ON SEPARATING SETS OF WORDS II

V. FLAŠKA, T. KEPKA AND J. KORTELAINEN

Abstract

Special replacement relation in free monoids is studied with particular interest in antisymmetry and antitransitivity.

1. Introduction

This article is an immediate continuation of [1]. References like I.3.3 lead to the corresponding section and result of [1] and all definitions and preliminaries are taken from the same source.

2. More results on separated pairs of words

Throughout this section, let $u, v \in A^{*}$ be such that $u \neq v,|u|=|v|$ and both the pairs (u, v) and (v, u) are separated. According to I.3.3, these two pairs are strongly separated (clearly, $u \neq \varepsilon \neq v$).

Lemma 2.1. $u v x=x u v$ iff $x=(u v)^{m}$ for some $m \geq 0$.
Proof. We will proceed by induction on $|x|$. If $x=\varepsilon$, then $m=0$. If $|x|<|u|$, then $u=x r, v=s x$, and so $x=\varepsilon$ and $m=0$ again. Finally, if $|u| \leq|x|$, then $u p=x=q v, u v q v=u v x=x u v=u p u v, v q=p u$, $p=v t, q=t u$ and $u v t=u p=x=q v=t u v$. If $|t|=|x|$, then $u=\varepsilon=v$, a contradiction. Thus $|t|<|x|, t=(u v)^{m_{1}}$ by induction and $x=u v t=(u v)^{m}, m=m_{1}+1$.

Lemma 2.2. If $p u x=x v q$ and $|x| \leq|p u|$, then just one of the following two cases takes place:
(1) $p=v t, q=t u$ and $x=v t u$ (then $|x|=|p u|=|v q|$);
(2) $p=$ xvt and $q=$ tux (then $|x|<|p|=|q|$).

Proof. We have $p u=x z$ and $v q=z x$. If $|z| \leq|u|$, then $u=u_{1} z$, $v=z v_{1}$, and hence $z=\varepsilon$. Consequently, $p u=x=v q$ and it follows that $p=v t, q=t u$ and $x=v t u$, so that (1) is true. On the other hand, if $|u|<|z|$, then $u_{2} u=z=v v_{2}, u_{2}=v t, v_{2}=t u$ and $z=v t u$. From this, $p u=x z=x v t u, p=x v t, v q=z x=v t u x, q=t u x$ and $|x|<|p|$.

Lemma 2.3. $p u x=x v q$ iff $p=y v t, q=$ tuy and $x=(y v t u)^{m} y$ $\left(=y(v t u y)^{m}\right), m \geq 0$.

The work is a part of the research project MSM0021620839 financed by MŠMT..

Proof. Only the direct implication needs a proof and we will proceed by induction on $|x|$.

If $|x| \leq|p u|$, then either $2.2(1)$ is true and we put $y=\varepsilon, m=1$, or $2.2(2)$ is true and we put $y=x, m=0$.

If $|p u|<|x|$, then $\operatorname{pux}_{1}=x=x_{1} v q, 1 \leq\left|x_{1}\right|<|x|$, and we use induction hypothesis.
Lemma 2.4. puyv $=u y v q$ iff at least one (and then just one) of the following two cases takes place:
(1) $p=\varepsilon=q$;
(2) $p=u z v t, q=t u z v$ and $y=(z v t u)^{m} z, m \geq 0$.

Proof. Again, only the direct implication needs a proof.
If $|p|<|u|$, then $u=p r, v=s q, r y v=u y s$ and, by I.3.7, $r=u u_{1}$, $s=v_{1} v$. Now, $u=p u u_{1}, v=v_{1} v q$ and $p=\varepsilon=q$.

If $|u| \leq|p|$, then $p=u u_{2}, q=v_{2} v$ and $y v v_{2}=u_{2} u y$. It remains to use 2.3

Lemma 2.5. Let $p, q, x, y \in A^{*}$ be such that $|x| \leq|p|$. Then puyvx $=$ xuyvq iff at least one (and then just one) of the following two cases takes place:
(1) $p=x=q$;
(2) $p=x u z v t$ and $q=t u z v x$ and $y=(z v t u)^{m} z, m \geq 0$.

Proof. As usual, only the direct implication needs a proof. We have $p=x p_{1}, q=q_{1} x,\left|p_{1}\right|=\left|q_{1}\right|$ and $p_{1} u y v=u y v q_{1}$. The rest follows from 2.4.

Lemma 2.6. Let $p, q, x, y \in A^{*}$ be such that $|p|<|x|$. Then puyvx $=$ xuyvq iff $x=$ puzvt $=t u z v q$ and $y=(z v t u)^{m} z, m \geq 0$.
Proof. Standard (use 2.4).

3. Auxiliary results (a)

Throughout this section, let Z be a strongly separating set of words, $Z \neq\{\varepsilon\}$, and let $p, q, r, s, t, w, z \in A^{*}$ be such that $p t q=w=r z s$, $z \in Z$ and p, q are ($Z-$) reduced.
Lemma 3.1. Just one of the following nine cases takes place:
(a1) $r=p g, t=g h, q=k s, z=h k, g \neq \varepsilon \neq h, k \neq \varepsilon$ and h, k, s are reduced;
(a2) $r=p g, t=g z, q=s, g \neq \varepsilon$ and s is reduced;
(a3) $r=p g, t=g z h, s=h q, g \neq \varepsilon \neq h$;
(a4) $r=p, z=t h, q=h s, h \neq \varepsilon$ and h, s, r, t are reduced;
(a5) $r=p, z=t, s=q$ and r, s are reduced;
(a6) $r=p, t=z h, s=h q, h \neq \varepsilon$ and r is reduced;
(a7) $p=r g, z=g h, t=h f, s=f q, g \neq \varepsilon \neq f, h \neq \varepsilon$ and r, g, h are reduced;
(a8) $p=r g, z=g t, q=s, g \neq \varepsilon \neq t$ and r, g, t, s are reduced;
(a9) $p=r g, z=g h=g t f, h=t f, q=f s, g \neq \varepsilon \neq f$ and r, g, h, t, f, s are reduced;

Proof. It will be divided into three parts:
(i) Let $|p|<|r|$. Then $r=p g, g \neq \varepsilon, p t q=p g z s$ and $t q=g z s$. Since q is reduced, we have $|g|<|t|, t=g h, h \neq \varepsilon, g h q=g z s$, $h q=z s$ and $p t=p g h=r h$.

If $|h|<|z|$, then $z=h k, k \neq \varepsilon, h q=z s=h k s, q=k s$ and (a1) is fulfilled.
If $|h|=|z|$, then $h=z, q=s, t=g z$ and (a2) is satisfied.
If $|h|>|z|$, then $h=z h_{1}, h_{1} \neq \varepsilon, h_{1} q=s, t=g z h_{1}$ and (a3) is true.
(ii) Let $|p|=|r|$. Then $p=r$ and $t q=z s$.

If $|t|<|z|$, then $z=t h, h \neq \varepsilon, t q=z s=t h s, q=h s$ and (a4) is valid.

If $|t|=|z|$, then $z=t, q=s$ and (a5) holds.
If $|t|>|z|$, then $t=z h, h \neq \varepsilon, z h q=t q=z s, h q=s$ and (a6) follows.
(iii) Let $|p|>|r|$. Then $p=r g, g \neq \varepsilon, r g t q=p t q=r z s$ and $g t q=z s$. Since g is reduced, we have $|g|<|z|, z=g h, h \neq \varepsilon$. Moreover, $g t q=z s=g h s$ and $t q=h s$.

If $|h|<|t|$, then $t=h f, f \neq \varepsilon, h f q=t q=h s, f q=s$ and (a7) is clear.

If $|h|=|t|$, then $t=h, q=s, z=g t$ and (a8) is evident.
If $|h|>|t|$, then $h=t f, f \neq \varepsilon, t f s=t q=h s, q=f s$ and (a9) is visible.

Lemma 3.2. Assume that (a1) is true. Then:
(i) $w=p g z s=p g h k s, z=h k, t=g h, q=k s, g \neq \varepsilon \neq h, k \neq \varepsilon$, $|z| \geq 2,|t| \geq 2, h, k, s, p, k s$ are reduced and the pair (t, z) is not separated.
(ii) If $p g$ is reduced, then $\operatorname{tr}(w)=1$.
(iii) If t is reduced, then g is reduced.
(iv) If g is reduced and $p g$ is not reduced, then $p=p_{1} u, g=v q_{1}$, $t=v q_{1} h, w=p_{1} u v q_{1} z s, u \neq \varepsilon \neq v, u v \in Z, p_{1}, q_{1}, u, v$ are reduced and $\operatorname{tr}(w)=2$.

Proof.
(i) The assertion follows easily from (a1).
(ii) Combine (i) and I.5.4.
(iii) Obvious from $t=g h$.
(iv) Since p, g are reduced and $p g$ is not, we have $p g=p_{1} z_{1} q_{1}$, $p=p_{1} u, g=v q_{1}, z_{1}=u v \in Z, u \neq \varepsilon \neq v, p_{1}, q_{1}$ reduced and $\left|z_{1}\right| \geq 2$. Thus $w=p_{1} u v q_{1} z s$ and $\operatorname{tr}(w)=2$ by I.5.4.

Lemma 3.3. Assume that (a2) is true. Then:
(i) $w=p g z s, t=g z, q=s, g \neq \varepsilon,|t| \geq 2$, s is reduced and t is not reduced.
(ii) If $p g$ is reduced, then $\operatorname{tr}(w)=1$.
(iii) If g is reduced and $p g$ is not reduced, then $p=p_{1} u, g=v q_{1}$, $t=v q_{1} z, w=p_{1} u v q_{1} z s, u \neq \varepsilon \neq v, u v \in Z, p_{1}, q_{1}, u, v$ are reduced and $\operatorname{tr}(w)=2$.
Proof. We can proceed similarly as in the proof of 3.2.
Lemma 3.4. Assume that (a3) is true. Then:
(i) $w=p g z s=p g z h q, t=g z h, s=h q, g \neq \varepsilon \neq h,|t| \geq 3$ and t is not reduced.
(ii) If $p g$ and s are reduced, then $\operatorname{tr}(w)=1$.

Proof. Similar to the proof of 3.2.
Lemma 3.5. Assume that (a4) is true. Then:
(i) $w=p z s=p t h s, z=t h, q=h s, t \neq \varepsilon \neq h,|z| \geq 2$ and h, s, t, hs are reduced.
(ii) $\operatorname{tr}(w)=1$.

Proof. Easy.
Lemma 3.6. Assume that (a5) is true. Then:
(i) $w=p z s=p t s, z=t, q=s, s$ is reduced and t is not reduced.
(ii) $\operatorname{tr}(w)=1$.

Proof. Easy.

Lemma 3.7. Assume that (a6) is true. Then:
(i) $w=p z h q, t=z h, s=h q, h \neq \varepsilon,|t| \geq 2$ and t is not reduced.
(ii) If $h q$ is reduced, then $\operatorname{tr}(w)=1$.
(iii) If h is reduced and $h q$ is not reduced, then $w=p z p_{1} u v q_{1}$, $h=p_{1} u, q=v q_{1}, t=z p_{1} u, u \neq \varepsilon \neq v, u v \in Z, p_{1}, q_{1}, u, v$ are reduced and $\operatorname{tr}(w)=2$.

Proof. Similar to the proof of 3.2.
Lemma 3.8. Assume that (a7) is true. Then:
(i) $w=r z f q=r g h f q, z=g h, t=h f, s=f q, g \neq \varepsilon \neq f, h \neq \varepsilon$, $|z| \geq 2,|t| \geq 2, h, g, r, r g$ are reduced and the pair (z, t) is not separated.
(ii) If $f q$ is reduced, then $\operatorname{tr}(w)=1$.
(iii) If t is reduced, then f is reduced.
(iv) If f is reduced and $f q$ is not reduced, then $f=p_{1} u, q=v q_{1}$, $t=h p_{1} u, w=r z p_{1} u v q_{1}, u \neq \varepsilon \neq v, u v \in Z, p_{1}, q_{1}, u, v$ are reduced and $\operatorname{tr}(w)=2$.

Proof. Similar to the proof of 3.2.
Lemma 3.9. Assume that (a8) is true. Then:
(i) $w=r g t s, z=g t, q=s, g \neq \varepsilon \neq t,|z| \geq 2$ and $r, g, t, s, r g$ are reduced.
(ii) $\operatorname{tr}(w)=1$.

Proof. Easy.
Lemma 3.10. Assume that (a9) is true. Then:
(i) $w=r g t f s, z=g t f, q=f s, g \neq \varepsilon \neq f,|z| \geq 2$ and r, g, t, f, $s, t f, r g$, $f s$ are reduced.
(ii) $\operatorname{tr}(w)=1$.

Proof. Easy.
Lemma 3.11. If $\operatorname{tr}(w) \geq 2$, then just one of the five conditions (a1), (a2), (a3), (a6) and (a7) holds.

Proof. Combine the preceding lemmas of this section.

Lemma 3.12.

(i) If at least one of (a2), (a3), (a5) and (a6) holds, then t is not reduced.
(ii) If t is reduced, then just one of (a1), (a4), (a7), (a8), (a9) holds.
(iii) If t is reduced and $\operatorname{tr}(w) \geq 2$, then just one of (a1), (a7) holds and $\operatorname{tr}(w)=2$.

Proof. Combine the preceding lemmas of this section.

Lemma 3.13.

(i) If t is reduced then $\operatorname{tr}(w) \leq 2$.
(ii) If $t=\varepsilon$, then (a9) is satisfied.
(iii) If $t \in A$ (i. e., $|t|=1$), then just one of (a4), (a5), (a8), (a9) is true (if (a5) is true, then $z=t \in A$) and $\operatorname{tr}(w)=1$.
(iv) If $|t| \leq 1$, then $\operatorname{tr}(w)=1$.
(v) If $z \in A$ (i.e., $|z|=1$), then just one of (a2), (a3), (a5), (a6) is true (if (a5) is true, then $t=z \in A$).
(vi) If $z \in A$ and $\operatorname{tr}(w) \geq 2$, then either (a2) or (a6) holds and t is not reduced.

Proof. Combine the preceding lemmas of this section.

4. Auxiliary results (b)

In this section, let Z be a strongly separating set of words, $Z \neq\{\varepsilon\}$ and let $p_{1}, q_{1}, p_{2}, q_{2}, t_{1}, t_{2}, w_{1}, w_{2} \in A^{*}$ and $z_{1}, z_{2} \in Z$ be such that $p_{1} z_{1} q_{1}=w_{1}=p_{2} t_{2} q_{2}, p_{1} t_{1} q_{1}=w_{2}=p_{2} z_{2} q_{2}$ and p_{1}, q_{1} are ($Z-$) reduced.

Lemma 4.1. Assume that $\left|p_{1}\right|=\left|p_{2}\right|$. Then $p_{1}=p_{2}, z_{1} q_{1}=t_{2} q_{2}$ and $t_{1} q_{1}=z_{2} q_{2}$. Moreover:
(i) If $\left|t_{2}\right|<\left|z_{1}\right|$, then $z_{1}=t_{2} r_{1}, t_{1}=z_{2} r_{1}, q_{2}=r_{1} q_{1}, r_{1} \neq \varepsilon$, $\left|t_{1}\right| \geq 2$ and t_{1} is not reduced.
(ii) If $\left|t_{2}\right|=\left|z_{1}\right|$, then $z_{1}=t_{2}, t_{1}=z_{2}$ and $q_{1}=q_{2}$.
(iii) If $\left|t_{2}\right|>\left|z_{1}\right|$, then $t_{2}=z_{1} s_{1}, z_{2}=t_{1} s_{1}, q_{1}=s_{1} q_{2}, s_{1} \neq \varepsilon$, $\left|t_{2}\right| \geq 2$ and t_{2} is not reduced.
Proof. Easy.
Lemma 4.2. Assume that $\left|p_{1}\right|<\left|p_{2}\right|$. Then $p_{2}=p_{1} u_{1}, z_{1} q_{1}=u_{1} t_{2} q_{2}$, $t_{1} q_{1}=u_{1} z_{2} q_{2}, u_{1} \neq \varepsilon,\left|u_{1}\right|<\left|t_{1}\right|, t_{1}=u_{1} u_{2}, u_{2} q_{1}=z_{2} q_{2}, u_{2} \neq \varepsilon$, $\left|t_{1}\right| \geq 2$. Moreover:
(i) If $\left|q_{1}\right| \leq\left|q_{2}\right|$, then $q_{2}=r_{2} q_{1}, u_{2}=z_{2} r_{2}, t_{1}=u_{1} z_{2} r_{2}$ and t_{1} is not reduced.
(ii) If $\left|q_{1}\right|>\left|q_{2}\right|$, then $q_{1}=v_{1} q_{2}, t_{1} v_{1}=u_{1} z_{2}, z_{1} v_{1}=u_{1} t_{2}, z_{2}=$ $u_{2} v_{1}, v_{1} \neq \varepsilon$ and u_{2}, v_{1} are reduced.
(iii) If $\left|q_{1}\right|>\left|q_{2}\right|$ and $\left|z_{1}\right| \leq\left|u_{1}\right|$, then $u_{1}=z_{1} s_{2}, v_{1}=s_{2} t_{2}, t_{1}=$ $z_{1} s_{2} u_{2}, z_{2}=u_{2} s_{2} t_{2}$ and neither u_{1} nor p_{2} nor t_{1} is reduced.
(iv) If $\left|q_{1}\right|>\left|q_{2}\right|$ and $\left|z_{1}\right|>\left|u_{1}\right|$, then $z_{1}=u_{1} v_{2}, t_{2}=v_{2} v_{1}, v_{2} \neq \varepsilon$ and v_{2} is reduced.

Proof. Easy.
Lemma 4.3. Assume that $\left|p_{1}\right|>\left|p_{2}\right|$. Then $p_{1}=p_{2} u_{3}, t_{2} q_{2}=u_{3} z_{1} q_{1}$, $z_{2} q_{2}=u_{3} t_{1} q_{1}, u_{3} \neq \varepsilon$ and p_{2}, u_{3} are reduced. Moreover:
(i) If $\left|t_{2}\right| \leq\left|u_{3}\right|$, then $q_{2}=r_{3} z_{1} q_{1}, u_{3}=t_{2} r_{3}, p_{1}=p_{2} t_{2} r_{3}, t_{2} r_{3} t_{1}=$ $z_{2} r_{3} z_{1}$ and t_{2}, r_{3} are reduced. Further, $\left|t_{2}\right|<\left|z_{2}\right|, z_{2}=t_{2} s_{3}$, $s_{3} \neq \varepsilon, r_{3} t_{1}=s_{3} r_{3} z_{1},\left|z_{1}\right|<\left|t_{1}\right|, t_{1}=k z_{1}, r_{3} k=s_{3} r_{3}, k \neq \varepsilon$, $\left|t_{1}\right| \geq 2$ and t_{1} is not reduced.
(ii) If $\left|t_{2}\right|>\left|u_{3}\right|$, then $t_{2}=u_{3} u_{4}, z_{1} q_{1}=u_{4} q_{2}, u_{4} \neq \varepsilon$ and $\left|t_{2}\right| \geq 2$.
(iii) If $\left|t_{2}\right|>\left|u_{3}\right|$ and $\left|q_{2}\right| \leq\left|q_{1}\right|$, then neither u_{4} nor t_{2} is reduced.
(iv) If $\left|t_{2}\right|>\left|u_{3}\right|$ and $\left|q_{2}\right|>\left|q_{1}\right|$, then $q_{2}=v_{3} q_{1}, z_{1}=u_{4} v_{3}, u_{3} t_{1}=$ $z_{2} v_{3}, v_{3} \neq \varepsilon, v_{3}, u_{4}$ are reduced, $\left|u_{3}\right|<\left|z_{2}\right|, z_{2}=u_{3} v_{4}, t_{1}=$ $v_{4} v_{3}, v_{4} \neq \varepsilon$ and v_{4} is reduced.

Proof. Easy.
Lemma 4.4. Assume that either $\left|t_{1}\right| \leq 1$ or t_{1} is reduced and the same is true for t_{2}. Then at least one of the following three cases takes place:
(i) $z_{1}=t_{2}, z_{2}=t_{1}, p_{1}=p_{2}$ and $q_{1}=q_{2}$.
(ii) $z_{1}=u_{1} v_{2}, z_{2}=u_{2} v_{1}, t_{1}=u_{1} u_{2}, t_{2}=v_{2} v_{1}, p_{2}=p_{1} u_{1}, q_{1}=$ $v_{1} q_{2}, u_{1}, u_{2}, v_{1}, v_{2} \in A^{+}$and all $u_{1}, u_{2}, v_{1}, v_{2}$ are reduced.
(iii) $z_{1}=u_{4} v_{3}, z_{2}=u_{3} v_{4}, t_{1}=v_{4} v_{3}, t_{2}=u_{3} u_{4}, p_{1}=p_{2} u_{3}, q_{2}=$ $v_{3} q_{1}, u_{3}, u_{4}, v_{3}, v_{4} \in A^{+}$and all $u_{3}, u_{4}, v_{3}, v_{4}$ are reduced.
Proof. It follows from 4.1, 4.2 and 4.3 that only the cases 4.1 (ii), 4.2 (iv) and 4.3 (iv) come into account.

5. Disturbing pairs

Let Z be a strongly separating set of words, $Z \neq\{\varepsilon\}$, and let ψ : $Z \rightarrow A^{*}$ be a mapping. Consider the relations $\sigma, \rho, \lambda, \tau, \xi, \nu$ and μ defined in I. 6 and I.7.

An ordered pair $\left(z_{1}, z_{2}\right) \in Z \times Z$ will be called disturbing if there exist words $u, v, r, s \in A^{+}$such that $z_{1}=u r, z_{2}=s v, \psi\left(z_{1}\right)=u s$ and $\psi\left(z_{2}\right)=r v$.
An ordered pair $\left(z_{1}, z_{2}\right) \in Z \times Z$ will be called paradisturbing if $\psi\left(z_{1}\right)=z_{2}$ and $\psi\left(z_{2}\right)=z_{1}$.
Lemma 5.1. Let $\left(z_{1}, z_{2}\right) \in Z \times Z$ be a disturbing pair, $z_{1}=u r, z_{2}=s v$, $\psi\left(z_{1}\right)=u s, \psi\left(z_{2}\right)=r v, u, v, r, s \in A^{+}$. Put $w_{1}=u r v$ and $w_{2}=u s v$. Then:
(i) $\left|z_{1}\right| \geq 2,\left|z_{2}\right| \geq 2,\left|\psi\left(z_{1}\right)\right| \geq 2,\left|\psi\left(z_{2}\right)\right| \geq 2$.
(ii) The words u, v, r and s are reduced.
(iii) $\left(w_{1}, w_{2}\right) \in \nu$.
(iv) $\operatorname{tr}\left(w_{1}\right)=1=\operatorname{tr}\left(w_{2}\right)$.
(v) Both w_{1} and w_{2} are pseudoreduced.
(vi) $w_{1}=w_{2}$ iff $r=s$.
(vii) If $w_{1}=w_{2}$, then w_{1} is strongly pseudoreduced.

Proof. Easy.
Lemma 5.2. Let $\left(z_{1}, z_{2}\right) \in Z \times Z$ be a paradisturbing pair. Then:
(i) $\left(z_{1}, z_{2}\right) \in \nu$.
(ii) $\operatorname{tr}\left(z_{1}\right)=1=\operatorname{tr}\left(z_{2}\right)$.
(iii) Both z_{1} and z_{2} are weakly pseudoreduced.

Proof. Obvious.
Proposition 5.3. There exist no disturbing pairs, provided that either $Z \subseteq A$ or $\psi(Z) \subseteq A$.
Proof. Obvious.
Proposition 5.4. Suppose that for every $z \in Z$, either $|\psi(z)| \leq 1$ or $\psi(z)$ is reduced. Then the following conditions are equivalent:
(i) There exist no disturbing and no paradisturbing pairs in $Z \times Z$.
(ii) Every pseudoreduced meagre word is reduced.

Proof.
(i) implies (ii). Let, on the contrary w_{1} be a weakly pseudoreduced with $\operatorname{tr}\left(w_{1}\right)=1$. Then $w_{1}=p_{1} z_{1} q_{1}$, where $z_{1} \in Z$ and p_{1}, q_{1} are reduced (use I.6.6). If $w_{2}=p_{1} t_{1} q_{1}, t_{1}=\psi\left(z_{1}\right)$, then $\left(w_{1}, w_{2}\right) \in \rho$, and hence $\left(w_{2}, w_{1}\right) \in \rho$, since w_{1} is weakly pseudoreduced. Consequently, $w_{2}=p_{2} z_{2} q_{2}, z_{2} \in Z$, and $w_{1}=p_{2} t_{2} q_{2}, t_{2}=\psi\left(z_{2}\right)$. Now, 4.4 applies. If $4.4(\mathrm{i})$ is true, then $\left(z_{1}, z_{2}\right)$ is paradisturbing. If 4.4 (ii) is true, then $\left(z_{1}, z_{2}\right)$ is disturbing. Finally, if 4.4 (iii) is true, then $\left(z_{2}, z_{1}\right)$ is disturbing.
(ii) implies (i). See 5.1 and 5.2.

6. Meagre and pseudomeagre words

Let Z be a strongly separating set of words such that $Z \neq\{\varepsilon\}$ (except for 6.9) and let $\psi: Z \rightarrow A^{*}$ be a mapping. Consider the relations σ, ρ, λ, τ, ξ, ν and μ defined in I. 6 and I.7.

A word w is called meagre if $\operatorname{tr}(w) \leq 1$.
A word w is called pseudomeagre if $(w, x) \in \rho$ for at most one $x \in A^{*}$.
Lemma 6.1. Every meagre word is pseudomeagre.
Proof. Obvious.
Lemma 6.2. Let $z \in Z$ be such that $\psi(z) \in\{\varepsilon, z\}$. Then the word z^{n}, $n \geq 2$, is pseudomeagre but not meagre.
Proof. It follows from I.6.6 that $\operatorname{tr}\left(z^{n}\right)=n \geq 2$, and so z^{n} is not meagre. On the other hand, if $\left(z^{n}, x\right) \in \rho$, then $x=z^{n-1}$ for $\psi(z)=\varepsilon$ and $x=z^{n}$ for $\psi(z)=z$.

Lemma 6.3. Let $z_{1}, z_{2}, z \in Z$ and $u, v, x \in A^{*}$ be such that $z_{1} x z_{2}=$ $u z v$.
(i) If $u=\varepsilon$, then $z=z_{1}$ and $v=x z_{2}$.
(ii) If $v=\varepsilon$, then $z=z_{2}$ and $u=z_{1} x$.
(iii) If $u \neq \varepsilon \neq v$, then $u=z_{1} u_{1}, v=v_{1} z_{2}$ and $x=u_{1} z v_{1}$.

Proof.
(i) Easy to see.
(ii) Easy to see.
(iii) If $|u|<\left|z_{1}\right|$, then $z_{1}=u y, y \neq \varepsilon$, uyx $z_{2}=z_{1} x z_{2}=u z v$, $y x z_{2}=z v$, a contradiction. Thus $|u| \geq\left|z_{1}\right|$ and, similarly, $|v| \geq\left|z_{2}\right|$. The rest is clear.

Lemma 6.4. Let $z \in Z$ and $x \in A^{*}$ be such that $\psi(z)=z x z$. Then:
(i) $\operatorname{tr}(z x z) \geq 2$ and $z x z$ is not meagre.
(ii) $z x z$ is pseudomeagre iff $\psi\left(z_{1}\right)=z_{1} v z u z_{1}$ whenever $z_{1} \in Z$ and $x=u z_{1} v \quad\left(\right.$ or $\left.\psi(z)=z u z_{1} v z\right)$.
Proof.
(i) Obvious.
(ii) Clearly, $(\varepsilon, z, x z),(z x, z, \varepsilon) \in \operatorname{Tr}(z x z), \varepsilon \psi(z) x z=z x z x z=$ $z x \psi(z) \varepsilon$ and $(z x z, z x z x z) \in \rho$. If x is reduced, then $\operatorname{tr}(z x z)=$ 2 by I.6.6, and hence $z x z$ is pseudomeagre (and the other condition is satisfied trivially).

Now, let $\left(u_{1}, z_{1}, v_{1}\right) \in \operatorname{Tr}(z x z), u_{1} \neq \varepsilon \neq v_{1}$. According to 6.3, $u_{1}=z u, v_{1}=v z$ and $x=u z_{1} v$. We have $z x z=z u z_{1} v z$ and $\left(z x z, z u \psi\left(z_{1}\right) v z\right) \in \rho$. Consequently, $z u \psi\left(z_{1}\right) v z=z x z x z$
iff $u \psi\left(z_{1}\right) v=x z x=u z_{1} v z u z_{1} v$ and iff $\psi\left(z_{1}\right)=z_{1} v z u z_{1}$. The rest is clear.

Lemma 6.5. Let $z_{1}, z_{2} \in Z$ and $x, y \in A^{*}$ be such that $\psi\left(z_{1}\right)=y x z_{1}$ and $\psi\left(z_{2}\right)=z_{2} x y$. Then:
(i) $\operatorname{tr}\left(z_{2} x z_{1}\right) \geq 2$ and $z_{2} x z_{1}$ is not meagre.
(ii) $z_{2} x z_{1}$ is pseudomeagre iff $\psi\left(z_{3}\right)=z_{3} v y u z_{3}$ whenever $z_{3} \in Z$ and $x=u z_{3} v\left(\right.$ or $\psi\left(z_{1}\right)=y u z_{3} v z_{1}$ or $\left.\psi\left(z_{2}\right)=z_{2} u z_{3} v y\right)$.

Proof.
(i) Obvious.
(ii) Clearly, $\left(\varepsilon, z_{2}, x z_{1}\right),\left(z_{2} x, z_{1}, \varepsilon\right) \in \operatorname{Tr}\left(z_{2} x z_{1}\right), \varepsilon \psi\left(z_{2}\right) x z_{1}=z_{2} x y x z_{1}=$ $z_{2} x \psi\left(z_{1}\right) \varepsilon$ and $\left(z_{2} x z_{1}, z_{2} x y x z_{1}\right) \in \rho$. If x is reduced, then $\operatorname{tr}\left(z_{2} x z_{1}\right)=2$ by I.6.6, and hence $z_{2} x z_{1}$ is pseudomeagre (and the other condition is satisfied trivially).

Now, let $\left(u_{1}, z_{3}, v_{1}\right) \in \operatorname{Tr}\left(z_{2} x z_{1}\right), u_{1} \neq \varepsilon \neq v_{1}$. According to $6.3, u_{1}=z_{2} u, v_{1}=v z_{1}$ and $x=u z_{3} v$. We have $z_{2} x z_{1}=z_{2} u z_{3} v z_{1}$ and $\left(z_{2} x z_{1}, z_{2} u \psi\left(z_{3}\right) v z_{1}\right) \in \rho$. Consequently, $z_{2} u \psi\left(z_{3}\right) v z_{1}=z_{2} x y x z_{1}$ iff $u \psi\left(z_{3}\right) v=x y x=u z_{3} v y u z_{3} v$ and iff $\psi\left(z_{3}\right)=z_{3} v y u z_{3}$. The rest is clear.

Proposition 6.6. Suppose that every pseudomeagre word is meagre. Then the following three conditions are satisfied:
(b1) $\varepsilon \neq \psi(z) \neq z$ for every $z \in Z$;
(b2) If $z_{1}, z_{2} \in Z$ and $x, y \in A^{*}$ are such that $\psi\left(z_{1}\right)=y x z_{1}$ and $\psi\left(z_{2}\right)=z_{2} x y$, then $x \neq \varepsilon \neq y$ and x is not reduced;
(b3) If $z_{1}, z_{2}, z_{3} \in Z$ and $u, v, y \in A^{*}$, then either $\psi\left(z_{1}\right) \neq y u z_{3} v z_{1}$ or $\psi\left(z_{2} \neq z_{2} u z_{3} v y\right.$ or $\psi\left(z_{3}\right) \neq z_{3} v y u z_{3}$

Proof. The condition (b1) follows from 6.2. Further, if $\psi\left(z_{1}\right)=y x z_{1}$ and $\psi\left(z_{2}\right)=z_{2} x y$, then x is not reduced due to 6.5 , and hence $x \neq \varepsilon$. Moreover, if $y=\varepsilon$, then $z_{2} z_{1}$ is pseudomeagre, but not meagre, and therefore $x \neq \varepsilon \neq y$ and we have shown (b2). Finally, (b3) follows from 6.5 .

Proposition 6.7. Suppose that the following two conditions are satisfied:
(c1) $\varepsilon \neq \psi(z) \neq z$ and $\psi(z) \neq z x z$ for all $z \in Z$ and $x \in A^{*}$;
(c2) If $z_{1}, z_{2} \in Z$ and $x, y \in A^{*}$ are such that $\psi\left(z_{1}\right) \neq \psi\left(z_{2}\right)$, then either $\psi\left(z_{1}\right) \neq y x z_{1}$ or $\psi\left(z_{2}\right) \neq z_{2} x y$.
Then every pseudomeagre word is meagre.
Proof. Let, on the contrary, w be pseudomeagre word, but not meagre. Then $\operatorname{tr}(w) \geq 2$, and therefore $p z_{1} q=w=r z_{2} s$, where $\left(p, z_{1}, q\right) \neq$
$\left(r, z_{2}, s\right)$ and $z_{1}, z_{2} \in Z$; we will assume $\left|r z_{2}\right| \leq\left|p z_{1}\right|$, the other case being similar.
Assume, for a moment, that $z_{1}=z=z_{2}$. Then $|r|<|p|$ and we get a contradiction by easy combination of (c1) and 3.11. Consequently, $z_{1} \neq z_{2}$ and it follows easily that $|r|<|p|$. Then $\psi\left(z_{1}\right) \neq \psi\left(z_{2}\right)$ and we get a contradiction with (c2).

Proposition 6.8.

(i) Suppose that $\psi(z) \neq \varepsilon$ and that z is neither a prefix nor a suffix of $\psi(z)$ for every $z \in Z$. Then every pseudomeagre word is meagre.
(ii) Suppose that $|\psi(z)| \leq|z|$ for every $z \in Z$. Then every pseudomeagre word is meagre if and only if $\varepsilon \neq \psi(z) \neq z$ for every $z \in Z$.

Proof. See 6.6 and 6.7
Remark 6.9. Let $Z=\{\varepsilon\}$. Then ε is the only meagre word. Moreover:
(i) If $\psi(\varepsilon)=\varepsilon$, then all words are pseudomeagre (and hence there exist pseudomeagre words that are not meagre).
(ii) If $\psi(\varepsilon)=t$ and $|\operatorname{var}(t)|=1, t=a^{m}, a \in A, m \geq 1$, then a word w is pseudomeagre iff $w=a^{n}, n \geq 0$. Consequently, there exist pseudomeagre words that are not meagre.
(iii) If $\psi(\varepsilon)=t$ and $|\operatorname{var}(t)| \geq 2$, then ε is the only pseudomeagre word (and hence all pseudomeagre words are meagre).

7. Disturbing triples

This section is an immediate continuation of the preceding one.
An ordered triple $\left(z_{1}, z_{2}, z_{3}\right) \in Z \times Z \times Z$ will be called disturbing if there exist $u, v, g, h \in A^{+}$and $p \in A^{*}$ such that $z_{1}=u v, z_{3}=g h$ and $\psi\left(z_{2}\right)=v p g$.
Lemma 7.1. Let $\left(z_{1}, z_{2}, z_{3}\right) \in Z \times Z \times Z$ be a disturbing triple, $z_{1}=u v$, $z_{3}=g h, \psi\left(z_{2}\right)=v p g, u, v, g, h \in A^{+}, p \in A^{*}$. Then:
(i) $\left|z_{1}\right| \geq 2,\left|z_{3}\right| \geq 2$ and $\left|\psi\left(z_{2}\right)\right| \geq 2$.
(ii) The words u, v, g, h are reduced.
(iii) $\left(u_{1}, v_{1}\right) \in \rho, \operatorname{tr}\left(u_{1}\right)=1$ and $\operatorname{tr}\left(v_{1}\right) \geq 2$, where $u_{1}=u z_{2} h$ and $v_{1}=u v p g h$.

Proof. Easy (use I.6.6).
Proposition 7.2. There exist no disturbing triples, provided that either $Z \subseteq A$ or $\psi(Z) \subseteq A$.
Proof. Obvious.
Proposition 7.3. Suppose that for every $z \in Z$, either $|\psi(z)| \leq 1$ or $\psi(z)$ is reduced. Then the following conditions are equivalent:
(i) There exist no disturbing triples in $Z \times Z \times Z$.
(ii) If $\left(w_{1}, w_{2}\right) \in \rho$ and $\operatorname{tr}\left(w_{1}\right)=1$, then $\operatorname{tr}\left(w_{2}\right) \leq 1$.
(iii) If $\left(w_{1}, w_{2}\right) \in \rho$ and w_{1} is meagre, then w_{2} is meagre.
(iv) If $\left(w_{1}, w_{2}\right) \in \tau$ and $\operatorname{tr}\left(w_{1}\right)=1$, then $\operatorname{tr}\left(w_{2}\right) \leq 1$.
(v) If $\left(w_{1}, w_{2}\right) \in \xi$ and w_{1} is meagre, then w_{2} is meagre.

Proof.
(i) implies (ii). We have $w_{1}=p z_{2} q, z_{2} \in Z, p, q$ reduced, and $w_{2}=p t q, t=\psi\left(z_{2}\right)$. Now, assume that $w_{2}=r z_{3} s$ and 3.1 applies. If $|t| \leq 1$, then $\operatorname{tr}\left(w_{2}\right)=1$ by 3.13 (iv), and therefore we will assume that $|t| \geq 2$. Then t is reduced and, according to 3.12 (iii) we can assume that (a1) holds, the case (a7) being similar.

By $3.2 w_{2}=p g h k s, z_{3}=h k, t=g h, q=k s, g \neq \varepsilon \neq h, k \neq \varepsilon$ and, moreover, g is reduced, since t is so. If $p g$ is reduced, then $\operatorname{tr}\left(w_{2}\right)=1$ by 3.2 (ii). If $p g$ is not reduced, then, by 3.2 (iv), $p g=p_{1} z_{1} q_{1}, z_{1}=u v$, $p=p_{1} u, g=v q_{1}, t=v q_{1} h, u \neq \varepsilon \neq v$ and the triple $\left(z_{1}, z_{2}, z_{3}\right)$ is disturbing.
(ii) implies (iii), (iii) implies (iv), (iv) implies (v). Obvious.
(v) implies (i). See 7.1 (iii).

8. On when the relation ρ is antisymmetric

As usual, let Z be a strongly separating set of words such that $Z \neq$ $\{\varepsilon\}$ (except for 8.7, 9.11) and let $\psi: Z \rightarrow A^{*}$ be a mapping.

Proposition 8.1. The relation $\rho\left(=\rho_{Z, \psi}\right)$ is irreflexive if and only if $\psi(z) \neq z$ for every $z \in Z$.
Proof. Obvious from the definition of ρ.
Proposition 8.2. The relation ρ is antisymmetric (i.e., $u=v$, whenever $(u, v) \in \rho$ and $(v, u) \in \rho)$ if and only if the following three conditions hold:
(1) If $z_{1}, z_{2} \in Z$ and $x, y \in A^{*}$ are such that $z_{2}=x \psi\left(z_{1}\right) y$ and $\psi\left(z_{2}\right)=x z_{1} y$, then $\psi\left(z_{2}\right)=z_{2}$ (and hence $\psi\left(z_{1}\right)=z_{1}$ as well);
(2) If $z_{1}, z_{2} \in Z$ and $x, y \in A^{*}$ are such that $z_{2}=\operatorname{yx\psi }\left(z_{2}\right)\left(z_{2}=\right.$ $\psi\left(z_{2}\right) x y$, resp.) and $\psi\left(z_{1}\right)=z_{1} x y \quad\left(\psi\left(z_{1}\right)=y x z_{1}\right.$, resp.), then $x=\varepsilon=y$ (and hence $\psi\left(z_{1}\right)=z_{1}, \psi\left(z_{2}\right)=z_{2}$);
(3) If $z_{1}, z_{2} \in Z$ and $x, y, u, v \in A^{+}$are such that $z_{1}=u y, z_{2}=x v$, $\psi\left(z_{1}\right)=v y$ and $\psi\left(z_{2}\right)=x u$, then $u=v$ (and hence $\psi\left(z_{1}\right)=z_{1}$, $\left.\psi\left(z_{2}\right)=z_{2}\right)$.

Proof. Use I.5.4.
Corollary 8.3. Assume that for every $z \in Z$, either $|\psi(z)| \leq 1$ or $\psi(z)$ is reduced. Then:
(i) The relation ρ is antisymetric if and only the following two conditions hold:
(i1) If $\left(z_{1}, z_{2}\right) \in(Z \times Z) \cap(A \times A)$ is a paradisturbing pair, then $z_{1}=z_{2}$;
(i2) There exist no disturbing pairs in $Z \times Z$.
(ii) The relation ρ is both irreflexive and antisymmetric if and only if there exist no disturbing nor paradisturbing pairs in $Z \times Z$.

Proposition 8.4. The following conditions are equivalent:
(i) If $(u, v) \in \rho$ and $(v, v) \in \rho$, then $u=v$.
(ii) If $(u, v) \in \rho$ and $(u, u) \in \rho$, then $u=v$.
(iii) Either $\psi(z) \neq z$ for every $z \in Z$ or $\psi(z)=z$ for every $z \in Z$.

Proof. Easy to check.
Proposition 8.5. Assume that $\left|z_{1}\right|-\left|\psi\left(z_{1}\right)\right| \neq\left|\psi\left(z_{2}\right)\right|-\left|z_{2}\right|$ for all $z_{1}, z_{2} \in Z$. Then the relation ρ is both irreflexive and antisymmetric (i. e., it is strictly antisymmetric).

Proof. Use I.5.4.
Proposition 8.6. The relation ρ is weakly antisymmetric (i. e., $u=v$, whenever $(u, v) \in \rho,(v, u) \in \rho,(u, u) \in \rho)$ if and only if $\psi\left(z_{1}\right)=z_{1}$, whenever $z_{1}, z_{2}, z_{3} \in Z$ and $p, q, r, s, x, y \in A^{*}$ are such that $p z_{1} q=$ $r z_{2} s=x \psi\left(z_{3}\right) y$ and $p \psi\left(z_{1}\right) q=x z_{3} y$.
Proof. Obvious.
Remark 8.7. Let $Z=\{\varepsilon\}$. If $\psi(\varepsilon)=\varepsilon$, then $\rho=\operatorname{id}_{A^{*}}$, and hence ρ is antisymmetric, but not irreflexive. If $\psi(\varepsilon) \neq \varepsilon$, then ρ is both irreflexive and antisymmetric. Moreover, 8.4 is true in both cases.

9. On when the relation ρ IS antitransitive

This section is an immediate continuation of preceding one.
Proposition 9.1. The relation ρ is weakly antitransitive (i.e., $(w, v) \notin$ ρ, whenever $u, v, w \in A^{*}$ are such that $u \neq v \neq w \neq u,(w, u) \in \rho$ and $(u, v) \in \rho)$ if and only if the following condition is satisfied:
(1) If $z_{1}, z_{2} \in Z$ and $x, y, k \in A^{*}$ are such that $\psi\left(z_{1}\right) \neq z_{1}, \psi\left(z_{2}\right) \neq$ z_{2} and $z_{1} k \psi\left(z_{2}\right) \neq \psi\left(z_{1}\right) k z_{2}$, then $(u, v) \notin \rho$ and $(v, u) \notin \rho$, where $u=x z_{1} k \psi\left(z_{2}\right) y$ and $v=x \psi\left(z_{1}\right) k z_{2} y$
Proof. See I.7.1.
Lemma 9.2. Let $z \in Z$ and $k \in A^{*}$. Then $z k \psi(z) \neq \psi(z) k z$ iff $\psi(z) \neq$ z and either $\psi(z)=\varepsilon$ and $k \neq z^{n}$ for every $n \geq 0$ or $\varepsilon \neq \psi(z) \neq(z u)^{m} z$ for all $u \in A^{*}$ and $m \geq 1$ or $\psi(z)=(z v)^{t} z$ and $k \neq(v z)^{n} v$ for some $v \in A^{*}, t \geq 1$ and every $n \geq 0$.
Proof. Easy.
Lemma 9.3. Let $z \in Z$ be such that $\psi(z)$ is reduced and let $k \in A^{*}$. Then $z k \psi(z) \neq \psi(z) k z$ iff either $\psi(z) \neq \varepsilon$ or $\psi(z)=\varepsilon$ and $k \neq z^{n}$ for every $n \geq 0$.

Proof. This follows from 9.2.
Lemma 9.4. Let $z_{1}, z_{2} \in Z, z_{1} \neq z_{2}$, and $k \in A^{*}$. Then $z_{1} k \psi\left(z_{2}\right) \neq$ $\psi\left(z_{1}\right) k z_{2}$ iff at least one of the following three conditions is satisfied:
(1) $\psi\left(z_{1}\right) \neq z_{1}$ and $\psi\left(z_{2}\right)=z_{2}$;
(2) $\psi\left(z_{2}\right) \neq z_{2}, \psi\left(z_{1}\right)=z_{1} u v$ for some $u, v \in A^{*}$ and either $\psi\left(z_{2}\right) \neq v u z_{2}$ or $\psi\left(z_{2}\right)=v u z_{2}$ and $k \neq(u v)^{n} u$ for every $n \geq o$;
(3) $\psi\left(z_{2}\right) \neq z_{2}, \psi\left(z_{1}\right) \neq z_{1} x y$ for all $x, y \in A^{*}$.

Proof. Easy.
Lemma 9.5. Let $z_{1}, z_{2} \in Z$ be such that $z_{1} \neq z_{2}$ and both $\psi\left(z_{1}\right), \psi\left(z_{2}\right)$ are reduced. Then $z_{1} k \psi\left(z_{2}\right) \neq \psi\left(z_{1}\right) k z_{2}$ for every $k \in A^{*}$.

Proof. This follows easily from 9.4
Proposition 9.6. Assume that for every $z \in Z$, either $|\psi(z)| \leq 1$ or $\psi(z)$ is reduced. Then the relation ρ is weakly antitransitive if and only if $(u, v) \notin \rho$ and $(v, u) \notin \rho$, whenever $u=x z_{1} k \psi\left(z_{2}\right) y, v=x \psi\left(z_{1}\right) k z_{2} y$ and z_{1}, z_{2} are such that:
(1) If $z_{1}, \psi\left(z_{1}\right) \in A \cap Z$, then $\psi\left(z_{1}\right) \neq z_{1}$;
(2) If $z_{2}, \psi\left(z_{2}\right) \in A \cap Z$, then $\psi\left(z_{2}\right) \neq z_{2}$;
(3) If $z_{1}=z_{2}=z$ and $\psi(z)=\varepsilon$, then $k \neq z^{n}$ for every $n \geq 0$.

Proof. Combine 9.1, 9.2 and 9.4.
Corollary 9.7. Assume that for every $z \in Z, \psi(z) \neq z$ and either $|\psi(z)| \leq 1$ or $\psi(z)$ is reduced (equivalently, either $\psi(z)$ is reduced or $\psi(z)=\varepsilon$ or $\psi(z) \in A$ and $\psi(z) \neq z)$. Then the relation ρ is weakly antitransitive if and only if $(u, v) \notin \rho$ and $(v, u) \notin \rho$ (i. e., u, v are incomparable in ρ), whenever $u=x z_{1} k \psi\left(z_{2}\right) y, v=x \psi\left(z_{1}\right) k z_{2} y$ and $z_{1}, z_{2} \in Z$ are such that either $z_{1} \neq z_{2}$ or $z_{1}=z_{2}$ and $\psi\left(z_{1}\right) \neq \varepsilon$ or $z_{1}=z_{2}$ and $\psi\left(z_{1}\right)=\varepsilon$ and $k \neq z_{1}^{n}$ for every $n \geq 0$.
Proposition 9.8. Assume that $\psi\left(z_{0}\right) \neq z_{0}$ for at least one $z_{0} \in Z$. Then the following conditions are equivalent:
(i) The relation ρ is irreflexive and weakly antitransitive.
(ii) The relation ρ is strictly antitransitive (i. e., $(w, v) \notin \rho$ whenever $(w, u) \in \rho$ and $(u, v) \in \rho)$.
(iii) The relation ρ is antitransitive (i. e., $u=v=w$, whenever $(w, u) \in \rho,(u, v) \in \rho$ and $(w, v) \in \rho)$.
(iv) The condition 9.1 (1) is satisfied and $\psi(z) \neq z$ for every $z \in Z$.

Proof.
(i) implies (ii). Let $(w, u),(u, v),(w, v) \in \rho$. Since ρ is weakly antitransitive, either $w=u$ or $u=v$ or $w=v$. On the other hand, since ρ is irreflexive, we have $w \neq u \neq v \neq w$, a contradiction.
(ii) implies (iii). Obvious.
(iii) implies (iv). Clearly, ρ is weakly antitransitive, and hence 9.1 (1) follows from 9.1. Moreover, $\psi(z) \neq z$ follows from 8.4.
(iv) implies (i). Use 8.1 and 9.1.

Proposition 9.9. Assume that $\left|z_{1}\right|+\left|z_{2}\right|-\left|z_{3}\right| \neq\left|\psi\left(z_{1}\right)\right|+\left|\psi\left(z_{2}\right)\right|-$ $\left|\psi\left(z_{3}\right)\right|$ for all $z_{1}, z_{2}, z_{3} \in Z$. Then the relation ρ is strictly antitransitive.

Proof. Let $(w, u),(u, v),(w, v) \in \rho$. Then $p z_{1} q=w=r z_{3} s, p \psi\left(z_{1}\right) q=$ $u=x z_{2} y, r \psi\left(z_{3}\right) s=v=x \psi\left(z_{2}\right) y$. Consequently, $|w|-|u|=\left|z_{1}\right|-$ $\left|\psi\left(z_{1}\right)\right|,|w|-|v|=\left|z_{3}\right|-\left|\psi\left(z_{3}\right)\right|,|u|-|v|=\left|z_{2}\right|-\left|\psi\left(z_{2}\right)\right|$. From this we get $\left|z_{3}\right|-\left|\psi\left(z_{3}\right)\right|=|w|-|v|=|w|-|u|+|u|-|v|=\left|z_{1}\right|-$ $\left|\psi\left(z_{1}\right)\right|+\left|z_{2}\right|-\left|\psi\left(z_{2}\right)\right|$ and $\left|z_{1}\right|+\left|z_{2}\right|-\left|z_{3}\right|=\left|\psi\left(z_{1}\right)\right|+\left|\psi\left(z_{2}\right)\right|-\left|\psi\left(z_{3}\right)\right|$, a contradiction.

Remark 9.10. The condition from 9.9 is satisfied e. g. if $|z|-|\psi(z)|$ is odd for every $z \in Z$.

Remark 9.11. Let $Z=\{\varepsilon\}$. If $\psi(\varepsilon\}=\varepsilon$, then $\rho=\operatorname{id}_{A^{*}}$, and hence ρ is antitransitive, but not strictly antitransitive. If $\psi(\varepsilon) \neq \varepsilon$, then ρ is strictly antitransitive.

Proposition 9.12. Assume that $\varepsilon \notin Z$ and for every $z \in Z \quad z x \neq$ $\psi(z) \neq y z, x, y \in A^{*}$. Then ρ is antitransitive.

Proof. According to I.7.1, we have to prove that for all $z_{1}, z_{2} \in Z$ and $w \in A^{*}$ such that $z_{1} w \psi\left(z_{2}\right) \neq \psi\left(z_{1}\right) w z_{2}$ we have $\left(z_{1} w \psi\left(z_{2}\right), \psi\left(z_{1}\right) w z_{2}\right) \notin$ ρ and $\left(\psi\left(z_{1}\right) w z_{2}, z_{1} w \psi\left(z_{2}\right)\right) \notin \rho$. Suppose, for a contradiction, that there are $z_{1}, z_{2} \in Z$ and $w \in A^{*}$ such that $\left(z_{1} w \psi\left(z_{2}\right), \psi\left(z_{1}\right) w z_{2}\right) \in \rho$ (the other case is similar). This means that there exist $u, v \in A^{*}$ and $z \in Z$ such that $z_{1} w \psi\left(z_{2}\right)=u z v$ and $\psi\left(z_{1}\right) w z_{2}=u \psi(z) v$. If $u=\varepsilon$ then $z=z_{1}, v=w \psi\left(z_{2}\right)$ and $\psi\left(z_{1}\right) w z_{2}=\psi\left(z_{1}\right) w \psi\left(z_{2}\right)$, thus $z_{2}=\psi\left(z_{2}\right)$, a contradiction. Hence we may assume that $u=z_{1} u^{\prime}$ and hence $w \psi\left(z_{2}\right)=u^{\prime} z v$ and $\psi\left(z_{1}\right) w z_{2}=z_{1} u^{\prime} \psi(z) v$. Since $z_{1} x \neq \psi\left(z_{1}\right)$, $z_{1}=\psi\left(z_{1}\right) s$ for a proper $s \in A^{*}\left(s\right.$ is a suffix of $\left.z_{1}\right), w \psi\left(z_{2}\right)=u^{\prime} z v$ and $w z_{2}=s u^{\prime} \psi(z) v$. Now, let $w=s^{n} w^{\prime}, u^{\prime}=s^{m} u^{\prime \prime}, w^{\prime}, u^{\prime \prime}$ be such that s is not a prefix of either one of them. Then $s^{n} w^{\prime} \psi\left(z_{2}\right)=s^{m} u^{\prime \prime} z v$ and $s^{n} w^{\prime} z_{2}=s^{m+1} u^{\prime \prime} \psi(z) v$. If $n \leq m$ then $w^{\prime} z_{2}=s^{m-n+1} u^{\prime \prime} \psi(z) v$ and $(s$ is not a prefix of w^{\prime}) there exists a suffix of z_{1} which is a prefix of z_{2}, a contradiction. If $n>m$ then $s^{n-m} w^{\prime} \psi\left(z_{2}\right)=u^{\prime \prime} z v$ and $(s$ is not a prefix of $u^{\prime \prime}$) there exists a suffix of z_{1} which is a prefix of z, a contradiction again.

References

[1] V. Flaška, T. Kepka and J. Kortelainen, On separating sets of words. (preprint).

MFF UK, Sokolovská 83, 18600 Praha 8

Department of Information Processing Science, University of Oulu, P. O. BOX 3000 FIN-90014, Oulu

E-mail address: flaska@karlin.mff.cuni.cz
E-mail address: kepka@karlin.mff.cuni.cz
E-mail address: juha.kortelainen@oulu.fi

