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Abstract. We prove that there is a distributive (∨, 0, 1)-semilattice S of
size ℵ2 such that there is no (∨, 0, 1)-homomorphism from Conc L to S which

is weakly distributive at the largest congruence of L, for any universal algebra
L with polynomially definable structure of a (∨, 0, 1)-semilattice. In particu-
lar, the (∨, 0, 1)-semilattice S is not isomorphic to the semilattice of compact
congruences of any lattice. This improves Wehrung’s solution of Dilworth’s
Congruence Lattice Problem, by giving the best cardinality bound possible.
The main ingredient of our proof is the modification of Kuratowski’s Free Set
Theorem, which involves what we call free trees.

1. Introduction

Congruence lattices of universal algebras correspond to algebraic lattices. By
the theorem of N. Funayama and T. Nakayama [2], the congruence lattice of a
lattice is, in addition, distributive (see also [3, II. 3.Theorem 11]). On the other
hand, R. P. Dilworth proved that every finite distributive lattice is isomorphic to
the congruence lattice of a finite lattice (first published in [5]) and he conjectured
that every distributive algebraic lattice is isomorphic to the congruence lattice of
a lattice (see again [5]). This conjecture, referred to as the Congruence Lattice

Problem, appeared to be very difficult and despite many attempts (see surveys
[3, Appendix C] and [11]), it remained open for over sixty years until, recently,
F. Wehrung disproved it in [16].

Wehrung’s solution involves a combination of new ideas, see, in particular, Lem-
mas 4.4, 5.1, and 6.2 in [16], and methods developed in earlier papers, which orig-
inated in [13] and were pursued further in [8, 9, 10, 12, 14]. In these papers,
counterexamples to various problems related to the Congruence Lattice Problem
were obtained. The optimal cardinality bound for all these counterexamples is ℵ2,
however Wehrung’s argument requires an algebraic distributive lattice with at least
ℵω+1 compact elements. In the present paper, we improve Wehrung’s result by
proving that there is a counterexample of size ℵ2. As in the related cases, ℵ2 turns
out to be the optimal cardinality bound for a negative solution of the Congruence
Lattice Problem.

Wehrung’s construction in [16] uses the free distributive extension of a (∨, 0)-
semilatticea certain functor that assigns to every (∨, 0)-semilattice a distributive
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(∨, 0)-semilattice, defined by M. Ploščica and J. Tůma in [8]. The main features of
this construction for the refutation of the Congruence Lattice Problem are extracted
in the so-called Evaporation Lemma [16, Lemma 4.4]. We generalize this idea
by defining a diluting functor whose properties suffices to prove the Evaporation
Lemma, and we prove that the free distributive extension of a (∨, 0)-semilatticeis,
indeed, a diluting functor.

Further, we modify Kuratowski’s Free Set Theorem, the combinatorial essence of
the abovementioned counterexamples. Given a set Ω and a map Φ: [Ω]<ω → [Ω]<ω,
we define a free k-tree (with respect to Φ), for every positive integer k, which is a
k-ary tree with some combinatorial properties derived from the properties which
play a part in the original Kuratowski’s Free Set Theorem. We prove that a free
k-tree exists whenever the cardinality of the set Ω is at least ℵk−1, and we apply the
existence of a free 3-tree in every set of cardinality at least ℵ2 to improve Wehrung’s
result.

2. Basic Concepts

A (∨, 0)-semilattice S is distributive if for every a, b, c ∈ S satisfying c ≤ a ∨ b,
there are a′ ≤ a and b′ ≤ b such that a′ ∨ b′ = c. A homomorphism of join-se-
milattices µ : S → T is called weakly distributive at an element x ∈ S, if for all
y0, y1 ∈ T such that µ(x) ≤ y0 ∨ y1, there are x0, x1 ∈ S such that x ≤ x0 ∨ x1

and µ(xi) ≤ yi, for all i < 2 (see [16]).
Given a universal algebra L and x, y, we denote by ΘL(x, y) the smallest congru-

ence (i.e., intersection of all the congruences) of L identifying x and y. We denote
by ConL, resp. Conc L the lattice of all congruences of L, resp. the join-semi-
lattice of all compact congruences of L. We say that L has permutable congruences
if a ∨ b = a ◦ b, for all a, b ∈ ConL.

We will use the standard set theoretic notation and terminology. We identify each
ordinal number with the set of its predecessors, in particular, n = {0, . . . , n − 1},
for each positive integer n. We denote by ω the first infinite ordinal, and by ωn

the first ordinal of size ℵn, for every positive integer n. For a set X , we denote by
[X ]<ω the set of all finite subsets of X , and by [X ]n the set of all its n-elements
subsets, for every natural number n. We denote by |X | the cardinality of a set X .

As in [16], we put ε(n) = n mod 2, for every integer n.

3. Diluting functors

Denote by S the category of (∨, 0)-semilattices (with (∨, 0)-homomorphisms).

Definition 1. An expanding functor on S is a pair (F, ι), where F is an endofunctor
on S and ι is a natural transformation from the identity to F such that ιS : S → F(S)
is an embedding, for every (∨, 0)-semilattice S. We shall denote the expanding
functor above by F once the natural transformation ι is understood, and we shall
identify ιS(x) with x, for all x ∈ S.

An expanding functor F on S is a diluting functor, if for all (∨, 0)-semilattices S
and T and every (∨, 0)-homomorphism f : S → T , the following property is satisfied:
for every v ∈ F(S), and u0, u1 ∈ F(T ), if F(f)(v) ≤ u0 ∨ u1, then there are
x0, x1 ∈ F(S) and y ∈ S such that

f(y) ≤ u0 ∨ u1, F(f)(xi) ≤ ui, for all i < 2, and v ≤ x0 ∨ x1 ∨ y.
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Given a (∨, 0)-semilattice S and subsets U , V of S, we shall use the notation

U ∨ V = {u ∨ v | u ∈ U and v ∈ V }.

Lemma 3.1. Let S be a (∨, 0)-semilattice and let Si, i < 2, be (∨, 0)-subsemi-

lattices of S such that S = S0 ∨S1, and there are retractions ri : S → Si, for i < 2.
Put si = F(ri), for every i < 2. Let ui ∈ F(Si), i < 2, be such that si(u1−i) = 0,
for all i < 2. Then for every y ∈ S such that y ≤ u0 ∨u1, there are yi ∈ Si, i < 2,
such that y ≤ y0 ∨ y1 and yi ≤ ui, for all i < 2.

Proof. Put yi = ri(y), for every i < 2. Since S = S0 ∨ S1, there are y′
i ∈ Si,

for i < 2, such that y = y′
0 ∨ y′

1. Since the maps ri, i < 2, are retractions,
y′

i ≤ ri(y) = yi, for all i < 2, whence y ≤ y0 ∨ y1.
It remains to prove that yi ≤ ui, for all i < 2. Fix i < 2. Since si ↾ S = ri

and si : F(S) → F(Si) is a retraction, si(ui) = ui. Since, by the assumptions,
si(u1−i) = 0, we conclude that

yi = si(y) ≤ si(u0 ∨ u1) = si(u0) ∨ si(u1) = si(ui) = ui. �

Define F0 to be the identity functor and, inductively, Fn+1 = F ◦ Fn, for ev-
ery natural number n. By our assumption, the inclusion map defines a natu-
ral transformation from the identity functor on S to F, therefore we can define
F∞(S) =

⋃

n∈ω Fn(S), resp. F∞(f) =
⋃

n∈ω Fn(f), for every (∨, 0)-semilattice S,
resp. every (∨, 0)-homomorphism f : S → T and, again, the inclusion map defines
a natural transformation from the identity functor on S to F∞. In particular, if F

is an expanding functor on S, then F∞ is expanding as well.

Lemma 3.2. Let F be a diluting functor on S. Then the functor F∞ is diluting as

well.

Proof. Let S and T be (∨, 0)-semilattices, and let f : S → T be a (∨, 0)-homomor-
phism. Let v ∈ F∞(S) and let u0, u1 ∈ F∞(T ) be such that F∞(f)(v) ≤ u0 ∨ u1.
We are looking for x0, x1 ∈ F∞(S) and y ∈ S such that

f(y) ≤ u0 ∨ u1, F∞(f)(xi) ≤ ui, for all i < 2, and v ≤ x0 ∨ x1 ∨ y.

We shall argue by induction on the least natural number n such that v ∈ Fn(S).
If n = 0, we put x0 = x1 = 0, y = v, and we are done. Suppose that v ∈ Fn+1(S),
for some natural number n, and that the property is proved at stage n. Let k ≥ n
be a natural number such that u0, u1 ∈ Fk+1(T ). Denote by g the composition of
the (∨, 0)-homomorphism Fn(f) and the inclusion map from Fn(T ) to Fk(T ). By
applying the assumption that F is a diluting functor to the (∨, 0)-homomorphism
g : Fm(S) → Fk(T ), we obtain elements x′

0, x
′
1 ∈ Fm+1(S) and y′ ∈ Fm(S) such

that

g(y′) ≤ u0 ∨ u1, F(g)(x′
i) ≤ ui, for all i < 2, and v ≤ x′

0 ∨ x′
1 ∨ y′.

Since g(y′) ≤ u0 ∨ u1 implies F∞(f)(y′) ≤ u0 ∨ u1, there are, by the induction
hypothesis, elements x′′

0 , x′′
1 ∈ F∞(S) and y ∈ S such that

f(y) ≤ u0 ∨ u1, F∞(f)(x′′
i ) ≤ ui, for all i < 2, and y′ ≤ x′′

0 ∨ x′′
1 ∨ y.

Now it is easy to conclude that xi = x′
i ∨ x′′

i , for i < 2, and y are the desired
elements. �
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As in [16], denote by L the functor from the category of sets to S, which assigns

to a set Ω the (∨, 0, 1)-semilattice L(Ω) defined by generators 1, and a
ξ
0, a

ξ
1, for

ξ ∈ Ω, subjected to the relations

a
ξ
0 ∨ a

ξ
1 = 1, for all ξ ∈ Ω, (3.1)

and to a map f : X → Y the unique (∨, 0, 1)-homomorphism L(f) : L(X) → L(Y )

such that L(f)(aξ
i ) = a

f(ξ)
i , for all ξ ∈ X and all i < 2.

Given a finite subset A of Ω and a map ϕ : A → 2, we put aA
ϕ =

∨

α∈A aα
ϕ(α).

By the coming Corollary 4.2, the following lemma is a generalization of Wehrung’s
original “Evaporation Lemma” [16, Lemma 4.4].

Lemma 3.3. Let F be a diluting functor on S. Define G = F◦L. Let Ω be a set, let

A0, A1 be finite disjoint subsets of Ω, and let δ ∈ Ωr(A0∪A1). Let v ∈ G(Ωr{δ}),
let ϕi : Ai → 2, and let ui ∈ G(Ω r A1−i), for i < 2. Then

v ≤ u0 ∨ u1 and ui ≤ aAi
ϕi

, aδ
i , for all i < 2,

implies that v = 0.

Proof. Denote by f the inclusion map from Ω r {δ} to Ω, and observe that L(f)
corresponds to the inclusion L(Ω r {δ}) ⊆ L(Ω). Since F is diluting, there are
elements x0, x1 ∈ G(Ω r {δ}) and y ∈ L(Ω r {δ}) such that

y ≤ u0 ∨ u1, G(f)(xi) ≤ ui, for all i < 2, and v ≤ x0 ∨ x1 ∨ y.

Fix i < 2. There is a unique retraction pi : L(Ω) → L(Ω r {δ}) satisfying
pi(a

δ
i ) = 0 and pi(α

δ
1−i) = 1. Observe that qi = F(pi) : G(Ω) → G(Ω r {δ}) is a

retraction with respect to G(f). Since xi ∈ G(Ωr{δ}), qi(G(f)(xi)) = xi, while, by
our assumptions, qi(a

δ
i ) = 0. Since G(f)(xi) ≤ ui ≤ aδ

i , we conclude that xi = 0.

Let ri : L(Ω) → L(ΩrA1−i) be a unique retraction such that ri(a
A1−i
ϕ1−i ) = 0, and

put si = F(ri). From u1−i ≤ a
A1−i
ϕ1−i it follows that si(u1−i) = 0. By Lemma 3.1,

there are yj ∈ L(Ω r A1−j) with yj ≤ uj , for all j < 2, such that y ≤ y0 ∨ y1.

Since yj ≤ uj ≤ a
Aj
ϕj , aδ

j and δ 6∈ Aj , we conclude that yj = 0, for all j < 2. �

4. Free Distributive Extension is Diluting

We summarize the main properties of the construction of the extension R(S) of
a (∨, 0)-semilattice S (see [8, Section 2]) referring to the outline in [16, Sections
3,4]. We shall prove that the functor R is diluting. For a (∨, 0)-semilattice S, we
shall put C(S) = {(a, b, c) ∈ S3 | c ≤ a ∨ b}. We say that a finite subset v of C(S)
is reduced, if the following properties are satisfied:

(1) the set v contains exactly triple of the form (a, a, a); we define π(v) = a

and v∗ = v r {(a, a, a)}.
(2) (a, b, c) ∈ v and (b, a, c) ∈ v implies that a = b = c, for all a, b, c ∈ S.
(3) if (a, b, c) ∈ v∗, then a, b, c 6≤ π(v), for all a, b, c ∈ S.

Observe that if v is a reduced subset of C(S) and u ⊆ v∗, then u ∪ {(0, 0, 0)} is a
reduced subset as well.

We denote by R(S) the set of all reduced subsets of C(S). By [8, Lemma 2.1]
(see also [16, Corollary 3.2]), R(S) is a (∨, 0)-semilattice with respect to the partial
ordering ≤ defined by

v ≤ u iff for all (a, b, c) ∈ v r u either a ≤ π(u) or c ≤ π(u) (4.1)
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and the assignment v 7→ {(v, v, v)} is a (∨, 0)-embedding from S into R(S).
As in [16], we use the symbol ⊲⊳S to denote the elements of R(S) defined as

⊲⊳S(a, b, c) =











c, if either a = b or b = 0 or c = 0,

0, if a = 0,

{(0, 0, 0), (a, b, c)}, otherwise,

for all (a, b, c) ∈ C(S). Recall that by formula (3.3) in [16],

x =
∨

(

⊲⊳S(a, b, c) | (a, b, c) ∈ x
)

, for all x ∈ R(S). (4.2)

By [16, Proposition 3.5], every (∨, 0)-homomorphism f : S → T extends to a
unique (∨, 0)-homomorphism R(f) : S → T such that

R(f)(⊲⊳S(a, b, c)) = ⊲⊳T (f(a), f(b), f(c)), for all (a, b, c) ∈ C(S), (4.3)

and the assignment S 7→ R(S), f 7→ R(f) is an functor on the category S. It follows
that if f : S → T is a (∨, 0)-homomorphism, v ∈ S, and u ∈ T , then

R(f)(v) ≤ u iff ⊲⊳T (f(a), f(b), f(c)) ≤ u for all (a, b, c) ∈ v. (4.4)

Lemma 4.1. The functor R is diluting.

Proof. Let S and T be (∨, 0)-semilattices and let f : S → T be a (∨, 0)-homomor-
phism. We have to verify that for every v ∈ R(S) and u0, u1 ∈ R(T ) such that
R(f)(v) ≤ u0 ∨ u1, there are elements x0, x1 ∈ R(S) and y ∈ S such that

f(y) ≤ u0 ∨ u1, R(f)(xi) ≤ ui, for all i < 2, and v ≤ x0 ∨ x1 ∨ y.

For all i < 2 define

xi = {(a, b, c) ∈ v | (f(a), f(b), f(c)) ∈ u∗
i } ∪ {(0, 0, 0)},

and observe that x0, x1, as subsets of v∗∪{(0, 0, 0)}, are reduced, that is, x0, x1 ∈
R(S). It follows from (4.3) that R(f)(xi) ≤ ui, for all i < 2. An easy application
of [16, Lemma 3.1] yields that (u0 ∨u1)

∗ ⊆ u∗
0 ∪u∗

1, and so ⊲⊳S(a, b, c) ≤ x0 ∨x1,
for every (a, b, c) ∈ v such that (f(a), f(b), f(c)) ∈ (u0 ∨ u1)

∗.
For all (a, b, c) ∈ v define

̺((a, b, c)) =

{

a if f(a) ≤ π(u0 ∨ u1),

c otherwise,

and put

y =
∨

(

̺((a, b, c)) | (a, b, c) ∈ v and (f(a), f(b), f(c)) /∈ (u0 ∨ u1)
∗
)

.

Clearly, y ∈ S, and, by (4.1), ⊲⊳ S(a, b, c) ≤ y, for all (a, b, c) ∈ v such that
(f(a), f(b), f(c)) /∈ (u0 ∨ u1)

∗. Overall, we have proved that ⊲⊳ S(a, b, c) ≤ x0 ∨
x1 ∨ y, for all (a, b, c) ∈ v, and so, by (4.2), v ≤ x0 ∨ x1 ∨ y.

Finally, since R(f)(v) ≤ u0 ∨ u1, it follows from (4.1) that f(̺((a, b, c))) ≤
π(u0 ∨u1), for every (a, b, c) ∈ v such that (f(a), f(b), f(c)) /∈ (u0 ∨u1)

∗, whence
f(y) ≤ u0 ∨ u1. �

Observe that R(S) is distributive “relatively to” the (∨, 0)-semilattice S, that
is, for every a, b, c ∈ S with c ≤ a ∨ b, there are a′ ≤ a, b′ ≤ b in R(S) such
that c = a′ ∨ b′. It follows that the (∨, 0)-semilattice R∞(S) is distributive. By
Lemma 3.2, we conclude that
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Corollary 4.2. The functor R∞ is diluting. Moreover, R∞(S) is a distributive

(∨, 0)-semilattice, for every (∨, 0)-semilattice S.

Observe that the functor R∞ is denoted by D in [16].

5. Free Trees

Let k be a positive integer, let Ω be a set. For a map Ψ: [X ]k−1 → [X ]<ω, we
say that an k-element subset B is free (with respect to Ψ) if b /∈ Φ(B r {b}), for all
b ∈ B.

Kuratowski’s Theorem [7]. Let k be a positive integer, let Ω be a set, and let

Ψ: [Ω]k−1 → [Ω]<ω be any map. If |Ω| ≥ ℵk−1, then there is a k-element free

subset of Ω.

Notation. Let k and n be natural numbers with k > 0. Given a natural number
m ≤ n and a map g : {m, . . . , n − 1} → k, we shall put

Tn,k(g) = {f : n → k | f ↾ {m, . . . , n − 1} = g}

Given a natural number m < n, a map g : {m + 1, . . . , n − 1} → k, and i < k, we
shall use the notation

Tn,k(g, i) = {f ∈ Tn,k(g) | f(m) = i},

Tn,k(g,¬i) = {f ∈ Tn,k(g) | f(m) 6= i}.

Definition 2. Let Ω be a set and let Φ: [Ω]<ω → [Ω]<ω be a map. Let k and n
be natural numbers with k > 0. We say that a family T = (α(f) | f : n → k) of
elements of Ω is a free k-tree of height n (with respect to Φ) if

{α(f) | f ∈ Tn,k(g, i)} ∩ Φ({α(f) | f ∈ Tn,k(g,¬i)}) = ∅, (5.1)

for all m < n, all maps g : {m + 1, . . . , n − 1} → k, and all i < k. We will call the
set rng T = {α(f) | f : n → k} the range of T.

Lemma 5.1. Let Ω be a set and let Φ: [Ω]<ω → [Ω]<ω be a map. Let k be a positive

integer. Every subset X of Ω of cardinality at least ℵk−1 contains the range of a

free k-tree of height n, for every natural number n.

Proof. We shall argue by induction on n. If n = 0, pick T = {α∅}, where α∅ is an
arbitrary element of X . Let n be natural number and suppose that the statement
holds for n. We shall prove that X contains a free k-tree, T, of height n+1. Cut up
the set X as a union of pairwise disjoint subsets Xα, for α < ωk−1, of cardinality
at least ℵk−1. By the induction hypothesis, each Xα contains the range of a free
tree Tα = (α(f) | f : n → k) of height n. Define a map Ψ: [ωk−1]

k−1 → [ωk−1]
<ω

by

Ψ(A) =
{

β < ωk−1 | rng Tβ ∩ Φ
(

⋃

{rng Tα | α ∈ A}
)

6= ∅
}

, (5.2)

for all A ∈ [ωk−1]
k−1 (since the sets rng Tα, for α < ωk−1, are pairwise disjoint and

finite, Ψ(A) is finite, for all A ∈ [ωk−1]
k−1). By Kuratowski’s Theorem, there is a

k-element free subset, B = {α0, . . . , αk−1}, of X with respect to Ψ. Put α(f) =
αf(n)(f ↾ n), for all maps f : n+1 → k. We claim that T = (α(f) | f : (n+1) → k) is
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a free k-tree with respect to Φ. Let m < n+1 and fix a map g : {m+1, . . . , n} → k.
If m = n, the only possibility is g = ∅. Then

{α(f) | f ∈ Tn+1,k(g, i)} = rng Tαi
,

{α(f) | f ∈ Tn+1,k(g,¬i)} =
⋃

j<k, j 6=i

rng Tαj
,

for all i < k. Since B is a free set with respect to Ψ,

rng Tαi
∩ Φ

(

⋃

{rng Tαj
| j < k, j 6= i}

)

= ∅,

by (5.2). If m < n and i < k, put g′ = g ↾ {m + 1, . . . , n − 1}. Then

{α(f) | f ∈ Tn+1,k(g, i)} = {αg(n)(f) | f ∈ Tn,k(g′, i)},

{α(f) | f ∈ Tn+1,k(g,¬i)} = {αg(n)(f) | f ∈ Tn,k(g′,¬i)}.

Since Tαg(n)
is a free k-tree with respect to Φ,

{αg(n)(f) | f ∈ Tn,k(g′, i)} ∩ Φ({αg(n)(f) | f ∈ Tn,k(g′,¬i)}) = ∅,

by (5.1). �

6. The Optimal Bound in Wehrung’s Theorem

Let F be an expanding functor on S satisfying the following properties: For every
(∨, 0)-semilattice S and every family (Si | i ∈ I) of (∨, 0)-subsemilattices of S:

⋂

i∈I

F(Si) = F

(

⋂

i∈I

Si

)

. (6.1)

For a nonempty upwards directed poset P and every family (Sp | p ∈ P ) of (∨, 0)-
semilattices such that Sp is a (∨, 0)-subsemilattice of Sq, whenever p ≤ q in P :

⋃

p∈P

F(Sp) = F

(

⋃

p∈P

Sp

)

. (6.2)

Put G = F ◦ L. Then for every set Ω and every family (Ai | i ∈ I) of subsets
of Ω:

⋂

i∈I

G(Ai) = G

(

⋂

i∈I

Ai

)

,

and for a nonempty upwards directed poset P and every family (Ap | p ∈ P ) of sets
such that Ap ⊆ Aq, whenever p ≤ q in P :

⋃

p∈P

G(Ap) = G

(

⋃

p∈P

Ap

)

.

It follows that, given a set Ω and an element a ∈ Ω, there is a smallest finite
subset A of Ω such that a ∈ G(A). We shall call the subset A the support of a, and
denote by Supp(a) (see [16]).

Let Ω be a set of cardinality κ ≥ ℵ2, let F be a diluting functor satisfying
the properties (6.1) and (6.2). Let L be an algebra with a polynomially definable
structure of (∨, 0, 1)-semilattice and suppose that there exists a homomorphism
µ : Conc L → G(Ω) which is weakly distributive at the largest congruence of L. As
in [16, Section 6], we may assume that µ separates zero. By [16, Section 6], there
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are a positive integer nξ and elements zξ
i ∈ L, 0 ≤ i ≤ nξ, such that zξ

0 = 0, zξ
nξ

= 1,
and

µΘL(zξ
i , zξ

i+1) ≤ a
ξ

ε(i), for all i < nξ, (6.3)

for all ξ ∈ Ω. (Recall that ε(i) = i mod 2.) Since the set |Ω| ≥ ℵ2 is uncountable,
there are a positive integer n and a subset X of Ω of cardinality at least ℵ2 such
that nξ = n, for all ξ ∈ X .

As in [16, Section 6], we denote by ConU
c L the (∨, 0)-subsemilattice of Conc L

generated by all principal congruences ΘL(u, v), where u, v ∈ U , for every subset
U of L. Further, we denote by S(A) the (∨, 0)-subsemilattice of L generated by

{zξ
i | 0 ≤ i ≤ n and ξ ∈ A} and we put

Φ(A) =
⋃

{

Supp(µθ) | θ ∈ ConS(A)
c L

}

, (6.4)

for every subset A of Ω. Observe that if A is finite, then both S(A) and Φ(A)
are finite. The following lemma is analogous to [16, Lemma 6.2], giving another
illustration of the “erosion method”.

Lemma 6.1. Let T = (α(f) | f : n → 3) be a free 3-tree in X with respect to Φ.

Then
∨

f∈Tn,2(g)

z
α(f)
n−m = 1, (6.5)

for every natural number m ≤ n and every map g : {m, . . . , n − 1} → 2.

Proof. We shall argue by induction on m. If m = 0, than the equality (6.5) is
trivially satisfied, for every map g : {m, . . . , n − 1} → 2. Let m < n, let g : {m +
1, . . . , n − 1} → 2 be a map, and suppose that (6.5) is satisfied at stage m. Put

xi =
∨

f∈Tn,2(g,i)

z
α(f)
n−m−1, for all i < 2.

Fix i < 2. Clearly,

µΘL(xi, 1) ≤
(

∨

f∈Tn,2(g,i)

µΘL

(

z
α(f)
n−m−1, z

α(f)
n−m

) )

∨ µΘL

(

∨

f∈Tn,2(g,i)

z
α(f)
n−m, 1

)

.

Put

v = µΘL

(

∨

f∈Tn,2(g)

z
α(f)
n−m−1, 1

)

= µΘL(x0 ∨ x1, 1).

Now define Ai = {α(f) | f ∈ Tn,2(g, i)}, and let ϕi : Ai → 2 be the constant map
with value (n − m − 1) mod 2. By the induction hypothesis

µΘL

(

∨

f∈Tn,2(g,i)

z
α(f)
n−m, 1

)

= 0,

and, by (6.3), µΘL(z
α(f)
n−m−1, z

α(f)
n−m) ≤ a

α(f)
ε(n−m−1), for all f ∈ Tn,2(g, i). Thus

µΘL(xi, 1) ≤
∨

f∈Tn,2(g,i)

a
α(f)
ε(n−m−1) = aAi

ϕi
.

Let δ be any element of X . By the Erosion Lemma [16, Lemma 5.1], there are

uj ∈ ConS(Aj∪{δ})
c L, with uj ≤ aδ

ε(j), µΘL(xj , 1) (and so uj ≤ aδ
ε(j), a

Aj
ϕj ), for all

j < 2, such that v ≤ u0 ∨ u1.
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Now let δ = α(f), for some fixed f ∈ Tn,3(g, 2). By (6.4), Supp(v) ⊆ Φ({α(h) |
h ∈ Tn,2(g)}) = Φ(A0 ∪ A1) and Supp(uj) ⊆ Φ(Aj ∪ {δ}), for all j < 2. Since T is
a free 3-tree with respect to Φ, δ 6∈ Φ(A0 ∪A1) and A1−j ∩Φ(Aj ∪ {δ}) = ∅, for all
j < 2. It follows that v ∈ G(Ω r δ) and uj ∈ G(Ω r A1−j), for all j < 2. Applying
Lemma 3.3, we conclude that v = 0 which, as µ separates zero, implies that

∨

h∈Tn,2(g)

z
α(h)
n−m−1 = 1.

�

Now we can state the announced improvement of [16, Theorem 6.1]. Notice also
that unlike the G(Ω) considered in [16], the (∨, 0)-semilattice G(Ω) in Theorem 6.2
is not distributive a priori.

Theorem 6.2. Let Ω be a set of cardinality at most ℵ2. Let L be an algebra with

a polynomially definable structure of a (∨, 0, 1)-semilattice. Then there exists no

(∨, 0, 1)-homomorphism from Conc L to G(Ω) which is weakly distributive at the

largest congruence of L.

Proof. Suppose that there is a (∨, 0, 1)-homomorphism µ : Conc L → G(Ω) which

is weakly distributive at the largest congruence of L. Find elements zξ
i , 0 ≤ i < nξ

with zξ
0 = 0 and znξ

= 1 satisfying (6.3), for every ξ ∈ Ω, a positive integer n, and
a subset X of Ω of cardinality at least ℵ2 with nξ = n, for every ξ ∈ X , as in the
beginning of this section. By Lemma 6.1, there is a free 3-tree T = (α(f) | f : n → 3)
of height n in Ω with respect to Φ. By Lemma 6.1,

∨

f∈Tn,2(g)

z
α(f)
n−m = 1,

for every natural number m ≤ n and every map g : {m, . . . , n − 1} → 2. In partic-
ular, for m = n and g = ∅ we obtain

1 =
∨

f∈Tn,2(g)

z
α(f)
n−m =

∨

f : n→2

z
α(f)
0 = 0,

which is a contradiction. �

By Corollary 4.2, the functor R∞ is diluting and by [16, Lemma 3.6], it satisfies
both (6.1) and (6.2). Let us denote by G the composition R∞◦L (It is the same G as
the one considered in [16].) Since R∞(S) is distributive for every (∨, 0)-semilattice
S, we we obtain the following corollary.

Corollary 6.3. Let Ω be a set of cardinality at most ℵ2. Then the distributive

(∨, 0, 1)-semilattice G(Ω) is isomorphic to Conc L for no lattice L.

A. P. Huhn [6] (see also [3, Theorem 13 in Appendix C]) proved that every
distributive (∨, 0)-semilattice of size at most ℵ1 is isomorphic to Conc L, for some
lattice L. Moreover, the lattice L can be taken sectionally complemented and
modular [15, Corollary 5.3] or relatively complemented, locally finite, with zero [4].
In particular, in all these cases, the lattice L has permutable congruences [1].
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