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F-QUASIGROUPS ISOTOPIC TO GROUPS

TOMÁŠ KEPKA∗, MICHAEL K. KINYON, AND J. D. PHILLIPS

Abstract. In [5] we showed that every loop isotopic to an F-quasigroup is
a Moufang loop. Here we characterize, via two simple identities, the class of
F-quasigroups which are isotopic to groups. We call these quasigroups FG-
quasigroups. We show that FG-quasigroups are linear over groups. We then
use this fact to describe their structure. This gives us, for instance, a complete
description of the simple FG-quasigroups. Finally, we show an equivalence of
equational classes between pointed FG-quasigroups and central generalized mod-
ules over a particular ring.

1. Introduction

Let Q be a non-empty set equipped with a binary operation (denoted multiplica-
tively throughout the paper). For each a ∈ Q, the left and right translations La

and Ra are defined by Lax = ax and Rax = xa for all x ∈ Q. The structure (Q, ·)
is called a quasigroup if all of the right and left translations are permutations of Q
[2, 8].

In a quasigroup (Q, ·), there exist transformations α, β : Q → Q such that
xα(x) = x = β(x)x for all x ∈ Q. A quasigroup Q is called a left F-quasigroup
if

x · yz = xy · α(x)z (Fl)

for all x, y, z ∈ Q. Dually, Q is called a right F-quasigroup if

zy · x = zβ(x) · yx (Fr)

for all x, y, z ∈ Q. If Q is both a left F- and right F-quasigroup, then Q is called a
(two-sided) F-quasigroup [1, 3, 4, 5, 6, 7, 9].

Recall that for a quasigroup (Q, ·) and for fixed a, b ∈ Q, the structure (Q,+)
consisting of the set Q endowed with the binary operation + : Q×Q → Q defined
by x + y = R−1

b x · L−1
a y is called a principal isotope of (Q,+). Here (Q,+) is a

quasigroup with neutral element 0 = ab, that is, (Q,+) is a loop [2]. (Throughout
this paper, we will use additive notation for loops, including groups, even if the
operation is not commutative.)
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To study any particular class of quasigroups, it is useful to understand the loops
isotopic to the quasigroups in the class. In [5], we have shown that every loop
isotopic to an F-quasigroup is a Moufang loop. In this paper, which is in some sense
a prequel to [5], we study the structure of a particular subclass of F-quasigroups,
namely those which are isotopic to groups. An F-quasigroup isotopic to a group
will be called an FG-quasigroup in the sequel.

A quasigroup Q is called medial if xa · by = xb · ay for all x, y, a, b ∈ Q. We see
that (Fl) and (Fr) are generalizations of the medial identity. The main result of §2
is that the class of FG-quasigroups is axiomatized by two stronger generalizations
the medial identity. In particular, we will show (Theorem 2.8) that a quasigroup is
an FG-quasigroup if and only if

xy · α(u)v = xα(u) · yv (A)

and

xy · β(u)v = xβ(u) · yv (B)

hold for all x, y, u, v.
In §4, we will show that FG-quasigroups are more than just isotopic to groups;

they are, in fact, linear over groups. A quasigroup Q is said to be linear over a group
(Q,+) if there exist f, g ∈ Aut(Q,+) and e ∈ Q such that xy = f(x) + e+ g(y) for
all x, y ∈ Q. In §3, we give necessary and sufficient conditions in terms of f, g, and
e for a quasigroup Q linear over a group (Q,+) to be an FG-quasigroup.

In §5, we will use the linearity of FG-quasigroups to describe their structure.
For a quasigroup Q, set M(Q) = {a ∈ Q : xa · yx = xy · ax ∀x, y ∈ Q}. We
will show (Proposition 5.6) that in an FG-quasigroup Q, M(Q) is a medial, normal
subquasigroup and Q/M(Q) is a group. In particular, this gives us a complete
description of simple FG-quasigroups (Corollary 5.7) up to an understanding of
simple groups.

In §6 we codify the relationship between FG-quasigroups and groups by intro-
ducing the notion of arithmetic form for an FG-quasigroup (Definition 6.1). This
enables us to show an equivalence of equational classes between (pointed) FG-
quasigroups and certain types of groups with operators (Theorem 6.4 and Lemma
6.5). Finally, motivated by this equivalence, we introduce in §7 a notion of central
generalized module over an associative ring, and we show an equivalence of equa-
tional classes between (pointed) FG-quasigroups and central generalized modules
over a particular ring (Theorem 7.1). In [6], which is the sequel to [5], we will
examine the more general situation for arbitrary F-quasigroups and introduce a
correspondingly generalized notion of module.

2. Characterizations of FG-quasigroups

Proposition 2.1. Let Q be a left F-quasigroup. Then

1. αβ = βα and α is an endomorphism of Q.
2. RaLb = LbRa for a, b ∈ Q if and only if α(b) = β(a).
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3. Rα(a)Lβ(a) = Lβ(a)Rα(a) for every a ∈ Q.

Proof. For (1): x · αβ(x)α(x) = β(x)x · αβ(x)α(x) = β(x) · xα(x) = β(x)x = x =
xα(x) and so αβ(x) = βα(x). Further, xy · α(x)α(y) = x · yα(x) = xy = xy · α(xy)
and α(x)α(y) = α(xy).

For (2): If RaLb = LbRa, then ba = RaLbα(b) = LbRaα(b) = b · α(b)a, a = α(b)a
and β(a) = α(b).

Conversely, if β(a) = α(b) then b · xa = bx · α(b)a = bx · β(a)a = bx · a.
Finally (3), follows from (1) and (2). �

Corollary 2.2. If Q is an F-quasigroup, then α and β are endomorphisms of Q,
and αβ = βα.

For a quasigroup (Q, ·), if the loop isotope (Q,+) given by x + y = L−1
b x · R−1

a y
for all x, y ∈ Q is a associative (i.e., a group), then L−1

b x · R−1
a (L−1

b y · R−1
a z) =

L−1
b (L−1

b x · R−1
a y) · R−1

a z for all x, y, z ∈ Q. Replacing x with Lbx and z with Raz,
we have that associativity of (Q, ◦) is characterized by the equation

x · L−1
b (R−1

a y · z) = R−1
a (x · L−1

b y) · z (2.1)

for all x, y, z ∈ Q, or equivalently,

LxL
−1
b RzR

−1
a = RzR

−1
a LxL

−1
b (2.2)

for all x, zinQ.

Lemma 2.3. Let Q be a quasigroup. The following are equivalent:

1. Every loop isotopic to Q is a group.
2. Some loop isotopic to Q is a group.
3. For all x, y, z, a, b ∈ Q, (2.1) holds.
4. There exist a, b ∈ Q such that (2.1) holds for all x, y, z ∈ Q.

Proof. The equivalence of (1) and (2) is well known [2]. (3) and (4) simply express
(1) and (2), respectively, in the form of equations. �

Lemma 2.4. Let Q be an F-quasigroup. The following are equivalent:

1. Q is an FG-quasigroup,
2. xβ(a) · (L−1

b R−1
a y · z) = (x · R−1

a L−1
b y) · α(b)z for all x, y, z ∈ Q.

Proof. Starting with Lemma 2.3, observe that (Fr) and (Fl) give R−1
a (uv) = R−1

β(a)u ·

R−1
a v and L−1

b (uv) = L−1
b u · L−1

α(b)v for all u, v,∈ Q. Replace x with xβ(a) and

replace z with α(b)z. The result follows. �

Lemma 2.5. Let Q be an F-quasigroup and let a, b ∈ Q be such that α(b) = β(a).
Then Q is an FG-quasigroup if and only if xβ(a) ·yz = xy ·α(b)z for all x, y, z ∈ Q.

Proof. By Proposition 2.1(2), RaLb = LbRa and so R−1
a Lb = LbR

−1
a . The result

follows from Lemma 2.4 upon replacing y with RaLby. �

Proposition 2.6. The following conditions are equivalent for an F-quasigroup Q:



4 T. KEPKA, M. K. KINYON, AND J. D. PHILLIPS

1. Q is an FG-quasigroup,
2. xαβ(w) · yz = xy · αβ(w)z for all x, y, z, w ∈ Q.
3. There exists w ∈ Q such that xαβ(w) ·yz = xy ·αβ(w)z for all x, y, z ∈ Q.

Proof. For given w ∈ Q, set a = α(w) and b = β(w). By Corollary 2.2, α(b) = β(a),
and so the result follows from Lemma 2.5. �

The preceding results characterize FG-quasigroups among F-quasigroups. Thus
the F-quasigroup laws together with Proposition 2.6(2) form an axiom base for FG-
quasigroups. Now we turn to the main result of this section, a two axiom base for
FG-quasigroups.

Lemma 2.7. Let Q be an FG-quasigroup. For all x, y, u, v ∈ Q, LxL
−1
y R−1

v Ru =

R−1
v RuLxL

−1
y .

Proof. Another expression for (Fr) is R−1
v Ru = Rβ(u)R

−1

R−1
u v

, and so the result follows

from (2.2). �

Theorem 2.8. A quasigroup Q is an FG-quasigroup if and only if the identities
(A) and (B) hold.

Proof. Suppose first thatQ is an FG-quasigroup. We first verify the following special
case of (A): for all x, y, u, v ∈ Q,

α(x)y · α(u)v = α(x)α(u) · yv (2.3)

Indeed, (Fl) implies y = L−1
u R−1

α(u)vRyvu. Using this and Lemma 2.7, we compute

α(x)y · α(u)v = Rα(u)vLα(x)L
−1
u R−1

α(u)vRyvu = RyvLα(x)L
−1
u u = α(x)α(u) · yv

as claimed.
Next we verify (B). For all x, y, u, v ∈ Q,

xβ(α(u)y) · (u · vy) = xβ(α(u)y) · (uv · α(u)y) by (Fl)
= (x · uv) · α(u)y by (Fr)
= (xu · α(x)v) · α(u)y by (Fl)
= (xu · β(α(u)y)) · (α(x)v · α(u)y) by (Fr)
= (xu · β(α(u)y)) · (α(x)α(u) · vy) by (2.3)
= xu · (β(α(u)y) · vy) by (Fl)

where we have also used Corollary 2.2 in the last step. Replacing v with R−1
y v and

then y with L−1
αuy, we have (B). The proof of (A) is similar.

Conversely, suppose Q satisfies (A) and (B). Obviously, (A) implies (Fl) and
(B) implies (Fr), and so we may apply Proposition 2.6 to get that Q is an FG-
quasigroup. �
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3. Quasigroups linear over groups

Throughout this section, let Q be a quasigroup and (Q,+) a group, possibly
noncommutative, but with the same underlying set as Q. Assume that Q is linear
over (Q,+), that is, there exist f, g ∈ Aut(Q,+), e ∈ Q such that xy = f(x) + e+
g(y) for all x, y ∈ Q.

Let Φ ∈ Aut(Q,+) be given by Φ(x) = −e + x + e for all x ∈ Q. If we define a
multiplication on Q by x ·1 y = f(x) + g(y)+ e for all x, y ∈ Q, then x ·1 y = f(x) +
e−e+ g(y)+ e = f(x)+ e+Φg(y). On the other hand, if we define a multiplication
on Q by x ·2 y = e+ f(x) + g(y) for all x, y ∈ Q, then x ·2 y = Φ−1f(x) + e+ g(y).
In particular, there is nothing special about our convention for quasigroups linear
over groups; we could have used (Q, ·1) or (Q, ·2) instead.

Lemma 3.1. With the notation conventions of this section,

1. Q is a left F-quasigroup if and only if fg = gf and −x + f(x) ∈ Z(Q,+)
for all x ∈ Q,

2. Q is a right F-quasigroup if and only if fg = gf and −x + g(x) ∈ Z(Q,+)
for all x ∈ Q,

3. Q is an F-quasigroup if and only if fg = gf and −x + f(x),−x + g(x) ∈
Z(Q,+) for all x ∈ Q.

Proof. First, note that α(u) = −g−1(e) − g−1f(u) + g−1(u) and β(u) = f−1(u) −
f−1g(u)− f−1(e) for all u ∈ Q.

For (1): Fix u, v, w ∈ Q and set x = f(u) and y = gf(v). We have

u · vw = f(u) + e+ gf(v) + g(e) + g2(w)

and

uv·α(u)w = f 2(u)+f(e)+fg(v)+e−gfg−1(e)−gfg−1f(u)+gfg−1(u)+g(e)+g2(w).

Thus (Fl) holds if and only if

x+e+y = f(x)+f(e)+fgf−1g−1(y)+e−gfg−1(e)−gfg−1(x)+gfg−1f−1(x) (3.1)

for all x, y ∈ Q.
Suppose (Fl) holds. Then setting x = 0 in (3.1) yields e+y = f(e)+fgf−1g−1(y)+

e− gfg−1(e) and x = 0 = y yields −f(e) + e = e− gfg−1(e). Thus −f(e) + e+ y =
fgf−1g−1(y) − f(e) + e and x + e + y = f(x) + e + y − gfg−1(x) + gfg−1f−1(x).
Setting y = −e in the latter equality, we get −f(x)+x = −gfg−1(x)+gfg−1f−1(x)
and hence −f(x)+x+e+y = e+y−f(x)+x. Consequently, −f(x)+x ∈ Z(Q,+)
for all x ∈ Q and looking again at the already derived equalities, we conclude that
fg = gf .

For the converse, suppose fg = gf . Then (3.1), after some rearranging, becomes

(−f(x) + x) + e+ y = f(e) + y + (e− f(e)) + (−f(x) + x).

If we also suppose −x + f(x) ∈ Z(Q,+) for all x ∈ Q, then the latter equation
reduces to a triviality, and so (Fl) holds.

The proof of (2) is dual to that of (1), and (3) follows from (1) and (2). �
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It is straightforward to characterize F-quasigroups among quasigroups linear over
groups for the alternative definitions (Q, ·1) and (Q, ·2) above. Recalling that Φ(x) =
e + x − e, observe that if −z + f(z) ∈ Z(Q,+) for all z ∈ Q, then fg = gf
if and only if fΦg = Φgf . Using this observation and Lemma 3.1(3), we get
the following assertion: (Q, ·1) is an F-quasigroup if and only if fg = gf and
−x+f(x),−x+Φg(x) ∈ Z(Q,+) for all x ∈ Q. Similarly, (Q, ·2) is an F-quasigroup
if and only if fg = gf and −x+ Φ−1f(x),−x+ g(x) ∈ Z(Q,+) for all x ∈ Q.

4. FG-quasigroups are linear over groups

Let h and k be permutations of a group (Q,+). Define a multiplication on Q by
xy = h(x) + k(y) for all x, y ∈ Q. Clearly, Q is a quasigroup.

Lemma 4.1. Assume that Q is a right F-quasigroup. Then:

1. h(x+ y) = h(x) − h(0) + h(y) for all x, y ∈ Q.
2. The transformations x 7→ h(x) − h(0) and x 7→ −h(0) + h(x) are automor-

phisms of (Q,+).

Proof. We have β(u) = h−1(u − k(u)) and h(h(w) + k(v)) + k(u) = wv · u =
wβ(u) · vu = h(h(w) + kh−1(u − k(u))) + k(h(v) + k(u)) for all u, v, w ∈ Q. Then
h(x+ y) + z = h(x+ kh−1(k−1(z)− z)) + k(hk−1(y) + z) for all x, y, z ∈ Q. Setting
z = 0 we get h(x+ y) = h(x+ t) + khk−1(y) where t = kh−1k−1(0). Consequently,
h(y) = h(t) + khk−1(y) and khk−1(y) = −h(t) + h(y). Similarly, h(x) = h(x +
t) + khk−1(0) = h(x + t) − h(t) + h(0), h(x + t) = h(x) − h(0) + h(t). Thus,
h(x+ y) = h(x) − h(0) + h(t) − h(t) + h(y) = h(x) − h(0) + h(y). This establishes
(1). (2) follows immediately from (1). �

Lemma 4.2. Assume that Q is a left F-quasigroup. Then:

1. k(x+ y) = k(x) − k(0) + k(y) for all x, y ∈ Q.
2. The transformations x 7→ k(x) − k(0) and x 7→ −k(0) + k(x) are automor-

phisms of (Q,+).

Proof. Dual to the proof of Lemma 4.1. �

Now let Q be an FG-quasigroup, a, b ∈ Q, h = Ra, k = Lb and x + y = h−1(x) ·
k−1(y) for all x, y ∈ Q. Then (Q,+) is a group (every principal loop isotope of Q is
of this form), 0 = ba and xy = h(x) + k(y) for all x, y ∈ Q. Moreover, by Lemmas
4.1 and 4.2, the transformations f : x 7→ h(x) − h(0) and g : x 7→ −k(0) + k(x)
are automorphisms of (Q,+). We have xy = f(x) + e+ g(y) for all x, y ∈ Q where
e = h(0) + k(0) = 0 · 0 = ba · ba.

Corollary 4.3. Every FG-quasigroup is linear over a group.

5. Structure of FG-quasigroups

Throughout this section, let Q be an FG-quasigroup. By Corollary 4.3, Q is
linear over a group (Q,+), that is, there exist f, g ∈ Aut(Q,+), e ∈ Q such that
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xy = f(x) + e+ g(y) for all x, y ∈ Q. Recall the definition

M(Q) = {a ∈ Q : xa · yx = xy · ax ∀x, y ∈ Q}.

Lemma 5.1. M(Q) = Z(Q,+) − e = {a ∈ Q : xa · yz = xy · az ∀x, y, z ∈ Q}.

Proof. If a ∈M(Q), then f 2(x)+f(e)+fg(a)+e+fg(y)+g(e)+g2(x) = xa ·yx =
xy · ax = f 2(x) + f(e) + fg(y) + e+ fg(a) + g2(x) or, equivalently, fg(a) + e+ z =
z+e+fg(a) for all z ∈ Q. The latter equality is equivalent to the fact that fg(a)+e ∈
Z(Q,+) or a ∈ f−1g−1(Z(Q,+) − e) = Z(Q,+) − f−1g−1(e) = Z(Q,+) − e, since
f−1g−1(e) − e ∈ Z(Q,+). We have shown that M(Q) ⊆ Z(Q,+) − e. Proceeding
conversely, we show that Z(Q,+) − e ⊆ {a ∈ Q : xa · yz = xy · az}, and the latter
subset is clearly contained in M(Q). �

Corollary 5.2. The following conditions are equivalent:

1. M(Q) = Z(Q,+).
2. e ∈ Z(Q,+).
3. 0 ∈M(Q).

Lemma 5.3. α(Q) ∪ β(Q) ⊆M(Q).

Proof. This follows from Theorem 2.8. �

Lemma 5.4. M(Q) is a medial subquasigroup of Q.

Proof. If u, v, w ∈ Z(Q,+) then (u− e) · (v − e) = f(u) − f(e) + e+ g(v) − g(e) =
w−e ∈ Z(Q,+)−g(e) = Z(Q,+)−e = M(Q). Thus M(Q) = Z(Q,+)−e (Lemma
5.1) is closed under multiplication, and it is easy to see that for each a, b ∈ Z(Q,+),
the equations (a−e) ·(x−e) = b−e and (y−e) ·(a−e) = b−e have unique solutions
x, y ∈ Z(Q,+). We conclude that M(Q) is a subquasigroup of Q. Applying Lemma
5.1 again, M(Q) is medial. �

Lemma 5.5. M(Q) is a normal subquasigroup of Q, and Q/M(Q) is a group.

Proof. Z(Q,+) is a normal subgroup of the group (Q,+), and if ρ denotes the
(normal) congruence of (Q,+) corresponding to Z(Q,+), it is easy to check that ρ
is a normal congruence of the quasigroup Q, too. Finally, by Lemma 5.3, Q/M(Q)
is a loop, and hence it is a group. �

Putting together Lemmas 5.1, 5.3, 5.4, and 5.5, we have the following.

Proposition 5.6. Let Q be an FG-quasigroup. Then α(Q)∪β(Q) ⊆M(Q) = {a ∈
Q : xa · yz = xy · az ∀x, y, z ∈ Q}, M(Q) is a medial, normal subquasigroup of Q,
and Q/M(Q) is a group.

Corollary 5.7. A simple FG-quasigroup is medial or is a group.
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6. Arithmetic forms of FG-quasigroups

Definition 6.1. An ordered five-tuple (Q,+, f, g, e) will be called an arithmetic
form of a quasigroup Q if the following conditions are satisfied:

(1) The binary structures (Q,+) and Q share the same underlying set (denoted
by Q again);

(2) (Q,+) is a (possibly noncommutative) group;
(3) f, g ∈ Aut(Q,+);
(4) fg = gf ;
(5) −x+ f(x),−x+ g(x) ∈ Z(Q,+) for all x ∈ Q;
(6) e ∈ Q;
(7) xy = f(x) + e+ g(y) for all x, y ∈ Q.

If, moreover, e ∈ Z(Q,+), then the arithmetic form will be called strong.

Theorem 6.2. The following conditions are equivalent for a quasigroup Q:

1. Q is an FG-quasigroup.
2. Q has at least one strong arithmetic form.
3. Q has at least one arithmetic form.

Proof. Assume (1). From Corollary 4.3 and Lemma 3.1(3), we know that for all
a, b ∈ Q, Q has an arithmetic form (Q,+, f, g, e) such that 0 = ba. Further, by
Lemma 5.3, α(Q)∪ β(Q) ⊆M(Q). Now, if the elements a and b are chosen so that
ba ∈ α(Q) ∪ β(Q) (for instance, choose a = b = αβ(c) for some c ∈ Q and use
Corollary 2.2), or merely that ba ∈M(Q), then the form is strong by Corollary 5.2.
Thus (2) holds. (2) implies (3) trivially, and (3) implies (1) by Lemma 3.1(3). �

Lemma 6.3. Let (Q,+, f1, g1, e1) and (Q, ∗, f2, g2, e2) be arithmetic forms of the
same FG-quasigroup Q. If the groups (Q,+) and (Q, ∗) have the same neutral
element 0, then (Q,+) = (Q, ∗), f1 = f2, g1 = g2, and e1 = e2.

Proof. We have f1(x) + e1 + g1(y) = xy = f2(x) ∗ e2 ∗ g2(y) for all x, y ∈ Q. Setting
x = 0 = y, we get e1 = e2 = e. Setting x = 0 we get p(y) = e + g1(y) = e2 ∗ g2(y)
and so f1(x) + p(y) = f2(x) ∗ p(y). But p is a permutation of Q and p(y) = 0 yields
f1 = f2. Similarly, g1 = g2 and, finally, (Q,+) = (Q, ∗). �

Theorem 6.4. Let Q be an FG-quasigroup. Then there exists a biunique correspon-
dence between arithmetic forms of Q and elements from Q. This correspondence
restricts to a biunique correspondence between strong arithmetic forms of Q and
elements from M(Q).

Proof. Combine Corollary 4.3, Lemma 3.1(3), and Corollary 5.2. �

Lemma 6.5. Let Q and P be FG-quasigroups with arithmetic forms (Q,+, f, g, e1)
and (P,+, h, k, e2), respectively. Let ϕ : Q → P be a mapping such that ϕ(0) = 0.
Then ϕ is a homomorphism of the quasigroups if and only if ϕ is a homomorphism
of the groups, ϕf = hϕ, ϕg = kϕ and ϕ(e1) = e2.
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Proof. This generalization of Lemma 6.3 has a similar proof. �

Denote by Fg,p the equational class (and category) of pointed FG-quasigroups.
That is Fg,p consists of pairs (Q, a), Q being an FG-quasigroup and a ∈ Q a fixed
element. If (P, b) ∈ Fg,p then a mapping ϕ : Q → P is a homomorphism in Fg,p

if and only if ϕ is a homorphism of the quasigroups and ϕ(a) = b. Further, put
Fg,m = {(Q, a) ∈ Fg,p : a ∈ M(Q)}. Clearly Fg,m is an equational subclass (and
also a full subcategory) of Fg,p.

Let ϕ : Q→ P be a homomorphism of FG-quasigroups. For every a ∈ Q we have
(Q,α(a)), (P, αϕ(a)) ∈ Fg,m, and ϕα(a) = αϕ(a). Thus ϕ is a homomorphism in
Fg,m. Similarly, (Q, β(a)), (P, βϕ(a)) ∈ Fg,m and ϕβ(a) = βϕ(a).

Denote by G the equational class (and category) of algebras Q(+, f, g, f−1, g−1, e)
where (Q,+) is a group and conditions (2)-(6) of Definition 6.1 are satisfied. If
P (+, h, k, h−1, k−1, e1) ∈ G, then a mapping ϕ : Q → P is a homomorphism in G if
and only if ϕ is a homomorphism of the groups such that ϕf = hϕ, ϕg = kϕ and
ϕ(e) = e1. Finally, denote by Gc the equational subclass of G given by e ∈ Z(Q,+).

It follows from Theorem 6.4 and Lemma 6.5 that the classes Fg,p and G are equiv-
alent. That means that there exists a biunique correspondence Φ : Fg,p → G such
that for every algebra A ∈ Fg,p, the algebras A and Φ(A) have the same underlying
set, and if B ∈ Fg,p, then a mapping ϕ : A → B is an Fg,p-homomorphism if and
only if it is a G-homomorphism.

Corollary 6.6. The equational classes Fg,p and G are equivalent. The equivalence
restricts to an equivalence between Fg,m and Gc.

7. Generalized modules

Let (G,+) be a (possibly noncommutative) group. An endomorphism ϕ ∈
End(G,+) will be called central if ϕ(G) ⊆ Z(G,+). We denote by ZEnd(G,+) the
set of central endomorphisms of (G,+). Clearly, the composition of central endomor-
phisms is again a central endomorphism and ZEnd(G,+) becomes a multiplicative
semigroup under the operation of composition. Furthermore, if ϕ ∈ ZEnd(G,+)
and ψ ∈ End(G,+) then ϕ+ψ ∈ End(G,+) where (ϕ+ψ)(x) = ϕ(x)+ψ(x) for all
x ∈ G. Consequently, ZEnd(G,+) becomes an abelian group under pointwise ad-
dition, and, altogether, ZEnd(G(+)) becomes an associative ring (possibly without
unity).

Let R be an associative ring (with or without unity). A central generalized (left)
R-module will be a group (G,+) equipped with an R-scalar multiplication R×G →
G such that a(x+y) = ax+ay, (a+ b)x = ax+ bx, a(bx) = (ab)x and ax ∈ Z(G,+)
for all a, b ∈ R and x, y ∈ G.

If G is a central generalized R-module, then define the annihilator of G to be
Ann(G) = {a ∈ R : aG = 0}. It is easy to see that Ann(G) is an ideal of the ring
R.

Let S = Z[x,y,u,v] denote the polynomial ring in four commuting indetermi-
nates x,y,u,v over the ring Z of integers. Put R = Sx + Sy + Su + Sv. That
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is, R is the ideal of S generated by the indeterminates. On the other hand, R is a
commutative and associative ring (without unity) freely generated by the indeter-
minates.

Let M be the equational class (and category) of central generalized R-modules
G such that x + u + xu ∈ Ann(G) and y + v + yv ∈ Ann(G). Further, let Mp be
the equational class of pointed () objects from M. That is, Mp consists of ordered
pairs (G, e) where G ∈ M and e ∈ G. Let Mc denote the subclass of centrally
pointed objects from Mp, i.e., (G, e) ∈ Mc iff (G, e) ∈ Mp and e ∈ Z(G,+).

Theorem 7.1. The equational classes Fg,p and Mp are equivalent. This equivalence
restricts to an equivalence between Fg,m and Mc

Proof. Firstly, take (Q, a) ∈ Fg,p. Let (Q,+, f, g, e) be the arithmetic form of the
FG-quasigroup Q, such that a = 0 in (Q,+). Define mappings ϕ, µ, ψ, ν : Q → Q
by ϕ(x) = −x + f(x), µ(x) = −x + f−1(x), ψ(x) = −x + g(x) and ν(x) = −x +
g−1(x) for all x ∈ Q. It is straightforward to check that ϕ, µ, ψ, ν are central
endomorphisms of (Q,+), that they commute pairwise, and that ϕ(x) + µ(x) +
ϕµ(x) = 0 and ψ(x) + ν(x) + ψν(x) = 0 for all x ∈ Q. Consequently, these
endomorphisms generate a commutative subring of the ring ZEnd(Q,+), and there
exists a (uniquely determined) homomorphism λ : R → ZEnd(Q,+) such that
λ(x) = ϕ, λ(y) = ψ, λ(u) = µ, and λ(v) = ν. The homomorphism λ induces an
R-scalar multiplication on the group (Q,+) and the resulting central generalized
R-module will be denoted by Q̄. We have λ(x + u + xu) = 0 = λ(y + v + yv)
and so Q̄ ∈ M. Now define ρ : Fg,p → Mp by ρ(Q, a) = (Q̄, e), and observe that
(Q̄, e) ∈ Mc if and only if e ∈ Z(Q,+).

Next, take (Q̄, e) ∈ Mp and define f, g : Q → Q by f(x) = x + xx and g(x) =
x+yx for all x ∈ Q. We have f(x+y) = x+y+xx+xy = x+xx+y+xy = f(x)+f(y)
for all x, y ∈ Q, and so f ∈ End(Q,+). Similarly, g ∈ End(Q,+). Moreover,
fg(x) = f(x + yx) = x + yx + xx + xyx = x + xx + yx + yxx = gf(x), and
therefore fg = gf . Still further, if we define k : Q→ Q by k(x) = x+ux for x ∈ Q,
then fk(x) = x + (x + u + xu)x = x = kf(x), and it follows that k = f−1 and so
f ∈ Aut(Q,+). Similarly, g ∈ Aut(Q,+). Of course, −x + f(x) = xx ∈ Z(Q,+)
and −x + g(x) ∈ Z(Q,+). Consequently, Q becomes an FG-quasigroup under the
multiplication xy = f(x) + e + g(y). Define σ : Mp → Fg,p by σ(Q̄, e) = (Q, 0).
Using Theorem 6.4 and Lemma 6.5, it is easy to check that the operators ρ and σ
represent an equivalence between Fg,p and Mp. Further, 0 ∈ M(Q) if and only if
e ∈ Z(Q,+), so that the equivalence restricts to Fg,m and Mc. �
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