
Consequences of the Provability of

NP ⊆ P/poly

Stephen Cook∗

University of Toronto

Jan Kraj́ıček †

Academy of Sciences and Charles University
Prague

Abstract

We prove the following results: (i) PV proves NP ⊆ P/poly iff
PV proves coNP ⊆ NP/O(1). (ii) If PV proves NP ⊆ P/poly then
PV proves that the Polynomial Hierarchy collapses to the Boolean
Hierarchy. (iii) S1

2 proves NP ⊆ P/poly iff S1
2 proves coNP ⊆

NP/O(log n). (iv) If S1
2 proves NP ⊆ P/poly then S1

2 proves that
the Polynomial Hierarchy collapses to PNP[log n]. (v) If S2

2 proves
NP ⊆ P/poly then S2

2 proves that the Polynomial Hierarchy col-
lapses to PNP.

1 Introduction

The theory PV [Coo75] formalizes reasoning that uses only polynomial time
concepts. Similar theories (the so called bounded arithmetic theories) exist
for many other complexity classes [Coo05, CN06]. Separating theories (at
appropriate levels of quantifier complexity) corresponding to two complexity

∗This research was begun while the authors were visiting the Isaac Newton Institute for
Mathematical Sciences (program Logic and Algorithms), in Cambridge. It was supported
in part by the Natural Sciences and Engineering Research Council of Canada

†Supported in part by grants A1019401, AV0Z10190503, MSM0021620839,
201/05/0124, and LC505.

classes may not separate the classes, but it could still carry great significance.
In fact, the problem of separating two such theories is often closely linked with
the problem of whether the distinctness of two complexity classes is consistent
with a suitable bounded arithmetic theory. For example, theories PV and S1

2

are different if coNP 6⊆ NP/poly is consistent with PV. Another prominent
example is this: Theory S2 is not finitely axiomatizable (i.e. theories Si

2 are
all different) iff it is consistent with S2 that PH does not collapse [KPT91,
Bus95, Zam96].

It is therefore interesting to study the consistency with bounded arith-
metic theories of various standard conjectures separating complexity classes.
A good example is the conjecture P 6= NP. Showing this is consistent with
PV is a major open problem. In more detail, P = NP is equivalent to the
existence of a polynomial time function F such that F (A) is a satisfying
assignment for A whenever A is a satisfiable propositional formula. This can
be formalized in the language of PV by

∀T,A, SAT (T,A) ⊃ SAT (F (A), A) (1)

where F is a PV function and SAT (T,A) is an open PV formula expressing
that T is a satisfying assignment for formula A. Showing consistency of
P 6= NP with PV is the same as showing that (1) is not provable in PV

for any polynomial time F . (A natural way to do this would be, for every
F , construct a model of PV in which (1) is false.) This would mean that
even if a polytime F satisfying (1) exists, its correctness could not be proved
using only polynomial time concepts.

It is known that PV proves P = NP iff PV proves NP = coNP iff
PV defines a polynomial time algorithm that assigns to a propositional
formula either a satisfying assignment or an Extended Frege proof of its
unsatisfiability. The same holds for S1

2 . In particular, the consistency of
P 6= NP 6= coNP with these theories would follow from a super-polynomial
lower bound for Extended Frege proofs. This is one of the reasons why lower
bounds for Extended Frege systems would be so important (and presumably
why they seem so difficult).

In this paper we are concerned with whether the conjecture NP 6⊆ P/poly

(some NP problem cannot be solved by any polynomial size family of Boolean
circuits) is consistent with the theories PV, S1

2, S2
2. A well-known conse-

quence of NP ⊆ P/poly is that the polynomial hierarchy PH collapses to

2

the second level [KL80, KL82], i.e.

NP ⊆ P/poly =⇒ PH = Σ
p
2 ∩Π

p
2 .

Here we show that stronger collapses can be inferred from stronger assump-
tions of the form NP 6⊆ P/poly is inconsistent with various theories. In
particular, if the theory is PV, then the collapse is to the Boolean hierarchy
(i.e. the bounded query hierarchy). If the theory is S1

2, then the collapse is
to PNP[O(logn)] (polynomial time with O(logn) queries to an NP oracle).
If the theory is S2

2, then the collapse is to PNP. In all cases, the collapses
are provable in the corresponding theories.

We also show two other intriguing results: PV proves NP ⊆ P/poly

iff PV proves coNP ⊆ NP/O(1), and S1
2 proves NP ⊆ P/poly iff S1

2

proves coNP ⊆ NP/O(logn). (Here the notation /O(1) refers to a constant
number of advice bits, and /O(logn) refers to O(logn) advice bits.)

2 Preliminaries

We presuppose basic knowledge of bounded arithmetic (see for example
[Kra95] or [Bus98]). However we formulate our results in the two-sorted
setting [Coo05, CN06], where PV becomes VPV, S1

2 becomes V1, and S2
2

becomes V2. In this setting lower case letters x, y, z,m, n, ... range over N,
and upper case letters A,B,C,X, Y, Z, ... range over finite bit strings (tech-
nically over finite subsets of N). The two-sorted vocabulary includes the
symbols 0, 1,+, ·,=,≤ of first-order arithmetic, and also the length function
|X|, where the length of the finite set X ⊆ N is 1 plus the largest element of
X, or 0 if X is empty.

For the two-sorted theory VPV, the vocabulary also includes symbols
for all polynomial time functions, both number-valued functions f(~x, ~X) and

string-valued functions F (~x, ~X). (Here “polynomial time” means time poly-
nomial in the length of the inputs, where inputs and outputs of the number
sort are written in unary notation: e.g. 5 is written 11111). The axioms
for VPV include definitions for all of these functions, based on Cobham’s
Theorem. Also VPV proves the number induction scheme for open formulas.

It is an important fact that VPV is a universal theory (i.e. it can be
axiomatized by purely universal formulas).

Bounded quantifiers for strings have the form ∃X ≤ tϕ, which stands for
∃X(|X| ≤ t ∧ ϕ), or ∀X ≤ tϕ, which stands for ∀X(|X| ≤ t ⊃ ϕ). Here t is

3

a number term which does not involve X.
ΣB

1 formulas have the form ∃X1 ≤ t1 · · · ∃Xk ≤ tkϕ where ϕ has no string
quantifiers, but may have bounded number quantifiers. More generally ΣB

i

formulas begin with i blocks of bounded string quantifiers, in which the first
block is existential, the second is universal, etc. ΠB

i formulas are the same,
except the first block is universal. Note that ΣB

i formulas correspond to
strict Σb

i formulas in the single-sorted case, because we require that all string
quantifiers are in front.

The theories Vi, i ≥ 1, have the finite two-sorted vocabulary mentioned
above. For these theories, ΣB

i and ΠB
i formulas are restricted to this vocab-

ulary, but in the context of VPV we allow these formulas to have the full
vocabulary of VPV. The theory Vi proves the number induction scheme
for ΣB

i formulas. The theory Vi(VPV) has the vocabulary of VPV and
proves the number induction scheme for ΣB

i formulas over this larger vo-
cabulary. Vi(VPV) is a conservative extension of Vi, but Vi(VPV) is not
conservative over VPV unless the polynomial hierarchy collapses.

An important fact is that a set of strings is in NP iff it is represented by
a ΣB

1 formula ϕ(X) with one free string variable X. This is true whether or
not we allow ΣB

1 formulas to have the full vocabulary of VPV.
The class P/poly consists of all problems solvable in polynomial time

with polynomial “advice”. That is, for each input length n there exists a
string Yn of length nO(1) (the advice) such that when the polytime algorithm
is supplied with Yn in addition to the input string of length n, the algorithm
obtains the correct answer. An equivalent definition of P/poly is the class
of all problems L solvable by a family 〈Cn, n ∈ N〉 of Boolean circuits such
that Cn has size nO(1) and solves the restriction of L to inputs of length n.

It is straightforward to verify that VPV can prove the equivalence of the
two definitions of P/poly.

To formalize the assertion NP ⊆ P/poly as a VPV formula, we start
by noting that VPV can prove the NP-completeness of the propositional
satisfiability problem in the following sense. For every ΣB

1 formula ϕ(X)
there is a VPV string function Fϕ(X) which takes a string X to a string
Fϕ(X) encoding a propositional formula such that

VPV ⊢ ϕ(X) ↔ ∃T SAT (T, Fϕ(X)) (2)

where SAT (T,A) is an open VPV formula which holds iff truth assignment
T satisfies formula A.

4

Thus NP ⊆ P/poly is equivalent in VPV to the assertion that the
satisfiability problem can be solved by a polynomial size family of Boolean
circuits. By the “self-reducibility” of satisfiability, it follows that this is again
equivalent to the existence of a polynomial size family of Boolean circuits
such that the n-th circuit C ′

n in the family, given a satisfiable propositional
formula A (coded as a bit string of length at most n) as input, outputs C ′

n(A),
a satisfying assignment for A.

Further, VPV proves self-reducibility in the following sense. We define a
VPV formula Correct(C, n), asserting that the Boolean circuit C correctly
solves the satisfiability problem for formulas A of length at most n, as follows:

Correct(C, n) ≡ ∀A ≤ n, C(A) = 1 ↔ ∃T SAT (T,A) .

Then there is a VPV function CIRC(C, n) which, given a circuit C sat-
isfying Correct(C, n) gives a Boolean circuit C ′ which outputs a satisfying
assignment C ′(A) for every satisfiable formula A of length at most n. We
claim that

VPV ⊢ Correct(C, n) ⊃

∀T,A ≤ n, SAT (T,A) ⊃ SAT (CIRC(C, n)(A), A) . (3)

For each i, the circuit CIRC(C, n) finds the i-th bit of the satisfying assign-
ment by asking C whether A remains satisfiable when the i − th variable
of A is set to 1, given the values it has previously found for the first i − 1
variables. Then (assuming Correct(C, n) and SAT (T,A)) VPV proves by
induction on i that A instantiated by the first i truth values is satisfiable,
according to C. The claim (3) follows.

The claim (3) justifies coding the assertion NP ⊆ P/poly by the following
ΣB

2 formula:

∀n∃C ≤ t∀A ≤ n∀T ≤ n, SAT (T,A) ⊃ SAT (C(A), A) (4)

where t = t(n) is a VPV number term (we may assume it has the form nℓ),
C(A) is a VPV term expressing the output of circuit C on input A, and
SAT (T,A) is a VPV open formula which asserts that truth assignment T
satisfies formula A.

3 Results for Universal Theories

A useful tool for studying universal theories is the KPT witnessing theorem
[KPT91]. This is a form of the Herbrand Theorem, and can be stated in a

5

general first-order context as follows.

Theorem 3.1 (KPT). Let T be a universal theory over a vocabulary L
which contains at least one constant or function symbol. Let ϕ(x, y, z) be an
open L-formula and suppose T proves ∀x∃y∀zϕ(x, y, z). Then there exists a
finite sequence t1(x), t2(x, z1), . . . , tk(x, z1, . . . , zk−1) of L-terms (containing
only the displayed variables) such that

T ⊢ ∀x∀~z, ϕ(x, t1(x), z1) ∨ ϕ(x, t2(x, z1), z2)

∨ . . . ∨ ϕ(x, tk(x, z1, . . . , zk−1), zk).

Proof: [from [CT06]] Let b, c1, c2, ... be a list of new constants, and let
u1, u2, ... be an enumeration of all variable-free terms built from symbols
of L together with b, c1, c2, ..., where the only new constants in uk are among
{b, c1, ..., ck−1}. It suffices to show that

T ∪ {¬ϕ(b, u1, c1),¬ϕ(b, u2, c2), . . . ,¬ϕ(b, uk, ck)}

is unsatisfiable for some k.
Suppose otherwise. Then by compactness

T ∪ {¬ϕ(b, u1, c1),¬ϕ(b, u2, c2), ...} (5)

has a model M . Since T is universal, the substructure M ′ consisting of the
denotations of the terms u1, u2, ... is also a model for (5). It is easy to see
that

M ′ |= T + ∀y∃z¬ϕ(b, y, z)

and hence T 6⊢ ∀x∃y∀zϕ(x, y, z). �

The following is an easy consequence of this KPT theorem, in the two-
sorted setting.

Corollary 3.2. Let TVPV be VPV, or any universal theory with the same
vocabulary as VPV. If TVPV proves (4) then there are VPV functions
C1, · · · , Ck whose values are Boolean circuits such that TVPV proves

∀n∀A1 · · ·Ak, T1 · · ·Tk ≤ n, [SAT (T1, A1) ⊃ SAT (C1(n)(A1), A1)]∨

[SAT (T2, A2) ⊃ SAT (C2(n,A1, T1)(A2), A2)] ∨ · · · ∨

[SAT (Tk, Ak) ⊃ SAT (Ck(n,A1, · · · , Ak−1, T1, · · · , Tk−1)(Ak), Ak)] . (6)

6

A language L ⊆ {0, 1}∗ is in the class NP/O(1) (NP with constant
advice) iff there is a polynomial time relation R(X, Y, i) and a constant k ∈ N

such that for all n ∈ N there exists i ≤ k (the advice) so for all X ∈ {0, 1}n

X ∈ L⇔ ∃Y ≤ nO(1) R(X, Y, i)) . (7)

The assertion coNP ⊆ NP/O(1) can be formalized by saying that for every
ΣB

1 formula ϕ(X) there is a ΣB
1 formula ψ(X, i) and a constant k such that

∀n

k∨

i=1

∀X, |X| = n ⊃ [¬ϕ(X) ↔ ψ(X, i)] . (8)

Theorem 3.3. Let TVPV be VPV, or any universal extension of VPV

with the same vocabulary. Then TVPV proves NP ⊆ P/poly as in (4) iff
TVPV proves coNP ⊆ NP/O(1) as in (8).

Proof: Assume that TVPV proves NP ⊆ P/poly. It follows from Corol-
lary 3.2 that TVPV proves (6). Since VPV proves that the propositional
unsatisfiability problem is complete for coNP (see (2)), it suffices to prove
(8) for the case ϕ(X) is ∃T ≤ |X| SAT (T,X). Let the constant k be as in
(6). Given n, the advice in for n is the smallest number j ≤ k such that (6)
holds for this n and all A1, · · · , Ak, T1, · · · , Tk, with k replaced by j. Note
that VPV easily proves the existence of in, since k is a constant and only
order properties of N are needed.

We define the ΣB
1 formula ψ(A, i) in (8) to assert the existence ofA1, · · ·Ai−1

and T1, · · · , Ti−1 which falsify the first i− 1 disjuncts in (6) and also falsify

SAT (Ci(n,A1, · · · , Ai−1, T1, · · · , Ti−1)(A), A) .

By the definition of the advice in given above, it is easy to verify in TVPV

that if A is a propositional formula of length n, then ψ(A, in) holds iff A is
unsatisfiable.

Conversely, suppose that TVPV proves coNP ⊆ NP/O(1) as in (8).
For fixed n, define

U ={X | ϕ(X) ∧ |X| = n}

Vi ={X | ψ(X, i) ∧ |X| = n}, i = 1 · · ·k .

Then by (8) we conclude in TVPV that at least one Vi is the complement
of U :

7

∨

i

[U ∩ Vi = ∅ ∧ U ∪ Vi = {X : |X| = n}] .

It follows that (writing U(X) for X ∈ U and Vi(X) for X ∈ Vi) for any
I ⊆ {1, . . . , k}, TVPV proves (for X1, · · · , Xk, Y ranging over strings of
length n) ∧

i∈I

U(Xi) ∧ Vi(Xi) →
∨

j /∈I

U(Y) ∨ Vj(Y) . (9)

This is because the conditions in the antecedent imply that Vi is not the
complement of U while the condition in the succedent for j is implied if Vj

is the complement.
The prenex form of this formula is ΣB

1 (with additional free variables), so
the Herbrand theorem provides us with polynomial time functions

FI(X̃i1, · · · , X̃iℓ , Y) ,

one for each I = {i1 < · · · < iℓ} which from witnesses X̃i’s to the validity of
the conjuncts in the antecedent (i.e. X̃i is Xi ∈ U ∩Vi together with the two
NP witnesses for the membership in the two sets) and from Y finds a j /∈ I
and an NP witness of the membership of Y in either U or Vj.

Now we show how to compute U in polynomial time using polynomial
size advice. For a given length n we get the following advice:

• I = {i | U ∩ Vi 6= ∅} .

• For each i ∈ I a witness Ãi to the fact that U ∩ Vi 6= ∅, i.e. the
string Ai of length n in the intersection and the two NP-witnesses of
its membership in U and Vi.

If we want to decide whether or not B ∈ U , |B| = n, we simply compute

FI(Ãi1 , ..., Ãiℓ , B) .

The output is either a witness to B ∈ U or a witness to B ∈ Vj for somej /∈ I.
In the latter case, necessarily B /∈ U by definition of I.

�

The Boolean Hierarchy BH is the smallest class of sets that contains
NP and is closed under the Boolean operations of intersection, union, and

8

complement. It coincides with the bounded query class PNP[O(1)] of sets
which can be computed in polynomial time with a constant number of queries
to an NP oracle (see [Bei91]). Thus

NP ⊆ BH ⊆ PNP[log n] ⊆ PNP ⊆ Σ
p
2 ∩ Π

p
2 ⊆ PH

where PH is the polynomial hierarchy and PNP[logn] is the class of sets
solvable in polynomial time by making O(logn) queries to an NP oracle. It
is not known whether any of these inclusions is proper.

Theorem 3.4. Let TVPV be VPV or any universal extension of VPV

with the same vocabulary. If TVPV proves NP ⊆ P/poly as in (4), then
TVPV proves that the polynomial hierarchy collapses to the Boolean Hier-
archy.

Proof: As in the proof of Theorem 3.3, we may assume that TVPV proves
(6). To show PH = BH it suffices to show that Σ

p
2 ⊆ BH. Thus suppose

that L ∈ Σ
p
2, so

X ∈ L ⇔ ∃Y ≤ f(|X|)∀Z ≤ g(|X|)ϕ(X, Y, Z) (10)

where f and g are polynomials and ϕ(X, Y, Z) is an open formula of VPV.
Since the satisfiability problem is NP-complete, there is a VPV function
F (X, Y) such that F (X, Y) is a satisfiable propositional formula iff ¬∀Z ≤
g(|X|)ϕ(X, Y, Z). Further, the equivalence is provable in VPV (see (2)).

Now suppose C is a circuit such that for every satisfiable propositional
formula A of length at most n, C(A) is a satisfying assignment for A (n will
be specified later). Then for all X, Y such that |F (X, Y)| ≤ n we have

∀Z ≤ g(|X|)ϕ(X, Y, Z) ⇔ ¬SAT (C(F (X, Y)), F (X, Y)) . (11)

We can find a suitable circuit C by using (6) and computing the advice in
used in the proof of Theorem 3.3. We can compute in by successive NP

queries, for j = 1, 2, ...k

∃T1, A1, · · ·Tj, Aj ≤ n
j∧

i=1

[SAT (Ti, Ai) ∧ ¬SAT (Ci(n,A1, · · · , Ai−1, T1, · · · , Ti−1)(Ai), Ai)] .

9

Then in is the smallest j such that the answer to the query is ‘NO’. (VPV

easily proves the existence of in because there are only a constant k number
of possible choices for it.) Now one more NP query suffices. Thus, setting
j = in, X ∈ L iff

∃Y ≤ f(|X|)∃T1, A1, · · ·Tj−1, Aj−1 ≤ n
j−1∧

i=1

[SAT (Ti, Ai) ∧ ¬SAT (Ci(n,A1, · · · , Ai−1, T1, · · · , Ti−1)(Ai), Ai)]

∧ ¬SAT (Cj(n,A1, · · · , Aj−1, T1, · · · , Tj−1)(F (X, Y)), F (X, Y)) .

Finally we can set n = h(|X|) for a suitable polynomial h.
It is easy to see that this argument can be formalized in TVPV. �

It turns out that Theorem 3.4 can also be proved as an immediate con-
sequence of Theorem 3.3 and the following complexity-theoretic result.

Theorem 3.5 (Jer̆ábek). 1 If coNP ⊆ NP/O(1) then the Boolean Hierarchy
collapses to the Polynomial Hierarchy. The proof can be formalized in VPV.

Proof: As in the proof of Theorem 3.4, to show PH = BH it suffices to
show that the language L satisfying (10) is in the Boolean Hierarchy. Let
F (X, Y) be as in that proof.

Assume that coNP ⊆ NP/O(1), so UNSAT is in NP/O(1). Then there
is a ΣB

1 formula UNS(A, i) and a number k such that for every length n
there is advice i ≤ k and for every propositional formula A of length at most
n,

A is unsatisfiable iff UNS(A, i) (12)

Then we claim that

X ∈ L ⇐⇒

k∨

i=0

[∃Y ≤ f(|X|) UNS(F (X, Y), i)

∧ ∀A, T ≤ h(|X|), UNS(A, i) ⊃ ¬SAT (T,A)] (13)

where h(m) is a polynomial upper bound on |F (X, Y)| for all X of length m
and all Y of length at most f(m). It follows from this Claim that L ∈ BH,
since the RHS has the form

∨
i[Ri∧Si] where Ri is in NP and Si is in coNP.

1We are grateful to Emil Jer̆ábek for supplying the proof of this theorem, in response
to an open problem stated in an earlier version of this paper.

10

To prove the Claim, first assume that X ∈ L. Let n = h(|X|) and let
i ≤ k be the advice such that (12) holds for all A of length at most n. Then
the RHS of (13) holds by (10) and the stated property of F (X, Y).

Conversely, suppose that X satisfies the RHS of (13), let i satisfy the
disjunction, and let Y satisfy the existential quantifier for this i. Then the
second conjunct implies that this i gives “sound advice” for UNS(A, i), |A| ≤
h(|X|), and hence X ∈ L by (10) and the stated property of F (X, Y).

Note that VPV proves (13) from (10) and the properties of F (X, Y) and
UNS(A, i). �

4 Witnessing Theorems

The notions surrounding definability of multivalued functions (which we call
search problems) in bounded arithmetic were introduced in [BKT93].

A search problem QR is a multivalued function with graph R(~x, ~X, Z), so

QR(~x, ~X) = {Z | R(~x, ~X, Z)} .

Here the arity of either or both of ~x, ~X may be zero. We assume here that
the search problem is total, meaning that the set QR(~x, ~X) is non-empty for

all ~x, ~X. The search problem is a function problem if |QR(~x, ~X)| = 1 for all

~x, ~X.
A (single-valued) function F (~x, ~X) solves QR if

F (~x, ~X) ∈ QR(~x, ~X)

for all ~x, ~X. More generally, a search problem QR′ solves QR if QR′ is total
and

QR′(~x, ~X) ⊆ QR(~x, ~X)

for all ~x, ~X.
We say that a search problem QR is ΣB

i -definable in a theory T if there
is a ΣB

i -formula ψR such that

ψR(~x, ~X, Z) ⊃ R(~x, ~X, Z)

and
T ⊢ ∃ZψR(~x, ~X, Z) .

11

For example, a search problem is ΣB
1 -definable in V1 iff it is solvable by a

polynomial time function.
The standard notation PΣ

p
i refers to the class of decision problems solv-

able in polynomial time by accessing an oracle for a problem in Σ
p
i . PΣ

p
i [q(n)]

is the same, except that the number of oracle queries in a computation
is limited to O(q(n)), where n is the length of the input. We use FPΣ

p

i

and FPΣ
p

i [q(n)] for the classes of search problems solvable in the same way.
[BKT93] introduced the notation FPΣ

p

i [wit, q(n)] for the class of search prob-
lems solvable in polynomial time by making O(q(n)) witness queries to an
oracle for some problem in Σ

p
i . Here a witness query returns 1 together with

a witness to the query if the answer is ‘YES’, and returns 0 if the answer
is ‘NO’. (A witness to an NP query is a certificate which can be used to
verify a positive answer in polynomial time, and for i > 1 a witness to a Σ

p
i

query allows a positive answer to be verified in Σ
p
i−1)̇ When witness queries

are allowed, the machine must output a solution to the search problem no
matter which witnesses to the positive queries are returned.

Note that FPΣ
p

i [wit] = FPΣ
p

i ; i.e. witness queries do not help if the
number of queries is unrestricted. This is because by self reducibility, a
witness for a positive query can be found using polynomially many decision
queries.

In terms of two-sorted theories, the following results (among others) are
known, or can be inferred from the corresponding single-sorted results. Here
for i ≥ 1 the theory TVi [Coo05, CN06] is the two sorted analog of T i

2,
and TV0 is a finitely axiomatizable theory for polynomial time (VPV is a
conservative extension of TV0) [Coo05, CN06].

Theorem 4.1. (i) [Bus86] For i ≥ 1, a search problem Q is ΣB
i -definable

in Vi iff Q ∈ FPΣ
p

i−1. For the only if direction, Vi proves the correctness of
the witness oracle algorithm.

(ii) [Kra93, Kra95] For i ≥ 1, a search problem Q is ΣB
i+1-definable in Vi iff

Q ∈ FPΣ
p

i [wit, log n]. For the only if direction, Vi proves the correctness of
the witness oracle algorithm.

(iii) [Bus90, Coo05] For i ≥ 0, a search problem Q is ΣB
i+1-definable in TVi

iff Q ∈ FPΣ
p

i .

(iv) [Pol99] For i ≥ 0, a search problem Q is ΣB
i+2-definable TVi iff Q ∈

FPΣ
p

i+1[wit, 1].

12

The case (iv) in the above theorem follows from Theorem 54 in [Pol99],
where the ‘only if’ direction is proved by a cut-elimination argument. We
are interested in this direction for the case i = 0, so we give a simple proof of
this case based on the KPT theorem. Since VPV is a conservative extension
of TV0, it suffices to prove the theorem for VPV. Since both directions are
interesting, we prove the ‘if’ direction also.

Theorem 4.2. A search problem Q is ΣB
2 -definable in VPV iff Q ∈ FPNP[wit, 1].

For the only if direction, VPV proves the correctness of the witness oracle
algorithm.

Proof: For the direction =⇒, assume that Q = QR is ΣB
2 -definable in VPV,

so
VPV ⊢ ∃ZψR(~x, ~X, Z) (14)

where ψR is ΣB
2 and

ψR(~x, ~X, Z) ⊃ R(~x, ~X, Z) .

For some open formula ϕ, (14) can be written

VPV ⊢ ∃Z∃Y ∀Wϕ(~x, ~X, Z, Y,W) (15)

where all quantifiers are bounded. By Theorem 3.1 (KPT) there are VPV

functions F1, . . . , Fk and G1, . . . , Gk such that (thinking Z = Fi() and Y =

Gi(), and suppressing the arguments ~x, ~X)

VPV ⊢ ϕ(F1, G1,W1) ∨ ϕ(F2(W1), G2(W1),W2) ∨ . . .

∨ ϕ(Fk(W1, . . . ,Wk−1), Gk(W1, . . . ,Wk−1),Wk) . (16)

Now a polynomial time witness oracle machine with an NP oracle, given
inputs ~x, ~X, can compute Z satisfying ψR(~x, ~X, Z) as follows. First ask the
oracle whether ∃W1¬ϕ(F1, G1,W1). If ‘NO’, then output F1. If ‘YES’, then
let W1 be a witness, and ask the oracle whether

∃W2¬ϕ(F2(W1), G2(W1),W2) .

If ‘NO’, then output F2(W1). If ‘YES’, then letW2 be a witness, and continue.
By (16) we are guaranteed a ‘NO’ answer after some number i ≤ k queries,
so output Fi(W1, . . . ,Wi−1). Then VPV proves that the output satisfies the
quantifier ∃Z in (15), and hence solves the search problem QR.

13

For the direction ⇐=, assume that the oracle Turing machine M solves
Q(~x, ~X) in polynomial time with at most k witness queries to the NP lan-

guage L, for some constant k. Let Comp(~x, ~X,W) be a ΠB
1 -formula asserting

that W codes a halting computation of M on input ~x, ~X. Thus W codes the
sequence of configurations of M on input ~x, ~X, and for each query to L it pro-
vides the answer to the query. If the answer is ‘YES’ it provides a witness for
the query (the correctness of the witness can be checked by a ΣB

0 -formula).
Note that a ‘NO’ answer can be verified using the universal string quantifiers
allowed for ΠB

1 -formulas.
Now define

ψ(~x, ~X, Z) ≡ ∃W ≤ t, Comp(~x, ~X,W) ∧Out(Z,W)

where Out(Z,W) is a ΣB
0 -formula asserting that Z is the output of the

computation W and t = t(~x, ~X) is a suitable bounding term. To show that Q

is ΣB
2 -definable in VPV is suffices to show that VPV proves ∃Zψ(~x, ~X, Z).

Since it is easy to show that every computation W has an output Z satisfying
Out(Z,W), it suffices to show

VPV ⊢ ∃WComp(~x, ~X,W) .

To do this, recall that k is an upper bound on the number of queries made
by M during any computation. We define, for 0 ≤ i ≤ k+1, the ΠB

1 -formula

Compi(~x, ~X,W) to assert that W codes a partial computation of M on input

~x, ~X which is either halting, or includes at least i queries, and ends on an
unanswered query. It suffices to show that for each i,

VPV ⊢ ∃WCompi(~x, ~X,W) (17)

because by assumption Compk+1 is equivalent to Comp, so we may replace
Comp by Compk+1.

For i = 0, (17) follows from the fact that VPV proves the existence of
a computation for any polytime (nonoracle) Turing machine. It suffices to
show

VPV ⊢ Compi(~x, ~X,W) ⊃ ∃W ′Compi+1(~x, ~X,W
′)

Arguing in VPV, assume Compi(~x, ~X,W). If W is a halting computation
we are done. Otherwise the answer to the final query of W must be either
‘YES’ or ‘NO’. If the answer is ‘YES’, then by definition there is a witness to
the answer, and using this witness the computation can be continued until
the next query. If the answer is ‘NO’, then again the computation can be
continued until the next query. �

14

5 Results for V1 and V2

We now apply Theorem 4.1 to infer analogs of Theorems 3.3 and 3.4 for the
theories V1 and V2. We also note that Theorem 3.4 and the the only if
direction of Theorem 3.3 for VPV follow rather easily from Theorem 4.2,
using the proof method of the next theorem.

Theorem 5.1. (i) V1 proves NP ⊆ P/poly iff V1 proves coNP ⊆ NP/O(logn).

(ii) If V1 proves NP ⊆ P/poly then V1 proves that the Polynomial Hierar-
chy collapses to PNP[log n].

(iii) If V2 proves NP ⊆ P/poly then V2 proves that the Polynomial Hier-
archy collapses to PNP.

Proof: (i) (=⇒): Assume that V1 proves NP ⊆ P/poly as in (4). Let
η(n, C) be the formula

∀A ≤ n∀T ≤ n, SAT (T,A) ⊃ SAT (C(A), A) . (18)

Then V1 proves ∃Cη(n, C), and hence the search problem Q given by

Q(n, C) ⇔ η(n, C)

is ΣB
2 -definable in V1. Hence by Theorem 4.1 part (ii) for i = 1, Q is in

FPNP[wit, logn], provably in V1. Let M be a polynomial time witness or-
acle Turing machine solving Q by making O(logn) witness queries to some
NP problem, such that V1 proves that any circuit C output by M on input
n satisfies (18). Here is how V1 proves the existence of a correct computation
of M for each input n. We distinguish between the decision part of a witness
query, whose answer is 0 or 1, and the witness part of the answer in case the
decision answer is 1. Note that the sequence of queries (and their answers)
may not be determined by the input n, because more than one witness an-
swer to a positive witness query may be possible. By the ΣB

1 number-MAX
principle, V1 proves for each input n the existence of a computation Z of
M in which the sequence of 0-1 answers to the decision part of the queries
is lexicographically the largest possible (here the ΣB

1 formula verifies the 1
answers and their witnesses, but does not verify the 0 answers). It follows
that the 0 answers for this computation are correct, even though they have
not been verified (the first wrong 0 answer would yield a lexicographically
larger sequence of answers).

15

To formalize coNP ⊆ NP/O(logn) we adapt the formalization (8) of
coNP ⊆ NP/O(1) as follows: For every ΣB

1 formula ϕ(X) there is a ΣB
1

formula ψ(X) and a polynomial f(n) such that

∀n∃i ≤ f(n), |X| = n ⊃ [¬ϕ(X) ↔ ψ(X, i)] . (19)

As before, since the unsatisfiability problem is complete for coNP, it suffices
to show that V1 proves (19) for the case that ϕ(X) is ∃T ≤ |X| SAT (T,X).

Given n, the advice string needed to show that a given unsatisfiable for-
mula A of length n is indeed unsatisfiable is the lexicographically largest
possible string of 0-1 query answers described above for the computation
of M on input n. We define the ΣB

1 formula ψ(A, i) in (19) to assert that
some computation Z of M on input n, in which the query answers are those
coded by i in binary, computes a circuit C such that C(A) is not a satisfying
assignment for A. Then V1 proves that C satisfies (18), and hence A is
unsatisfiable.

(i) (⇐=): Assume that V1 proves coNP ⊆ NP/O(logn) as in (19).
We argue that V1(VPV) proves NP ⊆ P/poly by a slight modification of
the proof of the ‘if’ direction of Theorem 3.3. (Note that V1(VPV) is a
conservative extension of V1.) The sets U and Vi are as in that proof, except
that i ranges up to O(logn) rather than the constant k. The set I in (9)
is specified by a string variable I listing its members. Instead of a separate
function FI for every I, we now have a single VPV function F (I, X̃, Y),
where X̃ is an array giving witnesses to the validity of all conjuncts in the
antecedent of (9). (The existence of a polynomial time such F now follows
from the Buss witnessing theorem for V1.) The advice required to compute
U is the same as before, except longer (but still polynomial in length), since
it requires information for O(logn) values of i instead of a constant k values.

(ii): Assume that V1 proves NP ⊆ P/poly as in (4). Let M be the
witness oracle machine described in the proof of (i) (=⇒) above. Thus on
input n, M computes a circuit C satisfying (18).

To show that V1(VPV) proves that the Polynomial Hierarchy collapses
to PNP[logn], it suffices to show Σ

p
2 ⊆ PNP[log n]. We argue as in the proof

of Theorem 3.4, and assume that L ∈ Σ
p
2, so (10) holds. The idea is to use

the circuit C solving SAT computed by M , so that (11) holds for this C.
However there is a difficulty in finding C, because we are trying to show L
is in PNP[logn], so that only decision queries are allowed, but M requires
witness queries to find C. We proceed as follows. To determine whether

16

a given string X is in L, we start by asking a sequence of O(logn) NP

decision queries to determine the lexicographically largest possible sequence
S of 0-1 answers to the witness queries of the computation of M (see the
proof of (i) (=⇒)) on input n (where n is a suitable polynomial in |X|).
Now just one more NP decision query is needed. By (10) and (11), X is
in L iff there exists Y ≤ f(|X|) and there exists a computation of M on
input n such that the decision part of the answers to the witness queries of
the computation are the sequence S (only positive query answers and their
witnesses need be verified) such that if C is the resulting circuit computed
by M then ¬SAT (C(F (X, Y)), F (X, Y)).

(iii): The proof is similar to the proof of (ii), but instead of part (ii) of
Theorem 4.1 we use part (i): If Q is ΣB

2 -definable in V2 then Q is in FPNP.
�

Just as Theorem 3.4 follows from Theorem 3.3 and Theorem 3.5, an
alternative proof of Theorem 5.1 (ii) (except possibly the provability of the
conclusion) can be obtained from the conclusion coNP ⊆ NP/O(logn) of
Theorem 5.1 (i) and the following complexity-theoretic result.

Theorem 5.2. If coNP ⊆ NP/O(logn) then the Polynomial Hierarchy
collapses to PNP[log n].

Proof: We argue as in the proof of Theorem 3.5, except now the formula
UNS(A, i) needs O(logn) bits of advice instead of constant advice. Thus the
constant k in (13) becomes a function k(n) = nO(1) (where n = |X|). From
this we see that L can be computed in polynomial time with polynomially
many parallel queries to an NP oracle. From results in [BH91] it follows that
O(logn) serial queries suffice, so L ∈ PNP[log n] as required. �

Open Questions: Does Theorem 3.4 have a converse as in Theorem 3.3:
If VPV proves PH = BH can we conclude VPV proves NP ⊆ P/poly?

Is there a converse to either of Theorems 3.5 or 5.2? For example, does
PH = BH imply coNP ⊆ NP/O(1), possibly with the additional assump-
tion that NP ⊆ P/poly?

References

[Bei91] Richard Beigel. Bounded Queries to SAT and the Boolean Hierar-
chy. Theoretical Computer Science, 84(2):199–223, 1991.

17

[BH91] Samuel Buss and Louise Hay. On Truth-Table Reducibility to SAT.
Information and Computation, 91(1):86–102, 1991.

[BKT93] Samuel Buss, Jan Kraj́ıček, and Gaisi Takeuti. On Provably Total
Functions in Bounded Arithmetic Theories Ri

3, U
i
2, and V i

2 . In
Peter Clote and Jan Kraj́ıček, editors, Arithmetic, Proof Theory
and Computational Complexity, pages 116–61. Oxford University
Press, 1993.

[Bus86] Samuel Buss. Bounded Arithmetic. Bibliopolis, 1986.

[Bus90] Samuel Buss. Axiomatizations and conservation results for frag-
ments of bounded arithmetic. In Logic and Computation, Pro-
ceedings of a Workshop held at Carnegie Mellon University, pages
57–84. AMS Contemporary Mathematics (106), 1990.

[Bus95] Samuel Buss. Relating the bounded arithmetic and polynomial
time hierarchies. Annals of Pure and Applied Logic, 75:67–77, 1995.

[Bus98] Samuel Buss. First–Order Proof Theory of Arith-
metic. In S. Buss, editor, Handbook of Proof The-
ory, pages 79–147. Elsevier, 1998. Available on line at
www.math.ucsd.edu/~sbuss/ResearchWeb/HandbookProofTheory/.

[CN06] Stephen Cook and Phuong Nguyen. Foundations of Proof Complex-
ity: Bounded Arithmetic and Propositional Translations. unpub-
lished manuscript http://www.cs.toronto.edu/~sacook/, 2006.

[Coo75] Stephen Cook. Feasibly constructive proofs and the propositional
calculus. Proceedings of the 7th Annual ACM Symposium on The-
ory of computing, pages 83–97, 1975.

[Coo05] Stephen Cook. Theories for Complexity Classes and Their Proposi-
tional Translations. In Jan Kraj́ıček, editor, Complexity of compu-
tations and proofs, pages 175–227. Quaderni di Matematica, 2005.

[CT06] Stephen Cook and Neil Thapen. The strength of replacement in
weak arithmetic. ACM Trans. on Computational Logic (TOCL),
7(4), 2006.

18

[KL80] R. M. Karp and R. J. Lipton. Some connections between nonuni-
form and uniform complexity classes. In Proc. 12th Annual ACM
Symposium on Theory of Computing, pages 302–309, 1980.

[KL82] R. M. Karp and R. J. Lipton. Turing machines that take advice.
Enseignement Mathematique, 30:255–273, 1982.

[KPT91] Jan Kraj́ıček, Pavel Pudlák, and Gaisi Takeuti. Bounded arith-
metic and the polynomial hierarchy. Annals of Pure and Applied
Logic, 52:143–53, 1991.

[Kra93] Jan Kraj́ıček. Fragments of bounded arithmetic and bounded query
classes. Trans. AMS, 338(2):587–98, 1993.

[Kra95] Jan Kraj́ıček. Bounded Arithmetic, Propositional Logic and Com-
putational Complexity. Cambridge University Press, 1995.

[Pol99] Chris Pollett. Structure and Definability in General Bounded
Arithmetic Theories. Annals of Pure and Applied Logic, 100:189–
245, 1999.

[Zam96] D. Zambella. Notes on polynomially bounded arithmetic. Journal
of Symbolic Logic, 61(3):942–966, 1996.

19

