
TRANSITIVE CLOSURES OF BINARY RELATIONS II

V. FLAŠKA, J. JEŽEK AND T. KEPKA

Abstract. Transitive closures of the covering relation in semilattices
are investigated.

Vyšetřuj́ı se tranzitivńı uzávěry pokrývaćı relace v polosvazech.

This very short note is an immediate continuation of [1]. We therefore
refer to [1] as for terminology, notation, various remarks, further references,
etc.

1. The covering relation in semilattices

Throughout the note, let S = S(+) be a semilattice (i. e., a commutative
idempotent semigroup). Define a relation α on S by (a, b) ∈ α if and only
if a+ b = b.

1.1. Proposition.
(i) The relation α is a stable (reflexive) ordering of the semilattice.

(ii) (a, a + b) ∈ α and (b, a + b) ∈ α for all a, b ∈ S (in fact, a + b =
supα(a, b)).

(iii) An element a ∈ S is maximal in S(α) (i. e., a is right α-isolated)
if and only if a = oS is an absorbing element of S; then a is the
(unique) greatest element of S(α).

(iv) An element a ∈ S is minimal in S(α) (i. e., a is left α-isolated) if
and only if a /∈ (S \ {a}) +S (then the set (S \ {a}) +S is a proper
ideal of S).

(v) An element a ∈ S is the smallest element of S(α) if and only if
a = 0S is a neutral element of S.

Proof. It is obvious. ¤
1.2. Lemma.

(i) Every weakly pseudoirreducible finite α-sequence is pseudoirreducible.
(ii) Every weakly pseudoirreducible right (left, resp.) directed infinite

α-sequence is pseudoirreducible.
(iii) If there exists no pseudoirreducible right directed infinite α-sequence

then oS ∈ S.

Proof. It is obvious (combine (ii), 1.1(iii) and I.5.4(iii)). ¤

The work is a part of the research project MSM0021620839 financed by MŠMT and
partly supported by the Grant Agency of the Czech Republic, grant #201/05/0002.
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1.3. Lemma. Let (a, b) ∈ α and I = Intα(a, b) = {c ∈ S | (a, c) ∈ α, (c, b) ∈
α}. Then:

(i) I is a subsemilattice of S and {a, b} ⊆ I.
(ii) a = 0I and b = oI .
(iii) αI = αS |I.

Proof. It is obious. ¤

In the sequel, put β =
√
α and γ = r t(β). Notice that i(γ) = t(β).

1.4. Proposition.
(i) β is totally antitransitive.

(ii) β ⊆ γ ⊆ α.
(iii) β = ∅ if and only if either |S| = 1 or S is infinite and for all

a, b ∈ S such that a+ b = b 6= a there exists at least one c ∈ S with
a+ c = c 6= a and b+ c = b 6= c.

(iv) γ is an ordering of S.
(v) If (a, b) ∈ α and Intα(a, b) is finite then (a, b) ∈ γ.

Proof. It is obvious. ¤

1.5. Lemma. The following conditions are equivalent for a, b ∈ S:
(i) (a, b) ∈ β;

(ii) a+ b = b 6= a and c ∈ {a, b} whenever c ∈ S is such that a+ c = c
and b+ c = b.

Proof. It is obvious. ¤

We shall say that semilattice S(+) is resuscitable if so is the ordering α
(i. e., α = γ).

1.6. Lemma. Let (a, b) ∈ i(α) be such that there exists no right (left, resp.)
directed infinite i(α)-sequence (a0, a1, a2, . . . ) ((. . . , b2, b1, b0), resp.) with
a0 = a (b0 = b, resp.) and (ai, b) ∈ α ((a, bi) ∈ α, resp.) for every i ≥ 1.
Then there exists at least one c ∈ S such that (a, c) ∈ α ((c, b) ∈ α,resp.)
and (c, b) ∈ β ((a, c) ∈ β, resp.).

Proof. If (a, b) ∈ β then we put c = a. If (a, b) /∈ β then there is a1 ∈ S
with (a, a1) ∈ i(α) and (a1, b) ∈ i(α). If (a1, b) ∈ β then we put c = a1.
If (a1, b) /∈ β then there is a2 ∈ S with (a1, a2) ∈ i(α) and (a2, b) ∈ i(α).
Proceeding similarly further, we get our result. ¤

1.7. Lemma. Let (a, b) ∈ i(α) be such that there exists no right (left, resp.)
directed infinite i(α)-sequence (a0, a1, a2, . . . ) ((. . . , b2, b1, b0), resp.) with
a0 = a (b0 = b, resp.) and (ai, b) ∈ α ((a, bi) ∈ α, resp.) for every
i ≥ 1 and no left (right, resp.) directed infinite β-sequence (. . . , c2, c1, c0)
((d0, d1, d2, . . . ), resp.) with c0 = b (d0 = a, resp.) and (a, cj) ∈ α
((dj , b) ∈ α, resp.) for every j ≥ 1. Then (a, b) ∈ γ.
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Proof. According to 1.6, there is c1 ∈ S such that (a, c1) ∈ α and (c1, c0) ∈ β,
where c0 = b. If (a, c1) ∈ γ then (a, b) ∈ γ. If (a, c1) /∈ γ then (a, c1) ∈ i(α),
(a, c1) /∈ β and, by 1.6 again, there is c2 ∈ S with (a, c2) ∈ α and (c2, c1) ∈ β.
Proceeding similarly further, we get our result. ¤
1.8. Corollary. The semilattice S is resuscitable, provided that the following
two conditions are satisfied:

(1) no right (left, resp.) directed infinite i(α)-sequence is right (left,
resp.) bounded in S(α);

(2) no left (right, resp.) directed infinite β-sequence is left (right, resp.)
bounded in S(α);

1.9. Corollary. The semilattice S is resuscitable, provided that there exist
no right (left, resp.) directed infinite i(α)-sequences and no left (right, resp.)
directed infinite β-sequences.

1.10. Corollary. The semilattice S is resuscitable, provided that it is finite.

1.11. Lemma. If (a, b) ∈ γ then {a, b} ⊆ Intγ(a, b) = {c | (a, c) ∈ γ, (c, b) ∈
γ} ⊆ Intα(a, b).

Proof. It is obvious. ¤
1.12. Example. Let A be a non-empty set and S the set of subsets of A.
Then S(∪) is a semilattice, ∅ = 0S , A = oS , (B,C) ∈ α if and only if
B ⊆ C, (D,E) ∈ β if and only if D ⊆ E and |E \D| = 1. This semilattice
is resuscitable if and only if A is finite.

2. On when the covering relation is right confluent (or
weakly semimodular lattices)

The semilattice S will be called weakly semimodular if d ∈ {b, b + c}
whenever a, b, c, d ∈ S are such that b 6= c, (a, b) ∈ β, (a, c) ∈ β, b + d = d
and b+ c = d+ c.

2.1. Lemma. The following conditions are equivalent:
(i) S is weakly semimodular;

(ii) (b, b+ c) ∈ β (and (c, b+ c) ∈ β) whenever a, b, c ∈ S are such that
(a, b) ∈ β, (a, c) ∈ β and b 6= c;

(iii) β is right confluent.

Proof. It is obvious. ¤
2.2. Lemma. Assume that S is weakly semimodular. If a, b, c ∈ S are such
that (a, b) ∈ γ and (a, c) ∈ β then (c, b + c) ∈ γ and either (b, b + c) ∈ β or
b = b+ c (and then (c, b) ∈ γ).

Proof. There is nothing to show for a = b. Hence, assume that a 6= b and
let (a0, a1, . . . , am), m ≥ 1, be a β-sequence with a0 = a and am = b; we will
proceed by induction on m.
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If a1 = c then (c, b + c) = (a1, b) ∈ γ and b = b + c. If a1 6= c then
(a1, a1 + c) ∈ β, (c, a1 + c) ∈ β and (a1 + c, b+ c) = (a1 + c, a1 + c+ b) ∈ γ by
induction, so that (c, b+c) ∈ γ. Moreover, either (b, b+c) = (b, b+a1+c) ∈ β
or b = b+ a1 + c = b+ c. ¤
2.3. Lemma. Assume that S is weakly semimodular. If a, b, c ∈ S are such
that (a, b) ∈ γ and (a, c) ∈ γ then (b, b+ c) ∈ γ and (c, b+ c) ∈ γ.

Proof. If a = b or a = c then there is nothing to show. Hence, assume that
b 6= a 6= c and let (a0, a1, . . . , am), m ≥ 1, be a β-sequence with a0 = a and
am = b. By 2.2, (a1, a1+c) ∈ γ, and therefore (b, b+c) = (b+a1, (b+a1)+c) ∈
γ by induction on m. Quite similarly, (c, b+ c) ∈ γ. ¤
2.4. Corollary. If the semilattice S is weakly semimodular then the ordering
γ is right strictly confluent.

2.5. Lemma. Assume that S is weakly semimodular. If (a, b) ∈ γ then there
exists no right directed infinite β-sequence (a0, a1, a2, . . . ) such that a0 = a
and (ai, b) ∈ α for every i ≥ 1.

Proof. Let, on the contrary, such a β-sequence exist. If a = b then (b, a1) =
(a, a1) ∈ β, a contradiction with (a1, b) ∈ α. Thus a 6= b and there is a finite
β-sequence (b0, b1, b2, . . . , bm), m ≥ 1, with b0 = a and bm = b. If m = 1
then (a, b) ∈ β and, since (a, a1) ∈ β and (a1, b) ∈ α, we get a1 = b, and
hence a2 = a1, a contradiction with (a1, a2) ∈ β. Thus m ≥ 2 and we shall
proceed by induction on m.

If a1 = b1 then the contradiction follows by induction. On the other
hand, if a1 6= b1 then (a1, a1 + b1) ∈ β and (b1, a1 + b1) ∈ β; of course,
(a1 + b1, b) ∈ α. If a2 = a1 + b1 then we use induction once more. Thus
a2 6= a1 + b1, (a2, a2 + b1) ∈ β, (a1 + b1, a2 + b1) ∈ β and (a2 + b1, b) ∈ α.
Proceeding in this way, we get the β-sequence (b1, a1+b1, a2+b1, a3+b1, . . . )
and we come by induction to our final contradiction. ¤
2.6. Lemma. Assume that S is weakly semimodular. If (a, b) ∈ γ then
there exists no right directed infinite i(γ)-sequence (a0, a1, a2, . . . ) such that
a0 = a and (ai, b) ∈ α for every i ≥ 1.

Proof. Use 2.5 and the fact that i(γ) = t(β). ¤
2.7. Lemma. Assume that S is weakly semimodular. If (a, b) ∈ γ then:

(i) T = Intγ(a, b) is a subsemilattice of S, a = 0T and b = oT .
(ii) T is resuscitable.
(iii) αT = γT = αS |T = γS |T and βT = βS |T .
(iv) If (a, c) ∈ γ and (c, b) ∈ α then c ∈ T (i. e., (c, b) ∈ γ).

Proof.
(i) If c, d ∈ T then (a, c) ∈ γ and (a, d) ∈ γ, and so (c, c+d) ∈ γ by 2.3.

Since γ is transitive, we get (a, c+d) ∈ γ, Quite similarly, (c, b) ∈ γ
and (c, c+ d) ∈ γ implies (c+ d, b) = (c+ d, b+ c+ d) ∈ γ and we
conclude that c+ d ∈ T .
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(ii) This is easy to see (use 2.3).
(iii) This is also easy to see (use 2.3).
(iv) Use 2.3.

¤

2.8. Example. Consider the following infinite semilattice S1:

0 a b1 b2 b3 . . . bm bm+1 bm+2 . . . o
0 0 a b1 b2 b3 . . . bm bm+1 bm+2 . . . o
a a a o o o . . . o o o . . . o
b1 b1 o b1 b1 b1 . . . b1 b1 b1 . . . o
b2 b2 o b1 b2 b2 . . . b2 b2 b2 . . . o
b3 b3 o b1 b2 b3 . . . b3 b3 b3 . . . o
...

...
...

...
...

...
. . .

...
...

...
...

bm bm o b1 b2 b3 . . . bm bm bm . . . o
bm+1 bm+1 o b1 b2 b3 . . . bm bm+1 bm+1 . . . o
bm+2 bm+2 o b1 b2 b3 . . . bm bm+1 bm+2 . . . o

...
...

...
...

...
...

...
...

...
. . .

...
o o o o o o . . . o o o . . . o

Clearly, S1(+) is weakly semimodular and β = {(0, a), (a, o), (b1, o), (bi+1, bi) | i ≥
1}. Moreover, (0, o) ∈ γ, Intγ(o, 0) = {0, a, o}, (0, b1) /∈ γ and (. . . , b2, b1, o)
is a left bounded left directed infinite β-sequence. Finally, S1 is not resus-
citable.

2.9. Example. Consider the following infinite semilattice S2:

0 a . . . bm bm+1 bm+2 . . . o
0 0 a . . . bm bm+1 bm+2 . . . o
a a a . . . o o o . . . o
...

...
...

...
...

...
...

bm bm o . . . bm bm bm . . . o
bm+1 bm+1 o . . . bm bm+1 bm+1 . . . o
bm+2 bm+2 o . . . bm bm+1 bm+2 . . . o

...
...

...
...

...
...

. . .
...

o o o . . . o o o . . . o

Clearly, S2 is weakly semimodular and β = {(0, a), (a, o), (bi+1, bi) | i ∈ Z}.
Moreover, (0, o) ∈ γ, Intγ(o, 0) = {0, a, o} 6= S2 = Intα(0, o), hence S2 is not
resuscitable. Finally, S2 contains both left and right (bounded) directed
infinite β-sequences.

2.10. Example. Consider the following five-element semilattice P:
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0 a b c o
0 0 a b c o
a a a o o o
b b o b c o
c c o c c o
o o o o o o

Clearly, β = {(0, a), (0, b), (b, c), (a, o), (c, o)}, β is neither right nor left
confluent and P is not weakly semimodular.

3. Semimodular semilattices

The semilattice S will be called semimodular if (a + c, b + c) ∈ r(β)
whenever (a, b) ∈ β and c ∈ S.

3.1. Lemma. The following conditions are equivalent:
(i) S is semimodular;

(ii) d ∈ {a + c, b + c} whenever a, b, c, d ∈ S are such that (a, b) ∈ β,
a+ c 6= b+ c, a+ c+ d = d and b+ c+ d = b+ c;

(iii) r(β) is stable.

Proof. It is obvious. ¤

3.2. Lemma. If S is semimodular then it is weakly semimodular and γ is a
stable ordering of S.

Proof. It is obvious. ¤

3.3. Proposition. If the semilattice S is resuscitable (e. g., S is finite) then
it is semimodular if and only if it is weakly semimodular.

Proof. Only the converse implication needs a proof. Assume that S is weakly
semimodular and take a, b, c ∈ S such that (a, b) ∈ β and a+ c 6= b+ c. By
3.2 and 2.1, the relation β is right confluent, and so (a+ c, b+ c) ∈ β follows
from I.9.5. ¤

3.4. Lemma. Assume that S is semimodular. If (a, b) ∈ γ, (a, c) ∈ α and
(c, b) ∈ α (i. e., c ∈ Intα(a, b)) then (c, b) ∈ γ.

Proof. We have (c, b) = (a+ c, a+ b) ∈ γ by 3.2. ¤

3.5. Lemma. Let (a, c) ∈ β, (c, b) ∈ β, (a, d) ∈ α and (d, b) ∈ α.
(i) If S is weakly semimodular then (a, d) ∈ β implies (d, b) ∈ β.

(ii) If S is semimodular then (a, d) ∈ β if and only if (d, b) ∈ β.

Proof.
(i) We can assume c 6= d. Then (c, c + d) ∈ β, (d, c + d) ∈ β and,

of course, (c + d, b) ∈ α. Since (c, b) ∈ β we have c + d = b and
(d, b) ∈ β.
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(ii) Assume c 6= d and (d, b) ∈ β (see (i)). Clearly, a 6= d. If e ∈ S is
such that (a, e) ∈ α and (e, d) ∈ α then either e = a+ e = c+ e or
(e, c+ e) = (a+ e, c+ e) ∈ β.

If e = c + e then (c, e) ∈ α, hence (c, d) ∈ α and c = d, since
(c, b) ∈ β and (d, b) ∈ β, a contradiction. Thus (e, c + e) ∈ β. If
c+ e = c then (e, c) ∈ β and e = a, since (a, e) ∈ α and (a, c) ∈ β.
On the other hand, if c + e 6= c then c + e = b, since (c, c + e) ∈ α
and (c + e, b) ∈ α. Finally, if c + e = b then (e, b) ∈ β and e = d,
since (e, d) ∈ α and (d, b) ∈ β. We have proved that e ∈ {a, d} and
it follows that (a, d) ∈ β.

¤
3.6. Example. The semilattice S1 (see 2.8) is weakly semimodular but not
semimodular.

4. Strongly modular semilattices

The semilattice S will be called strongly modular if no subsemilattice of
S is a copy of P (see 2.10).

4.1. Proposition. If S is strongly modular then it is semimodular.

Proof. Using 3.1, let (a, b) ∈ β, a+c 6= b+c, a+c+d = d and b+c+d = b+c.
We have to show that d ∈ {a+ c, b+ c}.

Clearly, (a, b) ∈ α, (a + c, b + c) ∈ α, (a + c, d) ∈ α, (d, b + c) ∈ α and
it follows easily that T = {a, b, d, a + c, b + c}, is a subsemilattice of S.
Moreover, T ∼= P, provided that |T | = 5. Consequently, since S is strongly
modular, we get |T | ≤ 4.

First, a + c 6= b + c and (a, b) ∈ β implies a 6= b. If a = a + c then
b+c = a+b+c = a+b = b, d = a+c+d = a+d, b = b+c = b+c+d = b+d,
(a, d) ∈ α, (d, b) ∈ α, and hence d ∈ {a, b} = {a+ c, b+ c}, since (a, b) ∈ β.
Furthermore, if a = b + c (a = d, resp.) then a = b + c = b + c + c = a + c
(a = d = a+ c+ d = a+ c+ a = a+ c, resp.).

Now, we can assume that a /∈ {b, a + c, d, b + c}. If b = a + c then
b = b+ b = b+ a+ c = b+ c and a+ c = b+ c, a contradiction. If b = b+ c
then (a, a + c) ∈ α and (a + c, b) = (a + c, b + c) ∈ α implies a + c = b (we
have (a, b) ∈ β and a 6= a+ c) and a+ c = b+ c, a contradiction once more.
Furthermore, if b = d then b = d = a+ c+ d = a+ c+ b = b+ c, which was
already proved to be contradictory.

Finally, we can assume that a /∈ {b, d, a+ c, b+ c}, b /∈ {a, d, a+ c, b+ c},
d /∈ {a, b} and a + c 6= b + c. Since |T | ≤ 4, we obtain d ∈ {a + c, b + c} as
desired. ¤
4.2. Example. Let A be a non-empty set and F the set of non-empty finite
subsets of A. Then F(∪) is a free semilattice over A, (B,C) ∈ α if and only if
B ⊆ C, (D,E) ∈ β if and only if D ⊆ E and |E \D| = 1. Moreover, F(∪) is
semimodular and resuscitable. It is strongly modular if and only if |A| ≤ 3 (if
|A| ≥ 4 then consider the set {{a1}, {a1, a2}, {a1, a2, a3}, {a1, a3, a4}, {a1, a2, a3, a4}}).
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4.3. Example. Define an operation ⊕ on the set N0 of non-negative integers
by m ⊕ n = lcm(m,n). Then N0(⊕) becomes a semilattice, (m,n) ∈ α if
and only if m divides n and (k, l) ∈ β if and only if l/k is a prime number.
Clearly, N0(⊕) is semimodular and resuscitable. On the other hand, the set
{1, 4, 9, 18, 36} is a subsemilattice isomorphic to P(+), and so N0(⊕) is not
strongly modular.

5. On when the covering relation is regular

5.1. Proposition. If the semilattice S(+) is weakly semimodular then the
covering relation β is regular.

Proof. Let (a, b) ∈ γ and T = Intγ(a, b). By 2.7 and 3.3, T is a semimodular
and resuscitable semilattice. Moreover, a = 0T and b = oT . In particular,
b is right αT -isolated. We have βT = βS |T , αT = γT = γS |T = r t(βT ) and
(c, b) ∈ αT for every c ∈ T . The relation βT is right confluent (on T ) and
βT is regular by I.8.3. Now, our result easily follows. ¤
5.2. Example. Put S = P (see 2.10). Then β is not regular.

5.3. Example. Consider the following six-element semilattice S3(+):
0 a b c d o

0 0 a b c d o
a a a b o o o
b b b b o o o
c c o o c d o
d d o o d d o
o o o o o o o

Clearly, β = {(0, a), (0, c), (a, b), (c, d), (b, o), (d, o)} and β is regular. On
the other hand, S3 is not weakly semimodular.

5.4. Remark. Assume that β is regular. If (a, b) ∈ i(γ) (= t(β)) then all
the β-sequences from a to b have the same length, say m ≥ 1, and we put
distγ(a, b) = m. We put also distγ(c, c) = 0 for every c ∈ S.

5.5. Lemma. Assume that β is regular. If (a, b) ∈ γ and (b, c) ∈ γ then
distγ(a, c) = distγ(a, b) + distγ(b, c).

Proof. It is obvious. ¤

6. Further results

6.1. Lemma. Assume that S is semimodular. If (a, b) ∈ γ, (a, c) ∈ α and
(c, b) ∈ α then (a, c) ∈ γ and (c, b) ∈ γ.

Proof. We have (c, b) ∈ γ by 3.4 and the covering relation β is regular by
5.1. Put m = distγ(a, b). If m = 0 then a = c = b and there is nothing
to prove. If m = 1 then (a, b) ∈ β and either c = a or c = b and there is
nothing to prove again. Consequently, assume that m ≥ 2 and proceed by
induction on m.



TRANSITIVE CLOSURES OF BINARY RELATIONS II 9

There is a β-sequence (a0, a1, . . . , am) such that a0 = a and am = b. Now,
(a1, a1+c) ∈ α, (a1+c, b) ∈ α, distγ(a1, b) = m−1 and we get (a1, a1+c) ∈ γ
by induction. According to 5.5, m − 1 = distγ(a1, b) = distγ(a1, a1 + c) +
distγ(a1 + c, b). If distγ(a1 + c, b) ≥ 1 then distγ(a1, a1 + c) ≤ m − 2,
distγ(a, a1 + c) = 1 + distγ(a1, a1 + c) ≤ m − 1 and (a, c) ∈ γ by induction
(we have (c, a1 + c) ∈ α).

Now, consider the case distγ(a1 + c, b) = 0. Then a1 + c = b and we get
(c, b) = (a0 + c, a1 + c) ∈ r(β). If c = b then (a, c) ∈ γ trivially, and hence,
let (c, b) ∈ β and (a, c) /∈ γ. Then there is d ∈ S with (a, d) ∈ i(α) and
(d, c) ∈ i(α). If (a, d) /∈ γ then, according to the preceding part of the proof,
we get (d, b) ∈ β, and so d = c, a contradiction. Thus (a, d) ∈ γ and we
have m = distγ(a, b) = distγ(a, d) + distγ(d, b). Since a 6= d, it follows that
distγ(d, b) ≤ m − 1, and therefore (d, c) ∈ γ by induction. Consequently,
(a, c) ∈ γ, a contradiction. ¤
6.2. Lemma. Assume that S is semimodular. If (a, b) ∈ γ, (a, c) ∈ α,
(c, d) ∈ α and (d, b) ∈ α then (a, c) ∈ γ, (c, d) ∈ γ and (d, b) ∈ γ.

Proof. We have (a, d) ∈ γ and (d, b) ∈ γ by 6.1. Then (a, c) ∈ γ and
(c, d) ∈ γ by 6.1 again. ¤
6.3. Proposition. Assume that S(+) is weakly semimodular. Let (a, b) ∈ γ
and T = Intγ(a, b). Then:

(i) T is a subsemilattice of S, a = 0T and b = oT .
(ii) T is semimodular and resuscitable.
(iii) βT = βS |T and αT = γT = αS |T = γS |T .
(iv) Every non-empty subset A of T contains at least one element that is

maximal in A(α) and at least one element that is minimal in A(α).
(v) Every subchain of T (α) is finite and of length at most distγ(a, b).

(vi) T ⊆ Intα(a, b) and c ∈ T , provided that (a, c) ∈ γ and (c, b) ∈ α.
(vii) T = Intα(a, b), provided that S is semimodular.

Proof.
(i) This is 2.6 (i).

(ii) T is resuscitable by 2.6 (ii), and hence it is semimodular by 3.3.
(iii) This is 2.6 (iii).
(iv) Use 5.1 and 5.5.
(v) Use 5.1 and 5.5.

(vi) This is 2.6 (iv).
(vii) See 6.1.

¤
6.4. Proposition. The following conditions are equivalent:

(i) S is weakly semimodular, no right (left, resp.) directed infinite i(α)-
sequence is right (left, resp.) bounded in S(α) and no left (right,
resp.) directed infinite β-sequence is left (right, resp.) bounded in
S(α).
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(ii) S is semimodular and resuscitable.
(iii) S is weakly semimodular and every right and left bounded subchain

of S(α) is finite.

Proof. (i) implies (ii). The semilattice S is resuscitable by 1.8, and so it is
semimodular by 3.3.

(ii) implies (iii). Let C be a non-empty subchain of S(α) such that there
exist a, b ∈ S with (a, c) ∈ α and (c, b) ∈ α for every c ∈ C. Then C ⊆
Intα(a, b) = Intγ(a, b) and C is finite by 6.3 (ix).

(iii) implies (i). Every right (left, resp.) directed i(α)-sequence is left
(right, resp.) bounded in S(α). The rest is clear. ¤
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