
ON SEPARATING SETS OF WORDS II

V. FLAŠKA, T. KEPKA AND J. KORTELAINEN

Abstract. Special replacement relation in free monoids is studied
with particular interest in antisymmetry and antitransitivity.

1. Introduction

This article is an immediate continuation of [1]. References like I.3.3
lead to the corresponding section and result of [1] and all definitions
and preliminaries are taken from the same source.

2. More results on separated pairs of words

Throughout this section, let u, v ∈ A∗ be such that u 6= v, |u| = |v|
and both the pairs (u, v) and (v, u) are separated. According to I.3.3,
these two pairs are strongly separated (clearly, u 6= ε 6= v).

Lemma 2.1. uvx = xuv iff x = (uv)m for some m ≥ 0.

Proof. We will proceed by induction on |x|. If x = ε, then m = 0. If
|x| < |u|, then u = xr, v = sx, and so x = ε and m = 0 again. Finally,
if |u| ≤ |x|, then up = x = qv, uvqv = uvx = xuv = upuv, vq = pu,
p = vt, q = tu and uvt = up = x = qv = tuv. If |t| = |x|, then
u = ε = v, a contradiction. Thus |t| < |x|, t = (uv)m1 by induction
and x = uvt = (uv)m, m = m1 + 1. �

Lemma 2.2. If pux = xvq and |x| ≤ |pu|, then just one of the following
two cases takes place:

(1) p = vt, q = tu and x = vtu (then |x| = |pu| = |vq|);
(2) p = xvt and q = tux (then |x| < |p| = |q|).

Proof. We have pu = xz and vq = zx. If |z| ≤ |u|, then u = u1z,
v = zv1, and hence z = ε. Consequently, pu = x = vq and it follows
that p = vt, q = tu and x = vtu, so that (1) is true. On the other
hand, if |u| < |z|, then u2u = z = vv2, u2 = vt, v2 = tu and z = vtu.
From this, pu = xz = xvtu, p = xvt, vq = zx = vtux, q = tux and
|x| < |p|. �

Lemma 2.3. pux = xvq iff p = yvt, q = tuy and x = (yvtu)my
(= y(vtuy)m), m ≥ 0.
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Proof. Only the direct implication needs a proof and we will proceed
by induction on |x|.

If |x| ≤ |pu|, then either 2.2 (1) is true and we put y = ε, m = 1, or
2.2 (2) is true and we put y = x, m = 0.

If |pu| < |x|, then pux1 = x = x1vq, 1 ≤ |x1| < |x|, and we use
induction hypothesis. �

Lemma 2.4. puyv = uyvq iff at least one (and then just one) of the
following two cases takes place:

(1) p = ε = q;
(2) p = uzvt, q = tuzv and y = (zvtu)mz, m ≥ 0.

Proof. Again, only the direct implication needs a proof.
If |p| < |u|, then u = pr, v = sq, ryv = uys and, by I.3.7, r = uu1,

s = v1v. Now, u = puu1, v = v1vq and p = ε = q.
If |u| ≤ |p|, then p = uu2, q = v2v and yvv2 = u2uy. It remains to

use 2.3 �

Lemma 2.5. Let p, q, x, y ∈ A∗ be such that |x| ≤ |p|. Then puyvx =
xuyvq iff at least one (and then just one) of the following two cases
takes place:

(1) p = x = q;
(2) p = xuzvt and q = tuzvx and y = (zvtu)mz, m ≥ 0.

Proof. As usual, only the direct implication needs a proof. We have
p = xp1, q = q1x, |p1| = |q1| and p1uyv = uyvq1. The rest follows from
2.4. �

Lemma 2.6. Let p, q, x, y ∈ A∗ be such that |p| < |x|. Then puyvx =
xuyvq iff x = puzvt = tuzvq and y = (zvtu)mz, m ≥ 0.

Proof. Standard (use 2.4). �

3. Auxiliary results (a)

Throughout this section, let Z be a strongly separating set of words,
Z 6= {ε}, and let p, q, r, s, t, w, z ∈ A∗ be such that ptq = w = rzs,
z ∈ Z and p, q are (Z-) reduced.

Lemma 3.1. Just one of the following nine cases takes place:

(a1) r = pg, t = gh, q = ks, z = hk, g 6= ε 6= h, k 6= ε and h, k, s
are reduced;

(a2) r = pg, t = gz, q = s, g 6= ε and s is reduced;
(a3) r = pg, t = gzh, s = hq, g 6= ε 6= h;
(a4) r = p, z = th, q = hs, h 6= ε and h, s, r, t are reduced;
(a5) r = p, z = t, s = q and r, s are reduced;
(a6) r = p, t = zh, s = hq, h 6= ε and r is reduced;
(a7) p = rg, z = gh, t = hf , s = fq, g 6= ε 6= f , h 6= ε and r, g, h

are reduced;
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(a8) p = rg, z = gt, q = s, g 6= ε 6= t and r, g, t, s are reduced;
(a9) p = rg, z = gh = gtf , h = tf , q = fs, g 6= ε 6= f and r, g, h,

t, f , s are reduced;

Proof. It will be divided into three parts:

(i) Let |p| < |r|. Then r = pg, g 6= ε, ptq = pgzs and tq = gzs.
Since q is reduced, we have |g| < |t|, t = gh, h 6= ε, ghq = gzs,
hq = zs and pt = pgh = rh.

If |h| < |z|, then z = hk, k 6= ε, hq = zs = hks, q = ks and
(a1) is fulfilled.

If |h| = |z|, then h = z, q = s, t = gz and (a2) is satisfied.
If |h| > |z|, then h = zh1, h1 6= ε, h1q = s, t = gzh1 and

(a3) is true.
(ii) Let |p| = |r|. Then p = r and tq = zs.

If |t| < |z|, then z = th, h 6= ε, tq = zs = ths, q = hs and
(a4) is valid.

If |t| = |z|, then z = t, q = s and (a5) holds.
If |t| > |z|, then t = zh, h 6= ε, zhq = tq = zs, hq = s and

(a6) follows.
(iii) Let |p| > |r|. Then p = rg, g 6= ε, rgtq = ptq = rzs and

gtq = zs. Since g is reduced, we have |g| < |z|, z = gh, h 6= ε.
Moreover, gtq = zs = ghs and tq = hs.

If |h| < |t|, then t = hf , f 6= ε, hfq = tq = hs, fq = s and
(a7) is clear.

If |h| = |t|, then t = h, q = s, z = gt and (a8) is evident.
If |h| > |t|, then h = tf , f 6= ε, tfs = tq = hs, q = fs and

(a9) is visible.

�

Lemma 3.2. Assume that (a1) is true. Then:

(i) w = pgzs = pghks, z = hk, t = gh, q = ks, g 6= ε 6= h, k 6= ε,
|z| ≥ 2, |t| ≥ 2, h, k, s, p, ks are reduced and the pair (t, z) is
not separated.

(ii) If pg is reduced, then tr(w) = 1.
(iii) If t is reduced, then g is reduced.
(iv) If g is reduced and pg is not reduced, then p = p1u, g = vq1,

t = vq1h, w = p1uvq1zs, u 6= ε 6= v, uv ∈ Z, p1, q1, u, v are
reduced and tr(w) = 2.

Proof.

(i) The assertion follows easily from (a1).
(ii) Combine (i) and I.5.4.
(iii) Obvious from t = gh.
(iv) Since p, g are reduced and pg is not, we have pg = p1z1q1,

p = p1u, g = vq1, z1 = uv ∈ Z, u 6= ε 6= v, p1, q1 reduced and
|z1| ≥ 2. Thus w = p1uvq1zs and tr(w) = 2 by I.5.4.
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�

Lemma 3.3. Assume that (a2) is true. Then:

(i) w = pgzs, t = gz, q = s, g 6= ε, |t| ≥ 2, s is reduced and t is
not reduced.

(ii) If pg is reduced, then tr(w) = 1.
(iii) If g is reduced and pg is not reduced, then p = p1u, g = vq1,

t = vq1z, w = p1uvq1zs, u 6= ε 6= v, uv ∈ Z, p1, q1, u, v are
reduced and tr(w) = 2.

Proof. We can proceed similarly as in the proof of 3.2. �

Lemma 3.4. Assume that (a3) is true. Then:

(i) w = pgzs = pgzhq, t = gzh, s = hq, g 6= ε 6= h, |t| ≥ 3 and t
is not reduced.

(ii) If pg and s are reduced, then tr(w) = 1.

Proof. Similar to the proof of 3.2. �

Lemma 3.5. Assume that (a4) is true. Then:

(i) w = pzs = pths, z = th, q = hs, t 6= ε 6= h, |z| ≥ 2 and h, s,
t, hs are reduced.

(ii) tr(w) = 1.

Proof. Easy. �

Lemma 3.6. Assume that (a5) is true. Then:

(i) w = pzs = pts, z = t, q = s, s is reduced and t is not reduced.
(ii) tr(w) = 1.

Proof. Easy. �

Lemma 3.7. Assume that (a6) is true. Then:

(i) w = pzhq, t = zh, s = hq, h 6= ε, |t| ≥ 2 and t is not reduced.
(ii) If hq is reduced, then tr(w) = 1.
(iii) If h is reduced and hq is not reduced, then w = pzp1uvq1,

h = p1u, q = vq1, t = zp1u, u 6= ε 6= v, uv ∈ Z, p1, q1, u, v
are reduced and tr(w) = 2.

Proof. Similar to the proof of 3.2. �

Lemma 3.8. Assume that (a7) is true. Then:

(i) w = rzfq = rghfq, z = gh, t = hf , s = fq, g 6= ε 6= f , h 6= ε,
|z| ≥ 2, |t| ≥ 2, h, g, r, rg are reduced and the pair (z, t) is
not separated.

(ii) If fq is reduced, then tr(w) = 1.
(iii) If t is reduced, then f is reduced.
(iv) If f is reduced and fq is not reduced, then f = p1u, q = vq1,

t = hp1u, w = rzp1uvq1, u 6= ε 6= v, uv ∈ Z, p1, q1, u, v are
reduced and tr(w) = 2.
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Proof. Similar to the proof of 3.2. �

Lemma 3.9. Assume that (a8) is true. Then:

(i) w = rgts, z = gt, q = s, g 6= ε 6= t, |z| ≥ 2 and r, g, t, s, rg
are reduced.

(ii) tr(w) = 1.

Proof. Easy. �

Lemma 3.10. Assume that (a9) is true. Then:

(i) w = rgtfs, z = gtf , q = fs, g 6= ε 6= f , |z| ≥ 2 and r, g, t, f ,
s, tf , rg, fs are reduced.

(ii) tr(w) = 1.

Proof. Easy. �

Lemma 3.11. If tr(w) ≥ 2, then just one of the five conditions (a1),
(a2), (a3), (a6) and (a7) holds.

Proof. Combine the preceding lemmas of this section. �

Lemma 3.12.

(i) If at least one of (a2), (a3), (a5) and (a6) holds, then t is not
reduced.

(ii) If t is reduced, then just one of (a1), (a4), (a7), (a8), (a9)
holds.

(iii) If t is reduced and tr(w) ≥ 2, then just one of (a1), (a7) holds
and tr(w) = 2.

Proof. Combine the preceding lemmas of this section. �

Lemma 3.13.

(i) If t is reduced then tr(w) ≤ 2.
(ii) If t = ε, then (a9) is satisfied.
(iii) If t ∈ A (i. e., |t| = 1), then just one of (a4), (a5), (a8), (a9)

is true (if (a5) is true, then z = t ∈ A) and tr(w) = 1.
(iv) If |t| ≤ 1, then tr(w) = 1.
(v) If z ∈ A (i. e., |z| = 1), then just one of (a2), (a3), (a5), (a6)

is true (if (a5) is true, then t = z ∈ A).
(vi) If z ∈ A and tr(w) ≥ 2, then either (a2) or (a6) holds and t is

not reduced.

Proof. Combine the preceding lemmas of this section. �

4. Auxiliary results (b)

In this section, let Z be a strongly separating set of words, Z 6= {ε}
and let p1, q1, p2, q2, t1, t2, w1, w2 ∈ A∗ and z1, z2 ∈ Z be such that
p1z1q1 = w1 = p2t2q2, p1t1q1 = w2 = p2z2q2 and p1, q1 are (Z-) reduced.
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Lemma 4.1. Assume that |p1| = |p2|. Then p1 = p2, z1q1 = t2q2 and
t1q1 = z2q2. Moreover:

(i) If |t2| < |z1|, then z1 = t2r1, t1 = z2r1, q2 = r1q1, r1 6= ε,
|t1| ≥ 2 and t1 is not reduced.

(ii) If |t2| = |z1|, then z1 = t2, t1 = z2 and q1 = q2.
(iii) If |t2| > |z1|, then t2 = z1s1, z2 = t1s1, q1 = s1q2, s1 6= ε,

|t2| ≥ 2 and t2 is not reduced.

Proof. Easy. �

Lemma 4.2. Assume that |p1| < |p2|. Then p2 = p1u1, z1q1 = u1t2q2,
t1q1 = u1z2q2, u1 6= ε, |u1| < |t1|, t1 = u1u2, u2q1 = z2q2, u2 6= ε,
|t1| ≥ 2. Moreover:

(i) If |q1| ≤ |q2|, then q2 = r2q1, u2 = z2r2, t1 = u1z2r2 and t1 is
not reduced.

(ii) If |q1| > |q2|, then q1 = v1q2, t1v1 = u1z2, z1v1 = u1t2, z2 =
u2v1, v1 6= ε and u2, v1 are reduced.

(iii) If |q1| > |q2| and |z1| ≤ |u1|, then u1 = z1s2, v1 = s2t2, t1 =
z1s2u2, z2 = u2s2t2 and neither u1 nor p2 nor t1 is reduced.

(iv) If |q1| > |q2| and |z1| > |u1|, then z1 = u1v2, t2 = v2v1, v2 6= ε
and v2 is reduced.

Proof. Easy. �

Lemma 4.3. Assume that |p1| > |p2|. Then p1 = p2u3, t2q2 = u3z1q1,
z2q2 = u3t1q1, u3 6= ε and p2, u3 are reduced. Moreover:

(i) If |t2| ≤ |u3|, then q2 = r3z1q1, u3 = t2r3, p1 = p2t2r3, t2r3t1 =
z2r3z1 and t2, r3 are reduced. Further, |t2| < |z2|, z2 = t2s3,
s3 6= ε, r3t1 = s3r3z1, |z1| < |t1|, t1 = kz1, r3k = s3r3, k 6= ε,
|t1| ≥ 2 and t1 is not reduced.

(ii) If |t2| > |u3|, then t2 = u3u4, z1q1 = u4q2, u4 6= ε and |t2| ≥ 2.
(iii) If |t2| > |u3| and |q2| ≤ |q1|, then neither u4 nor t2 is reduced.
(iv) If |t2| > |u3| and |q2| > |q1|, then q2 = v3q1, z1 = u4v3, u3t1 =

z2v3, v3 6= ε, v3, u4 are reduced, |u3| < |z2|, z2 = u3v4, t1 =
v4v3, v4 6= ε and v4 is reduced.

Proof. Easy. �

Lemma 4.4. Assume that either |t1| ≤ 1 or t1 is reduced and the same
is true for t2. Then at least one of the following three cases takes place:

(i) z1 = t2, z2 = t1, p1 = p2 and q1 = q2.
(ii) z1 = u1v2, z2 = u2v1, t1 = u1u2, t2 = v2v1, p2 = p1u1, q1 =

v1q2, u1, u2, v1, v2 ∈ A+ and all u1, u2, v1, v2 are reduced.
(iii) z1 = u4v3, z2 = u3v4, t1 = v4v3, t2 = u3u4, p1 = p2u3, q2 =

v3q1, u3, u4, v3, v4 ∈ A+ and all u3, u4, v3, v4 are reduced.

Proof. It follows from 4.1, 4.2 and 4.3 that only the cases 4.1 (ii), 4.2
(iv) and 4.3 (iv) come into account. �
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5. Disturbing pairs

Let Z be a strongly separating set of words, Z 6= {ε}, and let ψ :
Z → A∗ be a mapping. Consider the relations σ, ρ, λ, τ , ξ, ν and µ
defined in I.6 and I.7.

An ordered pair (z1, z2) ∈ Z × Z will be called disturbing if there
exist words u, v, r, s ∈ A+ such that z1 = ur, z2 = sv, ψ(z1) = us and
ψ(z2) = rv.

An ordered pair (z1, z2) ∈ Z × Z will be called paradisturbing if
ψ(z1) = z2 and ψ(z2) = z1.

Lemma 5.1. Let (z1, z2) ∈ Z×Z be a disturbing pair, z1 = ur, z2 = sv,
ψ(z1) = us,ψ(z2) = rv, u, v, r, s ∈ A+. Put w1 = urv and w2 = usv.
Then:

(i) |z1| ≥ 2, |z2| ≥ 2, |ψ(z1)| ≥ 2, |ψ(z2)| ≥ 2.
(ii) The words u, v, r and s are reduced.
(iii) (w1, w2) ∈ ν.
(iv) tr(w1) = 1 = tr(w2).
(v) Both w1 and w2 are pseudoreduced.
(vi) w1 = w2 iff r = s.
(vii) If w1 = w2, then w1 is strongly pseudoreduced.

Proof. Easy. �

Lemma 5.2. Let (z1, z2) ∈ Z × Z be a paradisturbing pair. Then:

(i) (z1, z2) ∈ ν.
(ii) tr(z1) = 1 = tr(z2).
(iii) Both z1 and z2 are weakly pseudoreduced.

Proof. Obvious. �

Proposition 5.3. There exist no disturbing pairs, provided that either
Z ⊆ A or ψ(Z) ⊆ A.

Proof. Obvious. �

Proposition 5.4. Suppose that for every z ∈ Z, either |ψ(z)| ≤ 1 or
ψ(z) is reduced. Then the following conditions are equivalent:

(i) There exist no disturbing and no paradisturbing pairs in Z×Z.
(ii) Every pseudoreduced meagre word is reduced.

Proof.
(i) implies (ii). Let, on the contrary w1 be a weakly pseudoreduced

with tr(w1) = 1. Then w1 = p1z1q1, where z1 ∈ Z and p1, q1 are
reduced (use I.6.6). If w2 = p1t1q1, t1 = ψ(z1), then (w1, w2) ∈ ρ, and
hence (w2, w1) ∈ ρ, since w1 is weakly pseudoreduced. Consequently,
w2 = p2z2q2, z2 ∈ Z, and w1 = p2t2q2, t2 = ψ(z2). Now, 4.4 applies.
If 4.4 (i) is true, then (z1, z2) is paradisturbing. If 4.4 (ii) is true,
then (z1, z2) is disturbing. Finally, if 4.4 (iii) is true, then (z2, z1) is
disturbing.
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(ii) implies (i). See 5.1 and 5.2. �

6. Meagre and pseudomeagre words

Let Z be a strongly separating set of words such that Z 6= {ε} (except
for 6.9) and let ψ : Z → A∗ be a mapping. Consider the relations σ, ρ,
λ, τ , ξ, ν and µ defined in I.6 and I.7.

A word w is called meagre if tr(w) ≤ 1.
A word w is called pseudomeagre if (w, x) ∈ ρ for at most one x ∈ A∗.

Lemma 6.1. Every meagre word is pseudomeagre.

Proof. Obvious. �

Lemma 6.2. Let z ∈ Z be such that ψ(z) ∈ {ε, z}. Then the word zn,
n ≥ 2, is pseudomeagre but not meagre.

Proof. It follows from I.6.6 that tr(zn) = n ≥ 2, and so zn is not
meagre. On the other hand, if (zn, x) ∈ ρ, then x = zn−1 for ψ(z) = ε
and x = zn for ψ(z) = z. �

Lemma 6.3. Let z1, z2, z ∈ Z and u, v, x ∈ A∗ be such that z1xz2 =
uzv.

(i) If u = ε, then z = z1 and v = xz2.
(ii) If v = ε, then z = z2 and u = z1x.
(iii) If u 6= ε 6= v, then u = z1u1, v = v1z2 and x = u1zv1.

Proof.

(i) Easy to see.
(ii) Easy to see.
(iii) If |u| < |z1|, then z1 = uy, y 6= ε, uyxz2 = z1xz2 = uzv,

yxz2 = zv, a contradiction. Thus |u| ≥ |z1| and, similarly,
|v| ≥ |z2|. The rest is clear.

�

Lemma 6.4. Let z ∈ Z and x ∈ A∗ be such that ψ(z) = zxz. Then:

(i) tr(zxz) ≥ 2 and zxz is not meagre.
(ii) zxz is pseudomeagre iff ψ(z1) = z1vzuz1 whenever z1 ∈ Z and

x = uz1v (or ψ(z) = zuz1vz).

Proof.

(i) Obvious.
(ii) Clearly, (ε, z, xz), (zx, z, ε) ∈ Tr(zxz), εψ(z)xz = zxzxz =

zxψ(z)ε and (zxz, zxzxz) ∈ ρ. If x is reduced, then tr(zxz) =
2 by I.6.6, and hence zxz is pseudomeagre (and the other con-
dition is satisfied trivially).

Now, let (u1, z1, v1) ∈ Tr(zxz), u1 6= ε 6= v1. According to
6.3, u1 = zu, v1 = vz and x = uz1v. We have zxz = zuz1vz
and (zxz, zuψ(z1)vz) ∈ ρ. Consequently, zuψ(z1)vz = zxzxz
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iff uψ(z1)v = xzx = uz1vzuz1v and iff ψ(z1) = z1vzuz1. The
rest is clear.

�

Lemma 6.5. Let z1, z2 ∈ Z and x, y ∈ A∗ be such that ψ(z1) = yxz1

and ψ(z2) = z2xy. Then:

(i) tr(z2xz1) ≥ 2 and z2xz1 is not meagre.
(ii) z2xz1 is pseudomeagre iff ψ(z3) = z3vyuz3 whenever z3 ∈ Z

and x = uz3v (or ψ(z1) = yuz3vz1 or ψ(z2) = z2uz3vy).

Proof.

(i) Obvious.
(ii) Clearly, (ε, z2, xz1), (z2x, z1, ε) ∈ Tr(z2xz1), εψ(z2)xz1 = z2xyxz1 =

z2xψ(z1)ε and (z2xz1, z2xyxz1) ∈ ρ. If x is reduced, then
tr(z2xz1) = 2 by I.6.6, and hence z2xz1 is pseudomeagre (and
the other condition is satisfied trivially).

Now, let (u1, z3, v1) ∈ Tr(z2xz1), u1 6= ε 6= v1. Accord-
ing to 6.3, u1 = z2u, v1 = vz1 and x = uz3v. We have
z2xz1 = z2uz3vz1 and (z2xz1, z2uψ(z3)vz1) ∈ ρ. Consequently,
z2uψ(z3)vz1 = z2xyxz1 iff uψ(z3)v = xyx = uz3vyuz3v and iff
ψ(z3) = z3vyuz3. The rest is clear.

�

Proposition 6.6. Suppose that every pseudomeagre word is meagre.
Then the following three conditions are satisfied:

(b1) ε 6= ψ(z) 6= z for every z ∈ Z;
(b2) If z1, z2 ∈ Z and x, y ∈ A∗ are such that ψ(z1) = yxz1 and

ψ(z2) = z2xy, then x 6= ε 6= y and x is not reduced;
(b3) If z1, z2, z3 ∈ Z and u, v, y ∈ A∗, then either ψ(z1) 6= yuz3vz1

or ψ(z2 6= z2uz3vy or ψ(z3) 6= z3vyuz3

Proof. The condition (b1) follows from 6.2. Further, if ψ(z1) = yxz1

and ψ(z2) = z2xy, then x is not reduced due to 6.5, and hence x 6= ε.
Moreover, if y = ε, then z2z1 is pseudomeagre, but not meagre, and
therefore x 6= ε 6= y and we have shown (b2). Finally, (b3) follows from
6.5. �

Proposition 6.7. Suppose that the following two conditions are satis-
fied:

(c1) ε 6= ψ(z) 6= z and ψ(z) 6= zxz for all z ∈ Z and x ∈ A∗;
(c2) If z1, z2 ∈ Z and x, y ∈ A∗ are such that ψ(z1) 6= ψ(z2), then

either ψ(z1) 6= yxz1 or ψ(z2) 6= z2xy.

Then every pseudomeagre word is meagre.

Proof. Let, on the contrary, w be pseudomeagre word, but not meagre.
Then tr(w) ≥ 2, and therefore pz1q = w = rz2s, where (p, z1, q) 6=
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(r, z2, s) and z1, z2 ∈ Z; we will assume |rz2| ≤ |pz1|, the other case
being similar.

Assume, for a moment, that z1 = z = z2. Then |r| < |p| and we get
a contradiction by easy combination of (c1) and 3.11. Consequently,
z1 6= z2 and it follows easily that |r| < |p|. Then ψ(z1) 6= ψ(z2) and we
get a contradiction with (c2). �

Proposition 6.8.

(i) Suppose that ψ(z) 6= ε and that z is neither a prefix nor a
suffix of ψ(z) for every z ∈ Z. Then every pseudomeagre word
is meagre.

(ii) Suppose that |ψ(z)| ≤ |z| for every z ∈ Z. Then every pseu-
domeagre word is meagre if and only if ε 6= ψ(z) 6= z for every
z ∈ Z.

Proof. See 6.6 and 6.7 �

Remark 6.9. Let Z = {ε}. Then ε is the only meagre word. Moreover:

(i) If ψ(ε) = ε, then all words are pseudomeagre (and hence there
exist pseudomeagre words that are not meagre).

(ii) If ψ(ε) = t and | var(t)| = 1, t = am, a ∈ A, m ≥ 1, then
a word w is pseudomeagre iff w = an, n ≥ 0. Consequently,
there exist pseudomeagre words that are not meagre.

(iii) If ψ(ε) = t and | var(t)| ≥ 2, then ε is the only pseudomeagre
word (and hence all pseudomeagre words are meagre).

7. Disturbing triples

This section is an immediate continuation of the preceding one.
An ordered triple (z1, z2, z3) ∈ Z ×Z ×Z will be called disturbing if

there exist u, v, g, h ∈ A+ and p ∈ A∗ such that z1 = uv, z3 = gh and
ψ(z2) = vpg.

Lemma 7.1. Let (z1, z2, z3) ∈ Z×Z×Z be a disturbing triple, z1 = uv,
z3 = gh, ψ(z2) = vpg, u, v, g, h ∈ A+, p ∈ A∗. Then:

(i) |z1| ≥ 2, |z3| ≥ 2 and |ψ(z2)| ≥ 2.
(ii) The words u, v, g, h are reduced.
(iii) (u1, v1) ∈ ρ, tr(u1) = 1 and tr(v1) ≥ 2, where u1 = uz2h and

v1 = uvpgh.

Proof. Easy (use I.6.6). �

Proposition 7.2. There exist no disturbing triples, provided that either
Z ⊆ A or ψ(Z) ⊆ A.

Proof. Obvious. �

Proposition 7.3. Suppose that for every z ∈ Z, either |ψ(z)| ≤ 1 or
ψ(z) is reduced. Then the following conditions are equivalent:
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(i) There exist no disturbing triples in Z × Z × Z.
(ii) If (w1, w2) ∈ ρ and tr(w1) = 1, then tr(w2) ≤ 1.
(iii) If (w1, w2) ∈ ρ and w1 is meagre, then w2 is meagre.
(iv) If (w1, w2) ∈ τ and tr(w1) = 1, then tr(w2) ≤ 1.
(v) If (w1, w2) ∈ ξ and w1 is meagre, then w2 is meagre.

Proof.
(i) implies (ii). We have w1 = pz2q, z2 ∈ Z, p, q reduced, and

w2 = ptq, t = ψ(z2). Now, assume that w2 = rz3s and 3.1 applies. If
|t| ≤ 1, then tr(w2) = 1 by 3.13 (iv), and therefore we will assume that
|t| ≥ 2. Then t is reduced and, according to 3.12 (iii) we can assume
that (a1) holds, the case (a7) being similar.

By 3.2 w2 = pghks, z3 = hk, t = gh, q = ks, g 6= ε 6= h, k 6= ε and,
moreover, g is reduced, since t is so. If pg is reduced, then tr(w2) = 1
by 3.2 (ii). If pg is not reduced, then, by 3.2 (iv), pg = p1z1q1, z1 = uv,
p = p1u, g = vq1, t = vq1h, u 6= ε 6= v and the triple (z1, z2, z3) is
disturbing.

(ii) implies (iii), (iii) implies (iv), (iv) implies (v). Obvious.
(v) implies (i). See 7.1 (iii). �

8. On when the relation ρ is antisymmetric

As usual, let Z be a strongly separating set of words such that Z 6=
{ε} (except for 8.7, 9.11) and let ψ : Z → A∗ be a mapping.

Proposition 8.1. The relation ρ (= ρZ,ψ) is irreflexive if and only if
ψ(z) 6= z for every z ∈ Z.

Proof. Obvious from the definition of ρ. �

Proposition 8.2. The relation ρ is antisymmetric (i. e., u = v, when-
ever (u, v) ∈ ρ and (v, u) ∈ ρ) if and only if the following three condi-
tions hold:

(1) If z1, z2 ∈ Z and x, y ∈ A∗ are such that z2 = xψ(z1)y and
ψ(z2) = xz1y, then ψ(z2) = z2 (and hence ψ(z1) = z1 as well);

(2) If z1, z2 ∈ Z and x, y ∈ A∗ are such that z2 = yxψ(z2) (z2 =
ψ(z2)xy, resp.) and ψ(z1) = z1xy (ψ(z1) = yxz1, resp.), then
x = ε = y (and hence ψ(z1) = z1, ψ(z2) = z2);

(3) If z1, z2 ∈ Z and x, y, u, v ∈ A+ are such that z1 = uy, z2 = xv,
ψ(z1) = vy and ψ(z2) = xu, then u = v (and hence ψ(z1) = z1,
ψ(z2) = z2).

Proof. Use I.5.4. �

Corollary 8.3. Assume that for every z ∈ Z,either |ψ(z)| ≤ 1 or ψ(z)
is reduced. Then:

(i) The relation ρ is antisymetric if and only the following two
conditions hold:
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(i1) If (z1, z2) ∈ (Z × Z) ∩ (A × A) is a paradisturbing pair,
then z1 = z2;

(i2) There exist no disturbing pairs in Z × Z.
(ii) The relation ρ is both irreflexive and antisymmetric if and only

if there exist no disturbing nor paradisturbing pairs in Z × Z.

Proposition 8.4. The following conditions are equivalent:

(i) If (u, v) ∈ ρ and (v, v) ∈ ρ, then u = v.
(ii) If (u, v) ∈ ρ and (u, u) ∈ ρ, then u = v.
(iii) Either ψ(z) 6= z for every z ∈ Z or ψ(z) = z for every z ∈ Z.

Proof. Easy to check. �

Proposition 8.5. Assume that |z1| − |ψ(z1)| 6= |ψ(z2)| − |z2| for all
z1, z2 ∈ Z. Then the relation ρ is both irreflexive and antisymmetric
(i. e., it is strictly antisymmetric).

Proof. Use I.5.4. �

Proposition 8.6. The relation ρ is weakly antisymmetric (i. e., u = v,
whenever (u, v) ∈ ρ, (v, u) ∈ ρ, (u, u) ∈ ρ) if and only if ψ(z1) = z1,
whenever z1, z2, z3 ∈ Z and p, q, r, s, x, y ∈ A∗ are such that pz1q =
rz2s = xψ(z3)y and pψ(z1)q = xz3y.

Proof. Obvious. �

Remark 8.7. Let Z = {ε}. If ψ(ε) = ε, then ρ = idA∗ , and hence
ρ is antisymmetric, but not irreflexive. If ψ(ε) 6= ε, then ρ is both
irreflexive and antisymmetric. Moreover, 8.4 is true in both cases.

9. On when the relation ρ is antitransitive

This section is an immediate continuation of preceding one.

Proposition 9.1. The relation ρ is weakly antitransitive (i. e., (w, v) /∈
ρ, whenever u, v, w ∈ A∗ are such that u 6= v 6= w 6= u, (w, u) ∈ ρ and
(u, v) ∈ ρ) if and only if the following condition is satisfied:

(1) If z1, z2 ∈ Z and x, y, k ∈ A∗ are such that ψ(z1) 6= z1, ψ(z2) 6=
z2 and z1kψ(z2) 6= ψ(z1)kz2, then (u, v) /∈ ρ and (v, u) /∈ ρ,
where u = xz1kψ(z2)y and v = xψ(z1)kz2y

Proof. See I.7.1. �

Lemma 9.2. Let z ∈ Z and k ∈ A∗. Then zkψ(z) 6= ψ(z)kz iff ψ(z) 6=
z and either ψ(z) = ε and k 6= zn for every n ≥ 0 or ε 6= ψ(z) 6= (zu)mz
for all u ∈ A∗ and m ≥ 1 or ψ(z) = (zv)tz and k 6= (vz)nv for some
v ∈ A∗, t ≥ 1 and every n ≥ 0.

Proof. Easy. �

Lemma 9.3. Let z ∈ Z be such that ψ(z) is reduced and let k ∈ A∗.
Then zkψ(z) 6= ψ(z)kz iff either ψ(z) 6= ε or ψ(z) = ε and k 6= zn for
every n ≥ 0.
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Proof. This follows from 9.2. �

Lemma 9.4. Let z1, z2 ∈ Z, z1 6= z2, and k ∈ A∗. Then z1kψ(z2) 6=
ψ(z1)kz2 iff at least one of the following three conditions is satisfied:

(1) ψ(z1) 6= z1 and ψ(z2) = z2;
(2) ψ(z2) 6= z2, ψ(z1) = z1uv for some u, v ∈ A∗ and either

ψ(z2) 6= vuz2 or ψ(z2) = vuz2 and k 6= (uv)nu for every n ≥ o;
(3) ψ(z2) 6= z2, ψ(z1) 6= z1xy for all x, y ∈ A∗.

Proof. Easy. �

Lemma 9.5. Let z1, z2 ∈ Z be such that z1 6= z2 and both ψ(z1), ψ(z2)
are reduced. Then z1kψ(z2) 6= ψ(z1)kz2 for every k ∈ A∗.

Proof. This follows easily from 9.4 �

Proposition 9.6. Assume that for every z ∈ Z, either |ψ(z)| ≤ 1 or
ψ(z) is reduced. Then the relation ρ is weakly antitransitive if and only
if (u, v) /∈ ρ and (v, u) /∈ ρ, whenever u = xz1kψ(z2)y, v = xψ(z1)kz2y
and z1, z2 are such that:

(1) If z1, ψ(z1) ∈ A ∩ Z, then ψ(z1) 6= z1;
(2) If z2, ψ(z2) ∈ A ∩ Z, then ψ(z2) 6= z2;
(3) If z1 = z2 = z and ψ(z) = ε, then k 6= zn for every n ≥ 0.

Proof. Combine 9.1, 9.2 and 9.4. �

Corollary 9.7. Assume that for every z ∈ Z, ψ(z) 6= z and either
|ψ(z)| ≤ 1 or ψ(z) is reduced (equivalently, either ψ(z) is reduced or
ψ(z) = ε or ψ(z) ∈ A and ψ(z) 6= z). Then the relation ρ is weakly
antitransitive if and only if (u, v) /∈ ρ and (v, u) /∈ ρ (i. e., u, v are
incomparable in ρ), whenever u = xz1kψ(z2)y, v = xψ(z1)kz2y and
z1, z2 ∈ Z are such that either z1 6= z2 or z1 = z2 and ψ(z1) 6= ε or
z1 = z2 and ψ(z1) = ε and k 6= zn1 for every n ≥ 0.

Proposition 9.8. Assume that ψ(z0) 6= z0 for at least one z0 ∈ Z.
Then the following conditions are equivalent:

(i) The relation ρ is irreflexive and weakly antitransitive.
(ii) The relation ρ is strictly antitransitive (i. e., (w, v) /∈ ρ when-

ever (w, u) ∈ ρ and (u, v) ∈ ρ).
(iii) The relation ρ is antitransitive (i. e., u = v = w, whenever

(w, u) ∈ ρ, (u, v) ∈ ρ and (w, v) ∈ ρ).
(iv) The condition 9.1 (1) is satisfied and ψ(z) 6= z for every z ∈ Z.

Proof.
(i) implies (ii). Let (w, u), (u, v), (w, v) ∈ ρ. Since ρ is weakly anti-

transitive, either w = u or u = v or w = v. On the other hand, since ρ
is irreflexive, we have w 6= u 6= v 6= w, a contradiction.

(ii) implies (iii). Obvious.
(iii) implies (iv). Clearly, ρ is weakly antitransitive, and hence 9.1

(1) follows from 9.1. Moreover, ψ(z) 6= z follows from 8.4.
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(iv) implies (i). Use 8.1 and 9.1. �

Proposition 9.9. Assume that |z1| + |z2| − |z3| 6= |ψ(z1)| + |ψ(z2)| −
|ψ(z3)| for all z1, z2, z3 ∈ Z. Then the relation ρ is strictly antitransi-
tive.

Proof. Let (w, u), (u, v), (w, v) ∈ ρ. Then pz1q = w = rz3s, pψ(z1)q =
u = xz2y, rψ(z3)s = v = xψ(z2)y. Consequently, |w| − |u| = |z1| −
|ψ(z1)|, |w| − |v| = |z3| − |ψ(z3)|, |u| − |v| = |z2| − |ψ(z2)|. From
this we get |z3| − |ψ(z3)| = |w| − |v| = |w| − |u| + |u| − |v| = |z1| −
|ψ(z1)|+ |z2|− |ψ(z2)| and |z1|+ |z2|− |z3| = |ψ(z1)|+ |ψ(z2)|− |ψ(z3)|,
a contradiction. �

Remark 9.10. The condition from 9.9 is satisfied e. g. if |z| − |ψ(z)| is
odd for every z ∈ Z.

Remark 9.11. Let Z = {ε}. If ψ(ε} = ε, then ρ = idA∗ , and hence ρ
is antitransitive, but not strictly antitransitive. If ψ(ε) 6= ε, then ρ is
strictly antitransitive.

Proposition 9.12. Assume that ε /∈ Z and for every z ∈ Z zx 6=
ψ(z) 6= yz, x, y ∈ A∗. Then ρ is antitransitive.

Proof. According to I.7.1, we have to prove that for all z1, z2 ∈ Z and
w ∈ A∗ such that z1wψ(z2) 6= ψ(z1)wz2 we have (z1wψ(z2), ψ(z1)wz2) /∈
ρ and (ψ(z1)wz2, z1wψ(z2)) /∈ ρ. Suppose, for a contradiction, that
there are z1, z2 ∈ Z and w ∈ A∗ such that (z1wψ(z2), ψ(z1)wz2) ∈ ρ
(the other case is similar). This means that there exist u, v ∈ A∗

and z ∈ Z such that z1wψ(z2) = uzv and ψ(z1)wz2 = uψ(z)v. If
u = ε then z = z1, v = wψ(z2) and ψ(z1)wz2 = ψ(z1)wψ(z2), thus
z2 = ψ(z2), a contradiction. Hence we may assume that u = z1u

′ and
hence wψ(z2) = u′zv and ψ(z1)wz2 = z1u

′ψ(z)v. Since z1x 6= ψ(z1),
z1 = ψ(z1)s for a proper s ∈ A∗ (s is a suffix of z1), wψ(z2) = u′zv and
wz2 = su′ψ(z)v. Now, let w = snw′, u′ = smu′′, w′, u′′ be such that s
is not a prefix of either one of them. Then snw′ψ(z2) = smu′′zv and
snw′z2 = sm+1u′′ψ(z)v. If n ≤ m then w′z2 = sm−n+1u′′ψ(z)v and (s is
not a prefix of w′) there exists a suffix of z1 which is a prefix of z2, a
contradiction. If n > m then sn−mw′ψ(z2) = u′′zv and (s is not a prefix
of u′′) there exists a suffix of z1 which is a prefix of z, a contradiction
again. �
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