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Abstract. Idempotent slim groupoids are groupoids satisfying xx ≈ x

and x(yz) ≈ xz. We prove that the variety of idempotent slim groupoids
has uncountably many subvarieties. We find a four-element, inherently
nonfinitely based idempotent slim groupoid; the variety generated by
this groupoid has only finitely many subvarieties. We investigate free
objects in some varieties of idempotent slim groupoids determined by
permutational equations.

This paper is a continuation of the paper [4] which was concerned with
general slim groupoids. Here we are going to investigate the idempotent case.
An idempotent slim groupoid is a groupoid satisfying xx ≈ x and x(yz) ≈
xz. In [1] idempotent slim groupoids (or their duals) were investigated under
the name rectangular groupoids.

We are going to prove in the present paper that the variety of idempo-
tent slim groupoids has uncountably many subvarieties. While all at most
three-element idempotent slim groupoids are finitely based, we will find a
four-element, inherently nonfinitely based idempotent slim groupoid. It will
turn out that the variety Y generated by this groupoid has the following
interesting property: although it is finitely generated and inherently non-
finitely based, it has only finitely many (in fact, precisely six) subvarieties.

We also investigate a descending chain of varieties Wn of idempotent slim
groupoids determined by permutational equations of restricted length. For
many pairs k, n of natural numbers we determine whether the free object
Fk,n in Wn with k generators is finite or infinite, and in some cases we
compute the cardinality of the free groupoid. The intersection W∞ of the
varieties Wn is investigated in a similar way.

The terminology and notation used here are the same as in the paper [4].

1. Uncountably many varieties

By a subword of a word x1 . . . xn we mean a word xixi+1 . . . xj where
1 ≤ i ≤ j ≤ n.

A word x1 . . . xn (where xi are variables) is said to be I-reduced if xi 6=
xi+1 for i = 1, . . . , n − 1. The I-reduction of a word x1 . . . xn is defined
inductively in this way: a variable is its own I-reduction; if n > 1 and
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y1 . . . ym is the I-reduction of x1 . . . xn−1 then the I-reduction of x1 . . . xn is
y1 . . . ym if xn−1 = xn and y1 . . . ymxn if xn−1 6= xn. It is easy to see that an
equation x1 . . . xn ≈ y1 . . . ym is satisfied in all idempotent slim groupoids if
and only if the I-reductions of x1 . . . xn and y1 . . . ym are the same.

Theorem 1.1. The variety of idempotent slim groupoids has 2ℵ0 subvari-

eties.

Proof. For a word u, variables y, z and a nonnegative integer n we define a
word u[yz]n by induction as follows: u[yz]0 = u; u[yz]n+1 = ((u[yz]n)y)z.

Let M be a subset of {3, 4, 5, . . . }. A word is said to be M -bad if it equals
xyx[zy]kxyzy for some variables x, y, z and some integer k ∈ M . The M -
correction of an M -bad word xyx[zy]kxyzy is the word xyx[yz]kxyzy. An
M -significant word is a word that is either M -bad or is the M -correction
of an M -bad word. An I-reduced word is said to be M -good if it does not
contain any M -bad subword.

Claim 1. Let u be an M -significant I-reduced word, u = xyx[yz]kxyzy or

u = xyx[zy]kxyzy. Then x, y, z are pairwise different variables. Indeed, xy
and yz are subwords of u, so x 6= y and y 6= z. Either zx (in the first case)
or xz (in the second case) is a subword of u, so x 6= z.

Claim 2. Let u = x1 . . . xn be an I-reduced word and xi . . . xj and xp . . . xq

be its two M -significant subwords. Then either 〈i, j〉 = 〈p, q〉 or q ≤ i + 2
or j ≤ p + 2. Put x = xj−3, y = xj−2 and z = xj−1. By Claim 1, x, y, z
are three different variables. If j = q then it is easy to see that i = p
and the two subwords are identical. Let, e.g., q < j. For c ∈ {i, i + 1, i +
3, i + 4, . . . , j − 6, j − 4} we have q 6= c + 3 since xc ∈ {xc+2, xc+3} while
xq−3 /∈ {xq−1, xq}. Since xq−5 6= xq−3 while xi = xi+2, we have q 6= i + 5.
Since xq−1 ∈ {xq−4, xq−5} while xj−3 /∈ {xj−6, xj−7}, we have q 6= j − 2.

Claim 3. Any I-reduced word u can be transformed into an M -good

word by a finite sequence of replacements of M -bad subwords with their M -

corrections. The resulting M -good word is uniquely determined by u and M .

By Claim 2, whenever an M -bad subword v is replaced with its M -correction
w then any of the later replacements can touch it at most at the first three
or the last three positions of its variables; but these positions remain un-
changed by the replacements, so w remains unchanged till the end of the
process.

The unique M -good word resulting from an I-reduced word u in this way
will be called the M -correction of u. Define a groupoid AM in this way: its
underlying set is the set of M -good I-reduced words; its binary operation,
denoted by ◦, is given by

x1 . . . xn ◦ y1 . . . ym =

{

x1 . . . xn if ym = xn

the M -correction of x1 . . . xnym otherwise

Claim 4. Let a1, . . . , an be elements of AM . Then a1 ◦ a2 ◦ · · · ◦ an is the

M -correction of the I-reduction of the word a1z2 . . . zn, where zi is the last

variable in the word ai. It follows from the definition of ◦ by induction on n.
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Claim 5. AM is an idempotent slim groupoid. For k ≥ 3, the equation

xyx[yz]kxyzy ≈ xyx[zy]kxyzy is satisfied in AM if and only if k ∈ M . It
follows from Claim 4.

Since there are 2ℵ0 different subsets of {3, 4, . . . }, it follows from Claim 5
that there are 2ℵ0 different varieties of idempotent slim groupoids. �

2. I-strongly nonfinitely based slim groupoids

By an I-strongly nonfinitely based slim groupoid we mean a finite idem-
potent slim groupoid A such that whenever A satisfies an equation 〈u, v〉
where u, v are I-reduced words and u is linear then u = v.

Theorem 2.1. Let A be a finite, I-strongly nonfinitely based idempotent

slim groupoid. Then A is inherently nonfinitely based.

Proof. The proof is essentially the same as that of Theorem 6.1 of[4]; the
small difference is that for a term t, one should consider (instead of just
t∗) the I-reduction of t∗. Observe, however, that our present result is not
a consequence of that theorem: an I-strongly nonfinitely based idempotent
slim groupoid is not strongly nonfinitely based. �

Consider the idempotent slim groupoid G4,3 with elements a, b, c, d and
multiplication table

a b c d

a a a c c
b b b c c
c a a c c
d b b d d

Theorem 2.2. G4,3 is an I-strongly nonfinitely based idempotent slim grou-

poid.

Proof. For a homomorphism h of the groupoid T of terms into G4,3 and for
a word t = x1 . . . xn (where xi are variables) we have

(1) h(t) = d iff h(x1) = d and h(xi) ∈ {c, d} for all i
(2) h(t) = c iff h(xn) ∈ {c, d} and either h(x1) 6= d or h(xi) /∈ {c, d} for

at least one i
(3) h(t) = b iff one of the following two cases takes place:

• h(x1) = b and h(xi) ∈ {a, b} for all i
• h(x1) = d and there exists an index k < n such that h(xi) ∈
{c, d} for all i ≤ k and h(xi) ∈ {a, b} for all i > k

(4) h(t) = a in the remaining cases

This will help in the following computations.
Since G4,3 has a two-element subgroupoid satisfying xy ≈ x (the sub-

groupoid {a, b} and a two-element factor satisfying xy ≈ y (the factor
G4,3/βG4,3

), any equation satisfied in G4,3 has the same first variables and
the same last variables at both sides.
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Let 〈x1 . . . xn, y1 . . . ym〉 be satisfied in G4,3, where xi and yj are variables.
Then {x1, . . . , xn} = {y1, . . . , ym}. In order to prove this, suppose that there
exists an i with xi /∈ {y1, . . . , ym} and let i be the largest index with this
property. Take the homomorphism h : T → G4,3 with h(xi) = b and h(z) = d
for all other variables z. Then h(x1 . . . xn) ∈ {a, b, c} while h(y1 . . . ym) = d,
a contradiction.

Let 〈x1 . . . xn, y1 . . . ym〉 be satisfied in G4,3, where x1 . . . xn and y1 . . . ym

are both I-reduced and x1 . . . xn is linear. Suppose x1 . . . xn 6= y1 . . . ym. We
have 1 < n ≤ m.

Let us prove that ym−i = xn−i for i = 0, . . . , n− 1. Suppose ym−i 6= xn−i

for some i, and let i be the least number with this property; then i > 0.
If ym−i = xj for some j < n − i, then h(x1 . . . xn) 6= h(y1 . . . ym) where
h(x1) = · · · = h(xn−i) = d and h(xn−i+1) = · · · = h(xn) = b. If ym−i = xj

for some j > n − i, then h(x1 . . . xn) 6= h(y1 . . . ym) where h(x1) = · · · =
h(xn−i−1) = d and h(xn−i) = · · · = h(xn) = b.

So, ym = xn, . . . , ym−n+1 = x1. If x1 . . . xn 6= y1 . . . ym, we get m > n.
We have ym−n = xi for some i ≥ 3. Define h by h(x1) = · · · = h(xi−1) = d
and h(xi) = · · · = h(xn) = b. Then h(x1 . . . xn) = b while h(y1 . . . ym) = c,
a contradiction. �

Theorem 2.3. The groupoid G4,3 is, up to isomorphism, the only I-strongly

nonfinitely based idempotent slim groupoid with at most four elements.

Proof. It is possible to generate all idempotent slim groupoids with at most
four elements that do not satisfy the equation xyzu ≈ xyzuzuzu. Only one
such groupoid is obtained, the groupoid G4,3. �

3. Three-element idempotent slim groupoids

Theorem 3.1. All idempotent slim groupoids with at most three elements

are finitely based.

Proof. According to Gerhard [2], all varieties of idempotent semigroups are
finitely based. According to Jacobs and Schwabauer [3], all varieties of
algebras with one unary operation are finitely based. Thus it remains to
consider the at most three-element idempotent slim groupoids that are not
semigroups and do not satisfy xy ≈ xz. It is easy to find that there is, up to
isomorphism, precisely one such groupoid. It has three elements a, b, c and
multiplication

a b c

a a a c
b b b c
c a a c

It has been shown in [1] that the equational theory of this groupoid is based
on the three equations x(zy) ≈ xy, xx ≈ x and xyzu ≈ xzyu. �
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Remark 3.2. In idempotent slim groupoids, xyzx ≈ x implies xyz ≈ xz.
Indeed, xyz = xyxzyyz = xyxz = xz.

Remark 3.3. In idempotent slim groupoids, the equations xyx ≈ x and
xyzux ≈ xp(y)p(z)p(u)x for all permutations p of {y, z, u} imply xyzu ≈
xzyu. Indeed, xyzu = xyzuxu = xzyuxu = xzyu.

4. The varieties Wn

For n ≥ 1 denote by Wn the variety of idempotent slim groupoids satis-
fying xy1 . . . ynx ≈ xyp(1) . . . yp(n)x for all permutations p of {1, . . . , n}.

Clearly, W1 is the variety of all idempotent slim groupoids, W2 is de-
termined (together with the equations of idempotent slim groupoids) by
xyzx ≈ xzyx, W3 by xyzux ≈ xuzyx ≈ xzyux, etc. We have W1 ⊃ W2 ⊃
W3 ⊃ . . . . Denote by ∼n the equational theory of Wn.

It can be easily checked (with an aid of computer) that every groupoid in
W3 with at most 8 elements belongs to W4.

We denote by Fk,n the free groupoid in Wn with k generarors. In the
following we are going to describe Fk,n for small numbers k.

Theorem 4.1. F2,n is infinite for n ≤ 2. For n ≥ 3, F2,n has 8 elements

and its multiplication table is

F2,2 x y xy yx xyx yxy xyxy yxyx

x x xy xy x x xy xy x
y yx y y yx yx y y yx
xy xyx xy xy xyx xyx xy xy xyx
yx yx yxy yxy yx yx yxy yxy yx
xyx xyx xyxy xyxy xyx xyx xyxy xyxy xyx
yxy yxyx yxy yxy yxyx yxyx yxy yxy yxyx
xyxy xyx xyxy xyxy xyx xyx xyxy xyxy xyx
yxyx yxyx yxy yxy yxyx yxyx yxy yxy yxyx

Proof. Denote the two generators by x and y. Clearly, every word over
{x, y} is ∼n-equivalent to a word that is a beginning of either xyxyxy . . .
or yxyxyx . . . . All these words are pairwise ∼n-inequivalent if n ≤ 2. For
n ≥ 3, we have xyxyx ∼n xyx and yxyxy ∼n yxy, so every word is ∼n-
equivalent to one of the eight words. It is easy to check that the eight-element
groupoid belongs to Wn. Consequently, it is the free groupoid. �

We say that a word x1 . . . xn precedes a word y1 . . . ym if one of the fol-
lowing three cases takes place:

(1) n < m
(2) n = m ≥ 3, x1 = x3 and y1 6= y3

(3) n = m ≥ 4, x1 6= x3, y1 6= y3, x2 = x4 and y2 6= y4
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A word t is said to be ∼n-minimal if there is no word preceding t and
∼n-equivalent with t. Clearly, every word (in a fixed number of variables)
is ∼n-equivalent with at least one ∼n-minimal word.

A word y1 . . . ym is said to be an extension of x1 . . . xn if n ≤ m and
xi = yi for all i ≤ n. Let t, u, v, . . . be words over {x1 . . . , xk}. We write
t⊳k,n〈u, v, . . .〉 if u, v, . . . are extensions of u and every ∼n-minimal extension
of u (containing only x1, . . . , xk) is extended by one of the words u, v, . . . .

We are now going to describe F3,3. So, in the next lemmas let ⊳ stand
for ⊳3,3. Denote the three generators by x, y, z.

Lemma 4.2. xyxy ⊳ 〈xyxyz〉.

Proof. It follows from xyxyzx ∼3 xyxyxzx ∼3 xyxzx ∼3 xyzx. �

Lemma 4.3. xyxz ⊳ 〈xyxzy〉.

Proof. xyxzyx ∼3 xyxyzx ∼3 xyzx and xyxzyz ∼3 xyzxyz ∼3 xzyxyz ∼3

xzyyxz ∼3 xzyxz ∼3 xyzxz. �

Lemma 4.4. xyzx ⊳ 〈xyzx〉.

Proof. xyzxy ∼3 xyxzy and xyzxz ∼3 xzyxz ∼3 xzxyz. �

Lemma 4.5. xyzy ⊳ 〈xyzyzx〉.

Proof. xyzyx ∼3 xyzx, xyzyzy ∼3 xyzy, xyzyzxz ∼3 xyzxyz and xyzyzxy
∼3 xyzyxzy ∼3 xyzxzy. �

From these lemmas it follows that every word in variables x, y, z is ∼3-
equivalent with at least one word that can be extended to a word similar
to one of the words xyxyz, xyxzy, xyzx, xyzyzx. (Two words are said to be
similar if one is obtained by a permutation of variables in the other.) It is not
difficult to write all such words; their number is 66. Now we know that F3,3

has at most 66 elements and we suspect that 66 could be the precise number.
In order to prove it, we try to write the multiplication table for F3,3; clearly,
if the groupoid given by this table satisfies the equations of W3, it is the free
groupoid in W3. The trouble is that the multiplication table would be too
big. However, it is sufficient to consider just a fragment. First of all, instead
of the 66 columns it is sufficient to write the three columns corresponding to
the three generators: the product of two words is equal to the product of the
first word with the last variable in the second. And instead of 66 rows, it is
sufficient to write the representative 12 of them; the other ones are obtained
by permutations of variables. We obtain the displayed fragment. In this
fragment, each of the first 2 rows can be permuted to 3 different rows and
each of the next 10 rows to 6.

We can check easily that this groupoid satisfies the equations of W3. (Ob-
serve that in order to check a permutational equation of the form considered
here, it is sufficient to interpret its leftmost variable by an arbitrary element
and all the remaining variables by variables only.) So, this groupoid is the
groupoid F3,3 and the free groupoid has precisely 66 elements.
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F3,3 x y z

x x xy xz
xyzx xyzx xyxzy xzxyz
xy xyx xy xyz
xyx xyx xyxy xyxz
xyz xyzx xyzy xyz
xyxy xyx xyxy xyxyz
xyxyz xyzx xyxzy xyxyz
xyxz xyzx xyxzy xyxz
xyxzy xyzx xyxzy xzxyz
xyzy xyzx xyzy xyzyz
xyzyz xyzyzx xyzy xyzyz
xyzyzx xyzyzx xyxzy xzxyz

The groupoid does not belong to W4, since the element xyzyzx can be
reduced to xyzx. It easily follows that the groupoid F3,4 (which has to be
a factor of F3,3) has 60 elements. We get

Theorem 4.6. The groupoid F3,3 has 66 elements and its multiplication

table can be reconstructed from the above given fragment of 12 rows and 3
columns. The groupoid F3,4 has 60 elements and its multiplication table can

be reconstructed from the fragment for F3,3 in which the last row is deleted

and the element xyzyzx is replaced with xyzx.

Next we are going to describe the groupoid F4,5. So, in the next lemmas
let ⊳ stand for ⊳4,5. Denote the four generators by x, y, z, u.

Lemma 4.7. xyxy ⊳ 〈xyxyzuzu, xyxyuzuz〉.

Proof. Let t be a ∼5-minimal extension of xyxy. Clearly, t cannot start with
either xyxyx or xyxyy, so (if it is different from xyxy) it must start with
either xyxyz or xyxyu. Each of these words can continue (to remain ∼5-
minimal) only in the indicated way. We have xyxyzuzux ∼5 xyxyzux ∼5

xyzux and xyxyzuzuy ∼5 xyxyzuy, so that xyxyzuzu has no proper ∼5-
minimal extension. �

Lemma 4.8. xyxzy ⊳ 〈xyxzyu〉.

Proof. We cannot continue with z, since xyxzyz ∼5 xyzxyz ∼5 xyzyxz ∼5

xyyzxz ∼5 xyzxz. So, clearly we can continue with u only. It is evident
that the word xyxzyu cannot be continued with either x or y or u. It also
cannot be continued with z, since xyxzyuz ∼5 xyxzuyz ∼5 xyzuxyz ∼5

xzyuxyz ∼5 xzyyuxz ∼5 xzyuxz. �

Lemma 4.9. xyxzu ⊳ 〈xyxzuzu, xyxzuy〉.

Proof. Clearly, the word cannot continue with either x or u and if it is con-
tinued with z then there is only one possible further continuation, xyxzuzu.
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For the continuations of xyxzuy, consider

xyxzuyz ∼5 xyzuxyz ∼5 xyzuyxz ∼5 xyyzuxz ∼5 xyzuxz and

xyxzuyu ∼5 xyuzxyu ∼5 xyuzyxu ∼5 xyyuzxu ∼5 xyuzxu.

�

Lemma 4.10. xyxz ⊳ 〈xyxzyu, xyxzuzu, xyxzuy〉.

Proof. It follows from 4.8 and 4.9, since clearly the word cannot be continued
with either x or z. �

Lemma 4.11. xyx ⊳ 〈xyxyzuzu, xyxyuzuz, xyxzyu, xyxzuzu, xyxzuy,
xyxuyz, xyxuzuz〉.

Proof. It follows from 4.7 and 4.10. �

Lemma 4.12. xyzx ⊳ 〈xyzxu〉.

Proof. A continuation of xyzxy (of xyzxz, respectively) is ∼5-equivalent to
a continuation of xyxzy (of xzxyz, respectively, since xyzxz ∼5 xzyxz ∼5

xzxyz) of the same length and so need not be considered. We have xyzxuz
∼5 xyzuxz ∼5 xzyuxz ∼5 xzxyuz, a word starting with xzx. �

Lemma 4.13. xyzy ⊳ 〈xyzyzu, xyzyuz〉.

Proof. It is easy to see that xyzyz ⊳ 〈xyzyzu〉. Since xyzyuzu ∼5 xyzuyzu
∼5 xyuzyzu ∼5 xyuzzyu ∼ xyuzyu, we have xyzyu ⊳ 〈xyzyuz〉. �

Lemma 4.14. xyzu ⊳ 〈xyzux, xyzuy, xyzuzu〉.

Proof. Since

xyzuxy ∼5 xyxzuy,

xyzuxz ∼5 xyzxuz ∼5 xzyxuz ∼5 xzxyuz,

xyzuxu ∼5 xuyzxu ∼5 xuxyzu,

we have xyzux ⊳ 〈xyzux〉. Since

xyzuyz ∼5 xyzyuz,

xyzuyu ∼5 xyuzyu ∼5 xyuyzu,

we have xyzuy ⊳ 〈xyzuy〉. Clearly, xyzuz ⊳ 〈xyzuzu〉. �

From these lemmas it follows that every word in variables x, y, z, u is ∼5-
equivalent with at least one word that can be extended to a word similar to
one of the words xyxyzuzu, xyxzyu, xyxzuzu, xyxzuy, xyzxu, xyzyzu,
xyzyuz, xyzux, xyzuy, xyzuzu. It is not difficult to write all such words;
their number is 548. Now we know that F4,5 has at most 548 elements and,
similarly as in the case of three generators, we can write a fragment of the
multiplication table. This fragment that is displayed has 4 columns and 28
representative rows. Each of the first 2 rows can be permuted to 4 different
rows, each of the next 7 rows to 12, and each of the last 19 rows to 24.
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F4,5 x y z u

x x xy xz xu
xyzux xyzux xyxzuy xzxyuz xuxyzu
xy xyx xy xyz xyu
xyx xyx xyxy xyxz xyxu
xyxy xyx xyxy xyxyz xyxyu
xyzx xyzx xyxzy xzxyz xyzxu
xyxzuy xyzux xyxzuy xzxyuz xuxyzu
xyzxu xyzux xyxzuy xzxyuz xyzxu
xyzuy xyzux xyzuy xyzyuz xyuyzu
xyz xyzx xyzy xyz xyzu
xyxyz xyzx xyxzy xyxyz xyxyzu
xyxz xyzx xyxzy xyxz xyxzu
xyxzy xyzx xyxzy xzxyz xyxzyu
xyzy xyzx xyzy xyzyz xyzyu
xyzyz xyzx xyzy xyzyz xyzyzu
xyzu xyzux xyzuy xyzuz xyzu
xyxyzu xyzux xyxzuy xyxyzuz xyxyzu
xyxyzuz xyzux xyxzuy xyxyzuz xyxyzuzu
xyxyzuzu xyzux xyxzuy xyxyzuz xyxyzuzu
xyxzu xyzux xyxzuy xyxzuz xyxzu
xyxzyu xyzux xyxzuy xzxyuz xyxzyu
xyxzuz xyzux xyxzuy xyxzuz xyxzuzu
xyxzuzu xyzux xyxzuy xyxzuz xyxzuzu
xyzyzu xyzux xyzuy xyzyuz xyzyzu
xyzyu xyzux xyzuy xyzyuz xyzyu
xyzyuz xyzux xyzuy xyzyuz xyuyzu
xyzuz xyzux xyzuy xyzuz xyzuzu
xyzuzu xyzux xyzuy xyzuz xyzuzu

One can verify that the groupoid satisfies the equations of W5 either by
an aid of computer or also manually. The result is that the equations are
indeed satisfied, and we obtain

Theorem 4.15. The groupoid F4,5 has 548 elements and its multiplication

table can be reconstructed from the fragment of 28 rows and 4 columns.

It is easy to see that the groupoids F4,n are infinite for n ≤ 4. The reason
is that the terms xyxyzuzuxyxyzuzu . . . are pairwise ∼n-inequivalent.

Theorem 4.16. If k is even and n < 2k − 3 then Fk,n is infinite. If k is

odd and n < 2k − 4 then Fk,n is infinite.

Proof. Denote the generators by x1, . . . , xk. For k even the words

x1x2x1x2 . . . xk−1xkxk−1xkx1x2x1x2 . . .
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and for k odd the words

x1x2x1x2 . . . xk−2xk−1xk−2xk−1xkx1 . . .

are pairwise inequivalent with respect to the equations of Wn. �

Theorem 4.17. Let k ≥ 3. Then Fk,2k−3 is finite.

Proof. For k = 3 it follows from the above theorem. So, let k ≥ 4. Put
n = 2k − 3 and denote by ∼ the equational theory of Wn. Consider only
words in k fixed variables. By a minimal word we will mean a word that
it is not ∼-equivalent to a shorter word. Clearly, every minimal word is
I-reduced.

Suppose that there exists a minimal word x1 . . . xm containing at least
three occurrences of some variable, and take such a minimal word of minimal
possible length. Then x1 = xi = xm for precisely one i ∈ {2, . . . , m − 1}
and each variable different from x1 has at most two occurrences in x1 . . . xm.
Consequently, m ≤ 2k + 1. Since i − 2 ≤ m − 4 ≤ 2k − 3 = n and x1 = xi,
the variables x2, . . . , xi−1 can be arbitrarily permuted and (consequently) are
pairwise different. From the same reason, xi+1, . . . , xm−1 can be arbitrarily
permuted and are pairwise different. If x2, . . . , xm−1 are pairwise different
or if there is at most one pair of equal elements among them then m − 2 ≤
k + 1 ≤ 2k − 3 = n (since k ≥ 4), so that the inner variables in x1 . . . xm

can be arbitrarily permuted; in particular, they can be permuted in such a
way that xi gets to the position with index 2, so that the word starts with
two equal variables and can be shortened, a contradiction. Hence there exist
four different indexes j, m, r, s with with xj = xm, xr = xs, j < i < m and
j < r < i < s. We can assume that s < m, because the two places can
be permuted. Take such a quadruple j, m, r, s with the largest possible j.
Then xj+1, . . . , xm−1 are all different with the only exception xr = xs, so
the length of this sequence is at most k which is less than n, and xr, xs

can be permuted to become neighbors and then one of them deleted, a
contradiction.

So, every minimal word contains at most two occurrences of each of the
k variables. There are only finitely many such words and every word in the
k variables is ∼-equivalent to at least one minimal word. �

Theorem 4.18. Let k ≥ 3. If k is odd put n = 2k − 2, and if k is even put

n = 2k − 3. Then Fk,n = Fk,m for all m ≥ n.

Proof. It is sufficient to prove for every m ≥ n that if Fk,n ∈ Wm then Fk,n ∈
Wm+1; the statement will then follow by induction on m. Let m ≥ n and
Fk,n ∈ Wm. We need to prove xy1 . . . ym+1x = xyp(1) . . . yp(m+1)x in Fk,n for
all elements x, y1, . . . , ym+1 of Fk,n and all permutations p of {1, . . . , m+1}.
However, clearly it is sufficient to prove it only in the case when all the
elements x, y1, . . . , ym+1 are from the k-element set of generators of Fk,n. In
order to do this, it is sufficient to prove that xy1 . . . ym+1x = xz1 . . . zmx for
some sequence z1, . . . , zm such that {x, z1, . . . , zm} = {x, y1, . . . , ym+1}.
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If some member of the sequence x, y1, . . . , ym+1, x is equal to the next
following member, we can delete it and the claim is confirmed. So, we can
assume that yi 6= yi+1 for all i and y1 6= x 6= ym+1.

Suppose that yi = yj = yr for some i < j < r. Then xy1 . . . ym+1x =
xy1 . . . yiyjyi+1 . . . yj−1yj+1 . . . yr . . . ym+1x = xy1 . . . yj−1yj+1 . . . ym+1x. So,
we can assume that every element occurs at most two times in y1, . . . , ym+1.

Consider first the case when yi = yj = x for some 1 ≤ i < j ≤ m + 1.
Then

xy1 . . . ym+1x = xyiy1 . . . yi−1yi+1 . . . yj . . . ym+1x

= xy1 . . . yi−1yi+1 . . . ym+1x.

Now let yi = x for precisely one i. Since the sequence y1, . . . , ym+1

with yi deleted contains at most k − 1 different elements and k < m,
we have yj = yq and yr = ys for two different pairs j < q and r < s.
Without loss of generality, j < r. If j < q < i then xy1 . . . ym+1x =
xy1 . . . yjyqyj+1 . . . yq−1yq+1 . . . yi . . . yn+1x = xy1 . . . yq−1yq+1 . . . yn+1x. So,
we can assume that j < i < q and, similarly, r < i < s. Since yq, ys are
between yi and the last occurrence of x, they can be permuted and thus
we can suppose that s < q. But then the two occurrences of yr = ys are
between the two occurrences of yj = yq, can be moved to get one next to
the other and then one of them can be deleted. It remains to consider the
case when x does not occur in y1, . . . , ym+1.

Let k be odd. The sequence y1, . . . , ym+1 contains at most k− 1 different
elements. If each of them occurs at most twice, we get m + 1 ≤ 2k − 2 = n,
a contradiction. Thus at least one of these elements occurs at least three
times; this case has been handled above.

Let k be even and let us work again under the assumption that no element
occurs more than twice in y1, . . . , ym+1. If some of these elements occurs
only once, we get m + 1 ≤ 2k − 3 = n, a contradiction. Thus every element
occurs precisely twice in y1, . . . , ym+1. Clearly, we can assume that there is
no quadruple i, j, r, s of indexes with i < j < r < s, yi = ys and yj = yr.
We are going to prove by induction on i ≥ 0 that if 4i + 1 ≤ m + 1 then
4i + 4 ≤ m + 1 and xy1 . . . ym+1x = xz1 . . . zm+1x for some z1, . . . , zm+1

such that z4j+1 = z4j+3 and z4j+2 = z4j+4 for all j ≤ i. Let this be true
for all numbers less than i. So, we can suppose that y4j+1 = y4j+3 and
y4j+2 = y4j+4 for all j < i. Since y4i+1 does not occur in y1, . . . , y4i, we have
y4i+1 = yq for some q ≥ 4i + 3. If q > 4i + 3 then y4i+2 = yr for some r > q
and the variables between y4i+2 and yr can be permuted so that yq is moved
to the position of y4i+3. So, we can assume that y4i+1 = y4i+3. Since y4i+2

does not occur in y1, . . . , y4i+1, we have y4i+2 = ys for some s ≥ 4i + 4. If
s > 4i + 4, then from a similar reason ys can be moved to the position of
y4i+4, and thus we can also suppose that y4i+2 = y4i+4.

It follows that the number of different elements in y1, . . . , ym+1 is even.
But the number is k− 1, which is odd. So, if k is even, the assumption that
no element occurs more than twice in y1, . . . , ym=1 is contradictory. �
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The following table summarizes what we know about the cardinalities of
Fk,n for k ≤ 6 and n ≤ 9.

|Fk,n| 2 3 4 5 6 7 8 9

k = 2 ∞ 8 8 8 8 8 8 8
k = 3 ∞ 66 60 60 60 60 60 60
k = 4 ∞ ∞ ∞ 548 548 548 548 548
k = 5 ∞ ∞ ∞ ∞ ? f1 f2 f2

k = 6 ∞ ∞ ∞ ∞ ∞ ∞ ∞ f3

Here f1, f2 and f3 are some finite numbers that we did not compute. In
particular, we do not know if f1 = f2. We do not know whether F5,6 is
finite.

5. The variety W∞

We denote by W∞ the intersection of the varieties Wn (n = 1, 2, . . . ). In
this section ∼ always denotes the equational theory of W∞.

Lemma 5.1. Let x1, . . . , xn be variables and 1 ≤ i < j < k < m ≤ n be

such that xi = xk and xj = xm. Then

x1 . . . xn ∼ x1 . . . xixp(i+1) . . . xp(m−1)xm . . . xn

for any permutation p of {i + 1, . . .m − 1} such that p(j) < p(k).

Proof. xj can be moved to the position i + 1 and then xk can be moved to
the position i + 2. Since the remaining variables of xi+1 . . . xm−1 are now
between two occurrences of the same variable xm, they can be arbitrarily
permuted. Then the variable at position i + 2 can be moved to an arbitrary
place p with i+2 ≤ p < m and the variable at position i+1 to an arbitrary
place q with i + 1 ≤ q < p. �

Let us fix a strict linear ordering ⊏ of the set of variables. A word x1 . . . xn

is said to be admissible if

(1) x1 . . . xn is I-reduced
(2) every variable has at most two occurrences in x1 . . . xn

(3) whenever 1 ≤ i < j ≤ n and xi = xj then the variables xi+1, . . . , xj−1

are pairwise different and if each of them has only one occurrence in
x1 . . . xn then xi+1 ⊏ xi+2 ⊏ · · · ⊏ xj−1

(4) whenever 1 ≤ i < j < k < m ≤ n, xi = xk and xj = xm then
j = i + 1, k = i + 2, each of the variables xi+3, . . . , xm−1 has only
one occurrence in x1 . . . xn and xi+3 ⊏ xi+4 ⊏ · · · ⊏ xm−1

Lemma 5.2. Every word is ∼-equivalent with at least one admissible word.

Proof. It is sufficient to consider a word x1 . . . xn that is not ∼-equivalent
with any shorter word. Clearly, x1 . . . xn is I-reduced. If 1 ≤ i < j < k ≤ n
and xi = xj = xk then xj can be moved to position i + 1 and then, because
of the idempotency, deleted. If 1 ≤ i < j ≤ n, xi = xj and the variables
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xr (r = i + 1, . . . , j − 1) are pairwise different then these variables can be
permuted to obtain xi+1 ⊏ · · · ⊏ xj−1. Let 1 ≤ i < j < k < m ≤ n, xi = xk

and xj = xm. By 5.1 we can suppose that j = i + 1 and k = i + 2. Suppose
xc = xd for some c ∈ {i+3, . . . , m−1} and some d 6= c. If i+3 ≤ d ≤ m−1
then xc and xd are between the two occurrences of xm and thus xd can
be deleted. If d < i then xi and xi+2 are between the two occurrences
of xc. If d > m then xi+1 and xi+2 can be moved to positions m − 2 and
m−1 respectively, so that then both occurrences of xm are between the two
occurrences of xc and the word x1 . . . xn can be again shortened. Thus each
of the variables xi+3, . . . , xm−1 has only one occurrence in x1 . . . xn. These
variables can be permuted to obtain xi+3 ⊏ · · · ⊏ xm−1. �

Lemma 5.3. Let x1 . . . xn and y1 . . . ym be two different admissible words.

Then the equation x1 . . . xn ≈ y1 . . . ym together with the equations of W∞

implies one of the following three equations:

(1) xyxy ≈ xy
(2) yzyzx ≈ yzyx
(3) xyzyz ≈ xzyz

Proof. By induction on n + m. If xn 6= ym then z(x1 . . . xn) ≈ z(y1 . . . ym)
gives zxn ≈ zym which implies xy ≈ x and then the equation (1). So, let
xn = ym.

Suppose {x1, . . . , xn} 6= {y1, . . . , ym}. Without loss of generality, yi /∈
{x1, . . . , xn} for some i. Substitute y for yi and x for any other variable.
We get one of the equations x ≈ yx, x ≈ xyx and x ≈ yxyx. Each of
these equations implies (1). (In the case of x ≈ yxyx take the substitution
x 7→ yx.)

If x1 6= y1, take a new variable z and substitute zx1 for x1. We get
zx1 . . . zxn ≈ y1 . . . ym where {z, x1, . . . , xn} 6= {y1, . . . , ym} and thus we get
the equation (1) as before.

Thus we can assume that {x1, . . . , xn} = {y1, . . . , ym}, x1 = y1 and xn =
ym. Since x1 . . . xn 6= y1 . . . ym, we have n > 1 and m > 1.

Suppose that xn has only one occurrence in x1 . . . xn and only one oc-
currence in y1 . . . ym. If xn−1 6= ym−1, substitute x for xn, y for xn−1 and
z for all other variables. We get that either zyx or yzyx or zyzyx is ∼-
equivalent with either yzx or zyzx or yzyzx. In each of the four cases (the
two terms must start with the same variable) we get either (1) or (2). Now let
xn−1 = ym−1. If we substitute xn−1 for xn, we get x1 . . . xn−1 ∼ y1 . . . ym−1

where x1 . . . xn−1 and y1 . . . ym−1 are two different admissible terms, so that
the induction assumption can be applied.

Suppose that xn has only one occurrence in x1 . . . xn but two occurrences
in y1 . . . ym. Substitute x for xn and y for all other variables. We get
yx ∼ yxyx, i.e., we get (1).

It remains to consider the case when xn = ym has two occurrences in
x1 . . . xn and two occurrences in y1 . . . ym. Let i < n, j < m, xi = xn and
yj = ym. Put C = {xi+1, . . . , xn−1} and D = {yj+1, . . . , ym−1}.
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Suppose that each variable from C has only one occurrence in x1 . . . xn

and each variable from D has only one occurrence in y1 . . . ym. If C −D 6= ∅
and D − C = ∅, substitute x for xn, x for every variable from C ∩ D
and y for all other variables to obtain yxyx ∼ yx, i.e., we get (1). If
C − D 6= ∅ and D − C 6= ∅, substitute x for xn, x for every variable from
C and y for all other variables to obtain that yx ∼ yxyx. If C = D,
substitute a variable x /∈ {x1, . . . , xn} for every variable from {xi, . . . , xn}
to obtain x1 . . . xi−1x ∼ y1 . . . yj−1x where x1 . . . xi−1x and y1 . . . yj−1x are
two different admissible words, so that the induction assumption can be
applied.

Next suppose that each variable from C has only one occurrence in
x1 . . . xn, while yj−1 = yj+1. If yj+1 /∈ C, substitute x for all variables
from {xi, . . . , xn} and y for all other variables to obtain yx ∼ yxyx. Let
yj+1 ∈ C. If C−D 6= ∅, substitute x for all variables from {yj , . . . , ym} and y
for all other variables to obtain yxyx ∼ yx. If D−C 6= ∅, substitute x for all
variables from {xi, . . . , xn} and y for all other variables to obtain yx ∼ yxyx.
If C = D, substitute x for all variables from {xi, . . . , xn}−{yi+1}, y for yi+1

and z for all other variables to obtain zxyx ∼ zyxyx; we get (3).
Finally, let xi−1 = xi+1 and yj−1 = yj+1. If xi+1 = yj+1, substitute xn

for xi+1 to obtain x1 . . . xi−1xi+2 . . . xn ∼ y1 . . . yj−1yj+2 . . . ym and use the
induction assumption. Let xi+1 6= yj+1. If yj+1 /∈ {xi, . . . , xn}, substitute x
for every variable from {xi, . . . , xn} and y for all other variables to obtain
yx ∼ yxyx. If yj+1 ∈ {xi, . . . , xn} and xi+1 ∈ {yj , . . . , ym}, substitute x
for xn, x for xi+1, z for every variable from {xi+2, . . . , xn−1} and y for every
other variable to obtain either zxyx ∼ zyxyzx or zxyx ∼ zyxyx and thus
(substitute x for y in the first equation) either (1) or (3). �

Theorem 5.4. The variety W∞ is generated by F3,4 and every word is

W∞-equivalent with precisely one admissible word.

Proof. By 5.2, every word is W∞-equivalent with at least one admissible
word. If two different admissible words are W∞-equivalent then W∞ satis-
fies one of the three equations 5.3(1), 5.3(2) and 5.3(3). However, it is easy
to check that none of these three equations is satisfied in F3,4. Since F3,4

belongs to W∞, it follows that every word is W∞-equivalent with precisely
one admissible word. If F3,4 satisfies an equation not satisfied by all algebras
in W∞ then, again by 5.3, it satisfies one of the three equations which is
not possible. �

Remark 5.5. The variety W∞ is not generated by F2,2. Indeed, F2,2 satisfies
xyzyz ≈ xzyz and this equation is not satisfied in W∞.

Remark 5.6. According to 5.4, the cardinality C(k) of the k-generated free
algebra in W∞ can be computed in the following way. Denote by Sk the set
of finite sequences 〈n1, . . . , nr〉 of positive integers such that n1+· · ·+nr = k.
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Put

D(k) =
∑

〈n1,...,nr〉∈Sk

r
∏

i=1

(

k − n1 − · · · − ni−1

ni

)

n2
i

Then C(k) =
∑k

i=1

(

k
i

)

D(i). In particular,

C(2) = 8, C(3) = 60, C(4) = 548, C(5) = 6180, C(6) = 83502.

Remark 5.7. The equations of W∞ together with xyxy ≈ xy imply the equa-
tion xyxz1 . . . zny ≈ xyz1 . . . zny. Indeed, xyxz1 . . . zny = xyxyz1 . . . zny =
xyz1 . . . zny.

Remark 5.8. The equations of W∞ together with an equation xyxz1 . . . znyu
≈ xyxz1 . . . znu (n ≥ 1) imply xyxy ≈ xy. Indeed, take the substitution
sending y to x, z1, . . . , zn to y and u to y.

Theorem 5.9. The intersection of W3 with the variety determined by

xyxy ≈ xy is the variety of idempotent slim groupoids satisfying xyzu ≈
xzyu.

Proof. Denote by ∼ the equational theory of W3 extended by xyxy ≈ xy.
We have

xyxzy ∼ xyxyzy ∼ xyzy

xyxzy ∼ xyzxy ∼ xzyxy ∼ xzxyxy ∼ xzxy

xyzy ∼ xzxy

xzxy ∼ xyxzy ∼ xzyzy ∼ xzy

xyzu ∼ xyxzu ∼ xyxzxu ∼ xzxyxu ∼ xzyu

�

6. The variety Y

Denote by Y the variety determined by the equations of W∞ together
with the equations xyxyz ≈ xyxz and zxyxy ≈ zyxy. In this section we
denote by ∼ the equational theory of Y.

Lemma 6.1. We have

(1) zxyxu ∼ zyxyu
(2) zxyv1 . . . vnxu ∼ zyxv1 . . . vnyu
(3) xyxu1 . . . unyz ∼ xyu1 . . . unxz
(4) zxyxu1 . . . uny ∼ zyxu1 . . . uny

Proof. (1) zxyxu ∼ zxyxyu ∼ zyxyu.
(2) zxyv1 . . . vnxu ∼ zxyxv1 . . . vnxu ∼ zyxyv1 . . . vnxu ∼

zyxyv1 . . . vnxyxu ∼ zyxyv1 . . . vnyxyu ∼ zyxv1 . . . vnyu.
(3) xyxu1 . . . unyz ∼ xyu1 . . . unyxyz ∼ xyu1 . . . unxyxz ∼ xyu1 . . . unxz.
(4) zxyxu1 . . . uny ∼ zyxyu1 . . . uny ∼ zyxu1 . . . uny. �

By a 2-admissible word we mean a word x1 . . . xn such that
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(1) x1 . . . xn is I-reduced
(2) every variable has at most two occurrences in x1 . . . xn

(3) whenever 1 ≤ i < j ≤ n and xi = xj then the variables xi+1, . . . , xj−1

are pairwise different and if each of them has only one occurrence in
x1 . . . xn then xi+1 ⊏ xi+2 ⊏ · · · ⊏ xj−1

(4) whenever 1 < i < j < n and xi = xj then xi ⊏ xi+1 ⊏ · · · ⊏ xj−1

(5) whenever 1 ≤ i < j < k < m ≤ n, xi = xk and xj = xm then i = 1,
j = 2, k = 3, m = n and x4 ⊏ x5 ⊏ · · · ⊏ xn−1

Lemma 6.2. Let x1 . . . xn and y1 . . . ym be two different 2-admissible words.

Then the equation x1 . . . xn ≈ y1 . . . ym together with the equations of Y

implies xyxy ≈ xy.

Proof. By induction on n + m. If xn 6= ym then z(x1 . . . xn) ≈ z(y1 . . . ym)
gives zxn ≈ zym which implies xy ≈ x and then xyxy ≈ xy. So, let xn = ym.

Suppose {x1, . . . , xn} 6= {y1, . . . , ym}. Without loss of generality, yi /∈
{x1, . . . , xn} for some i. Substitute y for yi and x for any other variable.
We get one of the equations x ≈ yx, x ≈ xyx and x ≈ yxyx. Each of these
equations implies xyxy ≈ xy. (In the case of x ≈ yxyx take the substitution
x 7→ yx.)

If x1 6= y1, take a new variable z and substitute zx1 for x1. We get
zx1 . . . zxn ≈ y1 . . . ym where {z, x1, . . . , xn} 6= {y1, . . . , ym} and thus we get
the equation xyxy ≈ xy as before.

Thus we can assume that {x1, . . . , xn} = {y1, . . . , ym}, x1 = y1 and xn =
ym. Since x1 . . . xn 6= y1 . . . ym, we have n > 1 and m > 1.

Suppose that xn has only one occurrence in x1 . . . xn and only one occur-
rence in y1 . . . ym. If xn−1 = ym−1 then we can we substitute xn−1 for xn

to obtain x1 . . . xn−1 ∼ y1 . . . ym−1 where x1 . . . xn−1 and y1 . . . ym−1 are two
different 2-admissible terms, so that the induction assumption can be ap-
plied. Let xn−1 6= ym−1. If xn−1 has only one occurrence in x1 . . . xn, substi-
tute x for xn, x for xn−1 and y for all other variables to obtain yx ≈ yxyx.
If ym−1 has a single occurrence in y1 . . . ym, we can proceed similarly. It
remains to consider the case when xn−1 = xi and ym−1 = yj for some
i < n − 1 and j < m − 1. We cannot have xn−1 ∈ {yj+1, . . . , ym−2} and
ym−1 ∈ {xi+1, . . . , xn−2} at the same time, since then we would get both
xn−1 ⊏ ym−1 and ym−1 ⊏ xn−1. Let ym−1 /∈ {xi+1, . . . , xn−2} (the other
case is similar). Substituting x for xi, . . . , xn and y for all other variables
we get yx ≈ yxyx.

Suppose that xn has only one occurrence in x1 . . . xn but two occurrences
in y1 . . . ym. Substitute x for xn and y for all other variables. We get
yx ∼ yxyx.

It remains to consider the case when xn = ym has two occurrences in
x1 . . . xn and two occurrences in y1 . . . ym. Let i < n, j < m, xi = xn and
yj = ym. Put C = {xi+1, . . . , xn−1} and D = {yj+1, . . . , ym−1}.

Suppose that each variable from C has only one occurrence in x1 . . . xn

and each variable from D has only one occurrence in y1 . . . ym. If C −D 6= ∅
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and D − C = ∅, substitute x for xn, x for every variable from C ∩ D and y
for all other variables to obtain yxyx ∼ yx. If C − D 6= ∅ and D − C 6= ∅,
substitute x for xn, x for every variable from C and y for all other variables to
obtain that yx ∼ yxyx. If C = D, substitute a variable x /∈ {x1, . . . , xn} for
every variable from {xi, . . . , xn} to obtain x1 . . . xi−1x ∼ y1 . . . yj−1x where
x1 . . . xi−1x and y1 . . . yj−1x are two different admissible words, so that the
induction assumption can be applied.

Now consider the case when a variable from D has two occurrences in
y1 . . . ym. Then y1 = y3, y2 = ym and y4 ⊏ · · · ⊏ ym−1. If also some
variable from C has two occurrences in x1 . . . xn, we get x1 . . . xn = y1 . . . xn,
a contradiction. Thus every variable from C has only one occurrence in
x1 . . . xn. In particular, the variable x1 = y1 = y3 does not belong to C.
Substitute x for xi, . . . , xn and y for all other variables to obtain yx ≈ yxyx.

Finally, the case when a variable from C has two occurrences in x1 . . . xn

can be handled similarly. �

The free groupoid in Y with three generators can be obtained from the
groupoid F3,4 if we take its factor by the congruence generated by all pairs
〈ababc, abac〉 and 〈abcbc, acbc〉. It is easy to construct the multiplication
table of this groupoid. It has 48 elements and we will denote it by F3,Y.
One can easily check that the groupoid does not satisfy xyxy ≈ xy.

Theorem 6.3. The variety Y is generated by F3,Y and every word is Y-

equivalent with precisely one 2-admissible word.

Proof. It follows from 6.1 that every word is Y-equivalent with at least one 2-
admissible word. If two different 2-admissible words were Y-equivalent then
Y would satisfy xyxy ≈ xy by 6.2. However, this equation is not satisfied
in F3,Y. Since F3,Y belongs to Y, it follows that every word is Y-equivalent
with precisely one 2-admissible word. If F3,Y satisfied an equation not
satisfied by all algebras in Y then, again by 6.2, it would satisfy xyxy ≈ xy
which it does not. �

Theorem 6.4. The lattice of subvarieties of Y has six elements: the trivial

variety V0, the variety V1 of left zero semigroups, the variety V2 of right zero

semigroups, the variety V3 of rectangular bands, the variety V4 of idempotent

slim groupoids satisfying xyxy ≈ xy, and itself. The only proper inclusions

are V0 ⊂ V1 ⊂ V3 ⊂ V4 ⊂ Y and V0 ⊂ V2 ⊂ V3.

Proof. It follows from the above results that every proper subvariety of Y

is contained in V4. The lattice of subvarieties of V4 has been described
in [1]. �

Theorem 6.5. The variety Y is generated by the inherently nonfinitely

based four-element groupoid G4,3 introduced in 2.2.

Proof. It is easy to check that G4,3 satisfies all the equations of Y but not
the equation xyxy ≈ xy. �
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