TRANSITIVE CLOSURES OF BINARY RELATIONS II

V. FLAŠKA, J. JEŽEK AND T. KEPKA

Abstract

Transitive closures of the covering relation in semilattices are investigated.

Vyšetřují se tranzitivní uzávěry pokrývací relace v polosvazech.

This very short note is an immediate continuation of [1]. We therefore refer to [1] as for terminology, notation, various remarks, further references, etc.

1. The covering relation in Semilattices

Throughout the note, let $S=S(+)$ be a semilattice (i. e., a commutative idempotent semigroup). Define a relation α on S by $(a, b) \in \alpha$ if and only if $a+b=b$.

1.1. Proposition.

(i) The relation α is a stable (reflexive) ordering of the semilattice.
(ii) $(a, a+b) \in \alpha$ and $(b, a+b) \in \alpha$ for all $a, b \in S$ (in fact, $a+b=$ $\left.\sup _{\alpha}(a, b)\right)$.
(iii) An element $a \in S$ is maximal in $S(\alpha)$ (i. e., a is right α-isolated) if and only if $a=o_{S}$ is an absorbing element of S; then a is the (unique) greatest element of $S(\alpha)$.
(iv) An element $a \in S$ is minimal in $S(\alpha)$ (i. e., a is left α-isolated) if and only if $a \notin(S \backslash\{a\})+S$ (then the set $(S \backslash\{a\})+S$ is a proper ideal of S).
(v) An element $a \in S$ is the smallest element of $S(\alpha)$ if and only if $a=0_{S}$ is a neutral element of S.

Proof. It is obvious.

1.2. Lemma.

(i) Every weakly pseudoirreducible finite α-sequence is pseudoirreducible.
(ii) Every weakly pseudoirreducible right (left, resp.) directed infinite α-sequence is pseudoirreducible.
(iii) If there exists no pseudoirreducible right directed infinite α-sequence then $o_{S} \in S$.

Proof. It is obvious (combine (ii), 1.1(iii) and I.5.4(iii)).

[^0]1.3. Lemma. Let $(a, b) \in \alpha$ and $I=\operatorname{Int}_{\alpha}(a, b)=\{c \in S \mid(a, c) \in \alpha,(c, b) \in$ $\alpha\}$. Then:
(i) I is a subsemilattice of S and $\{a, b\} \subseteq I$.
(ii) $a=0_{I}$ and $b=o_{I}$.
(iii) $\alpha_{I}=\alpha_{S} \mid I$.

Proof. It is obious.
In the sequel, put $\beta=\sqrt{\alpha}$ and $\gamma=\mathbf{r} \mathbf{t}(\beta)$. Notice that $\mathbf{i}(\gamma)=\mathbf{t}(\beta)$.

1.4. Proposition.

(i) β is totally antitransitive.
(ii) $\beta \subseteq \gamma \subseteq \alpha$.
(iii) $\beta=\emptyset$ if and only if either $|S|=1$ or S is infinite and for all $a, b \in S$ such that $a+b=b \neq a$ there exists at least one $c \in S$ with $a+c=c \neq a$ and $b+c=b \neq c$.
(iv) γ is an ordering of S.
(v) If $(a, b) \in \alpha$ and $\operatorname{Int}_{\alpha}(a, b)$ is finite then $(a, b) \in \gamma$.

Proof. It is obvious.
1.5. Lemma. The following conditions are equivalent for $a, b \in S$:
(i) $(a, b) \in \beta$;
(ii) $a+b=b \neq a$ and $c \in\{a, b\}$ whenever $c \in S$ is such that $a+c=c$ and $b+c=b$.

Proof. It is obvious.
We shall say that semilattice $S(+)$ is resuscitable if so is the ordering α (i. e., $\alpha=\gamma$).
1.6. Lemma. Let $(a, b) \in \mathbf{i}(\alpha)$ be such that there exists no right (left, resp.) directed infinite $\mathbf{i}(\alpha)$-sequence $\left(a_{0}, a_{1}, a_{2}, \ldots\right)\left(\left(\ldots, b_{2}, b_{1}, b_{0}\right)\right.$, resp.) with $a_{0}=a\left(b_{0}=b\right.$, resp.) and $\left(a_{i}, b\right) \in \alpha\left(\left(a, b_{i}\right) \in \alpha\right.$, resp.) for every $i \geq 1$. Then there exists at least one $c \in S$ such that $(a, c) \in \alpha \quad((c, b) \in \alpha$,resp.) and $(c, b) \in \beta \quad((a, c) \in \beta$, resp.).

Proof. If $(a, b) \in \beta$ then we put $c=a$. If $(a, b) \notin \beta$ then there is $a_{1} \in S$ with $\left(a, a_{1}\right) \in \mathbf{i}(\alpha)$ and $\left(a_{1}, b\right) \in \mathbf{i}(\alpha)$. If $\left(a_{1}, b\right) \in \beta$ then we put $c=a_{1}$. If $\left(a_{1}, b\right) \notin \beta$ then there is $a_{2} \in S$ with $\left(a_{1}, a_{2}\right) \in \mathbf{i}(\alpha)$ and $\left(a_{2}, b\right) \in \mathbf{i}(\alpha)$. Proceeding similarly further, we get our result.
1.7. Lemma. Let $(a, b) \in \mathbf{i}(\alpha)$ be such that there exists no right (left, resp.) directed infinite $\mathbf{i}(\alpha)$-sequence $\left(a_{0}, a_{1}, a_{2}, \ldots\right)\left(\left(\ldots, b_{2}, b_{1}, b_{0}\right)\right.$, resp.) with $a_{0}=a\left(b_{0}=b\right.$, resp.) and $\left(a_{i}, b\right) \in \alpha\left(\left(a, b_{i}\right) \in \alpha\right.$, resp.) for every $i \geq 1$ and no left (right, resp.) directed infinite β-sequence (..., c_{2}, c_{1}, c_{0}) $\left(\left(d_{0}, d_{1}, d_{2}, \ldots\right)\right.$, resp.) with $c_{0}=b\left(d_{0}=a\right.$, resp.) and $\left(a, c_{j}\right) \in \alpha$ $\left(\left(d_{j}, b\right) \in \alpha\right.$, resp.) for every $j \geq 1$. Then $(a, b) \in \gamma$.

Proof. According to 1.6 , there is $c_{1} \in S$ such that $\left(a, c_{1}\right) \in \alpha$ and $\left(c_{1}, c_{0}\right) \in \beta$, where $c_{0}=b$. If $\left(a, c_{1}\right) \in \gamma$ then $(a, b) \in \gamma$. If $\left(a, c_{1}\right) \notin \gamma$ then $\left(a, c_{1}\right) \in \mathbf{i}(\alpha)$, $\left(a, c_{1}\right) \notin \beta$ and, by 1.6 again, there is $c_{2} \in S$ with $\left(a, c_{2}\right) \in \alpha$ and $\left(c_{2}, c_{1}\right) \in \beta$. Proceeding similarly further, we get our result.
1.8. Corollary. The semilattice S is resuscitable, provided that the following two conditions are satisfied:
(1) no right (left, resp.) directed infinite $\mathbf{i}(\alpha)$-sequence is right (left, resp.) bounded in $S(\alpha)$;
(2) no left (right, resp.) directed infinite β-sequence is left (right, resp.) bounded in $S(\alpha)$;
1.9. Corollary. The semilattice S is resuscitable, provided that there exist no right (left, resp.) directed infinite $\mathbf{i}(\alpha)$-sequences and no left (right, resp.) directed infinite β-sequences.
1.10. Corollary. The semilattice S is resuscitable, provided that it is finite.
1.11. Lemma. If $(a, b) \in \gamma$ then $\{a, b\} \subseteq \operatorname{Int}_{\gamma}(a, b)=\{c \mid(a, c) \in \gamma,(c, b) \in$ $\gamma\} \subseteq \operatorname{Int}_{\alpha}(a, b)$.

Proof. It is obvious.
1.12. Example. Let A be a non-empty set and \mathcal{S} the set of subsets of A. Then $\mathcal{S}(\cup)$ is a semilattice, $\emptyset=0_{\mathcal{S}}, A=o_{\mathcal{S}},(B, C) \in \alpha$ if and only if $B \subseteq C,(D, E) \in \beta$ if and only if $D \subseteq E$ and $|E \backslash D|=1$. This semilattice is resuscitable if and only if A is finite.

2. On when the covering relation is right confluent (or WEAKLY SEMIMODULAR LATTICES)

The semilattice S will be called weakly semimodular if $d \in\{b, b+c\}$ whenever $a, b, c, d \in S$ are such that $b \neq c,(a, b) \in \beta,(a, c) \in \beta, b+d=d$ and $b+c=d+c$.
2.1. Lemma. The following conditions are equivalent:
(i) S is weakly semimodular;
(ii) $(b, b+c) \in \beta$ (and $(c, b+c) \in \beta$) whenever $a, b, c \in S$ are such that $(a, b) \in \beta,(a, c) \in \beta$ and $b \neq c ;$
(iii) β is right confluent.

Proof. It is obvious.
2.2. Lemma. Assume that S is weakly semimodular. If $a, b, c \in S$ are such that $(a, b) \in \gamma$ and $(a, c) \in \beta$ then $(c, b+c) \in \gamma$ and either $(b, b+c) \in \beta$ or $b=b+c$ (and then $(c, b) \in \gamma)$.

Proof. There is nothing to show for $a=b$. Hence, assume that $a \neq b$ and let $\left(a_{0}, a_{1}, \ldots, a_{m}\right), m \geq 1$, be a β-sequence with $a_{0}=a$ and $a_{m}=b$; we will proceed by induction on m.

If $a_{1}=c$ then $(c, b+c)=\left(a_{1}, b\right) \in \gamma$ and $b=b+c$. If $a_{1} \neq c$ then $\left(a_{1}, a_{1}+c\right) \in \beta,\left(c, a_{1}+c\right) \in \beta$ and $\left(a_{1}+c, b+c\right)=\left(a_{1}+c, a_{1}+c+b\right) \in \gamma$ by induction, so that $(c, b+c) \in \gamma$. Moreover, either $(b, b+c)=\left(b, b+a_{1}+c\right) \in \beta$ or $b=b+a_{1}+c=b+c$.
2.3. Lemma. Assume that S is weakly semimodular. If $a, b, c \in S$ are such that $(a, b) \in \gamma$ and $(a, c) \in \gamma$ then $(b, b+c) \in \gamma$ and $(c, b+c) \in \gamma$.
Proof. If $a=b$ or $a=c$ then there is nothing to show. Hence, assume that $b \neq a \neq c$ and let $\left(a_{0}, a_{1}, \ldots, a_{m}\right), m \geq 1$, be a β-sequence with $a_{0}=a$ and $a_{m}=b$. By 2.2, $\left(a_{1}, a_{1}+c\right) \in \gamma$, and therefore $(b, b+c)=\left(b+a_{1},\left(b+a_{1}\right)+c\right) \in$ γ by induction on m. Quite similarly, $(c, b+c) \in \gamma$.
2.4. Corollary. If the semilattice S is weakly semimodular then the ordering γ is right strictly confluent.
2.5. Lemma. Assume that S is weakly semimodular. If $(a, b) \in \gamma$ then there exists no right directed infinite β-sequence $\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ such that $a_{0}=a$ and $\left(a_{i}, b\right) \in \alpha$ for every $i \geq 1$.
Proof. Let, on the contrary, such a β-sequence exist. If $a=b$ then $\left(b, a_{1}\right)=$ $\left(a, a_{1}\right) \in \beta$, a contradiction with $\left(a_{1}, b\right) \in \alpha$. Thus $a \neq b$ and there is a finite β-sequence $\left(b_{0}, b_{1}, b_{2}, \ldots, b_{m}\right), m \geq 1$, with $b_{0}=a$ and $b_{m}=b$. If $m=1$ then $(a, b) \in \beta$ and, since $\left(a, a_{1}\right) \in \beta$ and $\left(a_{1}, b\right) \in \alpha$, we get $a_{1}=b$, and hence $a_{2}=a_{1}$, a contradiction with $\left(a_{1}, a_{2}\right) \in \beta$. Thus $m \geq 2$ and we shall proceed by induction on m.
If $a_{1}=b_{1}$ then the contradiction follows by induction. On the other hand, if $a_{1} \neq b_{1}$ then $\left(a_{1}, a_{1}+b_{1}\right) \in \beta$ and $\left(b_{1}, a_{1}+b_{1}\right) \in \beta$; of course, $\left(a_{1}+b_{1}, b\right) \in \alpha$. If $a_{2}=a_{1}+b_{1}$ then we use induction once more. Thus $a_{2} \neq a_{1}+b_{1},\left(a_{2}, a_{2}+b_{1}\right) \in \beta,\left(a_{1}+b_{1}, a_{2}+b_{1}\right) \in \beta$ and $\left(a_{2}+b_{1}, b\right) \in \alpha$. Proceeding in this way, we get the β-sequence ($b_{1}, a_{1}+b_{1}, a_{2}+b_{1}, a_{3}+b_{1}, \ldots$) and we come by induction to our final contradiction.
2.6. Lemma. Assume that S is weakly semimodular. If $(a, b) \in \gamma$ then there exists no right directed infinite $\mathbf{i}(\gamma)$-sequence $\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ such that $a_{0}=a$ and $\left(a_{i}, b\right) \in \alpha$ for every $i \geq 1$.
Proof. Use 2.5 and the fact that $\mathbf{i}(\gamma)=\mathbf{t}(\beta)$.
2.7. Lemma. Assume that S is weakly semimodular. If $(a, b) \in \gamma$ then:
(i) $T=\operatorname{Int}_{\gamma}(a, b)$ is a subsemilattice of $S, a=0_{T}$ and $b=o_{T}$.
(ii) T is resuscitable.
(iii) $\alpha_{T}=\gamma_{T}=\alpha_{S}\left|T=\gamma_{S}\right| T$ and $\beta_{T}=\beta_{S} \mid T$.
(iv) If $(a, c) \in \gamma$ and $(c, b) \in \alpha$ then $c \in T$ (i. e., $(c, b) \in \gamma)$.

Proof.
(i) If $c, d \in T$ then $(a, c) \in \gamma$ and $(a, d) \in \gamma$, and so $(c, c+d) \in \gamma$ by 2.3. Since γ is transitive, we get $(a, c+d) \in \gamma$, Quite similarly, $(c, b) \in \gamma$ and $(c, c+d) \in \gamma$ implies $(c+d, b)=(c+d, b+c+d) \in \gamma$ and we conclude that $c+d \in T$.
(ii) This is easy to see (use 2.3).
(iii) This is also easy to see (use 2.3).
(iv) Use 2.3.
2.8. Example. Consider the following infinite semilattice S_{1} :

	0	a	b_{1}	b_{2}	b_{3}	\ldots	b_{m}	b_{m+1}	b_{m+2}	\ldots	o
0	0	a	b_{1}	b_{2}	b_{3}	\ldots	b_{m}	b_{m+1}	b_{m+2}	\ldots	o
a	a	a	o	o	o	\ldots	o	o	o	\ldots	o
b_{1}	b_{1}	o	b_{1}	b_{1}	b_{1}	\ldots	b_{1}	b_{1}	b_{1}	\ldots	o
b_{2}	b_{2}	o	b_{1}	b_{2}	b_{2}	\ldots	b_{2}	b_{2}	b_{2}	\ldots	o
b_{3}	b_{3}	o	b_{1}	b_{2}	b_{3}	\ldots	b_{3}	b_{3}	b_{3}	\ldots	o
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	\ddots	\vdots	\vdots	\vdots		\vdots
b_{m}	b_{m}	o	b_{1}	b_{2}	b_{3}	\ldots	b_{m}	b_{m}	b_{m}	\ldots	o
b_{m+1}	b_{m+1}	o	b_{1}	b_{2}	b_{3}	\ldots	b_{m}	b_{m+1}	b_{m+1}	\ldots	o
b_{m+2}	b_{m+2}	o	b_{1}	b_{2}	b_{3}	\ldots	b_{m}	b_{m+1}	b_{m+2}	\ldots	o
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots		\vdots	\vdots	\vdots	\ddots	\vdots
o	o	o	o	o	o	\ldots	o	o	o	\ldots	o

Clearly, $S_{1}(+)$ is weakly semimodular and $\beta=\left\{(0, a),(a, o),\left(b_{1}, o\right),\left(b_{i+1}, b_{i}\right) \mid i \geq\right.$ $1\}$. Moreover, $(0, o) \in \gamma, \operatorname{Int}_{\gamma}(o, 0)=\{0, a, o\},\left(0, b_{1}\right) \notin \gamma$ and $\left(\ldots, b_{2}, b_{1}, o\right)$ is a left bounded left directed infinite β-sequence. Finally, S_{1} is not resuscitable.
2.9. Example. Consider the following infinite semilattice S_{2} :

$$
\begin{array}{c|cccccccc}
& 0 & a & \ldots & b_{m} & b_{m+1} & b_{m+2} & \ldots & o \\
\hline 0 & 0 & a & \ldots & b_{m} & b_{m+1} & b_{m+2} & \ldots & o \\
a & a & a & \ldots & o & o & o & \ldots & o \\
\vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\
b_{m} & b_{m} & o & \ldots & b_{m} & b_{m} & b_{m} & \ldots & o \\
b_{m+1} & b_{m+1} & o & \ldots & b_{m} & b_{m+1} & b_{m+1} & \ldots & o \\
b_{m+2} & b_{m+2} & o & \ldots & b_{m} & b_{m+1} & b_{m+2} & \ldots & o \\
\vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & \ddots & \vdots \\
o & o & o & \ldots & o & o & o & \ldots & o
\end{array}
$$

Clearly, S_{2} is weakly semimodular and $\beta=\left\{(0, a),(a, o),\left(b_{i+1}, b_{i}\right) \mid i \in \mathbb{Z}\right\}$. Moreover, $(0, o) \in \gamma, \operatorname{Int}_{\gamma}(o, 0)=\{0, a, o\} \neq S_{2}=\operatorname{Int}_{\alpha}(0, o)$, hence S_{2} is not resuscitable. Finally, S_{2} contains both left and right (bounded) directed infinite β-sequences.
2.10. Example. Consider the following five-element semilattice \mathbf{P} :

	0	a	b	c	o
0	0	a	b	c	o
a	a	a	o	o	o
b	b	o	b	c	o
c	c	o	c	c	o
o	o	o	o	o	o

Clearly, $\beta=\{(0, a),(0, b),(b, c),(a, o),(c, o)\}, \beta$ is neither right nor left confluent and \mathbf{P} is not weakly semimodular.

3. Semimodular semilattices

The semilattice S will be called semimodular if $(a+c, b+c) \in \mathbf{r}(\beta)$ whenever $(a, b) \in \beta$ and $c \in S$.
3.1. Lemma. The following conditions are equivalent:
(i) S is semimodular;
(ii) $d \in\{a+c, b+c\}$ whenever $a, b, c, d \in S$ are such that $(a, b) \in \beta$, $a+c \neq b+c, a+c+d=d$ and $b+c+d=b+c$;
(iii) $\mathbf{r}(\beta)$ is stable.

Proof. It is obvious.
3.2. Lemma. If S is semimodular then it is weakly semimodular and γ is a stable ordering of S.

Proof. It is obvious.
3.3. Proposition. If the semilattice S is resuscitable (e. g., S is finite) then it is semimodular if and only if it is weakly semimodular.

Proof. Only the converse implication needs a proof. Assume that S is weakly semimodular and take $a, b, c \in S$ such that $(a, b) \in \beta$ and $a+c \neq b+c$. By 3.2 and 2.1, the relation β is right confluent, and so $(a+c, b+c) \in \beta$ follows from I.9.5.
3.4. Lemma. Assume that S is semimodular. If $(a, b) \in \gamma,(a, c) \in \alpha$ and $(c, b) \in \alpha$ (i. e., $\left.c \in \operatorname{Int}_{\alpha}(a, b)\right)$ then $(c, b) \in \gamma$.

Proof. We have $(c, b)=(a+c, a+b) \in \gamma$ by 3.2.
3.5. Lemma. Let $(a, c) \in \beta,(c, b) \in \beta,(a, d) \in \alpha$ and $(d, b) \in \alpha$.
(i) If S is weakly semimodular then $(a, d) \in \beta$ implies $(d, b) \in \beta$.
(ii) If S is semimodular then $(a, d) \in \beta$ if and only if $(d, b) \in \beta$.

Proof.
(i) We can assume $c \neq d$. Then $(c, c+d) \in \beta,(d, c+d) \in \beta$ and, of course, $(c+d, b) \in \alpha$. Since $(c, b) \in \beta$ we have $c+d=b$ and $(d, b) \in \beta$.
(ii) Assume $c \neq d$ and $(d, b) \in \beta$ (see (i)). Clearly, $a \neq d$. If $e \in S$ is such that $(a, e) \in \alpha$ and $(e, d) \in \alpha$ then either $e=a+e=c+e$ or $(e, c+e)=(a+e, c+e) \in \beta$.

If $e=c+e$ then $(c, e) \in \alpha$, hence $(c, d) \in \alpha$ and $c=d$, since $(c, b) \in \beta$ and $(d, b) \in \beta$, a contradiction. Thus $(e, c+e) \in \beta$. If $c+e=c$ then $(e, c) \in \beta$ and $e=a$, since $(a, e) \in \alpha$ and $(a, c) \in \beta$. On the other hand, if $c+e \neq c$ then $c+e=b$, since $(c, c+e) \in \alpha$ and $(c+e, b) \in \alpha$. Finally, if $c+e=b$ then $(e, b) \in \beta$ and $e=d$, since $(e, d) \in \alpha$ and $(d, b) \in \beta$. We have proved that $e \in\{a, d\}$ and it follows that $(a, d) \in \beta$.
3.6. Example. The semilattice S_{1} (see 2.8) is weakly semimodular but not semimodular.

4. Strongly modular semilattices

The semilattice S will be called strongly modular if no subsemilattice of S is a copy of \mathbf{P} (see 2.10).

4.1. Proposition. If S is strongly modular then it is semimodular.

Proof. Using 3.1, let $(a, b) \in \beta, a+c \neq b+c, a+c+d=d$ and $b+c+d=b+c$. We have to show that $d \in\{a+c, b+c\}$.

Clearly, $(a, b) \in \alpha,(a+c, b+c) \in \alpha,(a+c, d) \in \alpha,(d, b+c) \in \alpha$ and it follows easily that $T=\{a, b, d, a+c, b+c\}$, is a subsemilattice of S. Moreover, $T \cong \mathbf{P}$, provided that $|T|=5$. Consequently, since S is strongly modular, we get $|T| \leq 4$.

First, $a+c \neq b+c$ and $(a, b) \in \beta$ implies $a \neq b$. If $a=a+c$ then $b+c=a+b+c=a+b=b, d=a+c+d=a+d, b=b+c=b+c+d=b+d$, $(a, d) \in \alpha,(d, b) \in \alpha$, and hence $d \in\{a, b\}=\{a+c, b+c\}$, since $(a, b) \in \beta$. Furthermore, if $a=b+c(a=d$, resp. $)$ then $a=b+c=b+c+c=a+c$ ($a=d=a+c+d=a+c+a=a+c$, resp.).

Now, we can assume that $a \notin\{b, a+c, d, b+c\}$. If $b=a+c$ then $b=b+b=b+a+c=b+c$ and $a+c=b+c$, a contradiction. If $b=b+c$ then $(a, a+c) \in \alpha$ and $(a+c, b)=(a+c, b+c) \in \alpha$ implies $a+c=b$ (we have $(a, b) \in \beta$ and $a \neq a+c$) and $a+c=b+c$, a contradiction once more. Furthermore, if $b=d$ then $b=d=a+c+d=a+c+b=b+c$, which was already proved to be contradictory.

Finally, we can assume that $a \notin\{b, d, a+c, b+c\}, b \notin\{a, d, a+c, b+c\}$, $d \notin\{a, b\}$ and $a+c \neq b+c$. Since $|T| \leq 4$, we obtain $d \in\{a+c, b+c\}$ as desired.
4.2. Example. Let A be a non-empty set and \mathcal{F} the set of non-empty finite subsets of A. Then $\mathcal{F}(\cup)$ is a free semilattice over $A,(B, C) \in \alpha$ if and only if $B \subseteq C,(D, E) \in \beta$ if and only if $D \subseteq E$ and $|E \backslash D|=1$. Moreover, $\mathcal{F}(\cup)$ is semimodular and resuscitable. It is strongly modular if and only if $|A| \leq 3$ (if $|A| \geq 4$ then consider the set $\left.\left\{\left\{a_{1}\right\},\left\{a_{1}, a_{2}\right\},\left\{a_{1}, a_{2}, a_{3}\right\},\left\{a_{1}, a_{3}, a_{4}\right\},\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}\right\}\right)$.
4.3. Example. Define an operation \oplus on the set \mathbb{N}_{0} of non-negative integers by $m \oplus n=\operatorname{lcm}(m, n)$. Then $\mathbb{N}_{0}(\oplus)$ becomes a semilattice, $(m, n) \in \alpha$ if and only if m divides n and $(k, l) \in \beta$ if and only if l / k is a prime number. Clearly, $\mathbb{N}_{0}(\oplus)$ is semimodular and resuscitable. On the other hand, the set $\{1,4,9,18,36\}$ is a subsemilattice isomorphic to $\mathbf{P}(+)$, and so $\mathbb{N}_{0}(\oplus)$ is not strongly modular.

5. On when the covering relation is regular

5.1. Proposition. If the semilattice $S(+)$ is weakly semimodular then the covering relation β is regular.

Proof. Let $(a, b) \in \gamma$ and $T=\operatorname{Int}_{\gamma}(a, b)$. By 2.7 and $3.3, T$ is a semimodular and resuscitable semilattice. Moreover, $a=0_{T}$ and $b=o_{T}$. In particular, b is right α_{T}-isolated. We have $\beta_{T}=\beta_{S}\left|T, \alpha_{T}=\gamma_{T}=\gamma_{S}\right| T=\mathbf{r t}\left(\beta_{T}\right)$ and $(c, b) \in \alpha_{T}$ for every $c \in T$. The relation β_{T} is right confluent (on T) and β_{T} is regular by I.8.3. Now, our result easily follows.
5.2. Example. Put $S=\mathbf{P}$ (see 2.10). Then β is not regular.
5.3. Example. Consider the following six-element semilattice $S_{3}(+)$:

	0	a	b	c	d	o
0	0	a	b	c	d	o
a	a	a	b	o	o	o
b	b	b	b	o	o	o
c	c	o	o	c	d	o
d	d	o	o	d	d	o
o						

Clearly, $\beta=\{(0, a),(0, c),(a, b),(c, d),(b, o),(d, o)\}$ and β is regular. On the other hand, S_{3} is not weakly semimodular.
5.4. Remark. Assume that β is regular. If $(a, b) \in \mathbf{i}(\gamma)(=\mathbf{t}(\beta))$ then all the β-sequences from a to b have the same length, say $m \geq 1$, and we put $\operatorname{dist}_{\gamma}(a, b)=m$. We put also $\operatorname{dist}_{\gamma}(c, c)=0$ for every $c \in S$.
5.5. Lemma. Assume that β is regular. If $(a, b) \in \gamma$ and $(b, c) \in \gamma$ then $\operatorname{dist}_{\gamma}(a, c)=\operatorname{dist}_{\gamma}(a, b)+\operatorname{dist}_{\gamma}(b, c)$.
Proof. It is obvious.

6. Further Results

6.1. Lemma. Assume that S is semimodular. If $(a, b) \in \gamma,(a, c) \in \alpha$ and $(c, b) \in \alpha$ then $(a, c) \in \gamma$ and $(c, b) \in \gamma$.

Proof. We have $(c, b) \in \gamma$ by 3.4 and the covering relation β is regular by 5.1. Put $m=\operatorname{dist}_{\gamma}(a, b)$. If $m=0$ then $a=c=b$ and there is nothing to prove. If $m=1$ then $(a, b) \in \beta$ and either $c=a$ or $c=b$ and there is nothing to prove again. Consequently, assume that $m \geq 2$ and proceed by induction on m.

There is a β-sequence $\left(a_{0}, a_{1}, \ldots, a_{m}\right)$ such that $a_{0}=a$ and $a_{m}=b$. Now, $\left(a_{1}, a_{1}+c\right) \in \alpha,\left(a_{1}+c, b\right) \in \alpha, \operatorname{dist}_{\gamma}\left(a_{1}, b\right)=m-1$ and we get $\left(a_{1}, a_{1}+c\right) \in \gamma$ by induction. According to 5.5, $m-1=\operatorname{dist}_{\gamma}\left(a_{1}, b\right)=\operatorname{dist}_{\gamma}\left(a_{1}, a_{1}+c\right)+$ $\operatorname{dist}_{\gamma}\left(a_{1}+c, b\right)$. If $\operatorname{dist}_{\gamma}\left(a_{1}+c, b\right) \geq 1$ then $\operatorname{dist}_{\gamma}\left(a_{1}, a_{1}+c\right) \leq m-2$, $\operatorname{dist}_{\gamma}\left(a, a_{1}+c\right)=1+\operatorname{dist}_{\gamma}\left(a_{1}, a_{1}+c\right) \leq m-1$ and $(a, c) \in \gamma$ by induction (we have $\left(c, a_{1}+c\right) \in \alpha$).

Now, consider the case $\operatorname{dist}_{\gamma}\left(a_{1}+c, b\right)=0$. Then $a_{1}+c=b$ and we get $(c, b)=\left(a_{0}+c, a_{1}+c\right) \in \mathbf{r}(\beta)$. If $c=b$ then $(a, c) \in \gamma$ trivially, and hence, let $(c, b) \in \beta$ and $(a, c) \notin \gamma$. Then there is $d \in S$ with $(a, d) \in \mathbf{i}(\alpha)$ and $(d, c) \in \mathbf{i}(\alpha)$. If $(a, d) \notin \gamma$ then, according to the preceding part of the proof, we get $(d, b) \in \beta$, and so $d=c$, a contradiction. Thus $(a, d) \in \gamma$ and we have $m=\operatorname{dist}_{\gamma}(a, b)=\operatorname{dist}_{\gamma}(a, d)+\operatorname{dist}_{\gamma}(d, b)$. Since $a \neq d$, it follows that $\operatorname{dist}_{\gamma}(d, b) \leq m-1$, and therefore $(d, c) \in \gamma$ by induction. Consequently, $(a, c) \in \gamma$, a contradiction.
6.2. Lemma. Assume that S is semimodular. If $(a, b) \in \gamma,(a, c) \in \alpha$, $(c, d) \in \alpha$ and $(d, b) \in \alpha$ then $(a, c) \in \gamma,(c, d) \in \gamma$ and $(d, b) \in \gamma$.

Proof. We have $(a, d) \in \gamma$ and $(d, b) \in \gamma$ by 6.1. Then $(a, c) \in \gamma$ and $(c, d) \in \gamma$ by 6.1 again.
6.3. Proposition. Assume that $S(+)$ is weakly semimodular. Let $(a, b) \in \gamma$ and $T=\operatorname{Int}_{\gamma}(a, b)$. Then:
(i) T is a subsemilattice of $S, a=0_{T}$ and $b=o_{T}$.
(ii) T is semimodular and resuscitable.
(iii) $\beta_{T}=\beta_{S} \mid T$ and $\alpha_{T}=\gamma_{T}=\alpha_{S}\left|T=\gamma_{S}\right| T$.
(iv) Every non-empty subset A of T contains at least one element that is maximal in $A(\alpha)$ and at least one element that is minimal in $A(\alpha)$.
(v) Every subchain of $T(\alpha)$ is finite and of length at most $\operatorname{dist}_{\gamma}(a, b)$.
(vi) $T \subseteq \operatorname{Int}_{\alpha}(a, b)$ and $c \in T$, provided that $(a, c) \in \gamma$ and $(c, b) \in \alpha$.
(vii) $T=\operatorname{Int}_{\alpha}(a, b)$, provided that S is semimodular.

Proof.
(i) This is 2.6 (i).
(ii) T is resuscitable by 2.6 (ii), and hence it is semimodular by 3.3 .
(iii) This is 2.6 (iii).
(iv) Use 5.1 and 5.5 .
(v) Use 5.1 and 5.5.
(vi) This is 2.6 (iv).
(vii) See 6.1.
6.4. Proposition. The following conditions are equivalent:
(i) S is weakly semimodular, no right (left, resp.) directed infinite $\mathbf{i}(\alpha)$ sequence is right (left, resp.) bounded in $S(\alpha)$ and no left (right, resp.) directed infinite β-sequence is left (right, resp.) bounded in $S(\alpha)$.
(ii) S is semimodular and resuscitable.
(iii) S is weakly semimodular and every right and left bounded subchain of $S(\alpha)$ is finite.

Proof. (i) implies (ii). The semilattice S is resuscitable by 1.8 , and so it is semimodular by 3.3.
(ii) implies (iii). Let C be a non-empty subchain of $S(\alpha)$ such that there exist $a, b \in S$ with $(a, c) \in \alpha$ and $(c, b) \in \alpha$ for every $c \in C$. Then $C \subseteq$ $\operatorname{Int}_{\alpha}(a, b)=\operatorname{Int}_{\gamma}(a, b)$ and C is finite by 6.3 (ix).
(iii) implies (i). Every right (left, resp.) directed $\mathbf{i}(\alpha)$-sequence is left (right, resp.) bounded in $S(\alpha)$. The rest is clear.

References

[1] V. Flaška, J. Ježek, T. Kepka and J. Kortelainen, Transitive closures of binary relations I. (preprint).

MFF UK, Sokolovská 83, 18600 Praha 8 E-mail address: flaska@karlin.mff.cuni.cz E-mail address: jezek@karlin.mff.cuni.cz
E-mail address: kepka@karlin.mff.cuni.cz

[^0]: The work is a part of the research project MSM0021620839 financed by MŠMT and partly supported by the Grant Agency of the Czech Republic, grant \#201/05/0002.

