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F-QUASIGROUPS ISOTOPIC TO GROUPS
TOMAS KEPKA*, MICHAEL K. KINYON, AND J. D. PHILLIPS

ABSTRACT. In [5] we showed that every loop isotopic to an F-quasigroup is
a Moufang loop. Here we characterize, via two simple identities, the class of
F-quasigroups which are isotopic to groups. We call these quasigroups FG-
quasigroups. We show that FG-quasigroups are linear over groups. We then
use this fact to describe their structure. This gives us, for instance, a complete
description of the simple FG-quasigroups. Finally, we show an equivalence of
equational classes between pointed FG-quasigroups and central generalized mod-
ules over a particular ring.

1. INTRODUCTION

Let @ be a non-empty set equipped with a binary operation (denoted multiplica~
tively throughout the paper). For each a € @, the left and right translations L,
and R, are defined by L,x = ax and R,z = xa for all x € ). The structure (@, -)
is called a quasigroup if all of the right and left translations are permutations of ()
2 8.

In a quasigroup (Q,-), there exist transformations a,3 : @ — @ such that
za(x) = x = f(z)x for all x € Q. A quasigroup @ is called a left F-quasigroup
if

r-yz=uzy-a(r)z (£1)

for all z,y, z € Q. Dually, @ is called a right F-quasigroup if
zy-x = z2f(z) - yx (£7)

for all z,y,2z € Q. If @ is both a left F- and right F-quasigroup, then @ is called a
(two-sided) F-quasigroup [1I, B, 4. B, 6, [, ©].

Recall that for a quasigroup (@, ) and for fixed a,b € @, the structure (Q,+)
consisting of the set () endowed with the binary operation + : @ x @) — @ defined
by * +y = R, 'z - L7'y is called a principal isotope of (Q,+). Here (Q,+) is a
quasigroup with neutral element 0 = ab, that is, (Q,+) is a loop [2]. (Throughout
this paper, we will use additive notation for loops, including groups, even if the
operation is not commutative.)
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To study any particular class of quasigroups, it is useful to understand the loops
isotopic to the quasigroups in the class. In [B], we have shown that every loop
isotopic to an F-quasigroup is a Moufang loop. In this paper, which is in some sense
a prequel to [B], we study the structure of a particular subclass of F-quasigroups,
namely those which are isotopic to groups. An F-quasigroup isotopic to a group
will be called an FG-quasigroup in the sequel.

A quasigroup Q is called medial if xa - by = xb - ay for all z,y,a,b € Q). We see
that (F;) and (F,) are generalizations of the medial identity. The main result of §2
is that the class of FG-quasigroups is axiomatized by two stronger generalizations
the medial identity. In particular, we will show (Theorem Z8) that a quasigroup is
an FG-quasigroup if and only if

xy - a(u)v = za(u) - yv (A)

and
zy - Bu)o = zB(u) - yv (B)
hold for all z,y, u, v.

In @@l we will show that FG-quasigroups are more than just isotopic to groups;
they are, in fact, linear over groups. A quasigroup (@ is said to be linear over a group
(Q, +) if there exist f,g € Aut(Q,+) and e € Q such that xy = f(x) + e+ g(y) for
all z,y € Q. In 3, we give necessary and sufficient conditions in terms of f, g, and
e for a quasigroup @ linear over a group (@, +) to be an FG-quasigroup.

In §8l we will use the linearity of FG-quasigroups to describe their structure.
For a quasigroup @, set M(Q) = {a € Q : za-yzr = zy - ax Vx,y € Q}. We
will show (Proposition i) that in an FG-quasigroup @, M(Q) is a medial, normal
subquasigroup and /M (Q) is a group. In particular, this gives us a complete
description of simple FG-quasigroups (Corollary ) up to an understanding of
simple groups.

In §6 we codify the relationship between FG-quasigroups and groups by intro-
ducing the notion of arithmetic form for an FG-quasigroup (Definition [E]). This
enables us to show an equivalence of equational classes between (pointed) FG-
quasigroups and certain types of groups with operators (Theorem and Lemma
EH). Finally, motivated by this equivalence, we introduce in §i a notion of central
generalized module over an associative ring, and we show an equivalence of equa-
tional classes between (pointed) FG-quasigroups and central generalized modules
over a particular ring (Theorem [T]). In [6], which is the sequel to [5], we will
examine the more general situation for arbitrary F-quasigroups and introduce a
correspondingly generalized notion of module.

2. CHARACTERIZATIONS OF FG-QUASIGROUPS

Proposition 2.1. Let ) be a left F-quasigroup. Then

1. af = Pa and « is an endomorphism of Q).
2. R.Ly = LyR, for a,b € Q if and only if a(b) = ((a).
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3. Roa)Lga) = Laa)yRaa) for every a € Q.

Proof. For (1): x - af(x)a(x) = B(z)x - af(x)a(r) = B(x) - za(x) = B(r)r = x =
za(z) and so af(x) = fa(z). Further, zy - a(x)a(y) = = - ya(x) = zy = vy - a(zy)
and a(x)a(y) = alzy).

For (2): If R Ly, = LyR,, then ba = R,Lya(b) = LyR,a(b) = b - a(b)a,a = a(b)a
and ((a) = «a(b).

Conversely, if f(a) = a(b) then b - za = bx - a(b)a = bz - f(a)a = bx - a.

Finally (3), follows from (1) and (2). O

Corollary 2.2. If Q) is an F-quasigroup, then o and 3 are endomorphisms of Q,
and aff = fa.

For a quasigroup (Q, ), if the loop isotope (Q,+) given by z +y = L, 'z - R;*
for all 7,y € Q is a associative (i.e., a group), then L,'x - R7Y (L, 'y - R;'z)
Ly (Ly'e - RyYy) - Rz for all z,y, 2 € Q. Replacing = with Lyz and z with R,z,
we have that associativity of (@), o) is characterized by the equation

v Ly (Ry'y-2) = RN (w - Lyty) - 2 (2.1)
for all z,y, z € @), or equivalently,
L.L;'R.R;' = R.R,;'L,L;" (2.2)

for all z, zinQ).

Lemma 2.3. Let QQ be a quasigroup. The following are equivalent:
1. Every loop isotopic to Q) is a group.
2. Some loop isotopic to Q) is a group.
3. For all z,y,z,a,b € Q, (Z1) holds.
4. There exist a,b € Q such that (Z1) holds for all x,y,z € Q.

Proof. The equivalence of (1) and (2) is well known [2]. (3) and (4) simply express

(1) and (2), respectively, in the form of equations. O
Lemma 2.4. Let ) be an F-quasigroup. The following are equivalent:

1. Q is an FG-quasigroup,

2. wf(a) - (L Ry'y - 2) = (v~ R;1L, ') - a(b)z for all z,y,2 € Q.
Proof. Starting with Lemma 3, observe that (F,.) and (F}) give R, (uv) = Rg(la)u-
R;'w and L;'(uwv) = Ly u - L;(lb)v for all u,v,€ Q. Replace z with z((a) and
replace z with a(b)z. The result follows. O

Lemma 2.5. Let Q) be an F-quasigroup and let a,b € Q be such that a(b) = [((a).
Then Q is an FG-quasigroup if and only if x((a)-yz = zy-a(b)z for all x,y, z € Q.

Proof. By Proposition E1(2), R,Ly, = LyR, and so R;'L, = LyR;'. The result
follows from Lemma 24 upon replacing y with R, Lyy. U

Proposition 2.6. The following conditions are equivalent for an F-quasigroup Q:
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1. @ is an FG-quasigroup,
2. zaf(w)-yz=uzy af(w)z for al x,y,z,w € Q.
3. There ezists w € Q such that xaf(w)-yz = xy-af(w)z for all x,y,z € Q.

Proof. For given w € @, set a = a(w) and b = G(w). By Corollary Z2, a(b) = [(a),
and so the result follows from Lemma 23 O

The preceding results characterize FG-quasigroups among F-quasigroups. Thus
the F-quasigroup laws together with Proposition EZ6l(2) form an axiom base for FG-
quasigroups. Now we turn to the main result of this section, a two axiom base for
FG-quasigroups.

Lemma 2.7. Let ) be an FG-quasigroup. For all x,y,u,v € @, LnglelRu =
R'R,L.L,".

Proof. Another expression for (F,) is R, 'R, = Rg() R;lv, and so the result follows

from (22). O

Theorem 2.8. A quasigroup Q is an FG-quasigroup if and only if the identities
(A) and (B) hold.

Proof. Suppose first that () is an FG-quasigroup. We first verify the following special
case of (A): for all z,y,u,v € Q,

a(z)y - a(u)v = a(z)a(u) - yv (2.3)
Indeed, (F;) implies y = L, 1R;(1u)vRyvu. Using this and Lemma X7, we compute
a(@)y - ()0 = Ratuy Late) Lz Ry, Byt = Ry Loy L'u = ala)a(u) - yo

as claimed.
Next we verify (B). For all x,y,u,v € Q,

zf(a(u)y) - (u-vy) = xzB(a(u)y) - (uv-au)y) by (F7)
= (z-w)-a(u)y by (F)
= (zu-a(x)v) - a(u)y by (F7)
= (zu- Bla(w)y)) - (a(z)v-a(u)y) by (F)
= (zu- Bla(uw)y)) - (a(r)a(u) -vy) by @3)
= zu- (B(a(u)y) - vy) by (F)

where we have also used Corollary in the last step. Replacing v with R v and
then y with L'y, we have (B). The proof of (A) is similar.

Conversely, suppose @) satisfies (A) and (B). Obviously, (A) implies (F;) and
(B) implies (F}), and so we may apply Proposition 28 to get that @ is an FG-
quasigroup. 0
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3. QUASIGROUPS LINEAR OVER GROUPS

Throughout this section, let ¢ be a quasigroup and (Q,+) a group, possibly
noncommutative, but with the same underlying set as (). Assume that @ is linear
over (Q,+), that is, there exist f,g € Aut(Q,+), e € Q such that zy = f(z) + e+

g(y) for all z,y € Q.
Let & € Aut(Q,+) be given by &(x) = —e 4+ + e for all x € Q. If we define a

multiplication on @ by -1y = f(z) +g(y)+eforall z,y € Q, then z -1 y = f(x) +
e—e+g(y)+e= f(z)+e+Pg(y). On the other hand, if we define a multiplication
on Qbyz-oy=c+ f(x)+g(y) forall z,y € Q, then z oy = 71 f(z) + e+ g(y).
In particular, there is nothing special about our convention for quasigroups linear
over groups; we could have used (@, 1) or (@, -2) instead.

Lemma 3.1. With the notation conventions of this section,
1. Q is a left F-quasigroup if and only if fg = gf and —x + f(x) € Z(Q,+)
for all x € Q,
2. Q is a right F-quasigroup if and only if fg = gf and —x + g(x) € Z(Q,+)
for all x € Q,
3. Q is an F-quasigroup if and only if fg = gf and —x + f(x),—x + g(x) €
Z(Q,+) forall x € Q.
Proof. First, note that a(u) = —g~'(e) — ¢~ f(u) + g (u) and B(u) = f~(u) —
ftg(u) — f~Y(e) for all u € Q.
For (1): Fix u,v,w € @ and set z = f(u) and y = gf(v). We have
w-vw = f(u)+e+gf(v)+g(e) + g*(w)
and

uv-a(wyw = f*(u)+fe)+fo(v)+e—gfg(e)=gfg~" f(u)+gfg~" (u)+g(e)+g°(w).
Thus (F;) holds if and only if

vtety = f(x)+fle)+faf g7 (y)+e—gfg(e)—gfg~ (@) +afg™ f(z) (3.1)
for all z,y € Q.

Suppose (F;) holds. Then setting x = 0 in ) yields e+y = f(e)+fgf g7 (y)+
e—gfg'(e) and x = 0 =y yields —f(e) +e =e—gfg~'(e). Thus —f(e) +e+y =
fof g7 y) — fle)+eandz+e+y = f(z) +et+y—gfg(z) +9fg ' [ (2).
Setting y = —e in the latter equality, we get —f(z)+z = —gfg Y (x)+gfg ' f~1(2)
and hence —f(z)+x+e+y =e+y— f(z)+z. Consequently, —f(z)+z € Z(Q,+)
for all x € @) and looking again at the already derived equalities, we conclude that
ngorgtjlrle converse, suppose fg = ¢gf. Then ([BI), after some rearranging, becomes

(—f(@)+a)+ety=[fle)+y+(e—[f(e)) + (=f(z) + )
If we also suppose —x + f(x) € Z(Q,+) for all x € @, then the latter equation

reduces to a triviality, and so (£]) holds.
The proof of (2) is dual to that of (1), and (3) follows from (1) and (2). O
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It is straightforward to characterize F-quasigroups among quasigroups linear over
groups for the alternative definitions (@, -1) and (@, -2) above. Recalling that ®(z) =
e +x — e, observe that if —z 4+ f(z) € Z(Q,+) for all z € @, then fg = ¢gf
if and only if f®&g = ®gf. Using this observation and Lemma BI(3), we get
the following assertion: (@Q),-1) is an F-quasigroup if and only if fg = ¢f and
—z+ f(z), —x+Pg(z) € Z(Q,+) for all x € Q. Similarly, (@, -2) is an F-quasigroup
if and only if fg=gf and —x + &' f(x), -2 + g(x) € Z(Q,+) for all z € Q.

4. FG-QUASIGROUPS ARE LINEAR OVER GROUPS

Let h and k be permutations of a group (@, +). Define a multiplication on @ by
xy = h(x) + k(y) for all z,y € Q. Clearly, @) is a quasigroup.

Lemma 4.1. Assume that Q) is a right F-quasigroup. Then:

1. h(z+y) = h(z) — h(0) + h(y) for all z,y € Q.
2. The transformations x +— h(z) — h(0) and x — —h(0) + h(x) are automor-

phisms of (Q,+).

Proof. We have B3(u) = h™'(u — k(u)) and h(h(w) + k(v)) + k(u) = wv - u =
wh(u) - vu = h(h(w) + kh™'(u — k(u))) + k(h(v) + k(u)) for all u,v,w € Q. Then
h(z+y)+z=hx+kh (k7' (2) — 2)) + k(hk™' (y) + 2) for all ,y, 2 € Q. Setting
z=0we get h(z +y) =h(z+1t)+ khk ' (y ) where t = kh™'k~1(0). Consequently,
h(y) = h(t) + khk='(y) and khk~'(y) = —h(t) + h(y). Similarly, h(z) = h(z +
t) + khk=1(0) = h(z + t) — h(t) + h(0), h(:)s +t) = h(xz) — h(0) + h(t). Thus,
h(z +y) = h(x) — h(0) + h(t) — h(t) + h(y) = h(z) — R(0) 4+ h(y). This establishes
(1). (2) follows immediately from (1). O

Lemma 4.2. Assume that Q) is a left F-quasigroup. Then:

1. k(x +y) = k(z) — k(0) + k(y) for all z,y € Q.
2. The transformations x — k(z) — k(0) and x — —k(0) + k(z) are automor-

phisms of (Q,+).

Proof. Dual to the proof of Lemma ET] O

Now let @ be an FG-quasigroup, a,b € Q,h = Ry, k = Ly and x +y = h™'(x) -
k~1(y) for all z,y € Q. Then (Q, +) is a group (every principal loop isotope of Q is
of this form), 0 = ba and xy = h(x) + k(y) for all x,y € Q. Moreover, by Lemmas
BT and 22 the transformations f :  +— h(x) — h(0) and ¢ : x — —k(0) + k(z)
are automorphisms of (@), +). We have xy = f(x) + e+ g(y) for all x,y € Q) where
e=nh(0)+k(0)=0-0=ba- ba.

Corollary 4.3. Fvery FG-quasigroup is linear over a group.

5. STRUCTURE OF FG-QUASIGROUPS

Throughout this section, let Q be an FG-quasigroup. By Corollary EE3 @ is
linear over a group (@, +), that is, there exist f,g € Aut(Q,+), e € @ such that
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xy = f(z) + e+ g(y) for all z,y € Q. Recall the definition

MQ)={a€Q:xa -yr=1xy- -axVr,y € Q}.
Lemma 5.1. M(Q)=Z(Q,+)—e={a€Q :xa-yz=uxy-azVr,y,z € Q}.

Proof. If a € M(Q), then f*(z)+ f(e)+ fg(a)+e+ fg(y) +g(e) + g*(x) = va-yxr =
zy - ax = f*(z) + f(e) + fg(y) + e+ fg(a) + g*(x) or, equivalently, fg(a)+e+ 2=
z+e+fg(a) for all z € Q. The latter equality is equivalent to the fact that fg(a)+e €
Z(Q,+)ora€ f g (Z(Q,+) —e) = Z(Q,+) — f g7 (e) = Z(Q. +) — e, since
ftg7(e) —e € Z(Q,+). We have shown that M(Q) C Z(Q,+) — e. Proceeding
conversely, we show that Z(Q,+) —e C {a € Q : xa-yz = zy - az}, and the latter
subset is clearly contained in M (Q). O

Corollary 5.2. The following conditions are equivalent:

L. M(Q) = Z(Q,+).
3. 0eMQ).

Lemma 5.3. o(Q) U B(Q) € M(Q).
Proof. This follows from Theorem E.8. 0
Lemma 5.4. M(Q) is a medial subquasigroup of Q.

Proof. If u,v,w € Z(Q,+) then (u—e)-(v—-e)= f(u) — fle) + e+ gv) —gle) =
w—e € Z(Q,+)—gle) = Z(Q,+)—e = M(Q). Thus M(Q) = Z(Q,+) —e (Lemma
B.T]) is closed under multiplication, and it is easy to see that for each a,b € Z(Q, +),
the equations (a—e)-(zr—e) = b—e and (y—e)-(a—e) = b—e have unique solutions
z,y € Z(Q,+). We conclude that M(Q) is a subquasigroup of ). Applying Lemma
Bl again, M (@) is medial. O

Lemma 5.5. M(Q) is a normal subquasigroup of @, and Q/M(Q) is a group.

Proof. Z(Q,+) is a normal subgroup of the group (Q,+), and if p denotes the
(normal) congruence of (@, +) corresponding to Z(Q, +), it is easy to check that p
is a normal congruence of the quasigroup @, too. Finally, by Lemma B3], Q /M (Q)
is a loop, and hence it is a group. O

Putting together Lemmas Bl B3 B4l and BA, we have the following.

Proposition 5.6. Let QQ be an FG-quasigroup. Then a(Q)UB(Q) € M(Q) = {a €
Q:za-yz=uzy-azVr,y,z € Q}, M(Q) is a medial, normal subquasigroup of Q,
and Q/M(Q) is a group.

Corollary 5.7. A simple FG-quasigroup is medial or is a group.
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6. ARITHMETIC FORMS OF FG-QUASIGROUPS

Definition 6.1. An ordered five-tuple (Q,+, f,g,e) will be called an arithmetic
form of a quasigroup Q) if the following conditions are satisfied:

(1) The binary structures (Q,+) and Q share the same underlying set (denoted
by Q again);

(2) (Q,+) is a (possibly noncommutative) group;

(3) f,g € Aut(Q, +);

(5) —z 4+ f(z), —x + g(z) € Z(Q,+) for all x € Q;

(6) e € Q;

(7) zy = f(x) + e+ g(y) for all z,y € Q.

If, moreover, e € Z(Q,+), then the arithmetic form will be called strong.

Theorem 6.2. The following conditions are equivalent for a quasigroup Q:
1. @ s an FG-quasigroup.
2. @ has at least one strong arithmetic form.
3. @ has at least one arithmetic form.

Proof. Assume (1). From Corollary and Lemma BI(3), we know that for all
a,b € @, @ has an arithmetic form (Q,+, f,g,e) such that 0 = ba. Further, by
Lemma B3 o(Q) U B(Q) C M(Q). Now, if the elements a and b are chosen so that
ba € a(Q) U [(Q) (for instance, choose a = b = «af(c) for some ¢ € () and use
Corollary Z2), or merely that ba € M(Q), then the form is strong by Corollary B2
Thus (2) holds. (2) implies (3) trivially, and (3) implies (1) by Lemma BI(3). O

Lemma 6.3. Let (Q,+, f1,91,e1) and (Q, %, fo, g2, €2) be arithmetic forms of the
same FG-quasigroup Q. If the groups (Q,+) and (Q,*) have the same neutral
element 0) then (Qa _'_) = (Qa *)) fl = f27g1 = g2, and €1 = €2.

Proof. We have fi(x)+e1+ g1(y) = 2y = fo(z) x €3 % go(y) for all x,y € Q. Setting
r=0=y, we get e; = e5 = e. Setting x = 0 we get p(y) = e+ g1(y) = €2 * g2(v)
and so fi(z) + p(y) = fo(z) * p(y). But p is a permutation of @ and p(y) = 0 yields
f1 = fo. Similarly, g; = g2 and, finally, (Q,+) = (Q, *). O

Theorem 6.4. Let () be an FG-quasigroup. Then there exists a biunique correspon-
dence between arithmetic forms of QQ and elements from ). This correspondence
restricts to a biunique correspondence between strong arithmetic forms of Q) and
elements from M(Q).

Proof. Combine Corollary B3, Lemma B)(3), and Corollary B2 O

Lemma 6.5. Let QQ and P be FG-quasigroups with arithmetic forms (Q,+, f, g, e1)
and (P, +, h, k,es), respectively. Let ¢ : Q — P be a mapping such that ¢(0) = 0.
Then ¢ is a homomorphism of the quasigroups if and only if ¢ is a homomorphism
of the groups, of = hp, g = ke and @(e1) = es.
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Proof. This generalization of Lemma has a similar proof. O

Denote by F,, the equational class (and category) of pointed FG-quasigroups.
That is F,, consists of pairs (@), a), ) being an FG-quasigroup and a € @ a fixed
element. If (P,b) € F,, then a mapping ¢ : Q — P is a homomorphism in F,,
if and only if ¢ is a homorphism of the quasigroups and ¢(a) = b. Further, put
Fom = {(Q,a) € Fyp:a € M(Q)}. Clearly F,,, is an equational subclass (and
also a full subcategory) of F, .

Let ¢ : Q@ — P be a homomorphism of FG-quasigroups. For every a € () we have
(Q,a(a)), (P,ap(a)) € Fym, and pa(a) = ap(a). Thus ¢ is a homomorphism in
Fgm- Similarly, (Q, 8(a)), (P, Bp(a)) € Fym and pB(a) = Bp(a).

Denote by G the equational class (and category) of algebras Q(+, f, g, f~%, g7, ¢)
where (Q,+) is a group and conditions (2)-(6) of Definition are satisfied. If
P(+,h,k,h= k™1 e;) € G, then a mapping ¢ : Q — P is a homomorphism in G if
and only if ¢ is a homomorphism of the groups such that o f = hy, pg = ke and
¢(e) = ey. Finally, denote by G, the equational subclass of G given by e € Z(Q, +).

It follows from Theorem B4l and Lemma B3 that the classes F , and G are equiv-
alent. That means that there exists a biunique correspondence ® : F,, — G such
that for every algebra A € F,,, the algebras A and ®(A) have the same underlying
set, and if B € F,,, then a mapping ¢ : A — B is an F,,-homomorphism if and
only if it is a G-homomorphism.

Corollary 6.6. The equational classes Fy, and G are equivalent. The equivalence
restricts to an equivalence between Fg,, and G,.

7. GENERALIZED MODULES

Let (G,+) be a (possibly noncommutative) group. An endomorphism ¢ €
End(G,+) will be called central if p(G) C Z(G,+). We denote by ZEnd(G, +) the
set of central endomorphisms of (G, +). Clearly, the composition of central endomor-
phisms is again a central endomorphism and ZEnd(G, +) becomes a multiplicative
semigroup under the operation of composition. Furthermore, if ¢ € ZEnd(G,+)
and ¢ € End(G, +) then ¢+ € End(G,+) where (p+ 1) (z) = ¢(x) + ¢ (z) for all
x € G. Consequently, ZEnd(G,+) becomes an abelian group under pointwise ad-
dition, and, altogether, ZEnd(G(+)) becomes an associative ring (possibly without
unity).

Let R be an associative ring (with or without unity). A central generalized (left)
R-module will be a group (G, +) equipped with an R-scalar multiplication R x G —
G such that a(z+y) = ax+ay, (a+b)x = ax + bz, a(bxr) = (ab)xr and ax € Z(G,+)
for all a,b € R and z,y € G.

If G is a central generalized R-module, then define the annihilator of G to be
Ann(G) = {a € R : aG = 0}. It is easy to see that Ann(G) is an ideal of the ring
R.

Let S = Z[x,y,u,v| denote the polynomial ring in four commuting indetermi-
nates x,y,u, v over the ring Z of integers. Put R = Sx 4+ Sy + Su + Sv. That
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is, R is the ideal of S generated by the indeterminates. On the other hand, R is a
commutative and associative ring (without unity) freely generated by the indeter-
minates.

Let M be the equational class (and category) of central generalized R-modules
G such that x + u+xu € Ann(G) and y + v +yv € Ann(G). Further, let M, be
the equational class of pointed () objects from M. That is, M, consists of ordered
pairs (G,e) where G € M and e € G. Let M, denote the subclass of centrally
pointed objects from M,, i.e., (G,e) € M. iff (G,e) € M, and e € Z(G, +).

Theorem 7.1. The equational classes F,, and M, are equivalent. This equivalence
restricts to an equivalence between Fy,, and M,

Proof. Firstly, take (Q,a) € F,,. Let (Q,+, f,g,e) be the arithmetic form of the
FG-quasigroup @, such that a = 0 in (@, +). Define mappings ¢, u, ¥, v : Q — Q
by o(z) = —x + f(z), p(x) = —z + fH(2), P(z) = —2 + g(z) and v(z) = —z +
g Yz) for all x € Q. Tt is straightforward to check that o, u,,v are central
endomorphisms of (Q,+), that they commute pairwise, and that ¢(z) + u(z) +
ou(x) = 0 and YP(z) + v(z) + Yr(r) = 0 for all x € Q. Consequently, these
endomorphisms generate a commutative subring of the ring ZEnd(Q, +), and there
exists a (uniquely determined) homomorphism A : R — Z&nd(Q,+) such that
Ax) = ¢, My) = ¢, A(u) = p, and A(v) = v. The homomorphism A induces an
R-scalar multiplication on the group (@, +) and the resulting central generalized
R-module will be denoted by Q. We have A\(x +u+xu) = 0 = Ay + v + yV)
and so Q € M. Now define p : F,, — M, by p(Q,a) = (Q,¢€), and observe that
(Q,e) € M. if and only if e € Z(Q, +).

Next, take (Q,e) € M, and define f,g: Q — Q by f(z) = r + xz and g(z) =
z+yzx forallz € Q. We have f(z+y) = z+y+xzr+xy = v+xe+y+xy = f(x)+f(y)
for all z,y € @, and so f € End(Q,+). Similarly, g € End(Q,+). Moreover,
fog(x) = f(z+yzr) = x+yr+xr+xyr =+ xx+yr+yxe = gf(x), and
therefore fg = gf. Still further, if we define k: Q) — @ by k(z) = z+uz for x € Q,
then fk(x) =z + (x + u+xu)z = z = kf(z), and it follows that ¥ = f~! and so
f e Aut(Q,+). Similarly, g € Aut(Q,+). Of course, —z + f(x) = xx € Z(Q,+)
and —x + g(x) € Z(Q,+). Consequently, () becomes an FG-quasigroup under the
multiplication xy = f(z) + e + g(y). Define o : M, — F,, by o(Q,e) = (Q,0).
Using Theorem and Lemma [63 it is easy to check that the operators p and o
represent an equivalence between F,, and M,. Further, 0 € M(Q) if and only if
e € Z(Q,+), so that the equivalence restricts to F, ,, and M.. O
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