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Abstract. Commutative semigroups satisfying the equation 2x + y = 2x

and having only two G-invariant congruences for an automorphism group G

are considered. Some classes of these semigroups are characterized and some
other examples are constructed.

Every congruence-simple (i.e., possesing just two congruence relations) commu-
tative semigroup is finite and either two-element or a group of prime order. The
class of (non-trivial) commutative semigroups having only trivial invariant congru-
ences is considerably more opulent. These semigroups are easily divided into four
pair-wise disjoint subclasses (see 1.3). The fourth one contains commutative semi-
groups that are nil of index two and have no irreducible elements. This subclass
is enigmatic a bit and it is the purpose of the present note to construct various
examples of the indicated semigroups (called zs-semigroups in the sequel). Among
others, we show that if S is a non-trivial commutative zs-semigroup without non-
trivial invariant congruences, then the group of automorphisms of S contains a
non-commutative free subsemigroup.

1. Introduction

Let G be a multiplicative group. By a (unitary left G-) semimodule we mean a
commutative semigroup S (= S(+)) together with a G-scalar multiplication G ×
S → S such that a(x+ y) = ax+ ay, a(bx) = (ab)x and 1x = x for all a, b ∈ G and
x, y ∈ S.

Let S be a semimodule. An element w ∈ S is called absorbing ifGw = w = S+w.
There exists at most one absorbing element in S and, if it exists, it will usually be
denoted by the symbol oS (or only o); we will also write o ∈ S.

A non-empty subset I of S is an ideal if GI ⊆ I and S+ I ⊆ I. The semimodule
S will be called ideal-simple (or only id-simple) if |S| ≥ 2 and I = S whenever I is
an ideal of S such that |I| ≥ 2.

Lemma 1.1. Let S be a semimodule and w ∈ S. The one-element set {w} is an
ideal of S if and only if w = oS is an absorbing element of S.

Proof. Obvious. �

A semimodule S will be called congruence-simple (or only cg-simple) if S has
just two congruence relations (i.e., equivalences compatible with the addition and
the scalar multiplication).

Proposition 1.2. Every cg-simple semimodule is id-simple.
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Proof. If S is cg-simple, then S is non-trivial and, if I is an ideal of S, then r =
(I × I) ∪ idS is a congruence of S. Now, either r = idS and |I| = 1 (see 1.1) or
r = S × S and I = S. Thus S is id-simple. �

Let S be a (commutative) semigroup/semimodule. We will say that S is

- a semigroup/semimodule with zero addition (a za-semigroup/za-semimodule)
if |S + S| = 1 (then o ∈ S and S + S = o);

- a zeropotent semigroup/semimodule (a zp-semigroup/zp-semimodule) if 2x +
y = 2x for all x, y ∈ S (then o ∈ S and 2x = o);

- a zp-semigroup/zp-semimodule without irreducible elements (a zs-semigroup/zs-
semimodule) if S is a zp-semigroup/zp-semimodule and S=S+S;

- idempotent if x+ x = x for every x ∈ S;
- cancellative if x+ y 6= x+ z for all x, y, z ∈ S, y 6= z.

The following basic classification of cg-simple semimodules is given in [1]:

Theorem 1.3. Let S be a cg-simple semimodule. Then just one of the following
four cases takes place:

(1) S is a two-element za-semimodule;
(2) S is idempotent;
(3) S is cancellative;
(4) S is a zs-semimodule.

There exists only one two-element za-semimodule up to isomorphism. Cg-simple
idempotent semimodules over a commutative group are fully characterized in [1] (see
also [3], [4] and [5]) and cg-simple chains (and the corresponding groups) are studied
in [6] and [7]. Some information on cg-simple cancellative semimodules is also
available from [1] and various examples of non-trivial commutative zs-semigroups
are collected in [2]. The aim of this note is to initiate a study of cg-simple zs-
semimodules. The following starting result restricts our choice of groups in the
zeropotent case:

Proposition 1.4. Let no subsemigroup of a group G be a free semigroup of rank
(at least) 2. Then there exist no cg-simple zs-semimodules over G.

Proof. Let S be a non-trivial zs-semimodule and let x, y, z ∈ S be such that x =
y + z 6= o. Denote by A (B, resp.) the set of a ∈ G (b ∈ G, resp.) such that
ax = y or ax + v = y, v ∈ S (bx = z or bx + v = z, resp.). Then A ∩ B = ∅,
AA∪AB ⊆ A and BB∪BA ⊆ B. Now, if a ∈ A and b ∈ B, then the subsemigroup
of G generated by {a, b} is free, a contradiction. Thus either A = ∅ or B = ∅ and
we will assume A = ∅, the other case being similar.

Put I = Gx∪ (Gx+ S). Then I is an ideal of S, y /∈ I and I 6= S. On the other
hand, {x, o} ⊆ I and |I| ≥ 2. Consequently, the semimodule S is not id-simple
and, according to 1.2, it is not cg-simple either. �

Notice that among the groups from 1.4 we find all periodic groups and all locally
nilpotent groups (but not all metabelian groups).

Now, let R be a subsemigroup of a group G and let M = {A | A ⊆ G,A 6=
∅, AR ⊆ A}. The set M is closed under unions and non-empty intersections, R ∈ M

and G ∈ M. Now, we define an addition + on M by A+B = A ∪B if A ∩B = ∅
and A+B = G otherwise.
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Lemma 1.5. M(+) is a commutative zp-semigroup and oM = G.

Proof. Easy to check. �

Moreover, we define a scalar multiplication on M by (a,A) → aA = {ax | x ∈ A},
a ∈ G, A ∈ M.

Lemma 1.6. M is a zp-semimodule over the group G.

Proof. Easy to check. �

Define a relation ξ on M by (A,B) ∈ ξ iff {M ∈ M | A ∩M = ∅} = {M ∈
M | B ∩M = ∅}.

Lemma 1.7. ξ is a congruence of the semimodule M.

Proof. Easy to check. �

Lemma 1.8. Let η be a congruence of M such that ξ ⊆ η and (R,G) ∈ η. Then
η = M × M.

Proof. Clearly, (xR,G) = (xR, xG) ∈ η for every x ∈ G. Let A ∈ M and a ∈ A.
If aR ∩ B 6= ∅ for every B ∈ M such that B ⊆ A, then (aR,A) ∈ ξ ⊆ η, and so
(A,G) ∈ η. On the other hand, if B ∈ M is maximal with respect to B ⊆ A and
aR ∩ B = ∅, then (A,B ∪ aR) ∈ ξ. Since (G,B ∪ aR) ∈ η, we get (A,G) ∈ η
again. �

Lemma 1.9. (R,G) ∈ ξ if and only if G = RR−1 (then R is right uniform).

Proof. If (R,G) ∈ ξ, then R∩A 6= ∅ for every A ∈ M. In particular, R∩xR 6= ∅ for
every x ∈ G, and hence x ∈ RR−1. To show the other implication, we just proceed
conversely. �

Lemma 1.10. (i) If R is not right uniform, then (R,G) /∈ ξ.
(ii) If G is not generated by R, then (R,G) /∈ ξ.

Proof. (i) There exist a, b ∈ R such that aR ∩ bR = ∅. Then R ∩ a−1bR = ∅,
ab−1R ∈ M and, of course, G ∩ a−1bR = a−1bR 6= ∅. Thus (R,G) /∈ ξ.

(ii) Use 1.9. �

Lemma 1.11. Assume that R is not right uniform. Then (R,G) /∈ ξ and, if κ is
a congruence of M maximal with respect to ξ ⊆ κ and (R,G) /∈ κ, then N = M/κ
is a cg-simple zs-semimodule.

Proof. N is non-trivial and it follows readily from 1.8 that N is a cg-simple zp-
semimodule. Since R is not right uniform, there are right ideals A and B of R
such that B is maximal with respect to A ∩ B = ∅. Then A + B = A ∪ B,
(A ∪ B,R) ∈ ξ ⊆ κ, (A ∪ B,G) /∈ κ and A/κ + B/κ 6= oN. Thus N is not a
za-semimodule, and hence N is a zs-semimodule by 1.3. �

Proposition 1.12. If R is not right uniform, then a factorsemimodule of M is a
congruence-simple zs-semimodule.

Proof. See 1.11. �

Theorem 1.13. There exists at least one cg-simple zs-semimodule over G if and
only if the group G contains at least one subsemigroup that is a free semigroup of
rank (at least) 2.
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Proof. The direct implication is shown in 1.4. As concerns the inverse implication,
the existence of cg-simple zs-semimodule is shown in 1.12. �

2. Basic properties of zeropotent semimodules

Throughout this secion, let S be a zp-semimodule over a group G. Firstly, define
a relation �S on S by x �S y if and only if x = y or y = x+ v for some v ∈ S.

Lemma 2.1. (i) The relation �S is an ordering compatible with the addition and
scalar multiplication.

(ii) oS is a greatest element of the ordered set (S,�S).
(iii) If |S| ≥ 2, then S \ (S + S) is the set of minimal elements of (S,�S).
(iv) If x, y, z ∈ S are such that x �S y and x �S z, then y + z = o.

Proof. Easy. �

Proposition 2.2. Assume that S is a non-trivial zs-semimodule. Then:
(i) The ordered set (S,�S) has no minimal elements.
(ii) S(+) is not finitely generated (and hence S is infinite).

Proof. (i) This follows immediately from 2.1(iii).
(ii) If S(+) were generated by s finite number m of elements, then S should

contain at most 2m elements, a contradiction with (i). �

Lemma 2.3. The following conditions are equivalent:
(i) If x, y, z, u, v ∈ S are such that x + y 6= o 6= z and x + u = z = y + v, then

either z = x+ y or z = x+ y + w for some w ∈ S.
(ii) If x, y, z ∈ S are such that x+y 6= o 6= z and x �S z, y �S z, then x+y �S z.
(iii) If x, y ∈ S are such that x+ y 6= o, then x+ y = sup(x, y) in (S,�S).

Proof. Easy. �

The semimodule S will be called downwards-regular if the equivalent conditions
of 2.3 are satisfied.

For every x ∈ S, let AnnS(x) = {y ∈ S | x + y = o}. Further, let AnnS(S) =
{x+ S | S + x = o}.

Lemma 2.4. (i) For every x ∈ S, the annihilator AnnS(x) is an ideal of the
additive semigroup S(+).

(ii) AnnS(S) is an ideal of the semimodule S.

Proof. Obvious. �

Define a relation ⊣S on S by x ⊣S y if and only if AnnS(x) ⊆ AnnS(y).

Lemma 2.5. (i) The relation ⊣S is a quasiordering compatible with the addition
and scalar multiplication.

(ii) If x �S y, then x ⊣S y.
(iii) πS = ker(⊣S) is a congruence of the semimodule S.
(iv) πS = S × S if and only if S is a za-semimodule.

Proof. Easy. �
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The semimodule S will be called separable if πS = idS .
The semimodule S will be called upwards-regular if AnnS(x + y) ⊆ AnnS(z)

whenever x, y, z ∈ S are such that x+y 6= o 6= z and AnnS(x)∪AnnS(y) ⊆ AnnS(z).
In the sequel, let τS = {(x, y) ∈ S × S | x + y 6= o} and σS = {(x, y) | x + y =

o} = S × S \ τS . Further, define µS (νS , resp.) by (x, y) ∈ µS ((x, y) ∈ νS , resp.)
if and only if z �S x, z �S y (z ⊣S x, z ⊣S y, resp.) for at least one z ∈ S.

Lemma 2.6. (i) The relations τS , σS , µS and νS are symmetric.
(ii) The relations σS , µS and νS are reflexive.
(iii) τS is irreflexive.
(iv) πS ⊆ σS.
(v) µS ⊆ νS ⊆ σS.

Proof. Easy. �

The semimodule S will be called (strongly) balanced if σS = νS (σS = µS).
The semimodule S will be called transitive if the group G operates transitively

on the set S \ {oS}.

Proposition 2.7. If S is non-trivial and transitive, then S is id-simple.

Proof. Easy. �

Proposition 2.8. Assume that S is id-simple and either S+S 6= S or AnnS(S) 6=
{oS}. Then:

(i) S + S = {oS}, AnnS(S) = S and S is a za-semimodule.
(ii) x �S y if and only if either x = y or y = oS.
(iii) πS = S × S =⊣S.
(iv) G operates transitively on R = S \ {oS} (i.e., S is transitive).
(v) νS = (R ×R) ∪ idS is a congruence of S.
(vi) G operates primitively on R if and only if idS, νS and S × S are the only

congruences of S.

Proof. Easy. �

Proposition 2.9. Assume that S is cg-simple and |S| ≥ 3. Then:
(i) AnnS(S) = {oS} and S is separable.
(ii) ⊣S is a compatible ordering of S.

Proof. It follows from 2.5(iii) that either πS = S × S or πS = idS . If πS = S × S,
then S is a za-semimodule by 2.5(iv) and S is id-simple by 1.2. Now, it follows
from 2.8(v) that |R| = 1 and |S| = 2, a contradiction. Consequently, πS = idS and
⊣S is transitive. The rest follows from 2.5. �

Proposition 2.10. Assume that |S| ≥ 3. Then S is cg-simple if and only if S is
separable and id-simple.

Proof. The direct implication follows from 1.2 and 2.9. Now, assume that S is
separable and id-simple.

Let r be a congruence of S and I = {x | (x, o) ∈ r}. Then I is an ideal of S and
r = S × S, provided that I = S.

Let (x, y) ∈ r, x 6= y. Since S is separable, (x, y) /∈ πS and we can assume
that x ⊣S y is not true. Then AnnS(x) * AnnS(y) and there is z ∈ S such that
x + z = o 6= y + z. Now, y + z ∈ I, I 6= {o}, I = S, since S is id-simple, and
r = S × S. �
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Proposition 2.11. Assume that S is transitive and |S| ≥ 3. The following condi-
tions are equivalent:

(i) S is cg-simple.
(ii) S is separable.

Proof. (i) implies (ii) by 2.9(i) and (ii) implies (i) by 2.7 and 2.10. �

Proposition 2.12. Assume that S is id-simple, take w ∈ S, w 6= o, and consider
a congruence r of S maximal with respect to (w, o) /∈ r. Then S/r is a cg-simple
zp-semimodule.

Proof. Clearly, T = S/r is a non-trivial zp-semimodule. Now, let s be a congruence
of S such that r ⊆ s, r 6= s, and put I = {x ∈ S | (x, o) ∈ s}. Then I is an ideal of S
and {o, w} ⊆ I. Thus I = S, since S is id-simple, and we conclude that s = S × S.
It follows easily that T is cg-simple. �

Corollary 2.13. Assume that S is id-simple and S+S 6= {oS}. Then at least one
factorsemimodule of S is a cg-simple zs-semimodule.

Corollary 2.14. Assume that S is transitive and S+S 6= {oS}. Then at least one
factorsemimodule of S is a cg-simple zs-semimodule.

3. Examples of congruence-simple zs-semimodules

Example 3.1. Let S be a non-trivial commutative zs-semigroup and G = Aut(S)
(the automorphism group of S). Then S becomes a G-semimodule. If S is separable
and G operates transitively on S \ {oS}, then S is cg-simple semimodule.

Example 3.2. Let (R,≤) be a non-empty ordered set together with an irreflective
and symmetric relation τ defined on R. For x, y ∈ R, let x∨y = sup(x, y), provided
that this supremum exists. Now, assume that the following three conditions are
satisfied:

(α) If x, y ∈ R are such that (x, y) ∈ τ , then x ∨ y exists;
(β) If (x, y) ∈ τ and (z, x ∨ y) ∈ τ , then (x, z) ∈ τ and (y, x ∨ z) ∈ τ ;
(γ) For every x ∈ R there exist y, z ∈ R such that (y, z) ∈ τ and x = y ∨ z.

Further, let o /∈ R, S = R∪{o}, x+y = x∨y if x, y ∈ R, (x, y) ∈ τ and x+y = o
otherwise. Then S (= S(+)) becomes a commutative zs-semigroup.

Let G be a group operating on R (i.e., a mapping G × R → R is defined such
that a(bx) = (ab)x and 1x = x) and assume that (ax, ay) ∈ τ for every (x, y) ∈ τ
and that u ≤ v implies au ≤ av. Then ax ∨ ay = a(x ∨ y) for (x, y) ∈ τ and S
becomes a G-semimodule (ao = o). If G operates transitively on R, then S is a
transitive semimodule. In such a case, by 2.14, at least one factorsemimodule of S
is a cg-simple zs-semimodule. Furthermore, if S is transitive, then S is cg-simple
iff it is separable (2.11). Finally, S is separable iff the following two conditions are
satisfied:

(δ) For every x ∈ R there exists y ∈ R with (x, y) ∈ τ ;
(ǫ) For all x, y ∈ R, x 6= y, (x, y) /∈ τ , there exists z ∈ R such that either

(x, z) ∈ τ , (y, z) /∈ τ or (x, z) /∈ τ , (y, z) ∈ τ .

(Notice that (δ) is true, provided that S is transitive.)
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Example 3.3. (cf. 3.2). Let T (= T (∧,∨)) be a distributive lattice with a smallest
element 0T and a greatest element 1T such that |T | ≥ 3. Consider the basic order
≤ defined on T and also the ordered set (R,≤), R = T \ {0T , 1T }. Assume that
the following two conditions are satisfied:

(µ) If x, y ∈ R and x ∧ y = 0T , then x ∨ y 6= 1T ;
(ν) For every x ∈ R there exist y, z ∈ R such that y ∧ z = 0T and y ∨ z = x.

Put S = T \ {1T} and define an addition on S by x+ y = x∨ y if x∧ y = 0T and
x+ y = 1T otherwise. Then S (= S(+)) is a commutative zs-semigroup. Further,
let a group G operate on R (a(bx) = (ab)x and 1x = x) in such a way that x ≤ y
implies ax ≤ ay. Then S becomes a G-semimodule (a1T = 1T ). If G operates
transitively on R, then S is a cg-simple zs-semimodule iff the following is true:

(σ) For all x, y ∈ R, x 6= y, x ∧ y 6= 0T , there exists z ∈ R such that either
x ∧ z = 0T 6= y ∧ z or x ∧ z 6= 0T = y ∧ z.

Example 3.4. Let I be an infinite set with |I| ≥ ℵ1 and let ℵ be an infinite cardinal
number such that ℵ < |I|. Denote by J the set {A | A ⊆ I, |A| = ℵ} ∪ {I} and
define an operation ⊕ on J by A⊕B = A∪B if A∩B = ∅ and A⊕B = I otherwise.
Then J is a non-trivial commutative zs-semigroup and J becomes a G-semimodule,
G = Aut(J(⊕)). It is easy to check that the semimodule J is transitive, separable
and upwards-regular, but neither downwards-regular non balanced. By 2.11, J is
cg-simple.

Example 3.5. Let I be an infinite set, K a (non-principal) maximal ideal of the
Boolean algebra of subsets of I such that K ∈ K for every K ⊆ I, |K| = |I|, and
let L = {A ∈ K | |A| = |I|} ∪ {I}. Define an addition ⊕ on L by A⊕B = A∪B if
A∩B = ∅ and A⊕B = I otherwise and put G = Aut(L(⊕)). Then L (= L(⊕)) is
a non-trivial separable commutative zs-semigroup and G operates transitively on
L \ {o}. Consequently, L is a cg-simple zs-semimodule over G.

Example 3.6. Let I be an infinite set and I the set of infinite subsets of I. Define
an operation ⊞ on I by A⊞B = A∪B if A∩B is finite and A⊞B = I otherwise.
Then I (= I(⊞)) is a non-trivial commutative zs-semigroup and r is a congruence
of I, where (A,B) ∈ r iff the symmetric difference (A ∪ B) \ (A ∩ B) is finite.
Then J = I/r is a non-trivial (commutative) zs-semigroup. Moreover, if |I| = ℵ0

and G = Aut(J), then J is a separable, upwards- and downwards-regular transitive
G-semimodule (J is not balanced). Consequently, J is a cg-simple zs-semimodule.

Assume that |I| ≥ ℵ1 and put P = {A ∈ I | |A| = ℵ0} ∪ {I}. Then P is
a subsemigroup of I and Q = P/r is a non-trivial (commutative) zs-semigroup.
Moreover, if H = Aut(Q), then Q is a transitive H-semimodule and it is easy to
check that Q is an upwards- and downwards-regular strongly balanced cg-simple
zs-semimodule.

4. Fractional left ideals and zeropotent semimodules

In this section, let R be a subsemigroup of a group G such that 1 ∈ R. We denote
by F (= F(G,R)) the set of fractional left R-ideals of G. That is, A ∈ F iff A ⊆ G,
A 6= ∅, RA ⊆ A and A ⊆ Ra for some a ∈ G. The set (G(G,R) =) G = F ∪ {∅} is
closed under arbitrary intersections and G operates on G via a∗A = Aa−1, A ∈ G,
a ∈ G. The set (P(G,R) =) P = {Ra | a ∈ G} of principal fractional left R-ideals
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is contained in F and we put (Q(G,R) =) Q = P ∪ {∅}. Notice that G operates
transitively on P.

Construction 4.1. Assume that the following condition is satisfied:

(f1) If a ∈ G is such that R ∩ aR = ∅, then R ∩ Ra = Rb for some b ∈ G (then
b ∈ R).

Now, define an addition on the set Q in the following way:

(1) Ra + Rb = Ra ∩ Rb for all a, b ∈ G such that R ∩ ab−1R = ∅ (by (f1), we
have Ra ∩Rb ∈ P);

(2) Ra+Rb = ∅ for all a, b ∈ G such that R ∩ ab−1R 6= ∅;
(3) Ra+ ∅ = ∅ = ∅ +Ra for every a ∈ G;
(4) ∅ + ∅ = ∅.

Now, we have obtained a groupoid Q = Q(+).

Lemma 4.1.1. A+B = B +A, A+A = ∅ and A+ ∅ = ∅ for all A,B ∈ Q.

Proof. Obvious. �

Lemma 4.1.2. For every a ∈ G, the transformation A → a ∗ A (= Aa−1) is an
automorphism of Q(+).

Proof. Easy to check. �

Lemma 4.1.3. Q is a semigroup if and only if the following condition is satisfied:
(f2) If a, b, c ∈ G are such that R∩ aR = ∅ = R ∩ bc−1R and R∩Ra = Rc, then

R ∩ dR = ∅ = R ∩ ab−1R, where Ra ∩Rb = Rd.

Proof. (i) Let Q(+) be associative. Then (R + Ra) + Rb = R + (Ra + Rb). But
(R + Ra) + Rb = (R ∩ Ra) + Rb = Rc + Rb = Rc ∩ Rb = R ∩ Ra ∩ Rb 6= ∅, and
hence R ∩ ab−1R = ∅, Ra ∩Rb = Rd by (f1), R+Rd 6= ∅ and R ∩ dR = ∅.

(ii) Let (f2) be satisfied. Firstly, if a, b ∈ G are such that (R + Ra) + Rb 6= ∅,
then (f2) implies (R + Ra) + Rb = R + (Ra + Rb). Next, if a, b, c ∈ G are such
that (Ra+Rb) +Rc 6= ∅, then (R +Rba−1) +Rca−1 = a ∗ ((Ra+Rb) +Rc) 6= ∅,
and hence (R+Rba−1) +Rca−1 = R+ (Rba−1 +Rca−1) = a ∗ (Ra+ (Rb+Rc)).
Consequently, (Ra+Rb)+Rc = a−1∗(a∗((Ra+Rb)+Rc)) = a−1 ∗(a∗(Ra+(Rb+
Rc))) = Ra+ (Rb + Rc). Finally, if a, b, c ∈ G are such that Ra+ (Rb + Rc) 6= ∅,
then (Rc + Rb) + Ra = Ra + (Rb + Rc) 6= ∅, and therefore Ra + (Rb + Rc) =
(Rc+Rb) +Ra = Rc+ (Rb+Ra) = (Ra+Rb) +Rc by the commutativity of the
addition and the preceding part of the proof. The rest is clear. �

Assume that (f2) is true. It follows from 4.1.1, 4.1.2 and 4.1.3 that Q becomes
non-trivial transitive zp-semimodule over the group G.

Lemma 4.1.4. Q is a (non-trivial) zs-semimodule if and only if the following
condition is satisfied:

(f3) R ∩ aR = ∅ for at least one a ∈ G.

Proof. Use the transitivity of Q. �

Proposition 4.1.5. Assume that the conditions (f1), (f2) and (f3) are satisfied.
Then:

(i) Q = Q(+, ∗) is a non-trivial transitive zs-semimodule over G.
(ii) Q is ideal-simple.
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(iii) If Ra �Q Rb, then Rb ⊆ Ra.
(iv) AnnQ(Ra) = {Rb | R ∩ ab−1R 6= ∅} ∪ {∅}.
(v) If Rb ⊆ Ra, then Ra ⊣Q Rb.
(vi) AnnQ(Q) = {∅}.
(vii) Q is balanced.

Proof. See 4.1.1, 4.1.2, 4.1.3 and 4.1.4 to show (i), ..., (vi). Finally, if R∩ab−1R 6= ∅,
then ab−1r ∈ R for some r ∈ R and we have Ra∪Rb ⊆ Rr−1b. Now, using (v), we
show easily that Q is balanced. �

Finally, assume that the conditions (f1), (f2) and (f3) are satisfied (see 4.1.5)
and consider two more conditions:

(f4) For every a ∈ R \ R−1 there exists b ∈ G such that R ∩ bR = ∅ and
Ra = R ∩Rb;

(f5) For every a ∈ (RR−1) \ R−1 there exists b ∈ G such that R ∩ bR = ∅ 6=
R ∩ abR.

Lemma 4.1.6. The following conditions are equivalent:
(i) If a, b ∈ G, then Ra �Q Rb if and only if Rb ⊆ Ra (see 4.1.5(iii)).
(ii) The condition (f4) is satisfied.

Proof. Easy to check. �

Lemma 4.1.7. If (f4) is true, then Q is downwards-regular and strongly balanced.

Proof. Use 4.1.6. �

Lemma 4.1.8. AnnQ(R) = {Rb | b ∈ RR−1} ∪ {∅}.

Proof. Easy to check. �

Lemma 4.1.9. The following conditions are equivalent:
(i) If a, b ∈ G, then Ra ⊣Q Rb if and only if Rb ⊆ Ra (see 4.1.5(v)).
(ii) The condition (f5) is satisfied.

Proof. (i) implies (ii). Let a ∈ G be such that R∩ abR = ∅ whenever b ∈ G is such
that R ∩ bR = ∅. It follows from 4.1.7(iv) and 4.1.8 that Ra ⊣Q R. Now, by (i),
R ⊆ Ra, and hence a ∈ R−1.

(ii) implies (i). Let a, b ∈ G be such that Ra ⊣Q Rb and Ra 6= Rb. Then
Rc ⊣Q R, c = ab−1 and Rc 6= R. Now, assume that R * Rc. Then c /∈ R−1 and,
by (f5), R∩dR = ∅ 6= R∩cdR for some d ∈ G. Consequently, Rd−1 ∈ AnnQ(Rc) ⊆
AnnQ(R) and Rd−1 = Re for some e ∈ RR−1 (4.1.8). Thus d−1 = rs−1, r, s ∈ R,
dR = sr−1R and s ∈ R∩ dR, a contradiction. It follows R ⊆ Rc and Rb ⊆ Ra. �

Lemma 4.1.10. If (f5) is true, then Q is separable and upwards-regular.

Proof. Use 4.1.9. �

4.2. Consider the conditions (f1), ..., (f5) defined in 4.1.

Lemma 4.2.1. (i) If (f1) is true, then G = RR−1 ∪ R−1R (and hence the group
G is generated by R).

(ii) If G = RR−1 ∪R−1R and every left ideal of R is principal, then (f1) is true.
(iii) (f3) is true if and only if G 6= RR−1.
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Proof. Easy to see. �

Corollary 4.2.2. If G is generated by R, R is left uniform, not right uniform and
every left ideal of R is principal, then the conditions (f1) and (f3) are satisfied.

5. Zeropotent semimodules and fractional left ideals

In this section, let S be an ideal-simple zeropotent G-semimodule such that
AnnS(S) = {oS} (or, equivalently, S + S 6= {oS}). For u, v ∈ S, put (u : v) = {a ∈
G | au �S v} and [u : v] = {a ∈ G | au ⊣S v}.

Lemma 5.1. (i) (u : v) ⊆ [u : v] for all u, v ∈ S.
(ii) (u : o) = [u : o] = G for every u ∈ S.
(iii) (o : w) = [o : w] = ∅ for every w ∈ S, w 6= o.
(iv) (u : av) = a(u : v) and (au : v) = (u : v)a−1 for all a ∈ G and u, v ∈ S.
(v) [u : av] = a[u : v] and [au : v] = [u : v]a−1 for all a ∈ G and u, v ∈ S.
(vi) (au : au) = a(u : u)a−1 for all a ∈ G and u ∈ S.
(vii) [au : au] = a[u : u]a−1 for all a ∈ G and u ∈ S.

Proof. The inclusion (u : v) ⊆ [u : v] follows from 2.5(ii) and the remaining asser-
tions can be checked readily. �

Lemma 5.2. (i) (u : v1)(v2 : u) ⊆ (v2 : v1) and [u : v1][v2 : u] ⊆ [v2 : v1] for all
u, v1, v2 ∈ S.

(ii) (u : u)(v : u) ⊆ (v : u) and [u : u][v : u] ⊆ [v : u] for all u, v ∈ S.
(iii) (u : u)(u : u) ⊆ (u : u) and [u : u][u : u] ⊆ [u : u] for every u ∈ S.

Proof. Easy to check directly. �

Lemma 5.3. Let u1, u2, u, v1, v2, v ∈ S.
(i) If u1 �S u2, then (u2 : v) ⊆ (u1 : v).
(ii) If v1 �S v2, then (u : v1) ⊆ (u : v2).
(iii) If v2 �S u1, then (u1 : v1)(u2 : v2) ⊆ (u2 : v1).

Proof. Easy to check directly. �

Lemma 5.4. Let u1, u2, u, v1, v2, v ∈ S.
(i) If u1 ⊣S u2, then [u2 : v] ⊆ [u1 : v].
(ii) If v1 ⊣S v2, then [u : v1] ⊆ [u : v2].
(iii) If v2 ⊣S u1, then [u1 : v1][u2 : v2] ⊆ [u2 : v1].

Proof. Easy to check directly. �

Lemma 5.5. (u : v) 6= ∅ 6= [u : v] for all u, v ∈ S, u 6= o.

Proof. Denote by I the set of z ∈ S such that au �S z for some a ∈ G. Then
{o, u} ⊆ I and I is an ideal of S. Since S is id-simple, we get I = S, v ∈ I, and
therefore (u : v) 6= ∅. Since (u : v) ⊆ [u : v], we have [u : v] 6= ∅, too. �

In the remaining part of this section, fix an element w ∈ S, w 6= oS . It fol-
lows from 5.1(i), 5.2(iii) and 5.5 that both R1 = (w : w) and R2 = [w : w] are
subsemigroups of G and 1 ∈ R1 ⊆ R2. We put Fi = F(G,Ri), Gi = G(G,Ri),
Pi = P(G,Ri) and Qi = Q(G,Ri), i = 1, 2 (see the preceding section).
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Lemma 5.6. (i) R∗

1 = R1 ∩R
−1

1
= {a ∈ G | aw = w}.

(ii) R∗

2 = R2 ∩R
−1

2
= {a ∈ G | (w, aw) ∈ πS}.

(iii) If S is separeble, then R∗

1 = R∗

2.

Proof. (i) If aw = w, then a−1w = w, a, a−1 ∈ R1 and a ∈ R∗

1. Conversely, if
a ∈ R∗

1, then a, a−1 ∈ R1. Now, if w 6= aw, then w = aw+ u = a−1w+ v, u, v ∈ S,
and we get aw = w + av, w = w + z, z = av + u, w = w + 2z = w + o = o, a
contradiction.

(ii) Easy to check.
(iii) Since S is separable, we have πS = idS and the assertion follows by combi-

nation of (i) and (ii). �

Lemma 5.7. Let v ∈ S. Then:
(i) R1(v : w) ⊆ (v : w).
(ii) R2[v : w] ⊆ [v : w].
(iii) (w : v) 6= ∅ = [w : v].
(iv) (v : w) ⊆ R1a

−1 for every a ∈ (w : v).
(v) [v : w] ⊆ R2a

−1 for every a ∈ [w : v].
(vi) If v 6= oS , then (v : w) 6= ∅ 6= [v : w].
(vii) (v : w)(v : v) ⊆ (v : w).
(viii) [v : w][v : v] ⊆ [v : w].

Proof. (i) If a ∈ R1 and b ∈ (v : w), then aw = w, bv �S w, and so abv �S aw = w
and ab ∈ (v : w).

(ii) Similar to (i).
(iii) See 5.5.
(iv) By 5.2(i), (v : w)(w : v) ⊆ (w : w) = R1, and so (v : w) ⊆ R1(w : v)−1.
(v) Similar to (iv).
(vi) See 5.5.
(vii) Use 5.2(i).
(viii) Similar to (vii). �

Using the foregoing lemma, we get mappings (ϕw =) ϕ : S → G1 and (ψw =)
ψ : S → G2 defined by ϕ(v) = (v : w) and ψ(v) = [v : w] for every v ∈ S (5.7(i),
(ii)).

Lemma 5.8. (i) ϕ(S \ {o}) ⊆ F1.
(ii) ϕ(av) = ϕ(v)a−1 = a ∗ ϕ(v) for all a ∈ G and v ∈ S.
(iii) If u �S v, then ϕ(v) ⊆ ϕ(u).

Proof. (i) This follows from 5.5.
(ii) We have ϕ(av) = (av : w) = (v : w)a−1 = ϕ(v)a−1 = a ∗ ϕ(v) by 5.1(iv).
(iii) If a ∈ ϕ(v), then av �S w, and, of course, au �S av. Thus au �S w and

a ∈ ϕ(u). �

Lemma 5.9. (i) ψ(S \ {o}) ⊆ F2.
(ii) ψ(av) = ψ(v)a−1 = a ∗ ψ(v) for all a ∈ G and v ∈ S.
(iii) If u ⊣S v, then ψ(v) ⊆ ψ(u).

Proof. Similar to that of 5.8. �

Lemma 5.10. (i) ϕ(v) ⊆ ψ(v) for every v ∈ S.
(ii) ϕ(w) = R1 and ψ(w) = R2.
(iii) ϕ(oS) = ∅ = ψ(oS).
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Proof. Obvious. �

Lemma 5.11. Assume that S is transitive. Then:
(i) ϕ is a bijection of S onto Q1.
(ii) u �S v if and only if ϕ(v) ⊆ ϕ(u).

Proof. (i) Let u, v ∈ S be such that ϕ(u) = ϕ(v). If u = o or v = o, then ϕ(u) =
∅ = ϕ(v) and u = o = v by 5.8(i). Hence, assume that u 6= o 6= v. Then u = aw and
v = bw for some a, b ∈ G. Now, R1a

−1 = ϕ(aw) = ϕ(u) = ϕ(v) = ϕ(bw) = R1b
−1,

R1a
−1b = R1, a

−1b ∈ R∗

1, w = a−1bw and, finally, u = aw = bw = v (use 5.8(ii)
and 5.6(i)). We have proved that ϕ is an injective mapping.

If a ∈ G, then ϕ(a−1w) = (w : w)a = R1a by 5.1(iv). It follows that ϕ is a
projective mapping. Consequently, ϕ : S → Q1 is a bijection.

(ii) If u �S v, then ϕ(v) ⊆ ϕ(u) by 5.8(iii). Conversely, if ϕ(v) ⊆ ϕ(u), v 6= o,
u = aw, v = bw, then R1b

−1 = ϕ(v) ⊆ ϕ(u) = R1a
−1, R1 ⊆ R1a

−1b = ϕ(b−1aw) =
(b−1aw : w), 1 ∈ (b−1aw : w), b−1aw �S w and, finally, u = aw �S bw = v. �

Lemma 5.12. Assume that S is transitive. Then:
(i) ψ is a projection of S onto Q2.
(ii) ker(ψ) = πS.
(iii) u ⊣S v if and only if ψ(v) ⊆ ψ(u).

Proof. Similar to that of 5.11. �

Corollary 5.13. Assume that S is transitive. Then ψ : S → Q2 is a bijection if
and only if S is separable.

Lemma 5.14. If S is downwards-regular, then ϕ(u + v) = ϕ(u) ∩ ϕ(v) for all
u, v ∈ S such that u+ v 6= oS.

Proof. The inclusion ϕ(u+v) ⊆ ϕ(u)∩ϕ(v) is clear from the definitions. Conversely,
if a ∈ ϕ(u) ∩ ϕ(v), then au �S w, av �S w, and hence a(u + v) �S w, since S is
downwards-regular. Thus a ∈ ϕ(u+ v). �

Lemma 5.15. If S is upwards-regular, then ψ(u+v) = ψ(u)∩ψ(v) for all u, v ∈ S
such that u+ v 6= oS.

Proof. Similar to that of 5.14. �

Theorem 5.16. Let S be a transitive zeropotent G-semimodule such that S + S 6=
{oS} (see 2.8). Let w ∈ S, w 6= oS, R1 = {a ∈ G | aw �S w} and R2 = {a ∈
G | aw ⊣S w}. Then:

(i) S is ideal-simple, S + S = S and AnnS(S) = {oS}.
(ii) Both R1 and R2 are subsemigroups of G and 1 ∈ R1 ⊆ R2.
(iii) The mapping ϕ : v → {a ∈ G | av �S w} is a bijection of S onto Q(G,R1)

such that u �S v if and only if ϕ(v) ⊆ ϕ(u).
(iv) If S is downwards-regular, then ϕ(u+ v) = ϕ(u)∩ϕ(v) for all u, v ∈ S such

that u+ v 6= oS .
(v) The mapping ψ : v → {a ∈ G | av ⊣S w} is a projection of S onto Q(G,R2)

such that ker(ψ) = πS and u ⊣S v if and only if ψ(v) ⊆ ψ(u).
(vi) If S is separable, then ψ is a bijection of S onto Q(G,R2).
(vii) If S is upwards-regular, then ψ(u + v) = ψ(u) ∩ ψ(v) for all u, v ∈ S such

that u+ v 6= oS .
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Proof. See 2.7, 2.8, 5.1(i), 5.2(iii), 5.5, 5.11, 5.14, 5.12 and 5.15. �

Lemma 5.17. Let a, b ∈ G, u = aw and v = bw. Then:
(i) ϕ(u) ∩ ϕ(v) 6= ∅ if and only if R1 ∩R1a

−1b 6= ∅.
(ii) R1∩a−1bR1 6= ∅ if and only if there exists c ∈ G with cw �S u and cw �S v.

Proof. (i) We have ϕ(u) = R1a
−1 and ϕ(v) = R1b

−1. The rest is clear.
(ii) If d = a−1be, where d, e ∈ R1, then ad = c = be, cw = adw �S aw = u and

cw = bew �S bw = v. Similarly the converse implication. �

Lemma 5.18. Assume that S is strongly balanced. If a, b ∈ G are such that
aw + bw = o, then R1 ∩ a−1bR1 6= ∅.

Proof. Use 5.17(ii). �

Lemma 5.19. Let a, b ∈ G, u = aw and v = bw. Then:
(i) ψ(u) ∩ ψ(v) 6= ∅ if and only if R2 ∩R2a

−1b 6= ∅.
(ii) R2 ∩ a−1bR2 6= ∅ if and only if there exists c ∈ G with cw ⊣S u and cw ⊣S v.

Proof. Similar to that of 5.17. �

Lemma 5.20. Assume that S is balanced. If a, b ∈ G are such that aw + bw = o,
then R2 ∩ a−1bR2 6= ∅.

Proof. Use 5.19(ii). �

Lemma 5.21. Assume that S is transitive. If a ∈ G is such that w+aw 6= o, then
a ∈ R−1

1
R1.

Proof. We have w + aw = bw for some b ∈ G, aw �S bw, b−1a ∈ R1, w �S bw,
b−1 ∈ R1. Consequently, a ∈ R−1

1
R1. �

Lemma 5.22. Assume that S is strongly balanced. If a ∈ G is such that w+aw = o,
then a ∈ R1R

−1

1
.

Proof. This follows immediately from 5.18. �

Lemma 5.23. If S is transitive and strongly balanced, then G = R−1

1
R1 ∪R1R

−1

1
.

Proof. Combine 5.21 and 5.22. �

6. A few consequences

6.1. Let S be a non-trivial transitive zp-semimodule over a group G such that
S is downwards-regular and strongly balanced. By 2.7 and 2.8, S is ideal-simple,
AnnS(S) = {oS} and S + S = S, i.e., S is a zs-semimodule.

Now, choose w ∈ S, w 6= oS , and put R = R1,w = {a ∈ G | aw �S w} and
ϕ = ϕw, where ϕw(v) = {a ∈ G | av �S w} for every v ∈ S. According to 5.2(iii),
5.5 and 5.11, R is a subsemigroup of the group G, 1 ∈ R and ϕ is a bijection of S
onto Q = Q(G,R) such that u �S v iff ϕ(v) ⊆ ϕ(u). Moreover, by 5.8 and 5.14,
ϕ(av) = ϕ(v)a−1, ϕ(aw) = Ra−1, a ∈ G, and if u, v ∈ S are such that u+ v 6= oS ,
then ϕ(u+ v) = ϕ(u) ∩ ϕ(v).

Lemma 6.1.1. The condition (f1) (see 4.1) is satisfied.
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Proof. Let a ∈ G be such that R∩Ra = ∅. It follows from 5.18 that a−1w+w 6= o,
and hence a−1w+w = b−1w for some b ∈ G. Now, Rb = ϕ(b−1w) = ϕ(a−1w+w) =
ϕ(a−1w) ∩ ϕ(w) = Ra ∩R. �

The condition (f1) is true, and so we get groupoid Q = Q(+) due to 4.1.

Lemma 6.1.2. ϕ is an isomorphism of S(+) onto Q(+).

Proof. Since ϕ is a bijection, we have to show that ϕ is a homomorphism of the
additive structures. For, let u, v ∈ S. We have ϕ(oS) = ∅, and hence ϕ(u + v) =
∅ = ϕ(u) + ϕ(v), provided that either u = o or v = o. Now, assume u 6= o 6= v.
Then u = aw and v = bw, a, b ∈ G.

Firstly, let u + v 6= o. If R ∩ a−1bR 6= ∅, then cw �S u and cw �S v for some
c ∈ G by 5.17(ii) and it follows that u+v = o, a contradiction. Thus R∩a−1bR = ∅,
Ra−1 + Rb−1 = Ra−1 ∩ Rb−1 6= ∅ in Q(+) and we get ϕ(u + v) = ϕ(u) ∩ ϕ(v) =
Ra−1 ∩Rb−1 = Ra−1 +Rb−1 = ϕ(u) + ϕ(v).

Next, let u + v = o. Then R ∩ a−1bR 6= ∅ by 5.18, and therefore ϕ(u + v) =
ϕ(o) = ∅ = Ra−1 +Rb−1 = ϕ(u) + ϕ(v), too. �

Lemma 6.1.3. The condition (f2) is satisfied.

Proof. By 6.1.2, S(+) is isomorphic to Q(+). Consequently, Q(+) is a semigroup
and (f2) follows by 4.1.3. �

Lemma 6.1.4. Q is a non-trivial transitive zs-semimodule and ϕ : S → Q is an
isomorphism of the semimodules.

Proof. See 4.1, 6.1.2 and 6.1.3. �

Lemma 6.1.5. The conditions (f3) and (f4) are satisfied.

Proof. By 6.1.4, Q (∼= S) is a non-trivial zs-semimodule. Now, (f3) follows from
4.1.4 and (f4) is clear from 4.1.6 and 5.11(ii). �

Theorem 6.1.6. The conditions (f1), (f2), (f3) and (f4) are satisfied (see 4.1) and
the semimodules S and Q(G,R) are isomorphic.

Proof. See 6.1.2, ..., 6.1.5. �

6.2. Let S be a non-trivial transitive zp-semimodule over a group G such that S is
upwards-regular and balanced. By 2.7 and 2.8, S is ideal-simple, AnnS(S) = {oS}
and S + S = S, i.e., S is a zs-semimodule.

Now, choose w ∈ S, w 6= oS , and put R = R2,w = {a ∈ G | aw ⊣S w} and
ψ = ψw, where ψw(v) = {a ∈ G | av ⊣S w} for every v ∈ S. According to 5.2(iii),
5.5 and 5.12, R is a subsemigroup of the group G, 1 ∈ R and ψ is a projection of
S onto Q = Q(G,R) such that ker(ψ) = πS and u ⊣S v iff ψ(v) ⊆ ψ(u). Moreover,
by 5.9 and 5.15, ψ(av) = ψ(v)a−1, ψ(aw) = Ra−1, a ∈ G, and if u, v ∈ S are such
that u+ v 6= oS , then ψ(u+ v) = ψ(u) ∩ ψ(v).

Lemma 6.2.1. The condition (f1) (see 4.1) is satisfied.

Proof. Similar to that of 6.1.1 (use 5.20). �

The condition (f1) is true, and so we get the groupoid Q = Q(+) due to 4.1.

Lemma 6.2.2. ψ is a homomorphism of S(+) onto Q(+).
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Proof. We have to show that ψ is a homomorphism of the additive structures. For,
let u, v ∈ S. We have ψ(oS) = ∅, and hence ψ(u + v) = ∅ = ψ(u) + ψ(v), provided
that either u = o or v = o. Now, assume that u 6= o 6= v. Then u = aw and v = bw,
a, b ∈ G.

Firstly, let u + v 6= o. If R ∩ a−1bR 6= ∅, then cw ⊣S u and cw ⊣S v for some
c ∈ G by 5.19(ii). Consequently, AnnS(cw) ⊆ AnnS(u)∩AnnS(v), cw ∈ AnnS(cw)
implies cw + u = o, u ∈ AnnS(cw) and, finally, u ∈ AnnS(v), u + v = o, a
contradiction. Thus R ∩ a−1bR = ∅, Ra−1 + Rb−1 = Ra−1 ∩ Rb−1 6= ∅ in Q(+)
and we get ψ(u+ v) = ψ(u)∩ψ(v) = Ra−1 ∩Rb−1 = Ra−1 +Rb−1 = ψ(u) +ψ(v).

Next, let u + v = o. Then R ∩ a−1bR 6= ∅ by 5.20, and therefore ψ(u + v) =
ψ(o) = ∅ = Ra−1 +Rb−1 = ψ(u) + ψ(v), too. �

Lemma 6.2.3. The condition (f2) is satisfied.

Proof. By 6.2.2, Q(+) is a homomorphic image of S(+). Consequently, Q(+) is a
semigroup and (f2) follows by 4.1.3. �

Lemma 6.2.4. Q is a non-trivial transitive zs-semimodule and ψ : S → Q is a
projective homomorphism of the semimodules.

Proof. We have πS 6= S ×S, and hence Q is non-trivial. The rest is clear from 4.1,
6.2.2 and 6.2.3. �

Lemma 6.2.5. The conditions (f3) and (f5) are satisfied.

Proof. By 6.2.4, Q is a non-trivial zs-semimodule and (f3) follows from 4.1.4. Now,
consider the condition (f5). According to 4.1.9 and 4.1.5(v), it suffices to show that
Rb ⊆ Ra whenever a, b ∈ G are such that Ra ⊣Q Rb. We have Ra = ψ(u) and
Rb = ψ(v), u = a−1w, v = b−1w. If z ∈ AnnS(u), then ψ(z) ∈ AnnQ(Ra), and so
ψ(z) ∈ AnnQ(Rb) and ψ(z + v) = ψ(z) + ψ(v) = ∅ (= oQ). Thus (z + v, oS) ∈ πS ,
z + v ∈ AnnS(S) = {oS}, z + v = oS and z ∈ AnnS(v). It follows that u ⊣S v and
Rb = ψ(v) ⊆ ψ(u) = Ra by 5.12. �

Theorem 6.2.6. The conditions (f1), (f2), (f3) and (f5) are satisfied and there ex-
ists a projection of the semimodule S onto the semimodule Q(G,R). This projection
is an isomorphism if and only if S is separable.

Proof. See 6.2.1, ..., 6.2.5. �
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