TRANSITIVE CLOSURES OF BINARY RELATIONS II

V. FLAŠKA, J. JEŽEK AND T. KEPKA

ABSTRACT. Transitive closures of the covering relation in semilattices are investigated.

Vyšetřují se tranzitivní uzávěry pokrývací relace v polosvazech.

This very short note is an immediate continuation of [1]. We therefore refer to [1] as for terminology, notation, various remarks, further references, etc.

1. The covering relation in semilattices

Throughout the note, let S = S(+) be a semilattice (i. e., a commutative idempotent semigroup). Define a relation α on S by $(a, b) \in \alpha$ if and only if a + b = b.

1.1. Proposition.

- (i) The relation α is a stable (reflexive) ordering of the semilattice.
- (ii) $(a, a + b) \in \alpha$ and $(b, a + b) \in \alpha$ for all $a, b \in S$ (in fact, $a + b = \sup_{\alpha}(a, b)$).
- (iii) An element a ∈ S is maximal in S(α) (i. e., a is right α-isolated) if and only if a = o_S is an absorbing element of S; then a is the (unique) greatest element of S(α).
- (iv) An element $a \in S$ is minimal in $S(\alpha)$ (i. e., a is left α -isolated) if and only if $a \notin (S \setminus \{a\}) + S$ (then the set $(S \setminus \{a\}) + S$ is a proper ideal of S).
- (v) An element $a \in S$ is the smallest element of $S(\alpha)$ if and only if $a = 0_S$ is a neutral element of S.

Proof. It is obvious.

1.2. Lemma.

- (i) Every weakly pseudoirreducible finite α -sequence is pseudoirreducible.
- (ii) Every weakly pseudoirreducible right (left, resp.) directed infinite α -sequence is pseudoirreducible.
- (iii) If there exists no pseudoirreducible right directed infinite α -sequence then $o_S \in S$.

Proof. It is obvious (combine (ii), 1.1(iii) and I.5.4(iii)).

The work is a part of the research project MSM0021620839 financed by MŠMT and partly supported by the Grant Agency of the Czech Republic, grant #201/05/0002.

1.3. Lemma. Let $(a,b) \in \alpha$ and $I = Int_{\alpha}(a,b) = \{c \in S \mid (a,c) \in \alpha, (c,b) \in \alpha\}$. Then:

- (i) I is a subsemilattice of S and $\{a, b\} \subseteq I$.
- (ii) $a = 0_I$ and $b = o_I$.
- (iii) $\alpha_I = \alpha_S | I.$

Proof. It is obious.

In the sequel, put $\beta = \sqrt{\alpha}$ and $\gamma = \mathbf{r} \mathbf{t}(\beta)$. Notice that $\mathbf{i}(\gamma) = \mathbf{t}(\beta)$.

1.4. Proposition.

- (i) β is totally antitransitive.
- (ii) $\beta \subseteq \gamma \subseteq \alpha$.
- (iii) $\beta = \emptyset$ if and only if either |S| = 1 or S is infinite and for all $a, b \in S$ such that $a + b = b \neq a$ there exists at least one $c \in S$ with $a + c = c \neq a$ and $b + c = b \neq c$.
- (iv) γ is an ordering of S.
- (v) If $(a, b) \in \alpha$ and $Int_{\alpha}(a, b)$ is finite then $(a, b) \in \gamma$.

Proof. It is obvious.

1.5. Lemma. The following conditions are equivalent for $a, b \in S$:

(i) (a, b) ∈ β;
(ii) a + b = b ≠ a and c ∈ {a, b} whenever c ∈ S is such that a + c = c and b + c = b.

Proof. It is obvious.

We shall say that semilattice S(+) is *resuscitable* if so is the ordering α (i. e., $\alpha = \gamma$).

1.6. Lemma. Let $(a, b) \in \mathbf{i}(\alpha)$ be such that there exists no right (left, resp.) directed infinite $\mathbf{i}(\alpha)$ -sequence (a_0, a_1, a_2, \ldots) ((..., b_2, b_1, b_0), resp.) with $a_0 = a$ ($b_0 = b$, resp.) and $(a_i, b) \in \alpha$ ((a, b_i) $\in \alpha$, resp.) for every $i \ge 1$. Then there exists at least one $c \in S$ such that $(a, c) \in \alpha$ ((c, b) $\in \alpha$, resp.) and $(c, b) \in \beta$ ((a, c) $\in \beta$, resp.).

Proof. If $(a, b) \in \beta$ then we put c = a. If $(a, b) \notin \beta$ then there is $a_1 \in S$ with $(a, a_1) \in \mathbf{i}(\alpha)$ and $(a_1, b) \in \mathbf{i}(\alpha)$. If $(a_1, b) \in \beta$ then we put $c = a_1$. If $(a_1, b) \notin \beta$ then there is $a_2 \in S$ with $(a_1, a_2) \in \mathbf{i}(\alpha)$ and $(a_2, b) \in \mathbf{i}(\alpha)$. Proceeding similarly further, we get our result.

1.7. Lemma. Let $(a, b) \in \mathbf{i}(\alpha)$ be such that there exists no right (left, resp.) directed infinite $\mathbf{i}(\alpha)$ -sequence (a_0, a_1, a_2, \ldots) ((..., b_2, b_1, b_0), resp.) with $a_0 = a$ ($b_0 = b$, resp.) and $(a_i, b) \in \alpha$ ((a, b_i) $\in \alpha$, resp.) for every $i \ge 1$ and no left (right, resp.) directed infinite β -sequence (..., c_2, c_1, c_0) ((d_0, d_1, d_2, \ldots), resp.) with $c_0 = b$ ($d_0 = a$, resp.) and $(a, c_j) \in \alpha$ ((d_j, b) $\in \alpha$, resp.) for every $j \ge 1$. Then $(a, b) \in \gamma$.

 $\mathbf{2}$

Proof. According to 1.6, there is $c_1 \in S$ such that $(a, c_1) \in \alpha$ and $(c_1, c_0) \in \beta$, where $c_0 = b$. If $(a, c_1) \in \gamma$ then $(a, b) \in \gamma$. If $(a, c_1) \notin \gamma$ then $(a, c_1) \in \mathbf{i}(\alpha)$, $(a, c_1) \notin \beta$ and, by 1.6 again, there is $c_2 \in S$ with $(a, c_2) \in \alpha$ and $(c_2, c_1) \in \beta$. Proceeding similarly further, we get our result.

1.8. Corollary. The semilattice S is resuscitable, provided that the following two conditions are satisfied:

- (1) no right (left, resp.) directed infinite $\mathbf{i}(\alpha)$ -sequence is right (left, resp.) bounded in $S(\alpha)$;
- (2) no left (right, resp.) directed infinite β -sequence is left (right, resp.) bounded in $S(\alpha)$;

1.9. Corollary. The semilattice S is resuscitable, provided that there exist no right (left, resp.) directed infinite $\mathbf{i}(\alpha)$ -sequences and no left (right, resp.) directed infinite β -sequences.

1.10. Corollary. The semilattice S is resuscitable, provided that it is finite.

1.11. Lemma. If $(a, b) \in \gamma$ then $\{a, b\} \subseteq \operatorname{Int}_{\gamma}(a, b) = \{c \mid (a, c) \in \gamma, (c, b) \in \gamma\} \subseteq \operatorname{Int}_{\alpha}(a, b).$

Proof. It is obvious.

1.12. **Example.** Let A be a non-empty set and S the set of subsets of A. Then $S(\cup)$ is a semilattice, $\emptyset = 0_S$, $A = o_S$, $(B, C) \in \alpha$ if and only if $B \subseteq C$, $(D, E) \in \beta$ if and only if $D \subseteq E$ and $|E \setminus D| = 1$. This semilattice is resuscitable if and only if A is finite.

2. On when the covering relation is right confluent (or weakly semimodular lattices)

The semilattice S will be called *weakly semimodular* if $d \in \{b, b + c\}$ whenever $a, b, c, d \in S$ are such that $b \neq c$, $(a, b) \in \beta$, $(a, c) \in \beta$, b + d = dand b + c = d + c.

2.1. Lemma. The following conditions are equivalent:

- (i) S is weakly semimodular;
- (ii) $(b, b+c) \in \beta$ (and $(c, b+c) \in \beta$) whenever $a, b, c \in S$ are such that $(a, b) \in \beta$, $(a, c) \in \beta$ and $b \neq c$;
- (iii) β is right confluent.

Proof. It is obvious.

2.2. Lemma. Assume that S is weakly semimodular. If $a, b, c \in S$ are such that $(a, b) \in \gamma$ and $(a, c) \in \beta$ then $(c, b + c) \in \gamma$ and either $(b, b + c) \in \beta$ or b = b + c (and then $(c, b) \in \gamma$).

Proof. There is nothing to show for a = b. Hence, assume that $a \neq b$ and let (a_0, a_1, \ldots, a_m) , $m \geq 1$, be a β -sequence with $a_0 = a$ and $a_m = b$; we will proceed by induction on m.

If $a_1 = c$ then $(c, b + c) = (a_1, b) \in \gamma$ and b = b + c. If $a_1 \neq c$ then $(a_1, a_1 + c) \in \beta$, $(c, a_1 + c) \in \beta$ and $(a_1 + c, b + c) = (a_1 + c, a_1 + c + b) \in \gamma$ by induction, so that $(c, b+c) \in \gamma$. Moreover, either $(b, b+c) = (b, b+a_1+c) \in \beta$ or $b = b + a_1 + c = b + c$.

2.3. Lemma. Assume that S is weakly semimodular. If $a, b, c \in S$ are such that $(a, b) \in \gamma$ and $(a, c) \in \gamma$ then $(b, b + c) \in \gamma$ and $(c, b + c) \in \gamma$.

Proof. If a = b or a = c then there is nothing to show. Hence, assume that $b \neq a \neq c$ and let (a_0, a_1, \ldots, a_m) , $m \geq 1$, be a β -sequence with $a_0 = a$ and $a_m = b$. By 2.2, $(a_1, a_1 + c) \in \gamma$, and therefore $(b, b+c) = (b+a_1, (b+a_1)+c) \in \gamma$ by induction on m. Quite similarly, $(c, b+c) \in \gamma$.

2.4. Corollary. If the semilattice S is weakly semimodular then the ordering γ is right strictly confluent.

2.5. Lemma. Assume that S is weakly semimodular. If $(a, b) \in \gamma$ then there exists no right directed infinite β -sequence $(a_0, a_1, a_2, ...)$ such that $a_0 = a$ and $(a_i, b) \in \alpha$ for every $i \ge 1$.

Proof. Let, on the contrary, such a β -sequence exist. If a = b then $(b, a_1) = (a, a_1) \in \beta$, a contradiction with $(a_1, b) \in \alpha$. Thus $a \neq b$ and there is a finite β -sequence $(b_0, b_1, b_2, \ldots, b_m)$, $m \geq 1$, with $b_0 = a$ and $b_m = b$. If m = 1 then $(a, b) \in \beta$ and, since $(a, a_1) \in \beta$ and $(a_1, b) \in \alpha$, we get $a_1 = b$, and hence $a_2 = a_1$, a contradiction with $(a_1, a_2) \in \beta$. Thus $m \geq 2$ and we shall proceed by induction on m.

If $a_1 = b_1$ then the contradiction follows by induction. On the other hand, if $a_1 \neq b_1$ then $(a_1, a_1 + b_1) \in \beta$ and $(b_1, a_1 + b_1) \in \beta$; of course, $(a_1 + b_1, b) \in \alpha$. If $a_2 = a_1 + b_1$ then we use induction once more. Thus $a_2 \neq a_1 + b_1$, $(a_2, a_2 + b_1) \in \beta$, $(a_1 + b_1, a_2 + b_1) \in \beta$ and $(a_2 + b_1, b) \in \alpha$. Proceeding in this way, we get the β -sequence $(b_1, a_1 + b_1, a_2 + b_1, a_3 + b_1, \dots)$ and we come by induction to our final contradiction.

2.6. Lemma. Assume that S is weakly semimodular. If $(a, b) \in \gamma$ then there exists no right directed infinite $\mathbf{i}(\gamma)$ -sequence $(a_0, a_1, a_2, ...)$ such that $a_0 = a$ and $(a_i, b) \in \alpha$ for every $i \geq 1$.

Proof. Use 2.5 and the fact that $\mathbf{i}(\gamma) = \mathbf{t}(\beta)$.

2.7. Lemma. Assume that S is weakly semimodular. If $(a, b) \in \gamma$ then:

- (i) $T = \text{Int}_{\gamma}(a, b)$ is a subsemilattice of S, $a = 0_T$ and $b = o_T$.
- (ii) T is resuscitable.
- (iii) $\alpha_T = \gamma_T = \alpha_S | T = \gamma_S | T$ and $\beta_T = \beta_S | T$.
- (iv) If $(a, c) \in \gamma$ and $(c, b) \in \alpha$ then $c \in T$ (i. e., $(c, b) \in \gamma$).

Proof.

(i) If $c, d \in T$ then $(a, c) \in \gamma$ and $(a, d) \in \gamma$, and so $(c, c+d) \in \gamma$ by 2.3. Since γ is transitive, we get $(a, c+d) \in \gamma$, Quite similarly, $(c, b) \in \gamma$ and $(c, c+d) \in \gamma$ implies $(c+d, b) = (c+d, b+c+d) \in \gamma$ and we conclude that $c+d \in T$.

- (ii) This is easy to see (use 2.3).
- (iii) This is also easy to see (use 2.3).
- (iv) Use 2.3.

2.8. Example. Consider the following infinite semilattice S_1 :

	0	a	b_1	b_2	b_3		b_m	b_{m+1}	b_{m+2}		0
0	0	a	b_1	b_2	b_3	• • •	b_m	b_{m+1}	b_{m+2}		0
a	a	a	0	0	0		0	0	0		0
b_1	b_1	0	b_1	b_1	b_1		b_1	b_1	b_1		0
b_2	b_2	0	b_1	b_2	b_2		b_2	b_2	b_2		0
b_3	b_3	0	b_1	b_2	b_3		b_3	b_3	b_3		0
÷	÷	÷	÷	÷	÷	·	÷	÷	÷		÷
b_m	b_m	0	b_1	b_2	b_3		b_m	b_m	b_m		0
b_{m+1}	b_{m+1}	0	b_1	b_2	b_3		b_m	b_{m+1}	b_{m+1}		0
b_{m+2}	b_{m+2}	0	b_1	b_2	b_3		b_m	b_{m+1}	b_{m+2}		0
÷		÷	÷	÷	÷		÷	÷	÷	۰.	÷
0	0	0	0	0	0		0	0	0		0

Clearly, $S_1(+)$ is weakly semimodular and $\beta = \{(0, a), (a, o), (b_1, o), (b_{i+1}, b_i) | i \geq 1\}$. Moreover, $(0, o) \in \gamma$, $\operatorname{Int}_{\gamma}(o, 0) = \{0, a, o\}, (0, b_1) \notin \gamma$ and (\ldots, b_2, b_1, o) is a left bounded left directed infinite β -sequence. Finally, S_1 is not resuscitable.

2.9. Example. Consider the following infinite semilattice S_2 :

	0	a	• • •	b_m	b_{m+1}	b_{m+2}	•••	0
0	0	a		b_m	b_{m+1}	b_{m+2}	• • •	0
a	a	a		0	0	0	•••	0
÷	÷	÷		÷	÷	÷		÷
b_m	b_m	0		b_m	b_m	b_m		0
b_{m+1}	b_{m+1}	0		b_m	b_{m+1}	b_{m+1}		0
b_{m+2}	b_{m+2}	0		b_m	b_{m+1}	b_{m+2}	• • •	0
÷	÷	÷		÷	÷	÷	·	÷
0	0	0		0	0	0		0

Clearly, S_2 is weakly semimodular and $\beta = \{(0, a), (a, o), (b_{i+1}, b_i) | i \in \mathbb{Z}\}$. Moreover, $(0, o) \in \gamma$, $\operatorname{Int}_{\gamma}(o, 0) = \{0, a, o\} \neq S_2 = \operatorname{Int}_{\alpha}(0, o)$, hence S_2 is not resuscitable. Finally, S_2 contains both left and right (bounded) directed infinite β -sequences.

2.10. Example. Consider the following five-element semilattice P:

Clearly, $\beta = \{(0, a), (0, b), (b, c), (a, o), (c, o)\}, \beta$ is neither right nor left confluent and **P** is not weakly semimodular.

3. Semimodular semilattices

The semilattice S will be called *semimodular* if $(a + c, b + c) \in \mathbf{r}(\beta)$ whenever $(a, b) \in \beta$ and $c \in S$.

3.1. Lemma. The following conditions are equivalent:

- (i) S is semimodular;
- (ii) $d \in \{a + c, b + c\}$ whenever $a, b, c, d \in S$ are such that $(a, b) \in \beta$, $a + c \neq b + c, a + c + d = d$ and b + c + d = b + c;
- (iii) $\mathbf{r}(\beta)$ is stable.

Proof. It is obvious.

3.2. Lemma. If S is semimodular then it is weakly semimodular and γ is a stable ordering of S.

Proof. It is obvious.

3.3. Proposition. If the semilattice S is resuscitable (e. g., S is finite) then it is semimodular if and only if it is weakly semimodular.

Proof. Only the converse implication needs a proof. Assume that S is weakly semimodular and take $a, b, c \in S$ such that $(a, b) \in \beta$ and $a + c \neq b + c$. By 3.2 and 2.1, the relation β is right confluent, and so $(a + c, b + c) \in \beta$ follows from I.9.5.

3.4. Lemma. Assume that S is semimodular. If $(a,b) \in \gamma$, $(a,c) \in \alpha$ and $(c,b) \in \alpha$ (i. e., $c \in Int_{\alpha}(a,b)$) then $(c,b) \in \gamma$.

Proof. We have $(c, b) = (a + c, a + b) \in \gamma$ by 3.2.

3.5. Lemma. Let $(a, c) \in \beta$, $(c, b) \in \beta$, $(a, d) \in \alpha$ and $(d, b) \in \alpha$.

- (i) If S is weakly semimodular then $(a, d) \in \beta$ implies $(d, b) \in \beta$.
- (ii) If S is semimodular then $(a, d) \in \beta$ if and only if $(d, b) \in \beta$.

Proof.

(i) We can assume $c \neq d$. Then $(c, c + d) \in \beta$, $(d, c + d) \in \beta$ and, of course, $(c + d, b) \in \alpha$. Since $(c, b) \in \beta$ we have c + d = b and $(d, b) \in \beta$.

(ii) Assume $c \neq d$ and $(d, b) \in \beta$ (see (i)). Clearly, $a \neq d$. If $e \in S$ is such that $(a, e) \in \alpha$ and $(e, d) \in \alpha$ then either e = a + e = c + e or $(e, c + e) = (a + e, c + e) \in \beta$.

If e = c + e then $(c, e) \in \alpha$, hence $(c, d) \in \alpha$ and c = d, since $(c, b) \in \beta$ and $(d, b) \in \beta$, a contradiction. Thus $(e, c + e) \in \beta$. If c + e = c then $(e, c) \in \beta$ and e = a, since $(a, e) \in \alpha$ and $(a, c) \in \beta$. On the other hand, if $c + e \neq c$ then c + e = b, since $(c, c + e) \in \alpha$ and $(c + e, b) \in \alpha$. Finally, if c + e = b then $(e, b) \in \beta$ and e = d, since $(e, d) \in \alpha$ and $(d, b) \in \beta$. We have proved that $e \in \{a, d\}$ and it follows that $(a, d) \in \beta$.

3.6. Example. The semilattice S_1 (see 2.8) is weakly semimodular but not semimodular.

4. Strongly modular semilattices

The semilattice S will be called *strongly modular* if no subsemilattice of S is a copy of \mathbf{P} (see 2.10).

4.1. Proposition. If S is strongly modular then it is semimodular.

Proof. Using 3.1, let $(a, b) \in \beta$, $a+c \neq b+c$, a+c+d = d and b+c+d = b+c. We have to show that $d \in \{a+c, b+c\}$.

Clearly, $(a, b) \in \alpha$, $(a + c, b + c) \in \alpha$, $(a + c, d) \in \alpha$, $(d, b + c) \in \alpha$ and it follows easily that $T = \{a, b, d, a + c, b + c\}$, is a subsemilattice of S. Moreover, $T \cong \mathbf{P}$, provided that |T| = 5. Consequently, since S is strongly modular, we get $|T| \leq 4$.

First, $a + c \neq b + c$ and $(a, b) \in \beta$ implies $a \neq b$. If a = a + c then b+c = a+b+c = a+b = b, d = a+c+d = a+d, b = b+c = b+c+d = b+d, $(a, d) \in \alpha$, $(d, b) \in \alpha$, and hence $d \in \{a, b\} = \{a + c, b + c\}$, since $(a, b) \in \beta$. Furthermore, if a = b + c (a = d, resp.) then a = b + c = b + c + c = a + c (a = d = a + c + d = a + c + a = a + c, resp.).

Now, we can assume that $a \notin \{b, a + c, d, b + c\}$. If b = a + c then b = b + b = b + a + c = b + c and a + c = b + c, a contradiction. If b = b + c then $(a, a + c) \in \alpha$ and $(a + c, b) = (a + c, b + c) \in \alpha$ implies a + c = b (we have $(a, b) \in \beta$ and $a \neq a + c$) and a + c = b + c, a contradiction once more. Furthermore, if b = d then b = d = a + c + d = a + c + b = b + c, which was already proved to be contradictory.

Finally, we can assume that $a \notin \{b, d, a + c, b + c\}$, $b \notin \{a, d, a + c, b + c\}$, $d \notin \{a, b\}$ and $a + c \neq b + c$. Since $|T| \leq 4$, we obtain $d \in \{a + c, b + c\}$ as desired.

4.2. Example. Let A be a non-empty set and \mathcal{F} the set of non-empty finite subsets of A. Then $\mathcal{F}(\cup)$ is a free semilattice over A, $(B, C) \in \alpha$ if and only if $B \subseteq C$, $(D, E) \in \beta$ if and only if $D \subseteq E$ and $|E \setminus D| = 1$. Moreover, $\mathcal{F}(\cup)$ is semimodular and resuscitable. It is strongly modular if and only if $|A| \leq 3$ (if $|A| \geq 4$ then consider the set $\{\{a_1\}, \{a_1, a_2\}, \{a_1, a_2, a_3\}, \{a_1, a_3, a_4\}, \{a_1, a_2, a_3, a_4\}\}$).

4.3. Example. Define an operation \oplus on the set \mathbb{N}_0 of non-negative integers by $m \oplus n = \operatorname{lcm}(m, n)$. Then $\mathbb{N}_0(\oplus)$ becomes a semilattice, $(m, n) \in \alpha$ if and only if m divides n and $(k, l) \in \beta$ if and only if l/k is a prime number. Clearly, $\mathbb{N}_0(\oplus)$ is semimodular and resuscitable. On the other hand, the set $\{1, 4, 9, 18, 36\}$ is a subsemilattice isomorphic to $\mathbf{P}(+)$, and so $\mathbb{N}_0(\oplus)$ is not strongly modular.

5. On when the covering relation is regular

5.1. **Proposition.** If the semilattice S(+) is weakly semimodular then the covering relation β is regular.

Proof. Let $(a, b) \in \gamma$ and $T = \operatorname{Int}_{\gamma}(a, b)$. By 2.7 and 3.3, T is a semimodular and resuscitable semilattice. Moreover, $a = 0_T$ and $b = o_T$. In particular, b is right α_T -isolated. We have $\beta_T = \beta_S | T, \alpha_T = \gamma_T = \gamma_S | T = \mathbf{rt}(\beta_T)$ and $(c, b) \in \alpha_T$ for every $c \in T$. The relation β_T is right confluent (on T) and β_T is regular by I.8.3. Now, our result easily follows.

5.2. Example. Put $S = \mathbf{P}$ (see 2.10). Then β is not regular.

5.3. Example. Consider the following six-element semilattice $S_3(+)$:

	0	a	b	c	d	0
0	0	a	b	c	d	0
a	a	a	b	0	0	0
b	b	b	b	0	0	0
c	c	0	0	c	d	0
d	d	0	0	d	d	0
0	0	0	0	0	0	0

Clearly, $\beta = \{(0, a), (0, c), (a, b), (c, d), (b, o), (d, o)\}$ and β is regular. On the other hand, S_3 is not weakly semimodular.

5.4. Remark. Assume that β is regular. If $(a, b) \in \mathbf{i}(\gamma)$ $(= \mathbf{t}(\beta))$ then all the β -sequences from a to b have the same length, say $m \ge 1$, and we put $\operatorname{dist}_{\gamma}(a, b) = m$. We put also $\operatorname{dist}_{\gamma}(c, c) = 0$ for every $c \in S$.

5.5. Lemma. Assume that β is regular. If $(a, b) \in \gamma$ and $(b, c) \in \gamma$ then $\operatorname{dist}_{\gamma}(a, c) = \operatorname{dist}_{\gamma}(a, b) + \operatorname{dist}_{\gamma}(b, c)$.

Proof. It is obvious.

6. Further results

6.1. Lemma. Assume that S is semimodular. If $(a,b) \in \gamma$, $(a,c) \in \alpha$ and $(c,b) \in \alpha$ then $(a,c) \in \gamma$ and $(c,b) \in \gamma$.

Proof. We have $(c, b) \in \gamma$ by 3.4 and the covering relation β is regular by 5.1. Put $m = \text{dist}_{\gamma}(a, b)$. If m = 0 then a = c = b and there is nothing to prove. If m = 1 then $(a, b) \in \beta$ and either c = a or c = b and there is nothing to prove again. Consequently, assume that $m \geq 2$ and proceed by induction on m.

There is a β -sequence (a_0, a_1, \ldots, a_m) such that $a_0 = a$ and $a_m = b$. Now, $(a_1, a_1 + c) \in \alpha$, $(a_1 + c, b) \in \alpha$, $\operatorname{dist}_{\gamma}(a_1, b) = m - 1$ and we get $(a_1, a_1 + c) \in \gamma$ by induction. According to 5.5, $m - 1 = \operatorname{dist}_{\gamma}(a_1, b) = \operatorname{dist}_{\gamma}(a_1, a_1 + c) + \operatorname{dist}_{\gamma}(a_1 + c, b)$. If $\operatorname{dist}_{\gamma}(a_1 + c, b) \geq 1$ then $\operatorname{dist}_{\gamma}(a_1, a_1 + c) \leq m - 2$, $\operatorname{dist}_{\gamma}(a, a_1 + c) = 1 + \operatorname{dist}_{\gamma}(a_1, a_1 + c) \leq m - 1$ and $(a, c) \in \gamma$ by induction (we have $(c, a_1 + c) \in \alpha$).

Now, consider the case $\operatorname{dist}_{\gamma}(a_1 + c, b) = 0$. Then $a_1 + c = b$ and we get $(c, b) = (a_0 + c, a_1 + c) \in \mathbf{r}(\beta)$. If c = b then $(a, c) \in \gamma$ trivially, and hence, let $(c, b) \in \beta$ and $(a, c) \notin \gamma$. Then there is $d \in S$ with $(a, d) \in \mathbf{i}(\alpha)$ and $(d, c) \in \mathbf{i}(\alpha)$. If $(a, d) \notin \gamma$ then, according to the preceding part of the proof, we get $(d, b) \in \beta$, and so d = c, a contradiction. Thus $(a, d) \in \gamma$ and we have $m = \operatorname{dist}_{\gamma}(a, b) = \operatorname{dist}_{\gamma}(a, d) + \operatorname{dist}_{\gamma}(d, b)$. Since $a \neq d$, it follows that $\operatorname{dist}_{\gamma}(d, b) \leq m - 1$, and therefore $(d, c) \in \gamma$ by induction. Consequently, $(a, c) \in \gamma$, a contradiction.

6.2. Lemma. Assume that S is semimodular. If $(a,b) \in \gamma$, $(a,c) \in \alpha$, $(c,d) \in \alpha$ and $(d,b) \in \alpha$ then $(a,c) \in \gamma$, $(c,d) \in \gamma$ and $(d,b) \in \gamma$.

Proof. We have $(a,d) \in \gamma$ and $(d,b) \in \gamma$ by 6.1. Then $(a,c) \in \gamma$ and $(c,d) \in \gamma$ by 6.1 again.

6.3. Proposition. Assume that S(+) is weakly semimodular. Let $(a, b) \in \gamma$ and $T = \text{Int}_{\gamma}(a, b)$. Then:

- (i) T is a subsemilattice of S, $a = 0_T$ and $b = o_T$.
- (ii) T is semimodular and resuscitable.
- (iii) $\beta_T = \beta_S |T|$ and $\alpha_T = \gamma_T = \alpha_S |T| = \gamma_S |T|$.
- (iv) Every non-empty subset A of T contains at least one element that is maximal in $A(\alpha)$ and at least one element that is minimal in $A(\alpha)$.
- (v) Every subchain of $T(\alpha)$ is finite and of length at most dist_{γ}(a, b).
- (vi) $T \subseteq Int_{\alpha}(a, b)$ and $c \in T$, provided that $(a, c) \in \gamma$ and $(c, b) \in \alpha$.
- (vii) $T = \text{Int}_{\alpha}(a, b)$, provided that S is semimodular.

Proof.

- (i) This is 2.6 (i).
- (ii) T is resuscitable by 2.6 (ii), and hence it is semimodular by 3.3.
- (iii) This is 2.6 (iii).
- (iv) Use 5.1 and 5.5.
- (v) Use 5.1 and 5.5.
- (vi) This is 2.6 (iv).
- (vii) See 6.1.

6.4. Proposition. The following conditions are equivalent:

(i) S is weakly semimodular, no right (left, resp.) directed infinite i(α)-sequence is right (left, resp.) bounded in S(α) and no left (right, resp.) directed infinite β-sequence is left (right, resp.) bounded in S(α).

- (ii) S is semimodular and resuscitable.
- (iii) S is weakly semimodular and every right and left bounded subchain of $S(\alpha)$ is finite.

Proof. (i) implies (ii). The semilattice S is resuscitable by 1.8, and so it is semimodular by 3.3.

(ii) implies (iii). Let C be a non-empty subchain of $S(\alpha)$ such that there exist $a, b \in S$ with $(a, c) \in \alpha$ and $(c, b) \in \alpha$ for every $c \in C$. Then $C \subseteq Int_{\alpha}(a, b) = Int_{\gamma}(a, b)$ and C is finite by 6.3 (ix).

(iii) implies (i). Every right (left, resp.) directed $\mathbf{i}(\alpha)$ -sequence is left (right, resp.) bounded in $S(\alpha)$. The rest is clear.

References

 V. Flaška, J. Ježek, T. Kepka and J. Kortelainen, Transitive closures of binary relations I. (preprint).

MFF UK, SOKOLOVSKÁ 83, 18600 PRAHA 8 E-mail address: flaska@karlin.mff.cuni.cz E-mail address: jezek@karlin.mff.cuni.cz E-mail address: kepka@karlin.mff.cuni.cz