STAR-QUASILINEAR EQUATIONAL THEORIES OF GROUPOIDS

P. ĐAPIĆ, J. JEŽEK AND P. MARKOVIĆ

Abstract

We investigate equational theories E of groupoids with the property that every term is E-equivalent to at least one linear term.

1. Introduction

The main result of the paper [1] is that there are precisely six linear equational theories of groupoids (equational theories with the property that every term is equivalent to precisely one linear term). The present paper deals with the generalization of linear equational theories to those that are quasilinear, by which we mean equational theories such that every term is equivalent to at least one linear term. It turns out that this generalization is unwieldy: in the last section we show that there are uncountably many examples. However, the most important case in this context, as it turns out from [1], is the case when the equational theories under consideration are idempotent. The whole paper except the last section will relate to this case. Since all linear equational theories of groupoids turned out to be idempotent, all their extensions are idempotent and quasilinear. But there are also idempotent quasilinear equational theories that are not extensions of any linear ones. The main result of this paper, Theorem 11.1, states that there are precisely 28 idempotent quasilinear equational theories of groupoids. We also describe them. The corresponding varieties are all finitely generated. It will also turn out that all of them, except two that were already found to be inherently nonfinitely based in [1], are finitely based.

By a term we always mean a term in the signature of groupoids (algebras with one binary, multiplicatively denoted operation). A term is said to be linear if every variable has at most one occurrence in it.

Let $S(t)$ denote the set of variables occurring in a term t and let $|t|$ denote the length of t, i.e., the total number of occurrences of variables in t. Clearly, $|S(t)| \leq|t|$ with equality precisely when t is linear.

[^0]In order to avoid writing too many parentheses in terms, $x_{1} x_{2} x_{3} \ldots x_{n}$ will stand for $\left(\left(\left(x_{1} x_{2}\right) x_{3}\right) \ldots\right) x_{n}$ (the parentheses are grouped to the left), $x \cdot y z$ will stand for $x(y z)$, etc.

By a left-associated term we mean a term $x_{1} x_{2} \ldots x_{n}$ where $n \geq 1$ and x_{1}, \ldots, x_{n} are variables.

An equational theory is a set of equations (ordered pairs of terms) that is closed under logical consequences; in other words, the set of all equations that are satisfied in a particular groupoid. The lattice of equational theories is antiisomorphic to the lattice of all varieties of groupoids. An equational theory E is said to be n-linear (for a positive integer n) if every term in at most n variables is E-equivalent to precisely one linear term (which must then be again in at most n variables). If, moreover, E is generated by its at most n-variable equations, then we say that E is sharply n-linear. Of course, such an equational theory is uniquely determined by its n-generated free groupoid. An equational theory is $*$-linear if it is n-linear for all n. Such equational theories were investigated in [1]. Here we will need a generalization.

An equational theory E is said to be n-quasilinear if every term in at most n variables is E-equivalent to at least one linear term. An equational theory is $*$-quasilinear if and only if it is n-quasilinear for all n.

A variety is said to be $*$-quasilinear (or $n=$ quasilinear, etc.) if the corresponding equational theory has the same property.

Lemma 1.1. Let E be a *-quasilinear idempotent equational theory. Then every term t is E-equivalent to a linear term t^{*} such that $S\left(t^{*}\right) \subseteq S(t)$.

Proof. Let u be a linear term of minimal length that is E-equivalent with t, and suppose that there exists a variable $x \in S(u)-S(t)$. If $x=u$ then E is the trivial equational theory, so that every term is E-equivalent with any variable. Let $x \neq u$. Then u is not a variable and there exists a term v such that either $v x$ or $x v$ is a subterm of u. This subterm can be replaced by $v v$ (use the substitution sending x to v) and then by v (use the idempotency) to obtain a linear term of smaller length also E-equivalent with t.

It follows that every *-quasilinear idempotent theory defines a locally finite variety. In fact, the cardinality of the free algebra on n generators in that variety is at most the number of linear terms over x_{1}, \ldots, x_{n}. For $n=2,3,4$ we get that the cardinality is at most $4,21,184$, respectively.

For a pair v_{1}, v_{2} of variables denote by $\sigma_{v_{1}, v_{2}}$ the substitution sending v_{1} to v_{2} (and fixing all variables other than v_{1}).

An acquaintance with the paper [1] may be useful for understanding the present paper. The standard terminology and basic facts of universal algebra can be found in the book [4].

We would like to note that most of the work on this paper was done by the first author.

2. 2-GENERATED FREE ALGEBRAS IN 2-QUASILINEAR IDEMPOTENT EQUATIONAL THEORIES

In this section we will describe all candidates for the 2-generated free algebra in a $*$-quasilinear idempotent variety. The following result can be found in [1] as Lemma 2.1. It characterizes all sharply 2-linear equational theories. They are all idempotent as it is implied by 2-linearity.

Lemma 2.1. There are precisely twelve sharply 2-linear equational theories. Their 2-generated free groupoids are the following seven groupoids, plus their duals. (The first two of the seven groupoids are self-dual.)

\mathbf{G}_{0}	x	y	$x y$	$y x$
x	x	$x y$	$y x$	y
y	$y x$	y	x	$x y$
$x y$	y	$y x$	$x y$	x
$y x$	$x y$	x	y	$y x$

\mathbf{G}_{1}	x	y	$x y$	$y x$	\mathbf{G}_{2}	x	y	$x y$	$y x$	\mathbf{G}_{3}	x	y	$x y$

The following lemma characterizes the remaining candidates for the 2generated free groupoid in a $*$-quasilinear idempotent variety.

Lemma 2.2. There are precisely four groupoids that serve as 2 -generated groupoids for a 2-quasilinear, not 2-linear idempotent variety. They are the following three groupoids, plus the dual of \mathbf{G}_{9}.

$$
\begin{array}{l|llll|llllll}
\mathbf{G}_{7} & x & y & x y \\
\hline x & x & x y & y & \mathbf{G}_{8} & x & y & x y \\
y & x y & y & x & y & x y & y & x y & & x & \\
x y & y & x & x y & x y & x y & x y & x y & y & x & y \\
x y & y
\end{array}
$$

Proof. Denote by \mathbf{G} the two-generated free groupoid in the variety V corresponding to a 2-quasilinear (but not 2-linear) idempotent equational theory. Since the equational theory is not 2 -linear, \mathbf{G} has at most three elements x, y
and (perhaps) one of $x y$ and $y x$. It is easy to see that one of the following three cases takes place.

Case 1: $x y \sim y x$. Then \mathbf{G} is commutative. Note that by fixing a linear two-variable term u and stipulating that $x \cdot x y \sim u$, the 2-generated free groupoid is completely determined. Consider the following three subcases:

Subcase 1a: $x \cdot x y \sim y$. Then $\mathbf{G}=\mathbf{G}_{7}$.
Subcase 1b: $x \cdot x y \sim x y$. Then $\mathbf{G}=\mathbf{G}_{8}$.
Subcase 1c: $x \cdot x y \sim x$. Then $x \sim x \cdot x y \sim x y \cdot x \sim x y(x \cdot x y) \sim x y$, so we obtain $x \sim y$, a contradiction.

Case 2: $x y \sim y$. Then $\mathbf{G}=\mathbf{G}_{9}$.
Case 3: $x y \sim x$. Then \mathbf{G} is the dual of \mathbf{G}_{9}.
Clearly, the varieties generated by $\mathbf{G}_{7}, \mathbf{G}_{8}$ and \mathbf{G}_{9} are idempotent, 2quasilinear and not 2-linear.

3. Extending \mathbf{G}_{0}

In this and the next sections we are going to find which of the ten candidates (neglecting their duals) for two-generated free groupoids of an idempotent $*$-quasilinear variety do give us such a variety. The following lemmas and their proofs are based on Section 3 of [1].

Proposition 3.1. We cannot have \mathbf{G}_{0} as the free two-generated groupoid for a 3-quasilinear (and consequently, for $a *$-quasilinear) equational theory.

Proof. There are 21 possibilities for a linear term equivalent with $x y \cdot z x$, and each of them is easily seen to result in an equation conflicting with the multiplication table of \mathbf{G}_{0}.

4. Extending \mathbf{G}_{1}

Lemma 4.1. Let \mathbf{G}_{1} be the free two-generated groupoid for an idempotent, *-quasilinear equational theory E. Then $x(y z) \approx(x y) z$ and $x y z \approx x z$ belong to E.

Proof. If E contains an equation with different leftmost variables at both sides, then we can substitute for all the remaining variables one of these two variables, and obtain an equation with the same property in just two variables, which would yield a contradiction. So, every equation of E must have the same leftmost variables and, quite similarly, also the same rightmost variables at both sides. A term both starting and ending with a variable x must be equivalent to a linear term both starting and ending with x, and therefore equal to x. In particular, the equations $x y x \approx x, x \cdot y x \approx x$, $x y z x \approx x$ and $x(y(z x)) \approx x$ belong to E.

Define two relations on any algebra in the variety V determined by E : $a \sim_{\ell} b \leftrightarrow a b=a$ and $a \sim_{r} b \leftrightarrow a b=b$. Then $b \sim_{\ell} a b \sim_{r} a$ and both relations are reflexive and symmetric. Reflexivity follows from the idempotence, while symmetry of \sim_{ℓ} is proved like this: if $a b=a$ then $b=b \cdot a b=b a$. The intersection of these two relations is the identity. The two relations are also
transitive: if $x \sim_{r} y \sim_{r} z$ then $z x=y z x=x y z x=x$, giving $x \sim_{r} z$; using the identity $x(y(z x))=x$, we can similarly prove that also \sim_{ℓ} is transitive. Now

$$
\begin{gathered}
x(y z) \sim_{r} x \sim_{r} x y \sim_{r} x y z \text { and } \\
x(y z) \sim_{\ell} y z \sim_{\ell} z \sim_{\ell} x y z
\end{gathered}
$$

imply that $x(y z) \approx x y z$ is valid in V. Then $x y z=(((x z) x) y) z=x(z(x y) z)$ $=x z$ implies that $x y z \approx x z$ is valid in V.

The variety determined by the equations $x(y z) \approx(x y) z, x x \approx x$ and $x y z \approx x z$ is the variety of rectangular bands. We denote it by \mathcal{R}.

Theorem 4.2. There is precisely one *-quasilinear idempotent equational theory with 2-generated free groupoid isomorphic to \mathbf{G}_{1}; it is the equational theory of \mathcal{R}. The variety \mathcal{R} is generated by \mathbf{G}_{1} and its only proper subvarieties are the trivial variety, the variety of left-zero semigroups and the variety of right-zero semigroups.

Proof. It follows from 4.1 together with Lemma 3.2 of [1].

5. Extending \mathbf{G}_{2} And \mathbf{G}_{3}

Proposition 5.1. We cannot have \mathbf{G}_{2} or \mathbf{G}_{3} as the free two-generated groupoid for $a *$-quasilinear idempotent equational theory.

Proof. Suppose that either \mathbf{G}_{2} or \mathbf{G}_{3} serves for an idempotent, *-quasilinear equational theory E. Of course, the equational theory is idempotent. It is easy to see that whenever $u \approx v$ is an equation belonging to E then the terms u, v have the same rightmost variables. Thus a linear term equivalent with $x \cdot x y z$ under E must be one of the seven linear terms in the variables x, y, z that have z as the rightmost variable. However, none of the seven corresponding equations is valid in either \mathbf{G}_{2} or \mathbf{G}_{3}.

6. Extending \mathbf{G}_{4}

Lemma 6.1. In any *-quasilinear equational theory with \mathbf{G}_{4} as its 2-generated free groupoid, the following identities hold:
(W1) $x x \approx x$,
(W2) $x y y \approx x$,
(W3) $x \cdot y z \approx x y$,
(W4) $x y z \approx x z y$.
Proof. The first two equations are in the multiplication table of \mathbf{G}_{4}. In the course of the proof of Lemma 3.4 in [1], it was proved that any quasilinear equational theory with \mathbf{G}_{4} as its 2 -generated free groupoid satisfies $x y \approx$ $x \cdot y z$. Therefore, any term t, written as $x p_{1} p_{2} \ldots p_{n}$, is equal in \mathbf{G}_{4} to the term $x y_{1} y_{2} \ldots y_{n}$, where y_{i} is the leftmost variable of p_{i}. Finally, consider a linear term in the variables x, y and z which is equal to $x y z y$ in \mathbf{G}_{4}. This term s must have x as its leftmost variable, and we may as well assume that
it is left-associated. The substitution $z \mapsto y$ reveals that it can not be x, $x y z$ or $x z y$, while $z \mapsto x$ shows that s is not $x y$. The remaining possibility, $x y z y \approx x z$, holds in \mathbf{G}_{4}, and therefore, s must be equal to $x z$. This yields that $x y z \approx x y z y y \approx x z y$.

We denote by E_{W} the equational theory generated by the four equations (W1)-(W4) and by \mathcal{W} the corresponding variety.

Lemma 6.2. The equational theory E_{W} is *-quasilinear.
Proof. Obviously, using the identity ($W 3$), we get that any term t is equal in E to a left-associated term t^{\prime}. Then, using the identity (W4), t^{\prime} is reduced to a left-associated term $t^{\prime \prime}$ in which the semigroup word obtained from $t^{\prime \prime}$ by erasing the parentheses is equal to $x_{1}^{m_{1}} x_{2}^{m_{2}} \ldots x_{k}^{m_{k}}$, where $x_{i} \neq x_{j}$ for $i \neq j$. Finally, using the idempotence and (W2), we get that t is equal to the term $y_{1} y_{2} \ldots y_{n}$, where $y_{1}=x_{1}, y_{i} \neq y_{j}$ for $i \neq j$, while the set $\left\{y_{2}, y_{3}, \ldots, y_{n}\right\}$ is equal to the set $\left\{x_{i}: 2 \leq i \leq k\right.$ and m_{i} is odd $\}$.

Notice that in E_{W} any two left-associated linear terms with the same sets of variables and the same leftmost variables must be equal.

Theorem 6.3. There is precisely one $*$-quasilinear variety with \mathbf{G}_{4} serving as its 2-generated free algebra; it is the variety \mathcal{W}. Its only proper subvarieties are the trivial variety and the variety of left-zero semigroups.

Proof. Let V be a proper subvariety of \mathcal{W}. By $6.2, V$ is a *-quasilinear variety. V must satisfy an equation $t_{1} \approx t_{2}$ such that t_{1}, t_{2} are two \mathcal{W} nonequivalent left-associated linear terms.

Consider first the case when there exists a variable y in the symmetric difference of $S\left(t_{1}\right)$ and $S\left(t_{2}\right)$. Then, by substituting all the other variables by x, one of the two terms becomes \mathcal{W}-equal to x while the other to one of the terms $y, y x, x y$. In the first two cases V is the trivial variety, while in the last case V is a subvariety of the minimal variety of left-zero semigroups.

Let $S\left(t_{1}\right)=S\left(t_{2}\right)$ and suppose that the leftmost variable x in t_{1} is different from the leftmost variable y in t_{2}. By substituting all the other variables by x, we can reduce t_{1} to $x y$, and t_{2} to either y or $y x$. If $x y \approx y x$ is satisfied in V then $x y \approx x x y \approx x y x \approx y x x \approx y$, so we reduce to previous case either way.

7. Extending \mathbf{G}_{5}

Lemma 7.1. If \mathbf{G}_{5} serves as the free two-generated groupoid for a 4-quasilinear equational theory then E contains a nontrivial equation in at most three variables, both sides of which are linear terms.

Proof. This is implicit in the proof of Lemma 4.4 of [1].
In this section let E be a $*$-quasilinear equational theory and V be the corresponding variety, such that \mathbf{G}_{5} is the two-generated free groupoid in V.

Thus, by 7.1, the free three-generated groupoid in V has less than 21 elements. We write $t \sim s$ if the equation $t \approx s$ belongs to E. From the multiplication table for \mathbf{G}_{5} we get

$$
\begin{aligned}
& x \sim x x \\
& x \sim x(x y) \\
& x y \sim x y x \sim x y y \sim x(y x) \sim x y(y x)
\end{aligned}
$$

Lemma 7.2. If $u \sim v$ then u, v have the same leftmost variables.
Proof. It is easy.
Lemma 7.3. Either $x y z \sim x z y$ or $x \cdot y z \sim x y$.
Proof. By 7.1 there exist two different linear terms t_{1}, t_{2} in the variables x, y, z such that $t_{1} \sim t_{2}$. According to 7.2, the leftmost variables in t_{1} and t_{2} are the same. Without loss of generality, assume that this leftmost variable is x. Since both $x y \approx x z$ and $x y \approx x$ fail in \mathbf{G}_{5}, at least one of the two terms, say t_{1}, has three different variables occurring in it. Without loss of generality, we may assume that t_{1} is either $x y z$ or $x \cdot y z$. Note that $x y z, x \cdot y z$ and x are in three different \sim-classes, which can be seen from the substitutions $y \mapsto x$ and $z \mapsto y$. The term t_{2} can be $x y, x z, x \cdot y z, x \cdot z y, x y z, x z y$. Consider two cases.

Case 1: $t_{1}=x y z$. If t_{2} equals one of $x y, x \cdot y z, x z$ and $x \cdot z y$, we reach the contradiction in the first two cases by the substitution $y \mapsto x$, and in the last two cases by substitution $z \mapsto x$. The remaining possibility is $t_{2}=x z y$.

Case 2: $t_{1}=x \cdot y z$. If t_{2} equals one of $x z, x z y, x \cdot z y$ and $x y z$, we reach the contradiction by the substitution $y \mapsto x$. The remaining possibility is $t_{2}=x y$.

Lemma 7.4. If $x y z \sim x z y$ then $x y \cdot z y \sim x y z$.
Proof. Let $t \sim x y \cdot z y$ where t is linear. If either $t=x y$ or $t=x \cdot y z$, we get a contradiction by the substitution $y \mapsto x$. If t is any of the terms $x, x z$, $x \cdot z y$, we get a contradiction by the substitution $z \mapsto x$. The only remaining possibility is $t=x y z$.

Lemma 7.5. If $x y z \sim x z y$ then $x y \cdot z x \sim x z y$ and $x \cdot y x z \sim x \cdot y z$.
Proof. $x y \cdot z x \sim(x \cdot z x) y \sim x z y$ and $x \cdot y x z \sim x \cdot y z x \sim x \cdot y z$.
Lemma 7.6. $x \cdot y z \sim x y$.
Proof. By 7.3, we can assume that $x y z \sim x z y$. There exists a term t in four variables x, y, z, u with $t \sim x \cdot y z \cdot u z$. Using 7.4, 7.5 and the two-variable equations we get

$$
\begin{aligned}
\sigma_{y, x}(x \cdot y z \cdot u z) & \sim x \cdot u z \\
\sigma_{z, x}(x \cdot y z \cdot u z) & \sim x u y \\
\sigma_{u, x}(x \cdot y z \cdot u z) & \sim x \cdot y z \\
\sigma_{z, y}(x \cdot y z \cdot u z) & \sim x u y \\
\sigma_{u, y}(x \cdot y z \cdot u z) & \sim x \cdot y z
\end{aligned}
$$

$$
\sigma_{u, z}(x \cdot y z \cdot u z) \sim x z y
$$

We have $x \in S(t)$, else substituting $y \mapsto z$ and $u \mapsto z$ in $x \cdot y z \cdot u z \sim t$ yields $x z \sim z$.

We have $y \in S(t)$, else substituting $z \mapsto x$ and $u \mapsto x$ yields $x y \sim x$.
We have $z \in S(t)$, else substituting $u \mapsto y$ yields $x \cdot y z \sim x y$.
We have $u \in S(t)$, else substituting $y \mapsto x$ and $z \mapsto x$ yields $x u \sim x$.
Thus $S(t)=\{x, y, z, u\}$.
Let $t=t_{1} t_{2}$. Let v_{1}, v_{2}, v_{3} represent a permutation of the variables y, z, u. One of the following four cases takes place.

Case $t_{1}=x$: Then t_{2} is either $v_{1} \cdot v_{2} v_{3}$ or $v_{1} v_{2} v_{3}$. The substitution $v_{1} \mapsto x$, $v_{2} \mapsto v_{3}$ makes $x \cdot y z \cdot u z$ equivalent to $x v_{3}$, while both $x\left(v_{1} \cdot v_{2} v_{3}\right)$ and $x\left(v_{1} v_{2} v_{3}\right)$ equivalent to x. We get a contradiction.

Case $t_{1}=x v_{1}$: Then $t \sim x \cdot v_{2} v_{3} \cdot v_{1}$. By the substitution $v_{2} \mapsto x$ we get that $x v_{1}$ is \sim-equivalent with one of the terms $x v_{1} v_{2}, x \cdot v_{2} v_{1}, x \cdot v_{1} v_{2}$. In the first case we get a contradiction by the substitution $v_{1} \mapsto x$ and in the second case by $v_{2} \mapsto x$. In the last case we get $x \cdot y z \sim x y$.
 vious case.
$\underline{\text { Case } t_{1}=x v_{1} v_{2} \text { and } t_{2}=v_{3} \text { : Then the substitution } y \mapsto x \text { gives } x \cdot u z \sim ~}$ $x u z$, which is clearly impossible.

Thus in all cases we get either a contradiction or $x \cdot y z \sim x y$.
It follows from 7.6 that every term is \sim-equivalent to a left-associated linear term.

Lemma 7.7. Either $x y z y \sim x y z$ or $x y z y \sim x z y$.
Proof. There exists a linear term t in three variables x, y, z with $t \sim x y z y$. If t is either x or $x z$, we get a contradiction by the substitution $z \mapsto x$. If t is $x y$, we get a contradiction by $y \mapsto x$. By 7.6 , the only two remaining possibilities are $t=x y z$ and $t=x z y$.
Lemma 7.8. Let x, y_{1}, \ldots, y_{n} be pairwise distinct variables. Then $x y_{1} \ldots y_{n} x \sim x y_{1} \ldots y_{n}$.
Proof. We have $x y_{1} \ldots y_{n} x \sim x z_{1} \ldots z_{k}$ for some pairwise distinct variables x, z_{1}, \ldots, z_{k}. If there exists a variable v in the symmetric difference of $S\left(x y_{1} \ldots y_{n} x\right)$ and $S\left(x z_{1} \ldots z_{k}\right)$, then the substitution sending all variables except v to x (and fixing v) gives $x v \sim x$, a contradiction. Thus $k=n$ and $\left\{y_{1}, \ldots, y_{n}\right\}=\left\{z_{1}, \ldots, z_{n}\right\}$. Let f be the substitution with $f(x)=x$ and $f\left(y_{i}\right)=z_{i}$ for all i. We have $x y_{1} \ldots y_{n} x \sim x f\left(y_{1}\right) \ldots f\left(y_{n}\right)$. If $x y_{1} \ldots y_{n} x \sim x f^{i}\left(y_{1}\right) \ldots f^{i}\left(y_{n}\right)$ for some positive integer i then

$$
\begin{aligned}
& x f\left(y_{1}\right) \ldots f\left(y_{n}\right) x \sim x f^{i+1}\left(y_{1}\right) \ldots f^{i+1}\left(y_{n}\right), \text { so that } \\
& x y_{1} \ldots y_{n} x x \sim x f^{i+1}\left(y_{1}\right) \ldots f^{i+1}\left(y_{n}\right), \text { i.e., } \\
& x y_{1} \ldots y_{n} x \sim x f^{i+1}\left(y_{1}\right) \ldots f^{i+1}\left(y_{n}\right) .
\end{aligned}
$$

Thus, by induction, $x y_{1} \ldots y_{n} x \sim x f^{i}\left(y_{1}\right) \ldots f^{i}\left(y_{n}\right)$ for all i. For i the order of the permutation f, we get $x y_{1} \ldots y_{n} x \sim x y_{1} \ldots y_{n}$.

Denote by E_{A} the equational theory generated by the equations
(A1) $x x \approx x$,
(A2) $x y y \approx x y$,
(A3) $x(y z) \approx x y$,
(A4) $x y z y \approx x y z$.
Denote by E_{B} the equational theory generated by the equations
(B1) $x x \approx x$,
(B2) $x y y \approx x y$,
(B3) $x(y z) \approx x y$,
(B4) $x y z y \approx x z y$.
Denote by E_{C} the equational theory generated by the equations
(C1) $x x \approx x$,
(C2) $x y y \approx x y$,
(C3) $x(y z) \approx x y$,
(C4) $x y z \approx x z y$.
Denote by $\mathcal{V}_{A}, \mathcal{V}_{B}, \mathcal{V}_{C}$ the varieties corresponding to E_{A}, E_{B}, E_{C}, respectively.

Lemma 7.9. The equational theory E_{A} is *-quasilinear.
Proof. Obviously, using the identity (A3), we get that any term t is $E_{A^{-}}$ equivalent to a left-associated term t^{\prime}. Then, using the identities (A1), (A2) and (A4), t^{\prime} is reduced to a left-associated linear term $t^{\prime \prime}$ by deleting any occurrence of a variable which is not the first occurrence from the left.

Lemma 7.10. The equational theory E_{B} is *-quasilinear.
Proof. Denote E_{B} by \sim. Using (B3), we get that any term is $E_{B^{-}}$-equivalent to a left-associated term. Using (B3) several times and (B1) at the last step we get

$$
\begin{aligned}
x y_{1} \ldots y_{n} x & \sim x y_{1} \ldots y_{n} \cdot x y_{1} \\
& \sim x y_{1} \ldots y_{n} \cdot x y_{1} y_{2} \quad \ldots \\
& \sim x y_{1} \ldots y_{n} \cdot x y_{1} \ldots y_{n} \\
& \sim x y_{1} \ldots y_{n} .
\end{aligned}
$$

From this it follows that every term is E_{B}-equivalent to a left-associated term in which the leftmost variable occurs only once. Using (B4) we get

$$
\begin{aligned}
x y z_{1} \ldots z_{n} y & \sim x y z_{1} \ldots z_{n-1} y z_{n} y \\
& \sim x y z_{1} \ldots z_{n-2} y z_{n-1} y z_{n} y \quad \ldots \\
& \sim x y z_{1} y z_{2} y \ldots z_{n} y \\
& \sim x z_{1} y z_{2} y \ldots z_{n} z \quad \ldots \\
& \sim x z_{1} z_{2} \ldots z_{n} y .
\end{aligned}
$$

From this, using also (B2), it follows that every left-associated term t is $E_{B^{-}}$ equivalent to a left-associated linear term t^{\prime} obtained from t like this: Let x
be the first variable from the left in t. We erase all occurrences of x except that leftmost one. Then for any variable $y \neq x$ of t we erase all occurrences of y except the rightmost one. In particular, every term is E_{B}-equivalent to a left-associated linear term.

Lemma 7.11. Every term is E_{C}-equivalent to a left-associated linear term. Two left-associated linear terms $x_{1} \ldots x_{n}$ and $y_{1} \ldots y_{m}$ are E_{C}-equivalent if and only if $\left\{x_{1}, \ldots, x_{n}\right\}=\left\{y_{1}, \ldots, y_{m}\right\}\left(\right.$ so that $n=m$) and $x_{1}=y_{1} . E_{C}$ extends both E_{A} and E_{B}. In other words, $\mathcal{V}_{C} \subseteq \mathcal{V}_{A} \cap \mathcal{V}_{B}$.

Proof. It is easy.
Lemma 7.12. The variety \mathcal{V}_{C} is generated by \mathbf{G}_{5}. Its only proper subvarieties are the trivial variety and the variety of left-zero semigroups.

Proof. Let V be a proper subvariety of \mathcal{V}_{C}. By $7.11, V$ satisfies an equation $x_{1} \ldots x_{n} \approx y_{1} \ldots y_{m}$ where x_{1}, \ldots, x_{n} are pairwise distinct variables, y_{1}, \ldots, y_{m} are pairwise distinct variables and either $\left\{x_{1}, \ldots, x_{n}\right\} \neq\left\{y_{1}, \ldots\right.$, $\left.y_{m}\right\}$ or $x_{1} \neq y_{1}$. If the sets are different then the equation reduces to either $x \approx y$ or $x y \approx x$ or $x y \approx y$; in the last case it also reduces to $x \approx y$. If $\left\{x_{1}, \ldots, x_{n}\right\}=\left\{y_{1}, \ldots, y_{m}\right\}$ and $x_{1} \neq x_{2}$ then the equation reduces to $x_{1} x_{2} \approx x_{2} x_{1}$, which then also reduces to $x \approx y$. Thus V is a subvariety of the minimal variety of left-zero semigroups. Since \mathbf{G}_{5} satisfies the equations $(\mathrm{C} 1)-(\mathrm{C} 4)$ and is not a left-zero semigroup, it follows that \mathcal{V}_{C} is generated by \mathbf{G}_{5}.

Lemma 7.13. All proper subvarieties of \mathcal{V}_{A} are subvarieties of \mathcal{V}_{C}.
Proof. Note that \mathcal{V}_{A} satisfies $x y x \approx x x y x \approx x x y \approx x y$. Let V be a proper subvariety of \mathcal{V}_{A}. Then V satisfies an equation $t_{1} \approx t_{2}$ not satisfied in \mathcal{V}_{A}, such that both t_{1} and t_{2} are left-associated linear terms. If $S\left(t_{1}\right) \neq S\left(t_{2}\right)$, then this equation reduces to either $x y \approx x$ or $x y \approx y$. In the first case V is contained in the variety of left-zero semigroups, and in the second case it is the trivial variety. If $S\left(t_{1}\right)=S\left(t_{2}\right)$ and the leftmost variable x of t_{1} is different from the leftmost variable y of t_{2}, then by replacing all the other variables with x we reduce t_{1} to $x y$ and t_{2} to $y x$, so that V is the trivial variety. Finally, let $S\left(t_{1}\right)=S\left(t_{2}\right)$, let the leftmost variable x of t_{1} be also the leftmost variable in t_{2}, and let i be the least number such that the i-th variable y in t_{1} from the left differs from the i-th variable z in t_{2} from the left. Replace all variables occurring before the i-th variable by x, and all other variables except y and z by y. We obtain $x y z \approx x z y$, so that V is contained in \mathcal{V}_{C}.

Lemma 7.14. All proper subvarieties of \mathcal{V}_{B} are subvarieties of \mathcal{V}_{C}.
Proof. It is similar to the proof of 7.13 .
Theorem 7.15. There are precisely three $*$-quasilinear varieties with \mathbf{G}_{5} serving as their 2-generated free algebra: the varieties $\mathcal{V}_{A}, \mathcal{V}_{B}$ and \mathcal{V}_{C}. Their only subvarieties, except themselves, are the variety of left-zero semigroups
and the trivial variety. \mathcal{V}_{A} is generated by the groupoid \mathbf{A} and \mathcal{V}_{B} is generated by the groupoid \mathbf{B}; the multiplication tables of \mathbf{A} and \mathbf{B} are given below. \mathcal{V}_{C} is generated by the groupoid \mathbf{G}_{5}.

\mathbf{A}	a	b	c	d	e
a	a	a	a	a	a
b	b	b	b	b	b
c	d	e	c	c	c
d	d	d	d	d	d
e	e	e	e	e	e

\mathbf{B}	a	b	c	d	e
a	a	a	a	a	a
b	b	b	b	b	b
c	d	c	c	c	c
d	d	e	d	d	d
e	d	e	e	e	e

Proof. It is easy to check that \mathbf{A} belongs to \mathcal{V}_{A} but not to \mathcal{V}_{B} and that \mathbf{B} belongs to \mathcal{V}_{B} but not to \mathcal{V}_{A}. The rest follows from the lemmas of this section.

8. Extending \mathbf{G}_{6}

In this section let E be a $*$-quasilinear equational theory and V be the corresponding variety, such that \mathbf{G}_{6} is the two-generated free groupoid in V. We write $t \sim s$ if the equation $t \approx s$ belongs to E. From the multiplication table for \mathbf{G}_{6} we get

$$
\begin{aligned}
& x \sim x x \\
& x y \sim x(x y) \sim x(y x) \sim x y x \sim x y y \sim x y(y x) .
\end{aligned}
$$

Lemma 8.1. If $t \sim s$ then $S(t)=S(s)$ and the terms t, s have the same leftmost variables.

Proof. This follows easily from the properties of \mathbf{G}_{6}.
It has been proved in Lemma 5.1 of [1] that if E is 3 -linear then the three-generated free groupoid in V must be one of the seven 21-element groupoids $\mathbf{Q}_{1}, \ldots, \mathbf{Q}_{7}$. We do not need to repeat the definitions of these seven groupoids. Also, three $*$-linear varieties $\mathcal{L}_{1}, \mathcal{L}_{2}, \mathcal{L}_{3}$ were constructed in [1] with three-generated free algebras $\mathbf{Q}_{1}, \mathbf{Q}_{2}, \mathbf{Q}_{4}$, respectively.

Lemma 8.2. If one of the seven groupoids $\mathbf{Q}_{1}, \ldots, \mathbf{Q}_{7}$ is the three-generated free groupoid in V then V is a subvariety of either \mathcal{L}_{1} or \mathcal{L}_{2} or \mathcal{L}_{3}.

Proof. In Lemma 6.1 of [1] it was proved that four of the seven groupoids, namely $\mathbf{Q}_{3}, \mathbf{Q}_{5}, \mathbf{Q}_{6}$ and \mathbf{Q}_{7}, are impossible in this context. (The proof was done for the linear case, but the same proof can serve in our quasilinear case.) Three possibilities for the three-generated free groupoid in V remain.

Let the free groupoid be \mathbf{Q}_{1}. The base for the equations of \mathcal{L}_{1} found in Theorem 9.1 of [1] consists of three equations. Since these are equations in three variables, they are satisfied in V and thus $V \subseteq \mathcal{L}_{1}$.

Now let the free groupoid be either \mathbf{Q}_{2} or \mathbf{Q}_{4}. According to Theorem 16.2 of [1], the varieties \mathcal{L}_{2} and \mathcal{L}_{3} are generated by \mathbf{Q}_{2} and \mathbf{Q}_{4}, respectively. Thus $V \subseteq \mathcal{L}_{2}$ in the first case and $V \subseteq \mathcal{L}_{3}$ in the second.

Thus is remains to consider the case when E is not 3 -linear. It follows from 8.1 that at least one of the following four cases takes place:
(a) $x y z \sim x \cdot y z$,
(b) $x \cdot y z \sim x z y$,
(c) $x y z \sim x z y$,
(d) $x \cdot y z \sim x \cdot z y$.

Lemma 8.3. If either (a) or (b) is satisfied then $V \subseteq \mathcal{L}_{1}$.
Proof. If (a) is satisfied then all the three equations in the base for \mathcal{L}_{1} (given by Theorem 9.1 of [1]) belong to E, so that $V \subseteq \mathcal{L}_{1}$. If (b) is satisfied then $x y z \sim x \cdot z y \sim x \cdot z y \cdot x \sim x y \cdot z \cdot x \sim x y \cdot x z \sim x \cdot x z y \sim x(x \cdot y z) \sim x \cdot y z$, so that we are in case (a). (The identities of \mathbf{G}_{6} were also used.)

Lemma 8.4. Let both (c) and (d) take place. Then (a) takes place.
Proof. We have $x y \cdot z \sim x y(x y \cdot z) \sim(x \cdot x y)(x y \cdot z) \sim_{(c)} x \cdot(x y \cdot z) \cdot x y \sim_{(d)}$ $x \cdot(z \cdot x y) \cdot x y \sim_{(d)} x \cdot(z \cdot y x) \cdot x y \sim_{(d)} x \cdot y x z \cdot x y \sim_{(c)} x \cdot y z x \cdot x y \sim x \cdot y z \cdot x y \sim_{(c)}$ $x \cdot x y \cdot y z \sim x y \cdot y z \sim_{(c)} x \cdot y z \cdot y \sim(x \cdot y z)(y \cdot(x \cdot y z)) \sim_{(d)}(x \cdot y z)(y \cdot(y z \cdot x)) \sim_{(d)}$ $(x \cdot y z)(y z \cdot x \cdot y) \sim_{(c)}(x \cdot y z)(y z \cdot y \cdot x) \sim(x \cdot y z)(y z \cdot x) \sim x \cdot y z$.
Lemma 8.5. Let (d) take place, but neither (a) nor (b) nor (c). Then $V \subseteq \mathcal{L}_{1}$.

Proof. If $x y \cdot x z \sim x \cdot y z$ then the substitution $x \mapsto y x$ yields (a), a contradiction. If $x y \cdot x z \sim x z y$, we obtain (a) similarly by $y \mapsto x y$. It remains that $x y \cdot x z \sim x y z$.

Case $x \cdot x y z \sim x \cdot y z$: All equations of the base for \mathcal{L}_{1} (Theorem 9.1 of [1]) belong to E and thus $V \subseteq \mathcal{L}_{1}$.

Case $x \cdot x y z \sim x y z$: Then $x z y \sim x(x z y) \sim x(x z \cdot x y) \sim_{(d)} x(x y \cdot x z) \sim$

Case $x \cdot x y z \sim x z y$: Then $x z y \sim x \cdot x y z \sim x(x y \cdot x z) \sim_{(d)} x(x z \cdot x y) \sim$ $x \cdot x z y \sim x y z$, a contradiction again.
Lemma 8.6. Let (c) hold, but neither (a) nor (b) nor (d). Then:
(1) $x \cdot x y z \sim x y z$,
(2) $x \cdot y z \cdot z y \sim x y z$,
(3) $x y \cdot z y \sim x y z$.
(4) $x(y \cdot x z) \sim x \cdot y z$,
(5) $x(y \cdot z x) \sim x \cdot y z$,

Proof. (1) The term $x \cdot x y z$ must be \sim-equivalent with one of $x y z, x \cdot y z$, $x \cdot z y$. If either $x \cdot x y z \sim x \cdot y z$ or $x \cdot x y z \sim x \cdot z y$ then (because $x \cdot x y z \sim x \cdot x z y$) we would get $x \cdot y z \sim x \cdot z y$, a contradiction since (d) is not satisfied.
(2) We have $x \cdot y z \cdot z y \sim_{(c)} x \cdot z y \cdot y z$. If $x \cdot y z \cdot z y$ is equivalent with either $x \cdot y z$ or $x \cdot z y$ then we get (d), a contradiction. Thus $x \cdot y z \cdot z y$ must be equivalent with $x y z$.
(3) $x y \cdot z y \sim_{(2)} x \cdot(y \cdot z y) \cdot(z y \cdot y) \sim x \cdot y z \cdot z y \sim_{(2)} x y z$
(4) Suppose that $x(y \cdot x z) \sim x \cdot z y$. Then $x \cdot z y \sim x(y \cdot x z) \sim x(y(x \cdot x z)) \sim$ $x \cdot x z y \sim_{(1)} x z y$, a contradiction since (a) is not satisfied.

Now suppose that $x(y \cdot x z) \sim x y z(6)$. Then $x y \cdot y z \sim_{(6)} x(y(x \cdot y z)) \sim_{(6)}$ $x \cdot y x z \sim x \cdot y z x \sim x \cdot y z(7)$.

Now $x \cdot y z \sim x \cdot y z x \sim_{(3)} x \cdot(y z \cdot x z) \sim_{(7)}(x \cdot y z)(y z \cdot x z) \sim_{(c)}(x \cdot y z)(y \cdot x z \cdot$ $z) \sim_{(7)}(x \cdot y z)(y x \cdot x z \cdot z) \sim_{(c)}(x \cdot y z)(y x \cdot z \cdot x z) \sim_{(6)}(x \cdot y z)(y \cdot(x \cdot y z) \cdot x z) \sim_{(c)}$ $(x \cdot y z)((y \cdot x z)(x \cdot y z)) \sim(x \cdot y z)(y \cdot x z) \sim_{(c)} x \cdot(y \cdot x z) \cdot y z \sim_{(6)} x y \cdot z \cdot y z \sim_{(c)}$ $x y \cdot y z \cdot z \sim_{(7)} x \cdot y z \cdot z \sim_{(c)} x z \cdot y z \sim_{(3)} x z y \sim x y z$. We get a contradiction.

So it must be that $x(y \cdot x z) \sim x \cdot y z$.
(5) $x \cdot y z \sim{ }_{(4)} x(y \cdot x z) \sim x(y(x \cdot z x)) \sim x(y \cdot z x)$.

Lemma 8.7. If (c) takes place then also either (a) or (b) or (d) takes place.

Proof. Suppose that (c) takes place but neither (a) nor (b) nor (d). Then we will prove that the term $x(y z)(u z)$ is not \sim-equivalent to any liner term. Let $x(y z)(u z) \sim t$ where t is linear. By 8.1, $S(t)=\{x, y, z, u\}$. Using 8.6(3), $x y z \sim x z y$ and the two-variable equations of \mathbf{G}_{6} it is easy to see that

$$
\begin{aligned}
\sigma_{y, x}(x \cdot y z \cdot u z) & \sim x z u \\
\sigma_{z, x}(x \cdot y z \cdot u z) & \sim x u y \\
\sigma_{u, x}(x \cdot y z \cdot u z) & \sim x z y \\
\sigma_{z, y}(x \cdot y z \cdot u z) & \sim x y u \\
\sigma_{u, y}(x \cdot y z \cdot u z) & \sim x \cdot y z \\
\sigma_{u, z}(x \cdot y z \cdot u z) & \sim x z y
\end{aligned}
$$

Let $t=t_{1} t_{2}$. Let v_{1}, v_{2}, v_{3} represent a permutation of the variables y, z, u. One of the following three cases must take place:

Case $t_{1}=x$: Then t_{2} contains the other three variables. If $t_{2}=v_{1}$. $v_{2} v_{3}$, we obtain a contradiction by the substitution $\sigma_{v_{1}, x}$. If $t_{2}=v_{1} v_{2} v_{3}$, a contradiction can be obtained using $\sigma_{v_{3}, x}$.

Case $t_{1}=x v_{1}$: Use $\sigma_{v_{1}, x}$ to obtain a contradiction.
Case $t_{2}=v_{3}$: If $t_{1}=x \cdot v_{1} v_{2}$ then $t=x\left(v_{1} v_{2}\right) v_{3} \sim_{(c)} x v_{3}\left(v_{1} v_{2}\right)$, the previous case. If $t_{1}=x v_{1} v_{2}$, we get a contradiction by $\sigma_{u, y}$.

Proposition 8.8. Let E be $a *$-quasilinear equational theory and V be the corresponding variety, such that \mathbf{G}_{6} is the two-generated free groupoid in V. Then V is a subvariety of either \mathcal{L}_{1} or \mathcal{L}_{2} or \mathcal{L}_{3}.

Proof. It follows from the previous lemmas in this section.

9. Extending \mathbf{G}_{7}

In this section let E be a $*$-quasilinear equational theory and V be the corresponding variety, such that \mathbf{G}_{7} is the two-generated free groupoid in V. We write $t \sim s$ if the equation $t \approx s$ belongs to E. Thus we have $x y \sim y x$ and $x y x \sim y$.

Lemma 9.1. $x(y \cdot x z) \sim z \cdot x y$.

Proof. There is a linear term t in the variables x, y, z with $t \sim x(y \cdot x z)$. If $x \notin S(t)$, we get a contradiction by the substitution $y \mapsto z$. If $y \notin S(t)$, we get a contradiction by $z \mapsto x$. If $z \notin S(t)$, we get a contradiction by $y \mapsto x$. Thus $S(t)=\{x, y, z\}$. Using the substitution $y \mapsto x$, we obtain that t cannot be \sim-equivalent with either $x \cdot z y$ or $y \cdot x z$. The only remaining possibility is $t \sim z \cdot x y$.
Lemma 9.2. $x y \cdot x z \sim x \cdot y z$.
Proof. There is a linear term t in the variables x, y, z with $t \sim x y \cdot x z$. If $x \notin S(t)$, we get a contradiction by the substitution $y \mapsto z$. If $y \notin S(t)$, we get a contradiction by $z \mapsto x$. If $z \notin S(t)$, we get a contradiction by $y \mapsto x$. Thus $S(t)=\{x, y, z\}$. Using the substitution $z \mapsto y$, we obtain that t cannot be \sim-equivalent with either $y \cdot x z$ or $z \cdot x y$. The only remaining possibility is $t \sim x \cdot y z$.
Lemma 9.3. $x y z u x \sim y u z$.
Proof. There is a linear term t in the variables x, y, z, u with $t \sim x y z u x$. We are going to show that $S(t)=\{y, z, u\}$.

If $y \notin S(t)$, we get a contradiction by the substitution $z, u \mapsto x$. If $z \notin$ $S(t)$, we get a contradiction by $y, u \mapsto x$. If $u \notin S(t)$, we get a contradiction by $y, z \mapsto x$.

Suppose that $x \in S(t)$. Then one of the following cases takes place for three variables v_{1}, v_{2}, v_{3}.

Case $t=x\left(v_{1} \cdot v_{2} v_{3}\right)$: Using 9.1, we get a contradiction in all subcases by the substitution $v_{1} \mapsto x, v_{2} \mapsto v_{3}$.

Case $t=x v_{1} \cdot v_{2} v_{3}$: We will use 9.1 and 9.2 . If $v_{1}=y$, we get a contradiction by $y, u \mapsto z$. If $v_{2}=y$ or $v_{3}=y$, then by the substitution by $y \mapsto x$, $u \mapsto z$ the term t becomes \sim-equivalent to $x z$, while $x y z u x$ to x.

Case $t=x \cdot v_{1} v_{2} \cdot v_{3}$: Using 9.1, we get a contradiction in all subcases by the substitution $v_{1} \mapsto x, v_{2} \mapsto v_{3}$.

Case $t=x v_{1} v_{2} v_{3}$: We get a contradiction in all subcases by the substitution $v_{2} \mapsto x, v_{1} \mapsto v_{3}$.

Thus $S(t)=\{y, z, u\}$ If either $t \sim y z u$ or $t \sim u z y$, then using 9.1 the substitution $u \mapsto y$ yields $y z \sim z$, a contradiction. Now $t \sim y u z$ is the only remaining case.

Lemma 9.4. $x z y u \sim x u y z$.
Proof. $x z y u \sim z x y u \sim z x y u z z \sim x u y z$ by 9.3 .
Denote by E_{D} the equational theory generated by the equations
(D1) $x x \approx x$,
(D2) $x y \approx y x$,
(D3) $x \cdot x y \approx y$,
(D4) $x z y u \approx x u y z$.
Denote by \mathcal{D} the variety corresponding to E_{D}.

Lemma 9.5. E_{D} contains the following equations:
(D5) $x z y x \approx x y z$,
(D6) $x y \cdot z u \approx x z \cdot y u$.
Proof. $x z y x \approx x x y z \approx x y z$ by (D4) and (D2). Using (D5), (D4), (D2) and (D5) once more, we have $x y \cdot z u \approx(x \cdot z u \cdot y) x \approx z u x y x \approx u z x y x \approx u y x z x \approx$ $x z \cdot u y$.

Lemma 9.6. The equational theory E_{D} is $*$-quasilinear.
Proof. We will write $t \equiv s$ if the equation $t \approx s$ belongs to E_{D} and every variable has the same number of occurrences in t as in s.

Let us first prove that if t is a term, $x \in S(t)$ and $t \neq x$, then there exist terms v, w such that either $t \equiv v x$ or $t \equiv v x w$. Since $x \in S(t)$, it follows from (D2) that there exist terms u_{1}, \ldots, u_{n} (for some $n \geq 1$) such that $t \equiv x u_{1} \ldots u_{n}$.

Let n be odd. Using (D4) we have

$$
\begin{aligned}
t & \equiv u_{1} x u_{2} \ldots u_{n} \\
& \equiv u_{1} u_{3} u_{2} x u_{4} \ldots u_{n} \quad \ldots \\
& \equiv u_{1} u_{3} u_{2} \ldots u_{n-2} u_{n-3} x u_{n-1} u_{n} \\
& \equiv u_{1} u_{3} u_{2} \ldots u_{n-2} u_{n-3} u_{n} u_{n-1} x,
\end{aligned}
$$

so that $t \equiv v x$ where $v=u_{1} u_{3} u_{2} \ldots u_{n-2} u_{n-3} u_{n} u_{n-1}$.
If n is even, we can start in the same way but we end up with $t \equiv$ $u_{1} u_{3} u_{2} \ldots u_{n-1} u_{n-2} x u_{n}$, so that $t \equiv v x w$ where $t=u_{1} u_{3} u_{2} \ldots u_{n-1} u_{n-2}$ and $w=u_{n}$.

We claim that every term which is not E_{D}-equivalent to any term of smaller length must be linear. Let t be a counterexample to this claim which has minimal length and let x occur twice in t. Then $t=p q$ and by minimality of t, each of p, q is linear and x occurs once in each of p, q. Applying the above observation to p and q and taking commutativity into account, we get the following six cases (for some terms $u, v, u^{\prime}, v^{\prime}$): $t \equiv x x$, $t \equiv u x x, t \equiv u x v x, t \equiv u x \cdot u^{\prime} x, t \equiv u x v \cdot u^{\prime} x$ and $t \equiv u x v \cdot u^{\prime} x v^{\prime}$. The first two are obviously E_{D}-equivalent to terms of smaller length, and the remaining cases are dealt with in the following way:

Case $t \equiv u x v x:$ A contradiction, since $u x v x \approx x u v x \approx x v u$ in E_{D}.
Case $t \equiv u x \cdot u^{\prime} x$: A contradiction, since $u x \cdot u^{\prime} x \approx u u^{\prime} \cdot x x \approx u u^{\prime} x$ in E_{D}.
Case $t \equiv u x v \cdot u^{\prime} x:$ A contradiction, since $u x v \cdot u^{\prime} x \approx(v \cdot u x) \cdot u^{\prime} x \approx$ $v u^{\prime} \cdot u x x \approx v u^{\prime} u$ in E_{D}.

Case $t \equiv u x v \cdot u^{\prime} x v^{\prime}:$ A contradiction, since $u x v \cdot u^{\prime} x v^{\prime} \approx u x \cdot u^{\prime} x \cdot v v^{\prime} \approx$ $u u^{\prime} x \cdot v v^{\prime}$ in E_{D}.
 as its 2 -generated free algebra: the variety \mathcal{D}. It is the variety generated by \mathbf{G}_{7} and its only proper subvariety is the trivial variety. It is also based on the following equations:

$$
\begin{aligned}
& x x \approx x \\
& x y \approx y x \\
& x \cdot x y \approx y \\
& x y \cdot z u \approx x z \cdot y u
\end{aligned}
$$

Proof. Denote by V the variety determined by these last four equations. By 9.5 we have $\mathcal{D} \subseteq V$. It was proved in [2], and also in [3], that V is a minimal variety. Since \mathcal{D} obviously contains the groupoid $\mathbf{G}_{7}, \mathcal{D}$ is nontrivial and thus $\mathcal{D}=V$. It also follows that \mathcal{D} is generated by \mathbf{G}_{7}. By $9.6, \mathcal{D}$ is *-quasilinear. By $9.4, \mathcal{D}$ is the only $*$-quasilinear variety with \mathbf{G}_{7} serving as its 2-generated free algebra.

Groupoids satisfying $x y \cdot z u \approx x z \cdot y u$ were called abelian in some papers, entropic in some other papers, but we prefer to call them medial. Thus \mathcal{D} is the variety of idempotent commutative medial groupoids satisfying $x \cdot x y \approx y$.

10. Extending \mathbf{G}_{8} and \mathbf{G}_{9}

Proposition 10.1. There exists precisely one $*$-quasilinear variety with \mathbf{G}_{8} serving as its 2 -generated free algebra: the variety of semilattices.
Proof. Let \sim be a $*$-quasilinear variety with \mathbf{G}_{8} serving as its 2-generated free algebra. Clearly, it is sufficient to prove $x y z \sim x \cdot y z$. The term $x(y$. $x z)$ is equivalent to a linear term in variables x, y, z. By using one of the substitutions $y \mapsto x, z \mapsto x$ or $z \mapsto y$, it is easy to see that $x(y \cdot x z)$ cannot be \sim-equivalent to any of the terms $x, y, z, x y, x z, y z$. It remains to consider the following three cases.

Case 1: $x(y \cdot x z) \sim x \cdot y z$. Then $x \cdot y z \sim x \cdot y z \cdot y z \sim(x \cdot y z)(y((x \cdot y z) z)) \sim$ $(x \cdot y z)(y(z \cdot x y)) \sim(x \cdot y z)(y \cdot x z)$. Similarly we have $y \cdot x z \sim(y \cdot x z)(x \cdot y z)$ and we get the associative law.

Case 2: $x(y \cdot x z) \sim z \cdot x y$. Then $y \cdot x z \sim x(z \cdot x y) \sim x(x(y \cdot x z)) \sim$ $x(y \cdot x z) \sim z \cdot x y \sim y x \cdot z$.

Case 3: $x(y \cdot x z) \sim y \cdot x z$. Obviously, the term $x y \cdot x z$ is not \sim-equivalent to any of the terms $x, y, z, x y, x z, y z$. Thus it remains to consider the following three subcases.
$\underline{\text { Subcase } x y \cdot x z \sim x \cdot y z: ~ T h e n ~} x \cdot y z \sim x y \cdot x z \sim x y(x \cdot x z) \sim x(y \cdot x z) \sim$ $y \cdot x z$.

Subcase $x y \cdot x z \sim y \cdot x z$: Then $y \cdot x z \sim x y \cdot x z \sim x z \cdot x y \sim z \cdot x y$.
Subcase $x y \cdot x z \sim z \cdot x y$: This is similar to the previous subcase.
Proposition 10.2. There exists precisely one $*$-quasilinear variety with \mathbf{G}_{9} serving as its 2-generated free algebra: the variety of right-zero semigroups.
Proof. It is obvious.

11. All idempotent *-QUasilinear varieties

Recall from [1] the following notation:
\mathcal{N}_{1} is the variety of \mathcal{L}_{1}-algebras satisfying $w(x y \cdot z) \approx w(x \cdot y z) ;$
\mathcal{N}_{2} is the variety of \mathcal{L}_{1}-algebras satisfying $w \cdot x y \approx w \cdot y x$;
\mathcal{S}_{1} is the variety of idempotent semigroups satisfying $x y x \approx x y ;$
\mathcal{S}_{2} is the variety of idempotent semigroups satisfying $w x y \approx w y x$;
\mathcal{S}_{3} is the variety of semigroups satisfying $x y \approx x$;
\mathcal{S}_{4} is the variety of semilattices;
\mathcal{S}_{5} is the trivial variety.
It was proved in Theorem 15.5 of [1] that the list consisting of these varieties, the varieties $\mathcal{L}_{1}, \mathcal{L}_{2}, \mathcal{L}_{3}$, and all their duals, is the list of all $*$-linear varieties and their subvarieties. (Only \mathcal{S}_{4} and \mathcal{S}_{4} are self-dual.) Combining this with the previous results of this paper, we obtain

Theorem 11.1. There are precisely 28 idempotent $*$-quasilinear varieties, namely: $\mathcal{L}_{1}, \mathcal{L}_{2}, \mathcal{L}_{3}, \mathcal{N}_{1}, \mathcal{N}_{2}, \mathcal{S}_{1}, \mathcal{S}_{2}, \mathcal{S}_{3}, \mathcal{S}_{4}, \mathcal{S}_{5}, \mathcal{R}, \mathcal{W}, \mathcal{V}_{A}, \mathcal{V}_{B}, \mathcal{V}_{C}, \mathcal{D}$, $\mathcal{L}_{1}^{\partial}, \mathcal{L}_{2}^{\partial}, \mathcal{L}_{3}^{\partial}, \mathcal{N}_{1}^{\partial}, \mathcal{N}_{2}^{\partial}, \mathcal{S}_{1}^{\partial}, \mathcal{S}_{2}^{\partial}, \mathcal{S}_{3}^{\partial}, \mathcal{W}^{\partial}, \mathcal{V}_{A}^{\partial}, \mathcal{V}_{B}^{\partial}, \mathcal{V}_{C}^{\partial}$. While \mathcal{L}_{3} and $\mathcal{L}_{3}^{\partial}$ are inherently nonfinitely based, all the remaining 26 varieties are finitely based. All inclusions between these 28 varieties can be found from the following picture, representing a down-set in the lattice of varieties of groupoids.

12. Non-idempotent *-Quasilinear equational theories

We have seen that there are not many idempotent *-quasilinear varieties of groupoids and that all of them are locally finite (or even finitely generated).

Arbitrary $*$-quasilinear varieties are not necessarily locally finite, as shown by the following example.

Example 12.1. Let \mathbf{G} be the groupoid with the underlying set ω (the set of nonnegative integers) and multiplication \circ defined by $a \circ b=a+1$. In the equational theory of \mathbf{G}, every term $x t_{1} \ldots t_{n}$ is equivalent to the linear term $x y_{1} \ldots y_{n}$ where y_{i} are pairwise distinct variables different from x. Thus the equational theory of \mathbf{G} is $*$-quasilinear. The corresponding variety generated by \mathbf{G} is not locally finite. It has infinitely many subvarieties, although only countably many, since it is term equivalent to the variety of all monounary algebras.

We are now going to find a $*$-quasilinear equational theory such that the corresponding variety has $2^{\aleph_{0}}$ subvarieties.

The set of slender terms is the smallest set of terms containing all variables and such that whenever t is a slender term and x is a variable then both $t x$ and $x t$ are slender terms. Denote by U the set of all terms that are either not linear or not slender. Denote by E the equivalence on the set of terms such that U is the only non-singleton block of E. It is easy to see that E is a $*$-quasilinear equational theory.

Let A be an infinite countable set. Denote by B the set of all nonempty words $a_{1} \ldots a_{n}$ over A such that the elements $a_{i} \in A$ are pairwise different. For $u \in B$ let $S(u)$ denote the set of the elements of A occurring in u. Denote by \mathbf{C} the groupoid with the underlying set $C=B \cup\{0\}$ and multiplication \circ defined in the following way. $u \circ v=0$ for all $u, v \in C$ except these cases:
if $a, b \in A$ and $a \neq b$ then $a \circ b=a b$;
if $a \in A$, if $u \in B$ is of length 2 and if $a \notin S(u)$ then $a \circ u=a u$;
if $u \in B$ is of length at least 3 , if $a \in A$ and if $a \notin S(u)$ then $u \circ a=u a$.
In particular, $a \circ 0=0 \circ a=a \circ a=(a \circ b) \circ(d \circ e)=0$ for all $a, b, c, d \in C$. Thus every non-slender term evaluates to 0 and it is easy to check that also every non-linear term evaluates to 0 under any interpretation of variables in \mathbf{C}. Thus \mathbf{C} is a model of E.

For every subset K of the set of nonnegative integers define a binary relation R_{K} on C as follows: for $u, v \in C$ we have $(u, v) \in R_{K}$ if and only if either $u=v$ or else there exist $n \geq 1$ and elements a, b, c, d_{i}, e_{i} of A such that $u=a b c d_{1} \ldots d_{n} \in B, v=a b c e_{1} \ldots e_{n} \in B$ and for any i with $0 \leq 2 i<n$ either $d_{2 i}=e_{2 i} \& d_{2 i+1}=e_{2 i+1}$ or $i \in K \& d_{2 i}=e_{2 i+1} \& d_{2 i+1}=e_{2 i}$. Clearly, R_{K} is an equivalence and it is easy to check that it is a congruence of C.

Let us prove that the factor \mathbf{C} / R_{K} satisfies $t_{1} \approx t_{2}$, where

$$
t_{1}=(x \cdot y z) x_{0} \ldots x_{2 i-1} x_{2 i} x_{2 i+1} \quad \text { and } \quad t_{2}=(x \cdot y z) x_{0} \ldots x_{2 i-1} x_{2 i+1} x_{2 i}
$$

if and only if $i \in K$. If $i \notin K$ then t_{1}, t_{2} evaluate to two different elements of \mathbf{C} / R_{K} if we interpret the variables by pairwise different elements of A. Now let $i \in K$. Take any mapping h of the set $x, y, z, x_{0}, \ldots, x_{2 i+1}$ into C and denote by H the extension of h to a homomorphism of the groupoid of terms
into C. We need to prove that $\left(H\left(t_{1}\right), H\left(t_{2}\right)\right) \in R_{K}$. It is not difficult to see that if the range of h is not contained in A then $H\left(t_{1}\right)=H\left(t_{2}\right)=0$. Thus we can assume that $a=h(x), b=h(y), c=h(z), a_{i}=h\left(x_{i}\right)$ are elements of A. It is easy to see that if these elements of A are not pairwise distinct then again $H\left(t_{1}\right)=H\left(t_{2}\right)=0$. Thus we can assume that all the elements $a, b, c, a_{0}, \ldots, a_{2 i+1}$ are pairwise distinct. Then $H\left(t_{1}\right)=a b c a_{0} \ldots a_{2 i+1} \in B$ and $H\left(t_{2}\right)=a b c a_{0} \ldots a_{2 i-1} a_{2 i+1} a_{2 i} \in B$. But then, by the definition of R_{K}, $\left(H\left(t_{1}\right), H\left(t_{2}\right)\right) \in R_{K}$.

It follows that for different subsets K the groupoids \mathbf{C} / R_{K} generate different varieties. Thus we obtain:

Theorem 12.2. There are $2^{\aleph_{0}}$ different $*$-quasilinear equational theories of groupoids.

References

[1] P.Đapić, J.Ježek, P.Marković, R.McKenzie and D.Stanovský, Star-linear equational theories of groupoids. To appear in Algebra Universalis.
[2] J.Ježek and T. Kepka, The lattice of varieties of commutative abelian distributive groupoids. Algebra Universalis 5 (1975), 225-237.
[3] J.Ježek and T. Kepka, Atoms on the lattice of varieties of distributive groupoids. Colloquia Math. Soc. János Bolyai 14 (1974), 185-194.
[4] R. McKenzie, G. McNulty and W. Taylor, Algebras, Lattices, Varieties, Volume I. Wadsworth \& Brooks/Cole, Monterey, CA, 1987.

Department of Mathematics, Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia

E-mail address: pera@im.ns.ac.yu
MFF UK, Sokolovská 83, 18600 Praha 8, Czech Republic
E-mail address: jezek@karlin.mff.cuni.cz
Department of Mathematics, Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia

E-mail address: petarn@im.ns.ac.yu

[^0]: 1991 Mathematics Subject Classification. 03C05, 08B05, 20 N02.
 Key words and phrases. equational theory, variety, linear term, groupoid.
 While working on this paper the first and the third authors were partially supported by Grant No. 144011G of the Ministry of Science and Environment of Serbia, and the second author by the institutional grant MSM0021620839 financed by MSMT.

