, u = aw and v = bw. Then:
(i) o(u) Ne(v) # 0 if and only if Ry N Ria=tb # 0.
(ii) RiNa~tbRy # 0 if and only if there exists ¢ € G with cw =g u and cw =g v.

Proof. (i) We have ¢(u) = Ria—! and p(v) = R1b~!. The rest is clear.
(i) If d = a~'be, where d,e € Ry, then ad = ¢ = be, cw = adw =g aw = u and
cw = bew <g bw = v. Similarly the converse implication. O

Lemma 5.18. Assume that S is strongly balanced. If a,b € G are such that
aw + bw = o, then Ry Na~'bR; # 0.

Proof. Use 5.17(ii). O

Lemma 5.19. Let a,b € G, u = aw and v =bw. Then:
(i) ¥(u) N(v) # O if and only if Ro N Raa™1b # 0.
(ii) RoNa~tbRy # 0 if and only if there exists c € G with cw s u and cw s v.

Proof. Similar to that of 5.17. O

Lemma 5.20. Assume that S is balanced. If a,b € G are such that aw + bw = o,
then Ro Na"'bRy # 0.

Proof. Use 5.19(ii). O
Lemma 5.21. Assume that S is transitive. If a € G is such that w+ aw # o, then
a€ R{'R;.

Proof. We have w + aw = bw for some b € G, aw =g bw, b'a € Ry, w <5 bw,
b~' € Ry. Consequently, a € Ry ' R;. O
Lemma 5.22. Assume that S is strongly balanced. If a € G is such that w+aw = o,
then a € RiRy".

Proof. This follows immediately from 5.18. t

Lemma 5.23. If S is transitive and strongly balanced, then G = Rl_lRl U RlRl_l,

Proof. Combine 5.21 and 5.22. ]

6. A FEW CONSEQUENCES

6.1. Let S be a non-trivial transitive zp-semimodule over a group G such that
S is downwards-regular and strongly balanced. By 2.7 and 2.8, S is ideal-simple,
Anng(S) = {os} and S+ S =5, i.e., S is a zs-semimodule.

Now, choose w € S, w # og, and put R = Ry, = {a € G | aw <g w} and
© = @y, where ¢, (v) = {a € G | av <g w} for every v € S. According to 5.2(iii),
5.5 and 5.11, R is a subsemigroup of the group G, 1 € R and ¢ is a bijection of .S
onto Q = Q(G, R) such that u <g v iff p(v) C ¢(u). Moreover, by 5.8 and 5.14,
o(av) = p(v)a™t, p(aw) = Ra™!, a € G, and if u,v € S are such that u + v # og,
then p(u +v) = ¢(u) Ne(v).

Lemma 6.1.1. The condition (f1) (see 4.1) is satisfied.
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Proof. Let a € G be such that RN Ra = (). It follows from 5.18 that ¢~ 'w+w # o,
and hence a " 'w+w = b~ w for some b € G. Now, Rb = p(b~'w) = p(a " tw+w) =
ola=tw) Ny(w) = RaN R. O

The condition (f1) is true, and so we get groupoid Q = Q(+) due to 4.1.
Lemma 6.1.2. ¢ is an isomorphism of S(4) onto Q(+).

Proof. Since ¢ is a bijection, we have to show that ¢ is a homomorphism of the
additive structures. For, let u,v € S. We have ¢(os) = 0, and hence ¢(u + v) =
0 = p(u) + p(v), provided that either v = 0 or v = 0. Now, assume u # 0 # v.
Then v = aw and v = bw, a,b € G.

Firstly, let u+ v # o. If RN a~1bR # (0, then cw <g u and cw <g v for some
¢ € G by 5.17(ii) and it follows that u-+v = o, a contradiction. Thus RNa~ bR = {),
Ra='+ Rb™' = Ra"' N Rb~! # 0 in Q(+) and we get p(u +v) = p(u) Np(v) =
Ra™'NRb~'=Ra='+ Rb~! = p(u) + p(v).

Next, let u +v = 0. Then RNa~'bR # () by 5.18, and therefore p(u + v) =
0(0) =0=Ra"'+ Rb~! = p(u) + ¢(v), too. O

Lemma 6.1.3. The condition (f2) is satisfied.

Proof. By 6.1.2, S(+) is isomorphic to Q(+). Consequently, Q(+) is a semigroup
and (f2) follows by 4.1.3. O

Lemma 6.1.4. Q is a non-trivial transitive zs-semimodule and ¢ : S — Q is an
isomorphism of the semimodules.

Proof. See 4.1, 6.1.2 and 6.1.3. (]
Lemma 6.1.5. The conditions (f3) and (f4) are satisfied.

Proof. By 6.1.4, Q (& S) is a non-trivial zs-semimodule. Now, (f3) follows from
4.1.4 and (f4) is clear from 4.1.6 and 5.11(ii). O

Theorem 6.1.6. The conditions (f1), (£2), (f3) and (f4) are satisfied (see 4.1) and
the semimodules S and Q(G, R) are isomorphic.

Proof. See 6.1.2, ..., 6.1.5. g

6.2. Let S be a non-trivial transitive zp-semimodule over a group G such that S is
upwards-regular and balanced. By 2.7 and 2.8, S is ideal-simple, Anng(S) = {os}
and S+ S5 =9, i.e., Sis a zs-semimodule.

Now, choose w € S, w # og, and put R = Ro,, = {a € G | aw g w} and
1) = )y, where 1, (v) = {a € G | av Hg w} for every v € S. According to 5.2(iii),
5.5 and 5.12, R is a subsemigroup of the group G, 1 € R and % is a projection of
S onto Q = Q(G, R) such that ker(v)) = 7g and u 4g v iff ¥(v) C ¥ (u). Moreover,
by 5.9 and 5.15, ¥(av) = ¥(v)a™!, ¥(aw) = Ra™!, a € G, and if u,v € S are such
that u 4+ v # og, then ¥ (u + v) = ¥ (u) NP (v).

Lemma 6.2.1. The condition (f1) (see 4.1) is satisfied.

Proof. Similar to that of 6.1.1 (use 5.20). O
The condition (f1) is true, and so we get the groupoid Q = Q(+) due to 4.1.

Lemma 6.2.2. ¢ is a homomorphism of S(+) onto Q(+).
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Proof. We have to show that v is a homomorphism of the additive structures. For,
let u,v € S. We have 9(og) = 0, and hence ¥(u +v) = 0 = ¥ (u) + 1 (v), provided
that either u = 0 or v = 0. Now, assume that u # 0 # v. Then v = aw and v = bw,
a,beq.

Firstly, let u +v # o. If RNa~"'bR # 0, then cw 45 u and cw g v for some
¢ € G by 5.19(ii). Consequently, Anng(cw) C Anng(u) N Anng(v), cw € Anng(cw)
implies cw + v = 0, v € Anng(cw) and, finally, v € Anng(v), u+v = o, a
contradiction. Thus RNa~'bR =0, Ra~' + Rb™' = Ra™' N Rb~! # 0 in Q(+)
and we get ¥ (u+v) = (u) Np(v) = Ra" 1N RO~ = Ra™' + Rb™ = (u) + ¢ (v).

Next, let u +v = 0. Then RNa 'bR # () by 5.20, and therefore (u + v) =
(o) =0 =Ra=t + Rb~1 = ¢(u) + ¢ (v), too. O

Lemma 6.2.3. The condition (f2) is satisfied.

Proof. By 6.2.2, Q(+) is a homomorphic image of S(+). Consequently, Q(+) is a
semigroup and (f2) follows by 4.1.3. O

Lemma 6.2.4. Q is a non-trivial transitive zs-semimodule and ¥ : S — Q is a
projective homomorphism of the semimodules.

Proof. We have mg # S x S, and hence Q is non-trivial. The rest is clear from 4.1,
6.2.2 and 6.2.3. O

Lemma 6.2.5. The conditions (£3) and (f5) are satisfied.

Proof. By 6.2.4, Q is a non-trivial zs-semimodule and (f3) follows from 4.1.4. Now,
consider the condition (f5). According to 4.1.9 and 4.1.5(v), it suffices to show that
Rb C Ra whenever a,b € G are such that Ra 4q Rb. We have Ra = v (u) and
Rb=¢(v), u=a"tw, v =>b"1w. If 2 € Anng(u), then 1(z) € Anng(Ra), and so
P(z) € Anng(Rb) and ¢ (z +v) = ¥(2) + ¥ (v) = 0 (= 0q). Thus (2 + v, 05) € 7g,
z+v € Anng(S) = {os}, 2+ v =0g and z € Anng(v). It follows that u 4g v and
Rb =1 (v) C ¢(u) = Ra by 5.12. O

Theorem 6.2.6. The conditions (f1), (£2), (£3) and (15) are satisfied and there ex-
ists a projection of the semimodule S onto the semimodule Q(G, R). This projection
is an isomorphism if and only if S is separable.

Proof. See 6.2.1, ..., 6.2.5. g
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