ON SEPARATING SETS OF WORDS II

V. FLAŠKA, T. KEPKA AND J. KORTELAINEN

ABSTRACT. Special replacement relation in free monoids is studied with particular interest in antisymmetry and antitransitivity.

1. INTRODUCTION

This article is an immediate continuation of [1]. References like I.3.3 lead to the corresponding section and result of [1] and all definitions and preliminaries are taken from the same source.

2. More results on separated pairs of words

Throughout this section, let $u, v \in A^*$ be such that $u \neq v$, |u| = |v|and both the pairs (u, v) and (v, u) are separated. According to I.3.3, these two pairs are strongly separated (clearly, $u \neq \varepsilon \neq v$).

Lemma 2.1. uvx = xuv iff $x = (uv)^m$ for some $m \ge 0$.

Proof. We will proceed by induction on |x|. If $x = \varepsilon$, then m = 0. If |x| < |u|, then u = xr, v = sx, and so $x = \varepsilon$ and m = 0 again. Finally, if $|u| \le |x|$, then up = x = qv, uvqv = uvx = xuv = upuv, vq = pu, p = vt, q = tu and uvt = up = x = qv = tuv. If |t| = |x|, then $u = \varepsilon = v$, a contradiction. Thus |t| < |x|, $t = (uv)^{m_1}$ by induction and $x = uvt = (uv)^m$, $m = m_1 + 1$.

Lemma 2.2. If pux = xvq and $|x| \le |pu|$, then just one of the following two cases takes place:

(1) p = vt, q = tu and x = vtu (then |x| = |pu| = |vq|); (2) p = xvt and q = tux (then |x| < |p| = |q|).

Proof. We have pu = xz and vq = zx. If $|z| \leq |u|$, then $u = u_1z$, $v = zv_1$, and hence $z = \varepsilon$. Consequently, pu = x = vq and it follows that p = vt, q = tu and x = vtu, so that (1) is true. On the other hand, if |u| < |z|, then $u_2u = z = vv_2$, $u_2 = vt$, $v_2 = tu$ and z = vtu. From this, pu = xz = xvtu, p = xvt, vq = zx = vtux, q = tux and |x| < |p|.

Lemma 2.3. pux = xvq iff p = yvt, q = tuy and $x = (yvtu)^m y$ $(= y(vtuy)^m)$, $m \ge 0$.

The work is a part of the research project MSM0021620839 financed by MSMT..

Proof. Only the direct implication needs a proof and we will proceed by induction on |x|.

If |x| < |pu|, then either 2.2 (1) is true and we put $y = \varepsilon$, m = 1, or 2.2 (2) is true and we put y = x, m = 0.

If |pu| < |x|, then $pux_1 = x = x_1vq$, $1 \le |x_1| < |x|$, and we use induction hypothesis.

Lemma 2.4. puyv = uyvq iff at least one (and then just one) of the following two cases takes place:

(1)
$$p = \varepsilon = q$$

(1) $p = \varepsilon = q$; (2) p = uzvt, q = tuzv and $y = (zvtu)^m z$, $m \ge 0$.

Proof. Again, only the direct implication needs a proof.

If |p| < |u|, then u = pr, v = sq, ryv = uys and, by I.3.7, $r = uu_1$, $s = v_1 v$. Now, $u = puu_1$, $v = v_1 vq$ and $p = \varepsilon = q$.

If $|u| \leq |p|$, then $p = uu_2$, $q = v_2 v$ and $yvv_2 = u_2uy$. It remains to use 2.3

Lemma 2.5. Let $p, q, x, y \in A^*$ be such that |x| < |p|. Then puyvx =xuyvq iff at least one (and then just one) of the following two cases takes place:

(1) p = x = q; (2) p = xuzvt and q = tuzvx and $y = (zvtu)^m z$, m > 0.

Proof. As usual, only the direct implication needs a proof. We have $p = xp_1, q = q_1x, |p_1| = |q_1|$ and $p_1uyv = uyvq_1$. The rest follows from 2.4. \square

Lemma 2.6. Let $p, q, x, y \in A^*$ be such that |p| < |x|. Then puyvx =xuyvq iff x = puzvt = tuzvq and $y = (zvtu)^m z$, $m \ge 0$.

Proof. Standard (use 2.4).

3. AUXILIARY RESULTS (A)

Throughout this section, let Z be a strongly separating set of words, $Z \neq \{\varepsilon\}$, and let $p, q, r, s, t, w, z \in A^*$ be such that ptq = w = rzs, $z \in Z$ and p, q are (Z-) reduced.

Lemma 3.1. Just one of the following nine cases takes place:

- (a1) r = pq, t = qh, q = ks, z = hk, $q \neq \varepsilon \neq h$, $k \neq \varepsilon$ and h, k, sare reduced;
- (a2) $r = pg, t = gz, q = s, g \neq \varepsilon$ and s is reduced;
- (a3) $r = pg, t = gzh, s = hq, g \neq \varepsilon \neq h;$
- (a4) $r = p, z = th, q = hs, h \neq \varepsilon$ and h, s, r, t are reduced;
- (a5) r = p, z = t, s = q and r, s are reduced;
- (a6) $r = p, t = zh, s = hq, h \neq \varepsilon$ and r is reduced;
- (a7) $p = rg, z = gh, t = hf, s = fq, g \neq \varepsilon \neq f, h \neq \varepsilon$ and r, g, hare reduced;

- (a8) p = rg, z = gt, q = s, $g \neq \varepsilon \neq t$ and r, g, t, s are reduced;
- (a9) p = rg, z = gh = gtf, h = tf, q = fs, $g \neq \varepsilon \neq f$ and r, g, h, t, f, s are reduced;

Proof. It will be divided into three parts:

(i) Let |p| < |r|. Then r = pg, $g \neq \varepsilon$, ptq = pgzs and tq = gzs. Since q is reduced, we have |g| < |t|, t = gh, $h \neq \varepsilon$, ghq = gzs, hq = zs and pt = pgh = rh.

If |h| < |z|, then z = hk, $k \neq \varepsilon$, hq = zs = hks, q = ks and (a1) is fulfilled.

- If |h| = |z|, then h = z, q = s, t = gz and (a2) is satisfied.
- If |h| > |z|, then $h = zh_1$, $h_1 \neq \varepsilon$, $h_1q = s$, $t = gzh_1$ and (a3) is true.
- (ii) Let |p| = |r|. Then p = r and tq = zs.
 - If |t| < |z|, then z = th, $h \neq \varepsilon$, tq = zs = ths, q = hs and (a4) is valid.
 - If |t| = |z|, then z = t, q = s and (a5) holds.

If |t| > |z|, then t = zh, $h \neq \varepsilon$, zhq = tq = zs, hq = s and (a6) follows.

(iii) Let |p| > |r|. Then p = rg, $g \neq \varepsilon$, rgtq = ptq = rzs and gtq = zs. Since g is reduced, we have |g| < |z|, z = gh, $h \neq \varepsilon$. Moreover, gtq = zs = ghs and tq = hs.

If |h| < |t|, then t = hf, $f \neq \varepsilon$, hfq = tq = hs, fq = s and (a7) is clear.

- If |h| = |t|, then t = h, q = s, z = gt and (a8) is evident.
- If |h| > |t|, then h = tf, $f \neq \varepsilon$, tfs = tq = hs, q = fs and (a9) is visible.

Lemma 3.2. Assume that (a1) is true. Then:

- (i) w = pgzs = pghks, z = hk, t = gh, q = ks, $g \neq \varepsilon \neq h$, $k \neq \varepsilon$, $|z| \ge 2$, $|t| \ge 2$, h, k, s, p, ks are reduced and the pair (t, z) is not separated.
- (ii) If pg is reduced, then tr(w) = 1.
- (iii) If t is reduced, then g is reduced.
- (iv) If g is reduced and pg is not reduced, then $p = p_1 u$, $g = vq_1$, $t = vq_1 h$, $w = p_1 uvq_1 zs$, $u \neq \varepsilon \neq v$, $uv \in Z$, p_1 , q_1 , u, v are reduced and tr(w) = 2.

Proof.

- (i) The assertion follows easily from (a1).
- (ii) Combine (i) and I.5.4.
- (iii) Obvious from t = gh.
- (iv) Since p, g are reduced and pg is not, we have $pg = p_1z_1q_1$, $p = p_1u$, $g = vq_1$, $z_1 = uv \in Z$, $u \neq \varepsilon \neq v$, p_1 , q_1 reduced and $|z_1| \geq 2$. Thus $w = p_1uvq_1zs$ and tr(w) = 2 by I.5.4.

Lemma 3.3. Assume that (a2) is true. Then:

- (i) $w = pgzs, t = gz, q = s, g \neq \varepsilon, |t| \ge 2, s$ is reduced and t is not reduced.
- (ii) If pg is reduced, then tr(w) = 1.
- (iii) If g is reduced and pg is not reduced, then $p = p_1 u$, $g = vq_1$, $t = vq_1 z$, $w = p_1 uvq_1 zs$, $u \neq \varepsilon \neq v$, $uv \in Z$, p_1 , q_1 , u, v are reduced and tr(w) = 2.

Proof. We can proceed similarly as in the proof of 3.2.

Lemma 3.4. Assume that (a3) is true. Then:

- (i) w = pgzs = pgzhq, t = gzh, s = hq, $g \neq \varepsilon \neq h$, $|t| \ge 3$ and t is not reduced.
- (ii) If pg and s are reduced, then tr(w) = 1.

Proof. Similar to the proof of 3.2.

Lemma 3.5. Assume that (a4) is true. Then:

- (i) $w = pzs = pths, z = th, q = hs, t \neq \varepsilon \neq h, |z| \ge 2$ and h, s, t, hs are reduced.
- (ii) tr(w) = 1.

Proof. Easy.

Lemma 3.6. Assume that (a5) is true. Then:

(i) w = pzs = pts, z = t, q = s, s is reduced and t is not reduced. (ii) tr(w) = 1.

Proof. Easy.

Lemma 3.7. Assume that (a6) is true. Then:

- (i) w = pzhq, t = zh, s = hq, $h \neq \varepsilon$, $|t| \ge 2$ and t is not reduced.
- (ii) If hq is reduced, then tr(w) = 1.
- (iii) If h is reduced and hq is not reduced, then $w = pzp_1uvq_1$, $h = p_1u, q = vq_1, t = zp_1u, u \neq \varepsilon \neq v, uv \in \mathbb{Z}, p_1, q_1, u, v$ are reduced and tr(w) = 2.

Proof. Similar to the proof of 3.2.

Lemma 3.8. Assume that (a7) is true. Then:

- (i) w = rzfq = rghfq, z = gh, t = hf, s = fq, $g \neq \varepsilon \neq f$, $h \neq \varepsilon$, $|z| \ge 2$, $|t| \ge 2$, h, g, r, rg are reduced and the pair (z, t) is not separated.
- (ii) If fq is reduced, then tr(w) = 1.
- (iii) If t is reduced, then f is reduced.
- (iv) If f is reduced and fq is not reduced, then $f = p_1 u$, $q = vq_1$, $t = hp_1 u$, $w = rzp_1 uvq_1$, $u \neq \varepsilon \neq v$, $uv \in Z$, p_1 , q_1 , u, v are reduced and tr(w) = 2.

 \square

Proof. Similar to the proof of 3.2.

Lemma 3.9. Assume that (a8) is true. Then:

- (i) $w = rgts, z = gt, q = s, g \neq \varepsilon \neq t, |z| \ge 2$ and r, g, t, s, rg are reduced.
- (ii) tr(w) = 1.

Lemma 3.10. Assume that (a9) is true. Then:

(i) w = rgtfs, z = gtf, q = fs, g ≠ ε ≠ f, |z| ≥ 2 and r, g, t, f, s, tf, rg, fs are reduced.
(ii) tr(w) = 1.

Proof. Easy.

Lemma 3.11. If $tr(w) \ge 2$, then just one of the five conditions (a1), (a2), (a3), (a6) and (a7) holds.

Proof. Combine the preceding lemmas of this section.

Lemma 3.12.

- (i) If at least one of (a2), (a3), (a5) and (a6) holds, then t is not reduced.
- (ii) If t is reduced, then just one of (a1), (a4), (a7), (a8), (a9) holds.
- (iii) If t is reduced and $tr(w) \ge 2$, then just one of (a1), (a7) holds and tr(w) = 2.

Proof. Combine the preceding lemmas of this section.

Lemma 3.13.

- (i) If t is reduced then $tr(w) \leq 2$.
- (ii) If $t = \varepsilon$, then (a9) is satisfied.
- (iii) If $t \in A$ (i. e., |t| = 1), then just one of (a4), (a5), (a8), (a9) is true (if (a5) is true, then $z = t \in A$) and tr(w) = 1.
- (iv) If $|t| \le 1$, then tr(w) = 1.
- (v) If $z \in A$ (i. e., |z| = 1), then just one of (a2), (a3), (a5), (a6) is true (if (a5) is true, then $t = z \in A$).
- (vi) If $z \in A$ and $tr(w) \ge 2$, then either (a2) or (a6) holds and t is not reduced.

Proof. Combine the preceding lemmas of this section.

4. AUXILIARY RESULTS (B)

In this section, let Z be a strongly separating set of words, $Z \neq \{\varepsilon\}$ and let $p_1, q_1, p_2, q_2, t_1, t_2, w_1, w_2 \in A^*$ and $z_1, z_2 \in Z$ be such that $p_1 z_1 q_1 = w_1 = p_2 t_2 q_2, p_1 t_1 q_1 = w_2 = p_2 z_2 q_2$ and p_1, q_1 are (Z-) reduced.

Lemma 4.1. Assume that $|p_1| = |p_2|$. Then $p_1 = p_2$, $z_1q_1 = t_2q_2$ and $t_1q_1 = z_2q_2$. Moreover:

- (i) If $|t_2| < |z_1|$, then $z_1 = t_2r_1$, $t_1 = z_2r_1$, $q_2 = r_1q_1$, $r_1 \neq \varepsilon$, $|t_1| \ge 2$ and t_1 is not reduced.
- (ii) If $|t_2| = |z_1|$, then $z_1 = t_2$, $t_1 = z_2$ and $q_1 = q_2$.
- (iii) If $|t_2| > |z_1|$, then $t_2 = z_1s_1$, $z_2 = t_1s_1$, $q_1 = s_1q_2$, $s_1 \neq \varepsilon$, $|t_2| \ge 2$ and t_2 is not reduced.

Proof. Easy.

Lemma 4.2. Assume that $|p_1| < |p_2|$. Then $p_2 = p_1u_1$, $z_1q_1 = u_1t_2q_2$, $t_1q_1 = u_1z_2q_2$, $u_1 \neq \varepsilon$, $|u_1| < |t_1|$, $t_1 = u_1u_2$, $u_2q_1 = z_2q_2$, $u_2 \neq \varepsilon$, $|t_1| \ge 2$. Moreover:

- (i) If $|q_1| \leq |q_2|$, then $q_2 = r_2q_1$, $u_2 = z_2r_2$, $t_1 = u_1z_2r_2$ and t_1 is not reduced.
- (ii) If $|q_1| > |q_2|$, then $q_1 = v_1q_2$, $t_1v_1 = u_1z_2$, $z_1v_1 = u_1t_2$, $z_2 = u_2v_1$, $v_1 \neq \varepsilon$ and u_2 , v_1 are reduced.
- (iii) If $|q_1| > |q_2|$ and $|z_1| \le |u_1|$, then $u_1 = z_1 s_2$, $v_1 = s_2 t_2$, $t_1 = z_1 s_2 u_2$, $z_2 = u_2 s_2 t_2$ and neither u_1 nor p_2 nor t_1 is reduced.
- (iv) If $|q_1| > |q_2|$ and $|z_1| > |u_1|$, then $z_1 = u_1v_2$, $t_2 = v_2v_1$, $v_2 \neq \varepsilon$ and v_2 is reduced.

Proof. Easy.

Lemma 4.3. Assume that $|p_1| > |p_2|$. Then $p_1 = p_2u_3$, $t_2q_2 = u_3z_1q_1$, $z_2q_2 = u_3t_1q_1$, $u_3 \neq \varepsilon$ and p_2 , u_3 are reduced. Moreover:

- (i) If $|t_2| \leq |u_3|$, then $q_2 = r_3 z_1 q_1$, $u_3 = t_2 r_3$, $p_1 = p_2 t_2 r_3$, $t_2 r_3 t_1 = z_2 r_3 z_1$ and t_2 , r_3 are reduced. Further, $|t_2| < |z_2|$, $z_2 = t_2 s_3$, $s_3 \neq \varepsilon$, $r_3 t_1 = s_3 r_3 z_1$, $|z_1| < |t_1|$, $t_1 = k z_1$, $r_3 k = s_3 r_3$, $k \neq \varepsilon$, $|t_1| \geq 2$ and t_1 is not reduced.
- (ii) If $|t_2| > |u_3|$, then $t_2 = u_3 u_4$, $z_1 q_1 = u_4 q_2$, $u_4 \neq \varepsilon$ and $|t_2| \ge 2$.
- (iii) If $|t_2| > |u_3|$ and $|q_2| \le |q_1|$, then neither u_4 nor t_2 is reduced.
- (iv) If $|t_2| > |u_3|$ and $|q_2| > |q_1|$, then $q_2 = v_3q_1$, $z_1 = u_4v_3$, $u_3t_1 = z_2v_3$, $v_3 \neq \varepsilon$, v_3 , u_4 are reduced, $|u_3| < |z_2|$, $z_2 = u_3v_4$, $t_1 = v_4v_3$, $v_4 \neq \varepsilon$ and v_4 is reduced.

Proof. Easy.

Lemma 4.4. Assume that either $|t_1| \leq 1$ or t_1 is reduced and the same is true for t_2 . Then at least one of the following three cases takes place:

- (i) $z_1 = t_2$, $z_2 = t_1$, $p_1 = p_2$ and $q_1 = q_2$.
- (ii) $z_1 = u_1 v_2$, $z_2 = u_2 v_1$, $t_1 = u_1 u_2$, $t_2 = v_2 v_1$, $p_2 = p_1 u_1$, $q_1 = v_1 q_2$, $u_1, u_2, v_1, v_2 \in A^+$ and all u_1, u_2, v_1, v_2 are reduced.
- (iii) $z_1 = u_4 v_3$, $z_2 = u_3 v_4$, $t_1 = v_4 v_3$, $t_2 = u_3 u_4$, $p_1 = p_2 u_3$, $q_2 = v_3 q_1$, u_3 , u_4 , v_3 , $v_4 \in A^+$ and all u_3 , u_4 , v_3 , v_4 are reduced.

Proof. It follows from 4.1, 4.2 and 4.3 that only the cases 4.1 (ii), 4.2 (iv) and 4.3 (iv) come into account. \Box

5. DISTURBING PAIRS

Let Z be a strongly separating set of words, $Z \neq \{\varepsilon\}$, and let ψ : $Z \to A^*$ be a mapping. Consider the relations σ , ρ , λ , τ , ξ , ν and μ defined in I.6 and I.7.

An ordered pair $(z_1, z_2) \in Z \times Z$ will be called *disturbing* if there exist words $u, v, r, s \in A^+$ such that $z_1 = ur, z_2 = sv, \psi(z_1) = us$ and $\psi(z_2) = rv$.

An ordered pair $(z_1, z_2) \in Z \times Z$ will be called *paradisturbing* if $\psi(z_1) = z_2$ and $\psi(z_2) = z_1$.

Lemma 5.1. Let $(z_1, z_2) \in Z \times Z$ be a disturbing pair, $z_1 = ur$, $z_2 = sv$, $\psi(z_1) = us, \psi(z_2) = rv$, $u, v, r, s \in A^+$. Put $w_1 = urv$ and $w_2 = usv$. Then:

- (i) $|z_1| \ge 2$, $|z_2| \ge 2$, $|\psi(z_1)| \ge 2$, $|\psi(z_2)| \ge 2$.
- (ii) The words u, v, r and s are reduced.
- (iii) $(w_1, w_2) \in \nu$.
- (iv) $tr(w_1) = 1 = tr(w_2)$.
- (v) Both w_1 and w_2 are pseudoreduced.
- (vi) $w_1 = w_2$ iff r = s.
- (vii) If $w_1 = w_2$, then w_1 is strongly pseudoreduced.

Proof. Easy.

Lemma 5.2. Let $(z_1, z_2) \in Z \times Z$ be a paradisturbing pair. Then:

- (i) $(z_1, z_2) \in \nu$.
- (ii) $\operatorname{tr}(z_1) = 1 = \operatorname{tr}(z_2)$.
- (iii) Both z_1 and z_2 are weakly pseudoreduced.

Proof. Obvious.

Proposition 5.3. There exist no disturbing pairs, provided that either $Z \subseteq A$ or $\psi(Z) \subseteq A$.

Proof. Obvious.

Proposition 5.4. Suppose that for every $z \in Z$, either $|\psi(z)| \leq 1$ or $\psi(z)$ is reduced. Then the following conditions are equivalent:

- (i) There exist no disturbing and no paradisturbing pairs in $Z \times Z$.
- (ii) Every pseudoreduced meagre word is reduced.

Proof.

(i) implies (ii). Let, on the contrary w_1 be a weakly pseudoreduced with $\operatorname{tr}(w_1) = 1$. Then $w_1 = p_1 z_1 q_1$, where $z_1 \in Z$ and p_1 , q_1 are reduced (use I.6.6). If $w_2 = p_1 t_1 q_1$, $t_1 = \psi(z_1)$, then $(w_1, w_2) \in \rho$, and hence $(w_2, w_1) \in \rho$, since w_1 is weakly pseudoreduced. Consequently, $w_2 = p_2 z_2 q_2$, $z_2 \in Z$, and $w_1 = p_2 t_2 q_2$, $t_2 = \psi(z_2)$. Now, 4.4 applies. If 4.4 (i) is true, then (z_1, z_2) is paradisturbing. If 4.4 (ii) is true, then (z_1, z_2) is disturbing. Finally, if 4.4 (iii) is true, then (z_2, z_1) is disturbing.

(ii) implies (i). See 5.1 and 5.2.

6. Meagre and pseudomeagre words

Let Z be a strongly separating set of words such that $Z \neq \{\varepsilon\}$ (except for 6.9) and let $\psi : Z \to A^*$ be a mapping. Consider the relations σ , ρ , λ , τ , ξ , ν and μ defined in I.6 and I.7.

A word w is called *meagre* if $tr(w) \leq 1$.

A word w is called *pseudomeagre* if $(w, x) \in \rho$ for at most one $x \in A^*$.

Lemma 6.1. Every meagre word is pseudomeagre.

Proof. Obvious.

Lemma 6.2. Let $z \in Z$ be such that $\psi(z) \in \{\varepsilon, z\}$. Then the word z^n , $n \geq 2$, is pseudomeagre but not meagre.

Proof. It follows from I.6.6 that $\operatorname{tr}(z^n) = n \geq 2$, and so z^n is not meagre. On the other hand, if $(z^n, x) \in \rho$, then $x = z^{n-1}$ for $\psi(z) = \varepsilon$ and $x = z^n$ for $\psi(z) = z$.

Lemma 6.3. Let $z_1, z_2, z \in Z$ and $u, v, x \in A^*$ be such that $z_1xz_2 = uzv$.

- (i) If $u = \varepsilon$, then $z = z_1$ and $v = xz_2$.
- (ii) If $v = \varepsilon$, then $z = z_2$ and $u = z_1 x$.
- (iii) If $u \neq \varepsilon \neq v$, then $u = z_1u_1$, $v = v_1z_2$ and $x = u_1zv_1$.

Proof.

- (i) Easy to see.
- (ii) Easy to see.
- (iii) If $|u| < |z_1|$, then $z_1 = uy$, $y \neq \varepsilon$, $uyxz_2 = z_1xz_2 = uzv$, $yxz_2 = zv$, a contradiction. Thus $|u| \ge |z_1|$ and, similarly, $|v| \ge |z_2|$. The rest is clear.

Lemma 6.4. Let $z \in Z$ and $x \in A^*$ be such that $\psi(z) = zxz$. Then:

- (i) $\operatorname{tr}(zxz) \geq 2$ and zxz is not meagre.
- (ii) zxz is pseudomeagre iff $\psi(z_1) = z_1vzuz_1$ whenever $z_1 \in Z$ and $x = uz_1v$ (or $\psi(z) = zuz_1vz$).

Proof.

- (i) Obvious.
- (ii) Clearly, $(\varepsilon, z, xz), (zx, z, \varepsilon) \in \text{Tr}(zxz), \ \varepsilon \psi(z)xz = zxzxz = zx\psi(z)\varepsilon$ and $(zxz, zxzxz) \in \rho$. If x is reduced, then tr(zxz) = 2 by I.6.6, and hence zxz is pseudomeagre (and the other condition is satisfied trivially).

Now, let $(u_1, z_1, v_1) \in \text{Tr}(zxz)$, $u_1 \neq \varepsilon \neq v_1$. According to 6.3, $u_1 = zu$, $v_1 = vz$ and $x = uz_1v$. We have $zxz = zuz_1vz$ and $(zxz, zu\psi(z_1)vz) \in \rho$. Consequently, $zu\psi(z_1)vz = zxzxz$

iff $u\psi(z_1)v = xzx = uz_1vzuz_1v$ and iff $\psi(z_1) = z_1vzuz_1$. The rest is clear.

Lemma 6.5. Let $z_1, z_2 \in Z$ and $x, y \in A^*$ be such that $\psi(z_1) = yxz_1$ and $\psi(z_2) = z_2xy$. Then:

- (i) $\operatorname{tr}(z_2 x z_1) \geq 2$ and $z_2 x z_1$ is not meagre.
- (ii) z_2xz_1 is pseudomeagre iff $\psi(z_3) = z_3vyuz_3$ whenever $z_3 \in Z$ and $x = uz_3v$ (or $\psi(z_1) = yuz_3vz_1$ or $\psi(z_2) = z_2uz_3vy$).

Proof.

- (i) Obvious.
- (ii) Clearly, $(\varepsilon, z_2, xz_1), (z_2x, z_1, \varepsilon) \in \text{Tr}(z_2xz_1), \varepsilon\psi(z_2)xz_1 = z_2xyxz_1 = z_2x\psi(z_1)\varepsilon$ and $(z_2xz_1, z_2xyxz_1) \in \rho$. If x is reduced, then $\text{tr}(z_2xz_1) = 2$ by I.6.6, and hence z_2xz_1 is pseudomeagre (and the other condition is satisfied trivially).

Now, let $(u_1, z_3, v_1) \in \text{Tr}(z_2xz_1)$, $u_1 \neq \varepsilon \neq v_1$. According to 6.3, $u_1 = z_2u$, $v_1 = vz_1$ and $x = uz_3v$. We have $z_2xz_1 = z_2uz_3vz_1$ and $(z_2xz_1, z_2u\psi(z_3)vz_1) \in \rho$. Consequently, $z_2u\psi(z_3)vz_1 = z_2xyxz_1$ iff $u\psi(z_3)v = xyx = uz_3vyuz_3v$ and iff $\psi(z_3) = z_3vyuz_3$. The rest is clear.

Proposition 6.6. Suppose that every pseudomeagre word is meagre. Then the following three conditions are satisfied:

- (b1) $\varepsilon \neq \psi(z) \neq z$ for every $z \in Z$;
- (b2) If $z_1, z_2 \in Z$ and $x, y \in A^*$ are such that $\psi(z_1) = yxz_1$ and $\psi(z_2) = z_2xy$, then $x \neq \varepsilon \neq y$ and x is not reduced;
- (b3) If $z_1, z_2, z_3 \in Z$ and $u, v, y \in A^*$, then either $\psi(z_1) \neq yuz_3vz_1$ or $\psi(z_2 \neq z_2uz_3vy \text{ or } \psi(z_3) \neq z_3vyuz_3$

Proof. The condition (b1) follows from 6.2. Further, if $\psi(z_1) = yxz_1$ and $\psi(z_2) = z_2xy$, then x is not reduced due to 6.5, and hence $x \neq \varepsilon$. Moreover, if $y = \varepsilon$, then z_2z_1 is pseudomeagre, but not meagre, and therefore $x \neq \varepsilon \neq y$ and we have shown (b2). Finally, (b3) follows from 6.5.

Proposition 6.7. Suppose that the following two conditions are satisfied:

- (c1) $\varepsilon \neq \psi(z) \neq z$ and $\psi(z) \neq zxz$ for all $z \in Z$ and $x \in A^*$;
- (c2) If $z_1, z_2 \in Z$ and $x, y \in A^*$ are such that $\psi(z_1) \neq \psi(z_2)$, then either $\psi(z_1) \neq yxz_1$ or $\psi(z_2) \neq z_2xy$.

Then every pseudomeagre word is meagre.

Proof. Let, on the contrary, w be pseudomeagre word, but not meagre. Then $tr(w) \ge 2$, and therefore $pz_1q = w = rz_2s$, where $(p, z_1, q) \ne$ (r, z_2, s) and $z_1, z_2 \in Z$; we will assume $|rz_2| \leq |pz_1|$, the other case being similar.

Assume, for a moment, that $z_1 = z = z_2$. Then |r| < |p| and we get a contradiction by easy combination of (c1) and 3.11. Consequently, $z_1 \neq z_2$ and it follows easily that |r| < |p|. Then $\psi(z_1) \neq \psi(z_2)$ and we get a contradiction with (c2).

Proposition 6.8.

- (i) Suppose that $\psi(z) \neq \varepsilon$ and that z is neither a prefix nor a suffix of $\psi(z)$ for every $z \in Z$. Then every pseudomeagre word is meagre.
- (ii) Suppose that $|\psi(z)| \leq |z|$ for every $z \in Z$. Then every pseudomeagre word is meagre if and only if $\varepsilon \neq \psi(z) \neq z$ for every $z \in Z$.

Proof. See 6.6 and 6.7

Remark 6.9. Let $Z = \{\varepsilon\}$. Then ε is the only meagre word. Moreover:

- (i) If $\psi(\varepsilon) = \varepsilon$, then all words are pseudomeagre (and hence there exist pseudomeagre words that are not meagre).
- (ii) If $\psi(\varepsilon) = t$ and $|\operatorname{var}(t)| = 1$, $t = a^m$, $a \in A$, $m \ge 1$, then a word w is pseudomeagre iff $w = a^n$, $n \ge 0$. Consequently, there exist pseudomeagre words that are not meagre.
- (iii) If $\psi(\varepsilon) = t$ and $|\operatorname{var}(t)| \ge 2$, then ε is the only pseudomeagre word (and hence all pseudomeagre words are meagre).

7. DISTURBING TRIPLES

This section is an immediate continuation of the preceding one.

An ordered triple $(z_1, z_2, z_3) \in Z \times Z \times Z$ will be called *disturbing* if there exist $u, v, g, h \in A^+$ and $p \in A^*$ such that $z_1 = uv, z_3 = gh$ and $\psi(z_2) = vpg$.

Lemma 7.1. Let $(z_1, z_2, z_3) \in Z \times Z \times Z$ be a disturbing triple, $z_1 = uv$, $z_3 = gh$, $\psi(z_2) = vpg$, $u, v, g, h \in A^+$, $p \in A^*$. Then:

- (i) $|z_1| \ge 2$, $|z_3| \ge 2$ and $|\psi(z_2)| \ge 2$.
- (ii) The words u, v, g, h are reduced.
- (iii) $(u_1, v_1) \in \rho$, $tr(u_1) = 1$ and $tr(v_1) \ge 2$, where $u_1 = uz_2h$ and $v_1 = uvpgh$.

Proof. Easy (use I.6.6).

Proposition 7.2. There exist no disturbing triples, provided that either $Z \subseteq A$ or $\psi(Z) \subseteq A$.

Proof. Obvious.

Proposition 7.3. Suppose that for every $z \in Z$, either $|\psi(z)| \leq 1$ or $\psi(z)$ is reduced. Then the following conditions are equivalent:

- (i) There exist no disturbing triples in $Z \times Z \times Z$.
- (ii) If $(w_1, w_2) \in \rho$ and $tr(w_1) = 1$, then $tr(w_2) \leq 1$.
- (iii) If $(w_1, w_2) \in \rho$ and w_1 is meagre, then w_2 is meagre.
- (iv) If $(w_1, w_2) \in \tau$ and $tr(w_1) = 1$, then $tr(w_2) \leq 1$.
- (v) If $(w_1, w_2) \in \xi$ and w_1 is meagre, then w_2 is meagre.

Proof.

(i) implies (ii). We have $w_1 = pz_2q$, $z_2 \in Z$, p, q reduced, and $w_2 = ptq$, $t = \psi(z_2)$. Now, assume that $w_2 = rz_3s$ and 3.1 applies. If $|t| \leq 1$, then $tr(w_2) = 1$ by 3.13 (iv), and therefore we will assume that $|t| \geq 2$. Then t is reduced and, according to 3.12 (iii) we can assume that (a1) holds, the case (a7) being similar.

By 3.2 $w_2 = pghks$, $z_3 = hk$, t = gh, q = ks, $g \neq \varepsilon \neq h$, $k \neq \varepsilon$ and, moreover, g is reduced, since t is so. If pg is reduced, then $tr(w_2) = 1$ by 3.2 (ii). If pg is not reduced, then, by 3.2 (iv), $pg = p_1z_1q_1$, $z_1 = uv$, $p = p_1u$, $g = vq_1$, $t = vq_1h$, $u \neq \varepsilon \neq v$ and the triple (z_1, z_2, z_3) is disturbing.

- (ii) implies (iii), (iii) implies (iv), (iv) implies (v). Obvious.
- (v) implies (i). See 7.1 (iii).

 \square

8. On when the relation ρ is antisymmetric

As usual, let Z be a strongly separating set of words such that $Z \neq \{\varepsilon\}$ (except for 8.7, 9.11) and let $\psi: Z \to A^*$ be a mapping.

Proposition 8.1. The relation $\rho \ (= \rho_{Z,\psi})$ is irreflexive if and only if $\psi(z) \neq z$ for every $z \in Z$.

Proof. Obvious from the definition of ρ .

Proposition 8.2. The relation ρ is antisymmetric (i. e., u = v, whenever $(u, v) \in \rho$ and $(v, u) \in \rho$) if and only if the following three conditions hold:

- (1) If $z_1, z_2 \in Z$ and $x, y \in A^*$ are such that $z_2 = x\psi(z_1)y$ and $\psi(z_2) = xz_1y$, then $\psi(z_2) = z_2$ (and hence $\psi(z_1) = z_1$ as well);
- (2) If $z_1, z_2 \in Z$ and $x, y \in A^*$ are such that $z_2 = yx\psi(z_2)$ ($z_2 = \psi(z_2)xy$, resp.) and $\psi(z_1) = z_1xy$ ($\psi(z_1) = yxz_1$, resp.), then $x = \varepsilon = y$ (and hence $\psi(z_1) = z_1$, $\psi(z_2) = z_2$);
- (3) If $z_1, z_2 \in Z$ and $x, y, u, v \in A^+$ are such that $z_1 = uy, z_2 = xv$, $\psi(z_1) = vy$ and $\psi(z_2) = xu$, then u = v (and hence $\psi(z_1) = z_1$, $\psi(z_2) = z_2$).

Proof. Use I.5.4.

Corollary 8.3. Assume that for every $z \in Z$, either $|\psi(z)| \leq 1$ or $\psi(z)$ is reduced. Then:

(i) The relation ρ is antisymetric if and only the following two conditions hold:

- (i1) If $(z_1, z_2) \in (Z \times Z) \cap (A \times A)$ is a paradisturbing pair, then $z_1 = z_2$;
- (i2) There exist no disturbing pairs in $Z \times Z$.
- (ii) The relation ρ is both irreflexive and antisymmetric if and only if there exist no disturbing nor paradisturbing pairs in $Z \times Z$.

Proposition 8.4. The following conditions are equivalent:

- (i) If $(u, v) \in \rho$ and $(v, v) \in \rho$, then u = v.
- (ii) If $(u, v) \in \rho$ and $(u, u) \in \rho$, then u = v.
- (iii) Either $\psi(z) \neq z$ for every $z \in Z$ or $\psi(z) = z$ for every $z \in Z$.

Proof. Easy to check.

Proposition 8.5. Assume that $|z_1| - |\psi(z_1)| \neq |\psi(z_2)| - |z_2|$ for all $z_1, z_2 \in \mathbb{Z}$. Then the relation ρ is both irreflexive and antisymmetric (i. e., it is strictly antisymmetric).

Proof. Use I.5.4.

Proposition 8.6. The relation ρ is weakly antisymmetric (i. e., u = v, whenever $(u, v) \in \rho$, $(v, u) \in \rho$, $(u, u) \in \rho$) if and only if $\psi(z_1) = z_1$, whenever $z_1, z_2, z_3 \in Z$ and $p, q, r, s, x, y \in A^*$ are such that $pz_1q = rz_2s = x\psi(z_3)y$ and $p\psi(z_1)q = xz_3y$.

Proof. Obvious.

Remark 8.7. Let $Z = \{\varepsilon\}$. If $\psi(\varepsilon) = \varepsilon$, then $\rho = \mathrm{id}_{A^*}$, and hence ρ is antisymmetric, but not irreflexive. If $\psi(\varepsilon) \neq \varepsilon$, then ρ is both irreflexive and antisymmetric. Moreover, 8.4 is true in both cases.

9. On when the relation ρ is antitransitive

This section is an immediate continuation of preceding one.

Proposition 9.1. The relation ρ is weakly antitransitive (i. e., $(w, v) \notin \rho$, whenever $u, v, w \in A^*$ are such that $u \neq v \neq w \neq u$, $(w, u) \in \rho$ and $(u, v) \in \rho$) if and only if the following condition is satisfied:

(1) If $z_1, z_2 \in Z$ and $x, y, k \in A^*$ are such that $\psi(z_1) \neq z_1, \psi(z_2) \neq z_2$ and $z_1 k \psi(z_2) \neq \psi(z_1) k z_2$, then $(u, v) \notin \rho$ and $(v, u) \notin \rho$, where $u = x z_1 k \psi(z_2) y$ and $v = x \psi(z_1) k z_2 y$

Proof. See I.7.1.

Lemma 9.2. Let $z \in Z$ and $k \in A^*$. Then $zk\psi(z) \neq \psi(z)kz$ iff $\psi(z) \neq z$ and either $\psi(z) = \varepsilon$ and $k \neq z^n$ for every $n \ge 0$ or $\varepsilon \neq \psi(z) \neq (zu)^m z$ for all $u \in A^*$ and $m \ge 1$ or $\psi(z) = (zv)^t z$ and $k \neq (vz)^n v$ for some $v \in A^*$, $t \ge 1$ and every $n \ge 0$.

Proof. Easy.

Lemma 9.3. Let $z \in Z$ be such that $\psi(z)$ is reduced and let $k \in A^*$. Then $zk\psi(z) \neq \psi(z)kz$ iff either $\psi(z) \neq \varepsilon$ or $\psi(z) = \varepsilon$ and $k \neq z^n$ for every $n \ge 0$.

 \square

 \square

Proof. This follows from 9.2.

Lemma 9.4. Let $z_1, z_2 \in Z$, $z_1 \neq z_2$, and $k \in A^*$. Then $z_1k\psi(z_2) \neq \psi(z_1)kz_2$ iff at least one of the following three conditions is satisfied:

- (1) $\psi(z_1) \neq z_1 \text{ and } \psi(z_2) = z_2;$
- (2) $\psi(z_2) \neq z_2, \ \psi(z_1) = z_1 uv \text{ for some } u, v \in A^* \text{ and either}$ $\psi(z_2) \neq vuz_2 \text{ or } \psi(z_2) = vuz_2 \text{ and } k \neq (uv)^n u \text{ for every } n \geq o;$ (3) $\psi(z_2) \neq z_2, \ \psi(z_1) \neq z_1 xy \text{ for all } x, y \in A^*.$

Proof. Easy.

Lemma 9.5. Let $z_1, z_2 \in Z$ be such that $z_1 \neq z_2$ and both $\psi(z_1), \psi(z_2)$ are reduced. Then $z_1k\psi(z_2) \neq \psi(z_1)kz_2$ for every $k \in A^*$.

Proof. This follows easily from 9.4

Proposition 9.6. Assume that for every $z \in Z$, either $|\psi(z)| \leq 1$ or $\psi(z)$ is reduced. Then the relation ρ is weakly antitransitive if and only if $(u, v) \notin \rho$ and $(v, u) \notin \rho$, whenever $u = xz_1k\psi(z_2)y$, $v = x\psi(z_1)kz_2y$ and z_1 , z_2 are such that:

- (1) If $z_1, \psi(z_1) \in A \cap Z$, then $\psi(z_1) \neq z_1$;
- (2) If $z_2, \psi(z_2) \in A \cap Z$, then $\psi(z_2) \neq z_2$;
- (3) If $z_1 = z_2 = z$ and $\psi(z) = \varepsilon$, then $k \neq z^n$ for every $n \ge 0$.

Proof. Combine 9.1, 9.2 and 9.4.

Corollary 9.7. Assume that for every $z \in Z$, $\psi(z) \neq z$ and either $|\psi(z)| \leq 1$ or $\psi(z)$ is reduced (equivalently, either $\psi(z)$ is reduced or $\psi(z) = \varepsilon$ or $\psi(z) \in A$ and $\psi(z) \neq z$). Then the relation ρ is weakly antitransitive if and only if $(u, v) \notin \rho$ and $(v, u) \notin \rho$ (i. e., u, v are incomparable in ρ), whenever $u = xz_1k\psi(z_2)y$, $v = x\psi(z_1)kz_2y$ and $z_1, z_2 \in Z$ are such that either $z_1 \neq z_2$ or $z_1 = z_2$ and $\psi(z_1) \neq \varepsilon$ or $z_1 = z_2$ and $\psi(z_1) = \varepsilon$ and $k \neq z_1^n$ for every $n \geq 0$.

Proposition 9.8. Assume that $\psi(z_0) \neq z_0$ for at least one $z_0 \in Z$. Then the following conditions are equivalent:

- (i) The relation ρ is irreflexive and weakly antitransitive.
- (ii) The relation ρ is strictly antitransitive (i. e., $(w, v) \notin \rho$ whenever $(w, u) \in \rho$ and $(u, v) \in \rho$).
- (iii) The relation ρ is antitransitive (i. e., u = v = w, whenever $(w, u) \in \rho$, $(u, v) \in \rho$ and $(w, v) \in \rho$).
- (iv) The condition 9.1 (1) is satisfied and $\psi(z) \neq z$ for every $z \in Z$.

Proof.

(i) implies (ii). Let $(w, u), (u, v), (w, v) \in \rho$. Since ρ is weakly antitransitive, either w = u or u = v or w = v. On the other hand, since ρ is irreflexive, we have $w \neq u \neq v \neq w$, a contradiction.

(ii) implies (iii). Obvious.

(iii) implies (iv). Clearly, ρ is weakly antitransitive, and hence 9.1 (1) follows from 9.1. Moreover, $\psi(z) \neq z$ follows from 8.4.

(iv) implies (i). Use 8.1 and 9.1.

Proposition 9.9. Assume that $|z_1| + |z_2| - |z_3| \neq |\psi(z_1)| + |\psi(z_2)| - |\psi(z_3)|$ for all $z_1, z_2, z_3 \in \mathbb{Z}$. Then the relation ρ is strictly antitransitive.

Proof. Let $(w, u), (u, v), (w, v) \in \rho$. Then $pz_1q = w = rz_3s, p\psi(z_1)q = u = xz_2y, r\psi(z_3)s = v = x\psi(z_2)y$. Consequently, $|w| - |u| = |z_1| - |\psi(z_1)|, |w| - |v| = |z_3| - |\psi(z_3)|, |u| - |v| = |z_2| - |\psi(z_2)|$. From this we get $|z_3| - |\psi(z_3)| = |w| - |v| = |w| - |u| + |u| - |v| = |z_1| - |\psi(z_1)| + |z_2| - |\psi(z_2)|$ and $|z_1| + |z_2| - |z_3| = |\psi(z_1)| + |\psi(z_2)| - |\psi(z_3)|$, a contradiction.

Remark 9.10. The condition from 9.9 is satisfied e. g. if $|z| - |\psi(z)|$ is odd for every $z \in Z$.

Remark 9.11. Let $Z = \{\varepsilon\}$. If $\psi(\varepsilon\} = \varepsilon$, then $\rho = \mathrm{id}_{A^*}$, and hence ρ is antitransitive, but not strictly antitransitive. If $\psi(\varepsilon) \neq \varepsilon$, then ρ is strictly antitransitive.

Proposition 9.12. Assume that $\varepsilon \notin Z$ and for every $z \in Z$ $zx \neq \psi(z) \neq yz$, $x, y \in A^*$. Then ρ is antitransitive.

Proof. According to I.7.1, we have to prove that for all $z_1, z_2 \in Z$ and $w \in A^*$ such that $z_1 w \psi(z_2) \neq \psi(z_1) w z_2$ we have $(z_1 w \psi(z_2), \psi(z_1) w z_2) \notin dz_2$ ρ and $(\psi(z_1)wz_2, z_1w\psi(z_2)) \notin \rho$. Suppose, for a contradiction, that there are $z_1, z_2 \in Z$ and $w \in A^*$ such that $(z_1 w \psi(z_2), \psi(z_1) w z_2) \in \rho$ (the other case is similar). This means that there exist $u, v \in A^*$ and $z \in Z$ such that $z_1 w \psi(z_2) = u z v$ and $\psi(z_1) w z_2 = u \psi(z) v$. If $u = \varepsilon$ then $z = z_1$, $v = w\psi(z_2)$ and $\psi(z_1)wz_2 = \psi(z_1)w\psi(z_2)$, thus $z_2 = \psi(z_2)$, a contradiction. Hence we may assume that $u = z_1 u'$ and hence $w\psi(z_2) = u'zv$ and $\psi(z_1)wz_2 = z_1u'\psi(z)v$. Since $z_1x \neq \psi(z_1)$, $z_1 = \psi(z_1)s$ for a proper $s \in A^*$ (s is a suffix of z_1), $w\psi(z_2) = u'zv$ and $wz_2 = su'\psi(z)v$. Now, let $w = s^n w'$, $u' = s^m u''$, w', u'' be such that s is not a prefix of either one of them. Then $s^n w' \psi(z_2) = s^m u'' z v$ and $s^{n}w'z_{2} = s^{m+1}u''\psi(z)v$. If $n \leq m$ then $w'z_{2} = s^{m-n+1}u''\psi(z)v$ and (s is not a prefix of w') there exists a suffix of z_1 which is a prefix of z_2 , a contradiction. If n > m then $s^{n-m}w'\psi(z_2) = u''zv$ and (s is not a prefix of u'') there exists a suffix of z_1 which is a prefix of z, a contradiction \square again.

References

 V. Flaška, T. Kepka and J. Kortelainen, On separating sets of words. (preprint).

MFF UK, Sokolovská 83, 18600 Praha 8

Department of Information Processing Science, University of Oulu, P. O. BOX 3000 FIN-90014, Oulu

 $E\text{-}mail\ address:\ \texttt{flaska@karlin.mff.cuni.cz}$

E-mail address: kepka@karlin.mff.cuni.cz *E-mail address*: juha.kortelainen@oulu.fi