ON SEPARATING SETS OF WORDS II
V. FLASKA, T. KEPKA AND J. KORTELAINEN

ABSTRACT. Special replacement relation in free monoids is studied
with particular interest in antisymmetry and antitransitivity.

1. INTRODUCTION

This article is an immediate continuation of [1]. References like 1.3.3
lead to the corresponding section and result of [1] and all definitions
and preliminaries are taken from the same source.

2. MORE RESULTS ON SEPARATED PAIRS OF WORDS

Throughout this section, let u,v € A* be such that u # v, |u| = |v|
and both the pairs (u,v) and (v,u) are separated. According to 1.3.3,
these two pairs are strongly separated (clearly, u # € # v).

Lemma 2.1. wvx = zuv iff x = (uwv)™ for some m > 0.

Proof. We will proceed by induction on |z|. If x = ¢, then m = 0. If
|z| < |u|, then u = zr, v = sz, and so x = ¢ and m = 0 again. Finally,
if Ju| < |z|, then up = = = qu, wvqv = wr = Tuv = Upuv, vq¢ = pu,
p = vt, ¢ = tu and wvt = up = v = qu = tuwv. If |t| = |z|, then
u = ¢ = v, a contradiction. Thus [t| < |z|, t = (uv)™ by induction
and z = uvt = ()™, m =my + 1. O

Lemma 2.2. Ifpur = zvq and |z| < |pul, then just one of the following
two cases takes place:

(1) p=wt, ¢ =tu and x = vtu (then |z| = |pu| = |vq|);

(2) p= vt and q = tux (then |x| < |p| = |q|).

Proof. We have pu = zz and vqg = zz. If |z| < |u|, then u = wu;z,
v = zvy, and hence z = €. Consequently, pu = x = vq and it follows
that p = vt, ¢ = tu and x = vtu, so that (1) is true. On the other
hand, if |u| < |z|, then ugu = 2z = Vg, uy = vt, vy = tu and z = vtu.
From this, pu = xz = xvtu, p = xvt, vq = zx = vtux, ¢ = tuxr and
2] < lpl. 0

Lemma 2.3. pur = zvq iff p = yvt, ¢ = tuy and x = (yvtu)™y
(= y(vtuy)™), m = 0.
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Proof. Only the direct implication needs a proof and we will proceed
by induction on |z|.

If |z| < |pul|, then either 2.2 (1) is true and we put y = ¢, m =1, or
2.2 (2) is true and we put y =z, m = 0.

If |pu| < |z|, then puz; = = = x1vq, 1 < |z1| < |z|, and we use
induction hypothesis. O

Lemma 2.4. puyv = uyvq iff at least one (and then just one) of the
following two cases takes place:

(1) p=e=gq;
(2) p=wuzvt, ¢ =tuzv and y = (zvtu)™z, m > 0.

Proof. Again, only the direct implication needs a proof.

If |p| < |ul, then u = pr, v = sq, ryv = uys and, by 1.3.7, r = uuy,
s = v1v. Now, u = puuy, v = vivq and p =€ = q.

If Ju| < |p|, then p = uus, ¢ = vov and yvvy = uguy. It remains to
use 2.3 U

Lemma 2.5. Let p,q,x,y € A* be such that |x| < |p|. Then puyvr =
xuyvq iff at least one (and then just one) of the following two cases
takes place:

(1) p==z=gq
(2) p=zuzvt and q = tuzvr and y = (zvtu)™z, m > 0.

Proof. As usual, only the direct implication needs a proof. We have
p=zp1, ¢ = qz, |p1| = |q1| and pyuyv = uyvg;. The rest follows from
2.4. U

Lemma 2.6. Let p,q,x,y € A* be such that |p| < |z|. Then puyvr =
zuyvq iff © = puzvt = tuzvg and y = (zvtu)™z, m > 0.

Proof. Standard (use 2.4). O

3. AUXILIARY RESULTS (A)

Throughout this section, let Z be a strongly separating set of words,
Z # {e}, and let p,q,r,s,t,w,z € A* be such that ptq = w = rzs,
z € Z and p, q are (Z-) reduced.

Lemma 3.1. Just one of the following nine cases takes place:
(al) r =pg, t =gh, q=ks, z=hk, g#c#h, k#¢c and h, k, s

are reduced;

(a2) r=pg, t =gz, =5, g # ¢ and s is reduced;

(a3) r =pg, t = gzh, s =hq, g #c # h;

(ad) r=p, z=th,q=hs, h#¢c and h, s, r, t are reduced;

ab) r=p, z=t, s=q and r, s are reduced;

5 d duced

ab) r=p, t = zh, s = hq, e and r is reduced;

6 h hq, h d r is reduced

(aT)p=rg, z=gh,t=hf,s=fq, g#c# f,h#candr, g, h

are reduced,
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(a8) p=rg, z=gt,q=3s,g9gFc#t andr, g, t, s are reduced;
(29) p=rg, z=gh=gtf, h=1tf, q=fs,g#c# f andr, g, h,

t, f, s are reduced,

Proof. 1t will be divided into three parts:

(i) Let |p| < |r|. Then r = pg, g # €, ptq = pgzs and tq = gzs.
Since q is reduced, we have |g| < |t|, t = gh, h # €, ghq = gzs,
hq = zs and pt = pgh = rh.

If |h| < |z|, then z = hk, k # ¢, hq = zs = hks, ¢ = ks and
(al) is fulfilled.

If |h| = |z|, then h = z, g = s, t = gz and (a2) is satisfied.

If || > |z|, then h = zhy, hy # €, hiq = s, t = gzhy and
(a3) is true.

(ii) Let |p| = |r|. Then p =r and tq = zs.

If |t| < |z|, then z = th, h # ¢, tq = zs = ths, ¢ = hs and
(ad) is valid.

If |t| = |z|, then z = ¢, ¢ = s and (ab) holds.

If |t| > |z|, then t = zh, h # ¢, zhq = tq = zs, hq = s and
(a6) follows.

(iii) Let |p| > |r|. Then p = rg, g # €, rgtq = ptq = rzs and
gtq = zs. Since g is reduced, we have |g| < |z|, z = gh, h # €.
Moreover, gtq = zs = ghs and tq = hs.

If |h| < |t], then t = hf, f # ¢, hfq=1tqg= hs, fg = s and
(a7) is clear.
If |h| = |t|, then t = h, g = s, z = gt and (a8) is evident.
If |h| > |t|, then h =tf, f # ¢, tfs =tq = hs, ¢ = fs and
(a9) is visible.
]

Lemma 3.2. Assume that (al) is true. Then:

(i) w = pgzs = pghks, z=hk, t = gh, q=ks, g+ e # h, k #¢,
|z| > 2, |[t| > 2, h, k, s, p, ks are reduced and the pair (t, z) is
not separated.

(ii) If pg is reduced, then tr(w) = 1.

(iii) Ift is reduced, then g is reduced.

(iv) If g is reduced and pg is not reduced, then p = pju, g = vq,
t =vqh, w=puvgzs, u # e F v, uv € Z, p1, q1, u, v are
reduced and tr(w) = 2.

Proof.

i) The assertion follows easily from (al).
(ii) Combine (i) and 1.5.4.
(iii) Obvious from t = gh.
(iv) Since p, g are reduced and pg is not, we have pg = p121q,
P =piu, g =vq, 21 =uv € Z, u # € # v, p1, q. reduced and
|z1] > 2. Thus w = pyuvg zs and tr(w) = 2 by 1.5.4.
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Lemma 3.3. Assume that (a2) is true. Then:
(i) w=pgzs, t =gz, =8, g # ¢, |t| > 2, s is reduced and t is
not reduced.
(i) If pg is reduced, then tr(w) = 1.
(iii) If g is reduced and pg is not reduced, then p = pyu, g = vq,
t=vqz, W= puvg1zs, u # € # v, uw € Z, p1, q1, u, v are
reduced and tr(w) = 2.

Proof. We can proceed similarly as in the proof of 3.2. Il

Lemma 3.4. Assume that (a3) is true. Then:
(i) w = pgzs = pgzhq, t = gzh, s=hq, g#e#h, [t| >3 and t
15 not reduced.
(ii) If pg and s are reduced, then tr(w) = 1.

Proof. Similar to the proof of 3.2. O

Lemma 3.5. Assume that (a4) is true. Then:
(i) w = pzs = pths, z =th, q=hs, t #e # h, |z2| > 2 and h, s,
t, hs are reduced.
(i) tr(w) = 1.
Proof. Easy. U

Lemma 3.6. Assume that (a5) is true. Then:

i) w=pzs=pts, z=1t, q=s, s is reduced and t is not reduced.
(i) t t s reduced and t is not reduced
(i) tr(w) = 1.

Proof. Easy. O

Lemma 3.7. Assume that (a6) is true. Then:
(i) w=pzhq, t = zh, s=hq, h # ¢, |[t| > 2 and t is not reduced.
(i) If hq is reduced, then tr(w) = 1.
(iii) If h is reduced and hq is not reduced, then w = pzpjuvq,
h=pu, g=vq,t=zpu, u#c#v, uww € Z, p1, ¢1, U, v
are reduced and tr(w) = 2.

Proof. Similar to the proof of 3.2. O

Lemma 3.8. Assume that (a7) is true. Then:

(i) w=rzfg=rghfq, z=gh,t=hf,s=fq, g#c#f, h#e¢,
|z| > 2, |t| > 2, h, g, 7, rg are reduced and the pair (z,t) is
not separated.

(i) If fq is reduced, then tr(w) = 1.

(iii) If t is reduced, then f is reduced.

(iv) If f is reduced and fq is not reduced, then f = piu, ¢ = vqy,
t = hpyu, w = rzpiuvg, u # € # v, wv € Z, p1, 1, U, v are
reduced and tr(w) = 2.
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Proof. Similar to the proof of 3.2. O

Lemma 3.9. Assume that (a8) is true. Then:

(i) w=rgts, z=gt,q=38,gFc#t, |z2| >2andr, g, t, s, rg
are reduced.
(ii) tr(w) = 1.

Proof. Easy. O

Lemma 3.10. Assume that (a9) is true. Then:

s, tf, rg, fs are reduced.
(i) tr(w) = 1.

Proof. Easy. O

Lemma 3.11. If tr(w) > 2, then just one of the five conditions (al),
(a2), (a3), (a6) and (a7) holds.

Proof. Combine the preceding lemmas of this section. O
Lemma 3.12.
(i) If at least one of (a2), (a3), (a5) and (a6) holds, then t is not
reduced.
(i) If t is reduced, then just one of (al), (a4), (a7), (a8), (a9)
holds.
(iii) If t is reduced and tr(w) > 2, then just one of (al), (a7) holds
and tr(w) = 2.
Proof. Combine the preceding lemmas of this section. O
Lemma 3.13.

(i) If t is reduced then tr(w) < 2.

(i) Ift =€, then (a9) is satisfied.

(ii) Ift € A (i. e., |t| = 1), then just one of (a4), (a5), (a8), (a9)
is true (if (a5) is true, then z =t € A) and tr(w) = 1.

(iv) If |t| <1, then tr(w) = 1.

(v) If z€ A (i. e., |z| = 1), then just one of (a2), (a3), (a5), (a6)
is true (if (a5) is true, thent =z ¢€ A).

(Vi) If z € A and tr(w) > 2, then either (a2) or (a6) holds and t is
not reduced.

Proof. Combine the preceding lemmas of this section. O

4. AUXILIARY RESULTS (B)

In this section, let Z be a strongly separating set of words, Z # {e}
and let pi,q1,p2, qa,t1,te, w1, we € A* and z1,29 € Z be such that
p121q1 = w1 = Pataqe, Prtiqr = wa = pazaqe and py, ¢ are (Z-) reduced.
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Lemma 4.1. Assume that |p1| = |ps|. Then py = p2, 211 = taqa and
tiq1 = 29q2. Moreover:
(1) ]f |t2| < |Zl|, then 21 = t2T17 t1 = 2971, Q2 = 7141, T1 7é g,
|t1] > 2 and t; is not reduced.
(ii) If [ta| = |21], then z1 = to, t1 = 29 and ¢1 = ¢o.
(111) [f |t2’ > ‘Zl‘, then ty = 2181, 29 = 1181, @1 = S1¢2, S1 75 g,
[ta] > 2 and ty is not reduced.

Proof. Easy. O

Lemma 4.2. Assume that |p1| < |pa|. Then ps = pruy, 21q1 = uitaqs,
tqr = wzg, u1 # &, |ui] < |ti|, 1 = wus, uaq = 22q2, Uy F# €,
|t1] > 2. Moreover:
(1) If l1] < |qo|, then gz = raqu, ug = 273, ty = uyzory and ty is
not reduced.
(i) If || > |qo|, then g1 = vige, tivy = U122, 2101 = urty, 29 =
UV, V1 # € and us, v1 are reduced.
(il) If || > |q2| and |z1| < |ui|, then uy = 2189, v1 = Sata, t; =
2189Uso, Zo = UgSalay and neither u; nor py nor ty is reduced.
(iv) If |g1| > |g2| and |z1| > |u1], then z1 = ujvy, ta = vovy, Vg # €
and vy 1s reduced.

Proof. Easy. O

Lemma 4.3. Assume that |p1| > |pa|. Then p1 = pous, tage = uzz1q,
Z9qa = ust1q1, us # € and ps, ug are reduced. Moreover:

(i) If [ta] < |ugl, then qo = r321q1, Uz = tars, pr = pators, torst; =
291321 and to, r3 are reduced. Further, |to| < |za|, 2o = tass,
S3 7£ g, Tgtl = S3I'szy, |21’ < |t1’, tl = ]{721, 7’3]€ = S3T'3, k 7£ g,

[t1] > 2 and t; is not reduced.
(i) If [ta| > |us|, then ty = usuyg, 21q1 = u4qa, uy # € and |to]| > 2.
(iil) If |ta| > |us| and |go| < |q1|, then neither ug nor ty is reduced.
(iv) If |ta| > |us| and |q2| > |q1|, then g2 = v3q1, 21 = ugvs, usty =
2903, U3 # €, U3, Uy are reduced, |ug| < |2a|, 22 = ugvy, t; =

V4V3, Vg # € and vy is reduced.

Proof. Easy. O

Lemma 4.4. Assume that either |t1| < 1 orty is reduced and the same
15 true forty. Then at least one of the following three cases takes place:
(i) 21 =t2, 22 =11, pr = p2 and 1 = o
(ii) 21 = u1va, 2o = UV, t1 = Urug, Lo = VU1, P2 = PrU1, 1 =
V1G2, Ut, Uz, V1,V € AT and all uy, us, v, Vo are reduced.
(iil) 21 = wqvs, 22 = ugvy, t1 = V4v3, to = UsUy, P1 = Pau3, @2 =
V3q1, Uz, Uy, V3,04 € AT and all us, uy, vs, v4 are reduced.

Proof. 1t follows from 4.1, 4.2 and 4.3 that only the cases 4.1 (ii), 4.2
(iv) and 4.3 (iv) come into account. d
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5. DISTURBING PAIRS

Let Z be a strongly separating set of words, Z # {c}, and let ¢ :
Z — A* be a mapping. Consider the relations o, p, A\, 7, &, v and u
defined in 1.6 and 1.7.

An ordered pair (21,22) € Z x Z will be called disturbing if there
exist words u,v,r, s € AT such that z; = ur, 2o = sv, ¥(z1) = us and

P (22) = 1.
An ordered pair (21,20) € Z x Z will be called paradisturbing if

P(21) = 2o and Y (22) = 2.

Lemma 5.1. Let (21, 29) € ZXZ be a disturbing pair, zy = ur, zo = sv,
W(z1) = us,(z9) = rv, u,v,r,8 € AT, Put wy = urv and wy = usv.
Then:

(i) [21] =2 2, |22] = 2, [¢(21)] = 2, [¢h(22)| = 2.

(ii) The words u, v, r and s are reduced.

(iil) (wy,wq) € v.
(iv) tr(wy) =1 = tr(ws).

v) Both wy and we are pseudoreduced.

(Vi) wy = wsq iff r = s.
(vii) If wy = wy, then wy is strongly pseudoreduced.

Proof. Easy. O

Lemma 5.2. Let (21,29) € Z X Z be a paradisturbing pair. Then:
(1) (21,22) c V.
(i) tr(z;) =1 = tr(z2).
(iii) Both z; and zy are weakly pseudoreduced.
Proof. Obvious. O

Proposition 5.3. There exist no disturbing pairs, provided that either
Z CAory(Z)CA.

Proof. Obvious. O

Proposition 5.4. Suppose that for every z € Z, either |¢(2)| < 1 or
¥ (2) is reduced. Then the following conditions are equivalent:

(i) There exist no disturbing and no paradisturbing pairs in Z x Z.
(ii) Every pseudoreduced meagre word is reduced.

Proof.

(i) implies (ii). Let, on the contrary w; be a weakly pseudoreduced
with tr(w;) = 1. Then w; = p1z1¢1, where z; € Z and p;, ¢ are
reduced (use 1.6.6). If wy = piti1qq, t1 = ¥(21), then (wy,wsy) € p, and
hence (wsy,wy) € p, since w; is weakly pseudoreduced. Consequently,
Wy = Pazaqa, 22 € Z, and wy = pataqs, ta = P(29). Now, 4.4 applies.
If 4.4 (i) is true, then (z1,29) is paradisturbing. If 4.4 (ii) is true,
then (z1,29) is disturbing. Finally, if 4.4 (iii) is true, then (zg,z1) is
disturbing.
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(ii) implies (i). See 5.1 and 5.2. O

6. MEAGRE AND PSEUDOMEAGRE WORDS

Let Z be a strongly separating set of words such that Z # {e} (except
for 6.9) and let ¢ : Z — A* be a mapping. Consider the relations o, p,
A, 7, & vand p defined in 1.6 and L.7.

A word w is called meagre if tr(w) < 1.

A word w is called pseudomeagre if (w, x) € p for at most one z € A*.

Lemma 6.1. Fvery meagre word is pseudomeagre.
Proof. Obvious. O

Lemma 6.2. Let z € Z be such that (z) € {e,z}. Then the word 2",
n > 2, is pseudomeagre but not meagre.

Proof. 1t follows from 1.6.6 that tr(z") = n > 2, and so 2" is not
meagre. On the other hand, if (2", x) € p, then z = 2" for ¢(2) = ¢
and x = 2" for ¢(z) = 2. O

Lemma 6.3. Let 21,20,z € Z and u,v,x € A* be such that zyxzy =
uzv.
(i) Ifu=¢, then z = z; and v = xz5.
(i) If v =€, then z = z9 and u = zx.
(i) If u # € # v, then u = zyuy, v = V129 and T = uy2v;.

Proof.

(i) Easy to see.
(ii) Easy to see.
(iil) If |u| < |21, then 21 = wy, y # €, uyrze = 21229 = uzv,
yrze = zv, a contradiction. Thus |u| > |z1| and, similarly,
|v| > |22|. The rest is clear.

U
Lemma 6.4. Let z € Z and x € A* be such that ¢(z) = zxz. Then:

(i) tr(zxz) > 2 and zxz is not meagre.
(i) zxz is pseudomeagre iff 1(z1) = zvzuz; whenever z; € Z and
x=uzv (orY(z) = zuzvz).

Proof.

(i) Obvious.
(i) Clearly, (e,z,z2),(zx,z2,6) € Tr(zxz), e(2)rz = zxzaz =
zx)(z)e and (zzxz, zxzez) € p. If o is reduced, then tr(zzz) =
2 by 1.6.6, and hence zxz is pseudomeagre (and the other con-
dition is satisfied trivially).
Now, let (uy, z1,v1) € Tr(zzz), uy # € # v;. According to
6.3, u1 = zu, v1 = vz and * = uzv. We have zxz = zuz vz
and (zxz, zu(z1)vz) € p. Consequently, zu(z)vz = zxzrz
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iff u(z1)v = xze = uzyvzuziv and iff P(z1) = zjvzuz;. The
rest is clear.

U

Lemma 6.5. Let 21,20 € Z and x,y € A* be such that ¥ (z1) = yrz
and ¥ (z3) = zoxy. Then:

(i) tr(zemz1) > 2 and zexz; is not meagre.
(i) zowzy is pseudomeagre iff (z3) = zsvyuzs whenever z3 € Z
and © = uzzv (or (z1) = yuzzvzy or Y(z9) = zauzzvy).

Proof.
(i) Obvious.

(ii) Clearly, (g, 22, 221), (22, 21, €) € Tr(z0x21), €9(22)x21 = 200YyT21 =
zowp(21)e and (29721, 200yxz) € p. If x is reduced, then
tr(z9zz1) = 2 by 1.6.6, and hence zox2; is pseudomeagre (and
the other condition is satisfied trivially).

Now, let (uq,z3,v1) € Tr(zewz1), uy # € # v;. Accord-
ing to 6.3, u; = 2u, v1 = vz and * = wuzzv. We have
29z1 = zouzzvzy and (29221, zouth(23)vz;) € p. Consequently,
zout)(z3)vzy = zoxyxzy iff wh(z3)v = xyx = uzgvyuzgv and iff
¥(z3) = zgvyuzs. The rest is clear.

g

Proposition 6.6. Suppose that every pseudomeagre word is meagre.
Then the following three conditions are satisfied:
(bl) e #W(z) # z for every z € Z;
(b2) If 21,20 € Z and x,y € A* are such that ¥(z1) = yxz; and
U(z2) = 29wy, then x # € # y and x is not reduced;
(b3) If 21, 29,23 € Z and u,v,y € A*, then either ¥ (z1) # yuzzvz
or (29 # zouzgvy or P(z3) # zzvyuzs
Proof. The condition (bl) follows from 6.2. Further, if ¢(z1) = yxz
and ¥ (z2) = zozy, then z is not reduced due to 6.5, and hence z # ¢.
Moreover, if y = e, then 252, is pseudomeagre, but not meagre, and

therefore © # ¢ # y and we have shown (b2). Finally, (b3) follows from
6.5. Il

Proposition 6.7. Suppose that the following two conditions are satis-
fied:
(cl) e £ U(2) # z and Y(2) # zxz for all z € Z and x € A*;
(c2) If 21,20 € Z and x,y € A* are such that ¥(z1) # ¥(z2), then
either 1(z1) # yxzy or ¥(za) # zxy.
Then every pseudomeagre word is meagre.

Proof. Let, on the contrary, w be pseudomeagre word, but not meagre.
Then tr(w) > 2, and therefore pzi1q = w = rzys, where (p, z1,q) #
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(r,29,8) and 21,29 € Z; we will assume |rzs| < |pz|, the other case
being similar.

Assume, for a moment, that z; = z = 2. Then |r| < |p| and we get
a contradiction by easy combination of (c1) and 3.11. Consequently,
21 # 2z and it follows easily that |r| < |p|. Then t(z1) # ¥(22) and we
get a contradiction with (c2). O

Proposition 6.8.

(i) Suppose that ¢(z) # € and that z is neither a prefic nor a
suffix of W(z) for every z € Z. Then every pseudomeagre word
18 meagre.

(il) Suppose that |¢(2)| < |z| for every z € Z. Then every pseu-
domeagre word is meagre if and only if € # ¥ (2) # z for every
z € Z.

Proof. See 6.6 and 6.7 U

Remark 6.9. Let Z = {e}. Then ¢ is the only meagre word. Moreover:

(i) If ¢(e) = ¢, then all words are pseudomeagre (and hence there
exist pseudomeagre words that are not meagre).

(ii) If ¥(e) = t and |var(t)| = 1, t = a™, a € A, m > 1, then
a word w is pseudomeagre iff w = a”, n > 0. Consequently,
there exist pseudomeagre words that are not meagre.

(iii) If ¢(e) =t and |var(t)| > 2, then ¢ is the only pseudomeagre
word (and hence all pseudomeagre words are meagre).

7. DISTURBING TRIPLES

This section is an immediate continuation of the preceding one.
An ordered triple (21, 22, 23) € Z X Z x Z will be called disturbing if
there exist u,v,g,h € AT and p € A* such that z; = wv, 23 = gh and

¥(z2) = vpy.
Lemma 7.1. Let (21, 29, 23) € ZXZ X Z be a disturbing triple, z; = uv,
23 = gh, ¥(20) = vpg, u,v,9,h € AT, p € A*. Then:
(i) [21] = 2, |23] > 2 and [¢(22)] > 2.
(ii) The words u, v, g, h are reduced.
(iii) (u1,v1) € p, tr(uy) =1 and tr(v1) > 2, where uy = uzeh and
vy = uvpgh.

Proof. Easy (use 1.6.6). O

Proposition 7.2. There exist no disturbing triples, provided that either
Z CAory(Z)CA.

Proof. Obvious. O

Proposition 7.3. Suppose that for every z € Z, either |1(z)| <1 or
¥ (2) is reduced. Then the following conditions are equivalent:
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) There ezist no disturbing triples in Z x Z X Z.

(ii) If (wy,wq) € p and tr(wy) = 1, then tr(wq) < 1.

(iii) If (wy,wq) € p and wy is meagre, then wq is meagre.
(iv) If (w1, we) € T and tr(wy) = 1, then tr(wq) < 1.

(v) )

Proof.

(i) implies (ii). We have wy; = pzaq, 22 € Z, p, q reduced, and
wy = ptq, t = ¥(z2). Now, assume that wy = rzzs and 3.1 applies. If
|t|] <1, then tr(ws) = 1 by 3.13 (iv), and therefore we will assume that
|t| > 2. Then t is reduced and, according to 3.12 (iii) we can assume
that (al) holds, the case (a7) being similar.

By 3.2 wy = pghks, z3 = hk, t = gh, ¢ = ks, g # € # h, k # € and,
moreover, g is reduced, since ¢ is so. If pg is reduced, then tr(ws) = 1
by 3.2 (ii). If pg is not reduced, then, by 3.2 (iv), pg = p121q1, 21 = uv,
P = pu, g = vq1, t = vqrh, u # € # v and the triple (21, 29, 23) is
disturbing.

(ii) implies (iii), (iii) implies (iv), (iv) implies (v). Obvious.

(v) implies (i). See 7.1 (iii). O

8. ON WHEN THE RELATION p IS ANTISYMMETRIC

As usual, let Z be a strongly separating set of words such that Z #
{e} (except for 8.7, 9.11) and let ¢ : Z — A* be a mapping,.

Proposition 8.1. The relation p (= pzy) is wrreflezive if and only if
W(2) # z for every z € Z.

Proof. Obvious from the definition of p. O

Proposition 8.2. The relation p is antisymmetric (i. e., u = v, when-
ever (u,v) € p and (v,u) € p) if and only if the following three condi-
tions hold:
(1) If 21,20 € Z and x,y € A* are such that zo = x(z1)y and
W(2z9) = x21Yy, then ¥ (2) = 29 (and hence P(z1) = 21 as well);
(2) If 21,20 € Z and x,y € A* are such that zo = yxip(z3) (22 =
W(zo)zy, resp.) and P(z1) = z1zy (Y(z1) = yxz1, resp.), then
x=c¢c=1y (and hence Y(z1) = z1, Y(22) = 22);
(3) If 21,20 € Z and x,y,u,v € AT are such that z; = uy, zo = zv,
¥(z1) = vy and Y (z9) = zu, then uw = v (and hence ¥ (z1) = 21,
U(22) = 22).
Proof. Use 1.5.4. O

Corollary 8.3. Assume that for every z € Z,either |¢(z)| <1 or¢(z)
is reduced. Then:

(i) The relation p is antisymetric if and only the following two
conditions hold:
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(i1) If (z1,22) € (Z x Z) N (A x A) is a paradisturbing pair,
then z1 = 2o,
(i2) There exist no disturbing pairs in Z X Z.
(ii) The relation p is both irreflexive and antisymmetric if and only
if there exist no disturbing nor paradisturbing pairs in Z X Z.

Proposition 8.4. The following conditions are equivalent:
(i) If (u,v) € p and (v,v) € p, then u = v.
(ii) If (u,v) € p and (u,u) € p, then u = v.
(i) Either ¢(z) # z for every z € Z or {(z) = z for every z € Z.
Proof. Easy to check. O
Proposition 8.5. Assume that |z1] — |[¢(21)] # [¥(22)| — |22| for all

21,29 € Z. Then the relation p is both irreflerive and antisymmetric
(i. e., it is strictly antisymmetric).

Proof. Use 1.5.4. U
Proposition 8.6. The relation p is weakly antisymmetric (i. e., u = v,
whenever (u,v) € p, (v,u) € p, (u,u) € p) if and only if P(z1) = 21,
whenever z1,z3,23 € Z and p,q,r,s,x,y € A" are such that pziq =
rzas = x(z3)y and p(z1)q = vzsy.

Proof. Obvious. O
Remark 8.7. Let Z = {e}. If ¢(¢) = ¢, then p = id4+, and hence

p is antisymmetric, but not irreflexive. If i(g) # €, then p is both
irreflexive and antisymmetric. Moreover, 8.4 is true in both cases.

9. ON WHEN THE RELATION p IS ANTITRANSITIVE
This section is an immediate continuation of preceding one.

Proposition 9.1. The relation p is weakly antitransitive (i. e., (w,v) &
p, whenever u,v,w € A* are such that u # v # w # u, (w,u) € p and
(u,v) € p)if and only if the following condition is satisfied:
(1) If 21,20 € Z and x,y, k € A* are such that (z1) # z1, ¥(z2) #
2o and z1k(z2) # V¥(z1)kze, then (u,v) & p and (v,u) ¢ p,
where u = xz1 kY (22)y and v = x(z1)kzoy
Proof. See 1.7.1. U

Lemma 9.2. Let z € Z and k € A*. Then zky(z) # ¥(2)kz iff (z) #
z and either ¥(z) = € and k # 2" for everyn > 0 ore # ¥(z) # (zu)"z
for allu € A* and m > 1 or (z) = (zv)'z and k # (vz)"v for some
ve A, t>1 and every n > 0.

Proof. Easy. O

Lemma 9.3. Let z € Z be such that 1(z) is reduced and let k € A*.
Then zki(z) # (2)kz iff either ¢(z) # € or ¥(z) = ¢ and k # 2" for

every n > 0.
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Proof. This follows from 9.2. O

Lemma 9.4. Let 21,20 € Z, 2y # 2z, and k € A*. Then z1ki(z) #

W(z1)kzo iff at least one of the following three conditions is satisfied:
(1) ¥(21) # 21 and Y(z2) = 23;

(2) Y(z2) # 29, W(z1) = zywv for some u,v € A* and either

W(29) # vuze o1 P(22) = vuzy and k # (uv)™u for everyn > o;

(3) ¥(z2) # 22, V(1) # 22y for all z,y € A"

Proof. Easy. U

Lemma 9.5. Let 21, 20 € Z be such that zy # zo and both (z1), 1(z2)
are reduced. Then z1ki(z2) # 1(z1)kzy for every k € A*.

Proof. This follows easily from 9.4 U

Proposition 9.6. Assume that for every z € Z, either [1p(2)] < 1 or
¥(z) is reduced. Then the relation p is weakly antitransitive if and only
if (u,v) & p and (v,u) & p, whenever u = xz1k(29)y, v = xY(21)k20y
and zy, zo are such that:

(1) If z1,0(z1) € ANZ, then ¥(z1) # z1;

(2) If z9,0(20) € AN Z, then ¥ (zq) # 22;

(3) If z1 = 20 = z and Y (z) = ¢, then k # =" for every n > 0.

Proof. Combine 9.1, 9.2 and 9.4. O

Corollary 9.7. Assume that for every z € Z, (z) # z and either
[U(2)] < 1 or(z) is reduced (equivalently, either 1(z) is reduced or
W(z) =€ or(z) € A and Y(z) # z). Then the relation p is weakly
antitransitive if and only if (u,v) ¢ p and (v,u) & p (i. e., u, v are
incomparable in p), whenever u = xz1k(20)y, v = xY(z1)kz9y and
21,22 € Z are such that either zy # zo or z1 = 23 and Y(z1) # € or
21 =29 and Y(z1) = € and k # 2} for every n > 0.

Proposition 9.8. Assume that 1(zy) # zo for at least one zy € Z.
Then the following conditions are equivalent:

(i) The relation p is irreflerive and weakly antitransitive.
(ii) The relation p is strictly antitransitive (i. e., (w,v) ¢ p when-
ever (w,u) € p and (u,v) € p).
(iii) The relation p is antitransitive (i. e., u = v = w, whenever
(w,u) € p, (1,0) € p and (w,v) € p).
(iv) The condition 9.1 (1) is satisfied and (z) # z for every z € Z.

Proof.

(i) implies (ii). Let (w,u), (u,v), (w,v) € p. Since p is weakly anti-
transitive, either w = u or u = v or w = v. On the other hand, since p
is irreflexive, we have w # u # v # w, a contradiction.

(ii) implies (iii). Obvious.

(iii) implies (iv). Clearly, p is weakly antitransitive, and hence 9.1
(1) follows from 9.1. Moreover, 1(z) # z follows from 8.4.
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(iv) implies (i). Use 8.1 and 9.1. O

Proposition 9.9. Assume that |z1| + |22| — |23] # [¥(21)] + [¥(22)] —
|t(23)| for all z1, 22,23 € Z. Then the relation p is strictly antitransi-
tive.

Proof. Let (w,u), (u,v), (w,v) € p. Then pz1q = w = rzzs, pY(z1)q =

u = 29y, T™(23)s = v = xYP(29)y. Consequently, |w| — |u| = |z1] —
[zl fw] = o] = Jzs] = ()], |ul = |v] = 2| = [(2)]. From
this we get [23] — [¢(23)] = |w| — [v] = |w| — [u] + [u] = [v] = |z] -
[(21)| + |2z2] = [(22)] and 21| + |22] —[23| = [ (21)[ + [ (22)| — [¥(23)],
a contradiction. O

Remark 9.10. The condition from 9.9 is satisfied e. g. if |z| — |¢(2)] is
odd for every z € Z.

Remark 9.11. Let Z = {e}. If ¥(e} = ¢, then p = ida~, and hence p
is antitransitive, but not strictly antitransitive. If i)(¢) # ¢, then p is
strictly antitransitive.

Proposition 9.12. Assume that € ¢ Z and for every z € Z zx #+
W(z) #yz, x,y € A*. Then p is antitransitive.

Proof. According to 1.7.1, we have to prove that for all 21,z € Z and
w € A* such that zywi(22) # 1¥(z1)wze we have (zywi(22), Y(z1)wzs) ¢
p and (Y(z1)wze, z1wi(z2)) ¢ p. Suppose, for a contradiction, that
there are z1,29 € Z and w € A* such that (zywi(z2),9(z1)wza) € p
(the other case is similar). This means that there exist u,v € A*
and z € Z such that zywi(ze) = uzv and ¥(21)wze = wp(z)v. If
u = ¢ then z = 21, v = wP(zy) and Y(21)wzy = Y(z1)w(zs), thus
29 = 1(29), a contradiction. Hence we may assume that u = z;u’ and
hence wi(ze) = w'zv and (21 )wzy = z1u'(2)v. Since zx # Y(z1),
z1 = 9 (21)s for a proper s € A* (s is a suffix of z1), wi(z9) = v'zv and

wzy = su'(z)v. Now, let w = s"w', v = s™u”, w', v be such that s

is not a prefix of either one of them. Then s"w'i(z;) = s™u”zv and
s"w'zy = s™ " Y(2)v. If n < m then w'ze = s™ "1 (2)v and (s is
not a prefix of w’) there exists a suffix of z; which is a prefix of 25, a
contradiction. If n > m then s" w1 (z2) = u”zv and (s is not a prefix
of u") there exists a suffix of z; which is a prefix of z, a contradiction

again. U
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