SLIM GROUPOIDS

J. JEŽEK

Abstract

Slim groupoids are groupoids satisfying $x(y z) \approx x z$. We find all simple slim groupoids and all minimal varieties of slim groupoids. Every slim groupoid can be embedded into a subdirectly irreducible slim groupoid. The variety of slim groupoids has the finite embeddability property, so that the word problem is solvable. We introduce the notion of a strongly nonfinitely based slim groupoid (such groupoids are inherently nonfinitely based) and find all strongly nonfinitely based slim groupoids with at most four elements; up to isomorphism, there are just two such groupoids.

We are going to investigate groupoids (algebras with one binary operation) satisfying the equation $x(y z) \approx x z$. Since every term operation of such a groupoid can be represented by a slim term (a term that is a product of a finite sequence of variables with all parentheses grouped to the left), these groupoids are called slim. Similarly as in the case of semigroups, a free object in the variety of slim groupoids is the set of words over a given set of generators; only the multiplication of words differs from that in a free semigroup.

One can expect that the variety of slim groupoids will have similar properties as the variety of semigroups. In some cases it is true. We will see, however, that the variety of slim groupoids has solvable word problem and has the strong amalgamation property.

The purpose of this paper is to introduce and investigate basic properties of the variety of slim groupoids. We are particularly interested in the existence of finite, nonfinitely based slim groupoids. It has been shown by McKenzie [2] that the finite basis problem for equations of finite algebras is unsolvable: there is no algorithm deciding for an arbitrary finite algebra, or a finite groupoid, whether it has a finite basis for its equations. For many varieties, like those of groups or lattices, the problem is solvable in a trivial way: every finite algebra in such a variety has a finite basis. So, it is desirable to look for (natural) examples of varieties with the finite basis problem solvable but in a nontrivial way. Such a variety should be in some sense reasonably small and in another sense reasonably large. Perhaps the variety of slim (or idempotent slim) groupoids could be a good candidate. We introduce the notion of a strongly nonfinitely based slim groupoid (such

[^0]groupoids are inherently nonfinitely based) and find all strongly nonfinitely based slim groupoids with at most four elements; up to isomorphism, there are just two such groupoids.

For the notation and basic notions of universal algebra the reader is referred to [3]. We will work with groupoids, algebras with one binary operation. In most cases, without mention, the operation is denoted multiplicatively: the product of two elements a, b of a groupoid is denoted by $a \cdot b$ or just $a b$. For elements $a_{1}, a_{2}, \ldots, a_{n}$ of a groupoid write $a_{1} \ldots a_{n}=$ $\left(\left(\left(a_{1} a_{2}\right) a_{3}\right) \ldots\right) a_{n}$. (The parentheses are grouped to the left.) For $n \geq 1$ put $a^{n}=a_{1} \ldots a_{n}$ where $a_{i}=a$ for all i.

1. Slim groupoids: FIRST CONCEPTS

By a slim groupoid we mean a groupoid satisfying the equation $x(y z) \approx$ $x z$.

Let X be a nonempty set. By a term over X we mean an element of the absolutely free groupoid over X. For a term t denote by $\kappa(t)$ the element of X occurring in t at the rightmost position. (The inductive definition: $\kappa(x)=$ x for $x \in X ; \kappa(u v)=\kappa(v)$.) By a slim term we mean any term $x_{1} \ldots x_{k}$ $(k \geq 1)$ where $x_{1}, \ldots, x_{k} \in X$. Every term can be uniquely expressed as $x u_{1} \ldots u_{n}$ for an element x of X and some terms $u_{1}, \ldots, u_{n}(n \geq 0)$. For a term $t=x u_{1} \ldots u_{n}$ expressed in this way put $t^{*}=x \kappa\left(u_{1}\right) \ldots \kappa\left(u_{n}\right)$. So, t^{*} is a slim term for any term t.
Theorem 1.1. The equational theory of slim groupoids can be described by its normal form function $t \mapsto t^{*}$:
(1) for any term t, the equation $t^{*} \approx t$ is satisfied in all slim groupoids
(2) an equation $t \approx u$ is satisfied in all slim groupoids if and only if $t^{*}=u^{*}$
(3) $t^{* *}=t^{*}$ for any term t

Proof. This follows easily from the fact that the set of slim terms, considered as a groupoid with respect to the operation \circ defined by $\left(x_{1} \ldots x_{n}\right) \circ$ $\left(y_{1} \ldots y_{m}\right)=x_{1} \ldots x_{n} y_{m}$, satisfies $x \circ(y \circ z)=x \circ z$.

Let X be a nonempty set. By a word over X we mean a nonempty finite sequence of elements of X. A word $\left\langle x_{1}, \ldots, x_{n}\right\rangle\left(x_{i} \in X\right)$ can be written as $x_{1} x_{2} \ldots x_{n}$ (and thus identified with a slim term, or also with an element of a free semigroup). We denote by $\mathcal{F}(X)$ the groupoid defined in this way: its underlying set is the set of words over X; the multiplication is given by $\left(x_{1} \ldots x_{n}\right)\left(y_{1} \ldots y_{m}\right)=x_{1} \ldots x_{n} y_{m}$.

Theorem 1.2. For a nonempty set X, the groupoid $\mathcal{F}(X)$ is the free slim groupoid over X.

Proof. It follows from 1.1.
For a slim groupoid A we define a binary relation β_{A} on A as follows: $\langle a, b\rangle \in \beta_{A}$ if and only if there exists an element $c \in A$ with $c a=c b$.

Theorem 1.3. Let A be a slim groupoid. Then
(1) $\langle a, b\rangle \in \beta_{A}$ implies $c a=c b$ for all $c \in A$
(2) β_{A} is a congruence of A
(3) $\langle a b, b\rangle \in \beta_{A}$ for all $a, b \in A$, so that the factor A / β_{A} satisfies $x y \approx y$
(4) every block of β_{A} is a subgroupoid of A satisfying $x y \approx x z$

Proof. (1) If $\langle a, b\rangle \in \beta_{A}$ then $d a=d b$ for some $d \in A$, so that $c a=c(d a)=$ $c(d b)=c b$ for all $c \in A$.
(2) It follows from (1) that β_{A} is an equivalence. If $\langle a, b\rangle \in \beta_{A}$ then for any $c \in A$ we have $\langle c a, c b\rangle \in \beta_{A}$, since $c(c a)=c a=c b=c(c b)$; and for any $c \in A$ we have $\langle a c, b c\rangle \in \beta_{A}$, since $c(a c)=c c=c(b c)$. So, β_{A} is a congruence.
(3) For $a, b \in A$ we have $a(a b)=a b$, so that $\langle a b, b\rangle \in \beta_{A}$.
(4) In particular, $\langle a a, a\rangle \in \beta_{A}$. Thus the block of β_{A} containing an arbitrary element $a \in A$ is a subgroupoid. Since any two elements of this subgroupoid are β_{A}-related, the subgroupoid satisfies $x y \approx x z$.

Next we are going to describe a general construction of arbitrary slim groupoids. Denote by Φ the class of ordered triples $\langle A, \beta, \phi\rangle$ such that A is a nonempty set, β is an equivalence on A and ϕ is a mapping of $A \times A / \beta$ into A with $\phi(a, B) \in B$ for any $\langle a, B\rangle \in A \times A / \beta$. For every such triple we define a groupoid $\mathcal{G}_{A, \beta, \phi}$ with the underlying set A by $a b=\phi(a, b / \beta)$ for all $a, b \in A$.
Theorem 1.4. A groupoid is slim if and only if it is the groupoid $\mathcal{G}_{A, \beta, \phi}$ for a triple $\langle A, \beta, \phi\rangle \in \Phi$.

Proof. Clearly, $\mathcal{G}_{A, \beta, \phi}$ is a slim groupoid. Now let C be an arbitrary slim groupoid. It is easy to check that $C=\mathcal{G}_{A, \beta, \phi}$ where $A=C, \beta=\beta_{A}$ and ϕ is defined by $\phi(a, a / \beta)=a b$.

2. Simple slim groupoids and minimal varieties

Lemma 2.1. The following are equivalent for a groupoid A :
(1) A is slim and $\beta_{A}=i d_{A}$
(2) A satisfies $x y \approx y$

Proof. (1) implies (2) by 1.3. The converse is clear.
Lemma 2.2. The following are equivalent for a groupoid A :
(1) A is slim and $\beta_{A}=A \times A$
(2) A satisfies $x y \approx x z$

Proof. (1) implies (2) by 1.3. The converse is clear.
Theorem 2.3. The following are up to isomorphism the only simple slim groupoids:
(1) the two-element groupoid satisfying $x y \approx x$
(2) the two-element groupoid satisfying $x y \approx y$
(3) the two-element groupoid satisfying $x y \approx z u$
(4) for every prime number p, the groupoid with elements $0,1, \ldots, p-1$ and multiplication \circ given by $x \circ y=x+1 \bmod p$.

Proof. It is easy to check that all these groupoids are slim and simple. Let A be a simple slim groupoid. Then β_{A} is either id_{A} or $A \times A$. If $\beta_{A}=\operatorname{id}_{A}$ then A satisfies $x y \approx x$ by 1.3, and then A has just two elements because it is simple. If $\beta_{A}=A \times A$ then A satisfies $x y \approx x z$ by 1.3 , so that A is essentially an algebra with one unary operation; the description of simple algebras with one unary operation belongs to the folklore.

Theorem 2.4. The variety of slim groupoids has just three minimal subvarieties:
(1) the variety determined by $x y \approx x$
(2) the variety determined by $x y \approx y$
(3) the variety determined by $x y \approx z u$

Proof. It follows from 2.3, since every minimal variety contains (and thus is generated by) a simple groupoid. The groupoids $2.3(4)$ do not generate minimal varieties. They generate varieties determined by $x y \approx x z$ and $x^{p+1} \approx x$, and these contain the variety determined by $x y \approx x$.

3. Subdirectly irreducible Slim groupoids

Theorem 3.1. Every slim groupoid A can be embedded into a subdirectly irreducible slim groupoid B such that the monolith of B has only singleton blocks and one two-element block, and such that B is finite if A is finite.

Proof. Let A be a slim groupoid. Let o be a fixed element of A. For $i \in A$ put $a_{i}=\langle a, 1\rangle$ and $b_{i}=\langle a, 2\rangle$. Put $B=A \cup\left\{a_{i}: i \in A\right\} \cup\left\{b_{i}: i \in A\right\}$ and define multiplication on B in this way:
(i) for $i, j \in A, i j$ in B is the same as $i j$ in A
(ii) for $i \in A$ put $i a_{i}=i b_{i}=a_{i}$
(iii) for $i, j \in A$ with $i \neq j$ put $j a_{i}=j b_{i}=b_{i}$
(iv) for $i, j \in A$ put $a_{i} j=b_{i} j=i j$
(v) for $i, j \in A$ put $b_{j} a_{i}=b_{j} b_{i}=b_{i}$
(vi) for $i \in A$ put $a_{i} a_{i}=a_{i} b_{i}=a_{i}$
(vii) for $i \in A$ put $a_{i} a_{o}=a_{i} b_{o}=a_{o}$
(viii) for $i, j \in A$ with $i \neq j$ and $j \neq o$ put $a_{i} a_{j}=a_{i} b_{j}=b_{j}$

It is easy to check that B is a slim groupoid and that the relation $\mu=$ $\left\{\left\langle a_{o}, b_{o}\right\rangle,\left\langle b_{o}, a_{o}\right\rangle\right\} \cup \mathrm{id}_{B}$ is a congruence of B. Let \sim be a congruence of B. In order to prove that μ is the monolith of B, we have to show that whenever two distinct elements of B are \sim-related then $a_{o} \sim b_{o}$. This follows from the following claims. Let i, j, k, m run over elements of A,

Claim 1. If $i \sim j$ where $i \neq j$ then $a_{i} \sim b_{i}$. Indeed, $a_{i}=i a_{i} \sim j a_{i}=b_{i}$.
Claim 2. If $i \sim a_{j}$ then $k \sim b_{j}$ for some k. Indeed, take an element $m \in A$ different from j and put $k=m i$; we have $k=m i \sim m a_{j}=b_{j}$.

Claim 3. If $i \sim b_{j}$ then $a_{i} \sim b_{i}$. Indeed, $a_{i}=i b_{i} \sim b_{j} b_{i}=b_{i}$.
Claim 4. If $a_{i} \sim b_{j}$ then $a_{o} \sim b_{o}$. Indeed, $a_{o}=a_{i} a_{o} \sim b_{j} a_{o}=b_{o}$.
Claim 5. If $a_{i} \sim a_{j}$ where $i \neq j$ and $j \neq o$ then $a_{j} \sim b_{j}$. Indeed, $b_{j}=a_{i} a_{j} \sim a_{j} a_{j}=a_{j}$.

Claim 6. If $b_{i} \sim b_{j}$ where $i \neq j$ and $j \neq o$ then $a_{i} \sim b_{j}$. Indeed, $a_{i}=a_{i} b_{i} \sim a_{i} b_{j}=b_{j}$.

4. Partial groupoids

By a homomorphism of a partial groupoid A into a partial groupoid B we mean a mapping $f: A \rightarrow B$ such that whenever a, b are elements of A such that $a b$ is defined then $f(a) f(b)$ is also defined and $f(a b)=f(a) f(b)$. We say that A is embeddable into B if there exists an injective homomorphism of A into B. For a groupoid B and a nonempty subset S of B we define a partial groupoid $B \upharpoonright S$ with the underlying set S as follows: for $a, b \in S$ the product $a b$ is defined in $B \upharpoonright S$ if and only if this product in B belongs to S, and in this case the product in $B \upharpoonright S$ is equal to the product in B. We say that a partial groupoid A is strongly embeddable into a groupoid B if it is isomorphic to $B \upharpoonright S$ for a nonempty subset S of B.

Clearly, if a partial groupoid A is strongly embeddable into a slim groupoid, then it satisfies the following two conditions:
(P1) whenever $a, b, c \in A$ are such that $b c$ and $a(b c)$ are defined then $a c$ is also defined and $a c=a(b c)$
(P2) whenever $a, b, c \in A$ are such that $a c$ and $b c$ are defined then $a(b c)$ is also defined and $a(b c)=a c$
For a partial groupoid A satisfying (P1) and (P2) we define a groupoid $\mathcal{F}(A)$ as follows. The underlying set of $\mathcal{F}(A)$ is the set of finite nonempty sequences $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ of elements of A such that if $n \geq 2$ then $a_{1} a_{2}$ is not defined in A; the multiplication is given by

$$
\left\langle a_{1}, \ldots, a_{n}\right\rangle\left\langle b_{1}, \ldots, b_{m}\right\rangle=\left\{\begin{array}{l}
a_{1} b_{m} \text { if } n=1 \text { and } a_{1} b_{m} \text { is defined in } A \\
\left\langle a_{1}, \ldots, a_{n}, b_{m}\right\rangle \text { otherwise }
\end{array}\right.
$$

For this definition to make sense, we must suppose that no element of A is a finite sequence of length larger than 1 . If this is not satisfied then A should be replaced with an isomorphic partial groupoid. Also, we identify an element a of A with $\langle a\rangle$.

Theorem 4.1. Let A be a partial groupoid satisfying (P1) and (P2). Then $\mathcal{F}(A)$ is a slim groupoid; it is the free slim groupoid over A, i.e., it is generated by A and every homomorphism of A into a slim groupoid B can be extended to a homomorphism of $\mathcal{F}(A)$ into B.

Proof. The most essential is to prove that $\mathcal{F}(A)$ is slim. Let $u=\left\langle a_{1}, \ldots, a_{n}\right\rangle$, $v=\left\langle b_{1}, \ldots, b_{m}\right\rangle$ and $w=\left\langle c_{1}, \ldots, c_{k}\right\rangle$ be three elements of $\mathcal{F}(A)$. We are going to check that $u(w v)=u v$.

Consider first the case when $n=1$ and $a_{1} b_{m}$ is defined in A, so that $u v=$ $a_{1} b_{m}$. If $k=1$ and $c_{1} b_{m}$ is defined in A then $u(v w)=a_{1}\left(c_{1} b_{m}\right)=a_{1} b_{m}=u v$ by (P2). Otherwise, $u(w v)=u\left\langle c_{1}, \ldots, c_{k}, b_{m}\right\rangle=a_{1} b_{m}=u v$.

Consider the remaining case. Now $u v=\left\langle a_{1}, \ldots, a_{n}, b_{m}\right\rangle$. If $w v=$ $\left\langle c_{1}, \ldots, c_{k}, b_{m}\right\rangle$ then $u(w v)=\left\langle a_{1}, \ldots, a_{n}, b_{m}\right\rangle=u v$. Otherwise, $k=1$, $c_{1} b_{m}$ is defined in A and $w v=c_{1} b_{m}$. If $n=1$ and $a_{1}\left(c_{1} b_{m}\right)$ is defined in A then $a_{1} b_{m}$ is defined by (P 1), which is not possible. So, $w v=\left\langle c_{1}, \ldots, c_{k}, b_{m}\right\rangle$ and $u(w v)=\left\langle a_{1}, \ldots, a_{n}, b_{m}\right\rangle=u v$.

Clearly, $\mathcal{F}(A)$ is generated by the set A. A homomorphism f of A into a slim groupoid B can be extended to a homomorphism g of $\mathcal{F}(A)$ into B by setting $g\left(\left\langle a_{1}, \ldots, a_{n}\right\rangle\right)=f\left(a_{1}\right) f\left(a_{2}\right) \ldots f\left(a_{n}\right)$.
Corollary 4.2. A partial groupoid is strongly embeddable into a slim groupoid if and only if it satisfies (P1) and (P2).

For a partial groupoid A denote by γ_{A} the set of the ordered pairs $\langle a, b\rangle \in$ $A \times A$ such that one of the following three cases takes place:
(1) there exists an element $c \in A$ such that $c a, c b$ are both defiend and $c a=c b$
(2) there exists an element $c \in A$ such that $c a$ is defined and $c a=b$
(3) there exists an element $c \in A$ such that $c b$ is defined and $c b=a$

Denote by β_{A} the reflexive and transitive closure of γ_{A}. (If A is a slim groupoid then both γ_{A} and β_{A} coincide with the earlier defined congruence β_{A}.) Of course, β_{A} is an equivalence on A.

Consider the following condition for a partial groupoid A :
(P0) whenever $\langle a, b\rangle \in \beta_{A}, c \in A$ and $c a$ and $c b$ are both defined then $c a=c b$

Theorem 4.3. The following three conditions are equivalent for a partial groupoid A :
(1) A is embeddable into a slim groupoid
(2) A can be completed to a slim groupoid
(3) A satisfies (P0)

Proof. The implications $(2) \Rightarrow(1) \Rightarrow(3)$ are trivial. We are going to prove (3) $\Rightarrow(2)$. Let A satisfy (P0). For every block B of β_{A} choose one fixed element $\nu(B) \in B$. Define a binary operation \circ on A as follows:

$$
a \circ b=\left\{\begin{array}{l}
a c \text { if there is a } c \in A \text { with }\langle b, c\rangle \in \beta_{A} \text { such that } a c \text { is defined } \\
\nu\left(b / \beta_{A}\right) \text { otherwise }
\end{array}\right.
$$

Correctness of this definition follows from (P0). Clearly, if a, b are two elements of A such that $a b$ is defined in A then $a \circ b=a b$. Thus the groupoid $\langle A, \circ\rangle$ is a completion of the partial groupoid $A=\langle A, \cdot\rangle$. It remains to prove that this groupoid is slim.

Claim 1. $\langle a \circ b, b\rangle \in \beta_{A}$ for all $a, b \in a$. This is easy to check.

Claim 2. For $a, b, c \in A$ with $\langle a, b\rangle \in \beta_{A}$ we have $c \circ a=c \circ b$. If $c \circ a=c d$ where $\langle a, d\rangle \in \beta_{A}$ then $\langle b, d\rangle \in \beta_{A}$, so that $c \circ b=c d=c \circ a$. The case $c \circ b=c d$ for some d is symmetric. In the remaining case $c \circ a=\nu\left(a / \beta_{A}\right)=$ $\nu\left(b / \beta_{A}\right)=c \circ b$.

Claim 3. For $a, b, c \in A$ we have $a \circ(b \circ c)=a \circ c$. By Claim 1 we have $\langle b \circ c, c\rangle \in \beta_{A}$ and so $a \circ(b \circ c)=a \circ c$ by Claim 2.

A variety V is said to have the finite embeddability property if every finite partial algebra that is embeddable into some algebra from V is embeddable into some finite algebra from V.

Corollary 4.4. The variety of slim groupoids has the finite embeddability property.

Corollary 4.5. The variety of slim groupoids has globally decidable word problem.

This follows from Evans [1]: every finitely based variety with finite embeddability property has globally decidable word problem.

A variety V is said to have the strong amalgamation property if for any two algebras $A, B \in V$ such that the intersection $A \cap B$ is a subalgebra of both A and B, there exists an algebra $C \in V$ such that both A and B are subalgebras of C.

Theorem 4.6. The variety of slim groupoids has the strong amalgamation property.

Proof. Let A, B be two slim groupoids such that $A \cap B$ is a subgroupoid of each of them. Define a partial groupoid P with the underlying set $A \cup B$ as follows: for $a, b \in A \cup B$, the product $a b$ is defined in P if and only if either $\{a, b\} \subseteq A$ or $\{a, b\} \subseteq B$; in each case let the product in P coincide with that in either A or B. By Theorem 4.3 , it is sufficient to check that P satisfies (P0). Take a fixed element $c \in A \cap B$. Let us first prove that if $\langle a, b\rangle \in \gamma_{P}$ then $c a=c b$. There exists an element d such that either $d a=d b$ or $d a=b$ or $d b=a$. If either $\{a, b\} \subseteq A$ or $\{a, b\} \subseteq B$ then it is easy to see that either $\langle a, b\rangle \in \beta_{A}$ or $\langle a, b\rangle \in \beta_{B}$ and hence $c a=c b$. Let, e.g., $a \in A-B$ and $b \in B-A$. Since the products $d a$ and $d b$ are both defined, we have $d \in A \cap B$ and $d a=d b \in A \cap B$. Then $c a=c(d a)=c(d b)=c b$.

Now let $\langle a, b\rangle \in \beta_{P}$. There exists a finite sequence $a=a_{0}, a_{1}, \ldots, a_{k}=b$ such that $\left\langle a_{i-1}, a_{i}\right\rangle \in \gamma_{P}$ for $i=1, \ldots, n$. We have seen that $c a_{i-1}=c a_{i}$ for all i. Thus $c a=c b$. From this it follows that $d a=d b$ whenever both $d a$ and $d b$ are defined.

5. Equational theories

Let X be a countably infinite set of variables. The underlying set of $\mathcal{F}(X)$ is a subset of the groupoid $\langle\mathcal{T}(X), \circ\rangle$ of terms over X. The free semigroup $\langle\mathcal{S}(X), *\rangle$ over X has the same underlying set as $\mathcal{F}(X)$. For two
elements $x_{1} \ldots x_{n}$ and $y_{1} \ldots y_{m}$ we have $\left(x_{1} \ldots x_{n}\right)\left(y_{1} \ldots y_{m}\right)=x_{1} \ldots x_{n} y_{m}$ and $\left(x_{1} \ldots x_{n}\right) *\left(y_{1} \ldots y_{m}\right)=x_{1} \ldots x_{n} y_{1} \ldots y_{m}$.

An equational theory is a fully invariant congruence of the groupoid $\langle\mathcal{T}(X), \circ\rangle$. By a slim theory we mean a restriction to $\mathcal{F}(X)$ of an equational theory extending the equational theory of slim groupoids. Of course, the lattice of varieties of slim groupoids is antiisomorphic to the lattice of slim theories.

Theorem 5.1. A binary relation R on $\mathcal{F}(X)$ is a slim theory if and only if it is a congruence of the free semigroup $\mathcal{S}(X)$ satisfying the following three conditions:
(1) if $\left\langle x_{1} \ldots x_{n}, y_{1} \ldots y_{m}\right\rangle \in R$ then $\left\langle f\left(x_{1}\right) \ldots f\left(x_{n}\right), f\left(y_{1}\right), \ldots, f\left(y_{m}\right)\right\rangle \in$ R for any mapping f of X into X
(2) if $\left\langle x_{1} \ldots x_{n}, y_{1} \ldots y_{m}\right\rangle \in R$ where $x_{1} \neq y_{1}$ then $\left\langle z x_{1} \ldots x_{n}, y_{1} \ldots y_{m}\right\rangle$ $\in R$ for any variable z
(3) if there is an equation $\left\langle x_{1} \ldots x_{n}, y_{1} \ldots y_{m}\right\rangle \in R$ such that $x_{n} \neq y_{m}$ then $\langle x y, x z\rangle \in R$ for three distinct variables x, y, z

Proof. Let R be a slim theory, so that $R=R^{\prime} \cap(\mathcal{F}(X) \times \mathcal{F}(X))$ for an equational theory extending the equational theory of slim groupoids. Let $\left\langle x_{1} \ldots x_{n}, y_{1} \ldots y_{m}\right\rangle \in R$. Condition (1) is satisfied, since R^{\prime} is a fully invariant congruence of $\mathcal{T}(X)$. If $x_{1} \neq y_{1}$ then substituting $z x_{1}$ for x_{1} yields $\left\langle z x_{1} \ldots x_{n}, y_{1} \ldots y_{m}\right\rangle \in R$. If $x_{n} \neq y_{m}$, take a variable z different from both x_{n} and y_{m}; we have $\left\langle z \circ\left(x_{1} \ldots x_{n}\right), z \circ\left(y_{1} \ldots y_{m}\right)\right\rangle \in R^{\prime}$, so that $\left\langle z x_{n}, z y_{m}\right\rangle \in R$.

It remains to prove the converse. Denote by R^{\prime} the set of the equations $\langle u, v\rangle \in \mathcal{F}(X) \times \mathcal{F}(X)$ such that $\left\langle u^{*}, v^{*}\right\rangle \in R$. (As above, u^{*} is the only element of $\mathcal{F}(X)$ such that $\left\langle u, u^{*}\right\rangle$ is in the equational theory of slim groupoids.) Clearly, R^{\prime} is an equivalence. Let $\langle u, v\rangle \in R^{\prime}$ and w be a term. Since R is a congruence, $\left\langle u^{*} \kappa(w), v^{*} \kappa(w)\right\rangle \in R$ and hence $\langle u \circ w, v \circ w\rangle \in R^{\prime}$. We have $(w \circ u)^{*}=w^{*} x_{n}$ and $(w \circ v)^{*}=w^{*} y_{m}$. If $x_{n}=y_{m}$, we get $(w \circ u)^{*}=(w \circ v)^{*}$ and thus $\langle w \circ u, w \circ v\rangle \in R^{\prime}$. If $x_{n} \neq y_{m}$, the same follows from (3). So, R^{\prime} is a congruence of $\mathcal{T}(X)$.

Let $\langle u, v\rangle \in R^{\prime}$ and let f be an endomorphism of $\mathcal{F}(X)$. We have $u=$ $x_{0} u_{1} \ldots u_{n}$ and $v=y_{0} v_{1} \ldots v_{m}$ for some variables x_{0}, y_{0} and terms u_{i}, v_{j}. Then $\left\langle u^{*}, v^{*}\right\rangle=\left\langle x_{0} x_{1} \ldots x_{n}, y_{0} y_{1} \ldots y_{m}\right\rangle \in R$ where $x_{i}=\kappa\left(u_{i}\right)$ and $y_{j}=$ $\kappa\left(v_{j}\right)$ for $i, j \geq 1$. Put $f\left(x_{0}\right)^{*}=z_{1} \ldots z_{r}$ and $f\left(y_{0}\right)^{*}=w_{1} \ldots w_{s}$. For $i, j \geq 1$ put $p_{i}=\kappa\left(f\left(x_{i}\right)\right)$ and $q_{j}=\kappa\left(f\left(y_{j}\right)\right)$. We have $\left\langle z_{r} p_{1} \ldots p_{n}, w_{s} q_{1} \ldots q_{m}\right\rangle \in R$ by (1). If $x_{0}=y_{0}$ then $\left\langle f(u)^{*}, f(v)^{*}\right\rangle=\left\langle z_{1} \ldots z_{r} p_{1} \ldots p_{n}, z_{1} \ldots z_{r} q_{1} \ldots q_{m}\right\rangle \in$ R, since R is a congruence of $\mathcal{S}(X)$. If $x_{0} \neq y_{0}$ then it follows easily from (2) that $\left\langle z_{1} \ldots z_{r} p_{1} \ldots p_{n}, w_{1} \ldots w_{s} q_{1} \ldots q_{m}\right\rangle \in R$, i.e., $\left\langle f(u)^{*}, f(v)^{*}\right\rangle \in R$. This shows that R^{\prime} is a fully invariant congruence of $\mathcal{T}(X)$. Clearly, R^{\prime} extends the equational theory of slim groupoids and R is its restriction to $\mathcal{F}(X)$.

By a slim-regular equation we mean an equation $x_{1} \ldots x_{n} \approx y_{1} \ldots y_{m}\left(x_{i}\right.$ and y_{j} are variables) such that $\left\{x_{1}, \ldots, x_{n}\right\}=\left\{y_{1}, \ldots, y_{m}\right\}, x_{1}=y_{1}$ and $x_{n}=y_{m}$.

By a slim derivation of an equation $u \approx v$ based on a set B of slim-regular equations we mean a finite sequence u_{0}, \ldots, u_{k} of words such that $u_{0}=u$, $u_{k}=v$ and for every $i=0, \ldots, k-1,\left\langle u_{i}, u_{i+1}\right\rangle$ is an immediate consequence of an equation $\left\langle x_{1} \ldots x_{n}, y_{1} \ldots y_{m}\right\rangle \in B \cup B^{-1}$ in the sense that the word u_{i+1} is obtained from u_{i} by replacing a subword $f\left(x_{1}\right) \ldots f\left(x_{n}\right)$, for a mapping f of the set of variables into itself, with $f\left(y_{1}\right) \ldots f\left(y_{m}\right)$.
Theorem 5.2. Let B be a set of slim-regular equations and let u, v be two terms. The equation $u \approx v$ is satisfied in the variety of slim groupoids determined by B if and only if there exists a slim derivation of $u \approx v$ based on B.

Proof. It follows from 5.1.

6. Strongly nonfinitely based finite slim groupoids

A finite groupoid A is said to be nonfinitely based if its equational theory has no finite base. It is said to be inherently nonfinitely based if there is no finitely based, locally finite variety containing A.

By a strongly nonfinitely based slim groupoid we mean a finite slim groupoid A such that whenever A satisfies an equation $\langle u, v\rangle$ where both u, v are slim and u is linear (i.e., every variable occurs at most once in u), then $u=v$.

Theorem 6.1. Let A be a finite, strongly nonfinitely based slim groupoid. Then A is inherently nonfinitely based.

Proof. First observe that if an equation $\langle u, v\rangle$ is satisfied in A then $\kappa(u)=$ $\kappa(v)$. Indeed, if $\kappa(u) \neq \kappa(v)$ then A satisfies $x y=x z$, a contradiction. Also observe that if $\langle x, u\rangle$ is satisfied in A where x is a variable x then $u=x$.

Let V be a locally finite variety containing A and suppose that the equational theory E of V has a finite base B. Denote by E_{0} the equational theory of A, so that $E \subseteq E_{0}$. Let q be a positive integer larger than the length of u, for any $\langle u, v\rangle \in B \cup B^{-1}$. For any $i \geq 1$ denote by t_{i} the term which is the product of the first i variables in the sequence $x_{1}, \ldots, x_{q}, x_{1}, \ldots, x_{q}, x_{1}, \ldots, x_{q}, \ldots$ Since V is locally finite, we have $\left\langle t_{i}, t_{j}\right\rangle \in E$ for some $i \neq j$. Since B is a base for E, there exists a B-derivation $t_{i}=w_{0}, w_{1}, \ldots, w_{n}=t_{j}$.

Let us prove by induction on $p=0,1, \ldots$ that $w_{p}^{*}=t_{i}$. For $p=0$ it is clear. Let $w_{p}^{*}=t_{i}$ for some $p<n$. There exist an equation $\langle u, v\rangle \in B \cup B^{-1}$ and an endomorphism f of the groupoid of terms such that w_{p+1} is obtained from w_{p} by replacing a subterm $f(u)$ with $f(v)$. We have $w_{p}=x r_{2} \ldots r_{i}$ for a variable x and some terms r_{2}, \ldots, r_{i} (the same i as above). If $f(u)$ is a subterm of r_{m} for some m then $w_{p+1}=x r_{2}^{\prime} \ldots r_{i}^{\prime}$ for some terms r_{i}^{\prime} with $r_{c}^{\prime}=r_{c}$ for all $c \neq m$ and $\kappa\left(r_{m}^{\prime}\right)=\kappa\left(r_{m}\right)$, so that $w_{p+1}^{*}=w_{p}^{*}=t_{i}$. Otherwise,
$f(u)=x r_{2} \ldots r_{d}$ for some d. We have $u=y u_{2} \ldots u_{k}$ for a variable y and some terms u_{2}, \ldots, u_{k} where $k<q$. Then $f(y)=x r_{2} \ldots r_{e}, f\left(u_{2}\right)=r_{e+1}$, $\ldots, f\left(u_{k}\right)=r_{d}$. Since $k<q$, the variables $\kappa\left(r_{e}\right), \kappa\left(r_{e+1}\right), \ldots, \kappa\left(r_{d}\right)$ are pairwise distinct. Hence $y, \kappa\left(u_{2}\right), \ldots, \kappa\left(u_{k}\right)$ are pairwise distinct. Thus u^{*} is a slim linear term. Since $\left\langle u^{*}, v^{*}\right\rangle$ is satisfied in A and v^{*} is slim, we get $u^{*}=$ v^{*}. Then also $(f(u))^{*}=(f(v))^{*}$. We get $w_{p+1}^{*}=(f(v))^{*} \kappa\left(r_{d+1}\right) \ldots \kappa\left(r_{i}\right)=$ $w_{p}^{*}=t_{i}$ 。

In particular, $w_{n}^{*}=t_{i}$, i.e., $t_{j}=t_{i}$, a contradiction.
Consider the slim groupoid $\mathcal{G}_{4,1}$ with elements a, b, c, d and multiplication table

	a	b	c	d
a	a	a	c	c
b	a	a	d	d
c	b	b	c	c
d	b	b	d	d

Lemma 6.2. Let h be a homomorphism of the groupoid T of terms into $\mathcal{G}_{4,1}$. Let $t=x_{1} \ldots x_{n}$ where $n \geq 2$ and x_{i} are variables. Then
(1) $h(t)=a$ iff $\left\{h\left(x_{n-1}\right), h\left(x_{n}\right)\right\} \subseteq\{a, b\}$
(2) $h(t)=b$ iff $h\left(x_{n}\right) \in\{a, b\}$ and $h\left(x_{n-1}\right) \in\{c, d\}$
(3) $h(t)=c$ iff $h\left(x_{n}\right) \in\{c, d\}$ and, where k is the least index with $\left\{h\left(x_{k}\right), \ldots, h\left(x_{n}\right)\right\} \subseteq\{c, d\}$, one of the following three cases takes place:
$k=1$ and $h\left(x_{1}\right)=c$
$k=2$ and $h\left(x_{1}\right)=a$
$k \geq 3$ and $\left\{h\left(x_{k-2}\right), h\left(x_{k-1}\right)\right\} \subseteq\{a, b\}$
(4) $h(t)=d$ in the remaining cases

Proof. It can be checked easily.
Lemma 6.3. Let $x_{1} \ldots x_{n} \approx y_{1} \ldots y_{m}$ be satisfied in $\mathcal{G}_{4,1}$, where x_{i} and y_{j} are variables. Then $x_{1}=y_{1}, x_{n}=y_{m}$ and if $n=1$ then $m=1$.

Proof. Since $\mathcal{G}_{4,1}$ contains the subgroupoid $\{c, d\}$ satisfying $x y \approx x$, we have $x_{1}=y_{1}$. Since the factor $\mathcal{G}_{4,1} / \beta_{\mathcal{G}_{4,1}}$ is a two-element groupoid satisfying $x y \approx y$, we have $x_{n}=y_{m}$. Since $\mathcal{G}_{4,1}$ contains the subgroupoid $\{a, b\}$ satisfying $x y \approx u v, \mathcal{G}_{4,1}$ does not satisfy any equation $x \approx x^{k}$ with $k>1$. Consequently, if $n=1$ then $m=1$.
Lemma 6.4. Let $x_{1} \ldots x_{n} \approx y_{1} \ldots y_{m}$ be satisfied in $\mathcal{G}_{4,1}$, where x_{i} and y_{j} are variables. Then $\left\{x_{1}, \ldots, x_{n}\right\}=\left\{y_{1}, \ldots, y_{m}\right\}$.

Proof. Suppose, for example, that there exists an i with $x_{i} \notin\left\{y_{1}, \ldots, y_{m}\right\}$ and take the largest index i with this property. By 6.3 we have $1<i<n$.

Consider first the case $x_{i-1} \neq x_{i}$. Take the homomorphism $h: T \rightarrow \mathcal{G}_{4,1}$ with $h\left(x_{i}\right)=b$ and $h(z)=c$ for all other variables z. Then $h\left(x_{1} \ldots x_{n}\right)=$
$d \neq c=h\left(y_{1} \ldots y_{m}\right)$, a contradiction. (For these computations one can use Lemma 6.2.)

Now consider the remaining case $x_{i-1}=x_{i}$. Take $h: T \rightarrow \mathcal{G}_{4,1}$ with $h\left(x_{i}\right)=a$ and $h(z)=d$ for all other variables z. Then $h\left(x_{1} \ldots x_{n}\right)=c \neq$ $d=h\left(y_{1} \ldots y_{m}\right)$, a contradiction again.
Theorem 6.5. $\mathcal{G}_{4,1}$ is a strongly nonfinitely based slim groupoid.
Proof. Suppose, on the contrary, that there are pairwise different variables x_{1}, \ldots, x_{n} and some variables y_{1}, \ldots, y_{m} such that $x_{1} \ldots x_{n} \approx y_{1} \ldots y_{m}$ is satisfied in $\mathcal{G}_{4,1}$ but $x_{1} \ldots x_{n} \neq y_{1} \ldots y_{m}$. We know already that $1<n \leq m$, $x_{1}=y_{1}, x_{n}=y_{m}$ and $\left\{x_{1}, \ldots, x_{n}\right\}=\left\{y_{1}, \ldots, y_{m}\right\}$.

Let us prove by induction on $i=0, \ldots, n-1$ that $y_{m-i}=x_{n-i}$. For $i=0$ it follows from 6.3. Let $i>0$ and $y_{m-j}=x_{n-j}$ for all $j<n$; suppose that $y_{m-i} \neq x_{n-i}$. If $y_{m-i} \neq x_{n-i+1}$, take the homomorphism $h: T \rightarrow \mathcal{G}_{4,1}$ with $h\left(x_{n-i}\right)=h\left(x_{n-i+1}\right)=a$ and $h(z)=c$ for all other variables z; we have $h\left(x_{1} \ldots x_{n}\right) \in\{a, c\}(a$ if $i=1$ and c if $i>1)$, while $h\left(y_{1} \ldots y_{m}\right) \in\{b, d\}(b$ if $i=1$ and d if $i>1$). If $y_{m-i}=x_{n-i+1}$, take $h: T \rightarrow \mathcal{G}_{4,1}$ with $h\left(x_{n-i+1}\right)=a$ and $h(z)=c$ for all other variables z; we have $h\left(x_{1} \ldots x_{n}\right) \in\{b, d\}(b$ if $i=1$ and d if $i>1$), while $h\left(y_{1} \ldots y_{m}\right) \in\{a, c\}(a$ if $i=1$ and c if $i>1)$. In both cases we get a contradiction.

Thus $y_{m}=x_{n}, \ldots, y_{m-n+1}=x_{1}$. It remains to show that $m=n$. Suppose, on the contrary, that $m>n$. If $y_{m-n}=x_{1}$, take $h: T \rightarrow \mathcal{G}_{4,1}$ with $h\left(x_{1}\right)=b$ and $h(z)=c$ for all other variables z; we have $h\left(x_{1} \ldots x_{n}\right)=d$ while $h\left(y_{1} \ldots y_{m}\right)=c$. If $y_{m-n} \neq x_{1}$, take $h: T \rightarrow \mathcal{G}_{4,1}$ with $h\left(x_{1}\right)=$ a and $h(z)=c$ for all other variables z; we have $h\left(x_{1} \ldots x_{n}\right)=c$ while $h\left(y_{1} \ldots y_{m}\right)=d$.

Now consider the slim groupoid $\mathcal{G}_{4,2}$ with elements a, b, c, d and multiplication table

	a	b	c	d
a	a	a	c	c
b	a	a	d	d
c	b	b	d	d
d	b	b	c	c

Theorem 6.6. $\mathcal{G}_{4,2}$ is a strongly nonfinitely based slim groupoid.
Proof. The idea is essentially the same as for $\mathcal{G}_{4,1}$. The main difference is that the analogue of Lemma 6.2, which is then often used for checking, is slightly more complicated. For a homomorphism h of the groupoid T of terms into $\mathcal{G}_{4,2}$ and for a term $t=x_{1} \ldots x_{n}(n \geq 2)$ we have
(1) $h(t)=a$ iff $\left\{h\left(x_{n-1}\right), h\left(x_{n}\right)\right\} \subseteq\{a, b\}$
(2) $h(t)=b$ iff $h\left(x_{n}\right) \in\{a, b\}$ and $h\left(x_{n-1}\right) \in\{c, d\}$
(3) $h(t)=c$ iff $h\left(x_{n}\right) \in\{c, d\}$ and, where k is the least index with $\left\{h\left(x_{k}\right), \ldots, h\left(x_{n}\right)\right\} \subseteq\{c, d\}$, one of the following six cases takes place:
$k=1, h\left(x_{1}\right)=c$ and n is odd
$k=1, h\left(x_{1}\right)=d$ and n is even
$k=2, h\left(x_{1}\right)=a$ and n is even
$k=2, h\left(x_{1}\right)=b$ and n is odd
$k \geq 3, h\left(x_{k-2}\right) \in\{a, b\}$ and $n-k$ is even
$k \geq 3, h\left(x_{k-2}\right) \in\{c, d\}$ and $n-k$ is odd
(4) $h(t)=d$ in the remaining cases

Let $x_{1} \ldots x_{n} \approx y_{1} \ldots y_{m}$ be satisfied in $\mathcal{G}_{4,2}$, where x_{i} and y_{j} are variables. One can prove in the same way as in Lemma 6.3 that $x_{1}=y_{1}, x_{n}=y_{m}$ and if $n=1$ then $m=1$. In order to prove that $\left\{x_{1}, \ldots, x_{n}\right\}=\left\{y_{1}, \ldots, y_{m}\right\}$, suppose that there is an i with $x_{i} \notin\left\{y_{1}, \ldots, y_{m}\right\}$ and let i be the largest index with this property. We have $1<i<n$. Take two homomorphisms $h, h^{\prime}: T \rightarrow \mathcal{G}_{4,2}$ with $h\left(x_{i}\right)=h^{\prime}\left(x_{i}\right)=a$ and $h(z)=c, h^{\prime}(z)=d$ for all other variables z. It is easy to check that $h\left(x_{1} \ldots x_{n}\right)=h^{\prime}\left(x_{1} \ldots x_{n}\right)$ while $h\left(y_{1} \ldots y_{m}\right) \neq h^{\prime}\left(y_{1} \ldots y_{m}\right)$ in all cases, so that either $h\left(x_{1} \ldots x_{n}\right) \neq$ $h\left(y_{1} \ldots y_{m}\right)$ or $h^{\prime}\left(x_{1} \ldots x_{n}\right) \neq h^{\prime}\left(y_{1} \ldots y_{m}\right)$.

Let, moreover, x_{1}, \ldots, x_{n} be pairwise different. The proof will be finished if we derive a contradiction from the assumption $x_{1} \ldots x_{n} \neq y_{1} \ldots y_{m}$. We have $1<n \leq m$.

Let us first prove that $y_{m-i}=x_{n-i}$ for $i=0, \ldots, n-1$. Suppose $y_{m-i} \neq$ x_{n-i} for some i, and let i be the least number with this property; then $i>0$. If $y_{m-i} \neq x_{n-i+1}$ then $h\left(x_{1} \ldots x_{n}\right) \neq h\left(y_{1} \ldots y_{m}\right)$ where $h\left(x_{n-i}\right)=$ $h\left(x_{n-i+1}\right)=a$ and $h(z)=c$ for all other variables z. If $y_{m-i}=x_{n-i+1}$ then $h\left(x_{1} \ldots x_{n}\right) \neq h\left(y_{1} \ldots y_{m}\right)$ where $h\left(x_{n-i+1}\right)=a$ and $h(z)=c$ for all other variables z.

So, $y_{m}=x_{n}, \ldots, y_{m-n+1}=x_{1}$. If $x_{1} \ldots x_{n} \neq y_{1} \ldots y_{m}$, we get $m>n$. If $y_{m-n}=x_{1}$ then $h\left(x_{1} \ldots x_{n}\right) \neq h\left(y_{1} \ldots y_{m}\right)$ where $h\left(x_{1}\right)=b$ and $h(z)=c$ for all other variables z. If $y_{m-n} \neq x_{1}$ then $h\left(x_{1} \ldots x_{n}\right) \neq h\left(y_{1} \ldots y_{m}\right)$ where $h\left(x_{1}\right)=a$ and $h(z)=c$ for all other variables c.

Theorem 6.7. The groupoids $\mathcal{G}_{4,1}$ and $\mathcal{G}_{4,2}$ are, up to isomorphism, the only two strongly nonfinitely based slim groupoids with at most four elements.

Proof. It is possible to use a computer program to generate all slim groupoids with at most four elements that do not satisfy at least one of the equations $x y \approx x y y y, x y z \approx x y z x y z, x y z \approx x y x y z$ and $x y z u \approx x y z u z u z u$. Only two such groupoids are obtained: the groupoid $\mathcal{G}_{4,1}$ and the groupoid $\mathcal{G}_{4,2}$.

Let us remark that the varieties generated by $\mathcal{G}_{4,1}$ and $\mathcal{G}_{4,2}$ are incomparable: the equation $x x x=x x$ is satisfied in $\mathcal{G}_{4,1}$ but not in $\mathcal{G}_{4,2}$, and the equation $x x y y \approx x y x y y y$ is satisfied in $\mathcal{G}_{4,2}$ but not in $\mathcal{G}_{4,1}$.

References

[1] T. Evans, Embeddability and the word problem. J. London Math. Soc. 28 (1953), 76-80.
[2] R. McKenzie, Tarski's finite basis problem is undecidable. Int. J. Algebra and Computation 6 (1996), 49-104.
[3] R. McKenzie, G. McNulty and W. Taylor, Algebras, Lattices, Varieties, Volume I. Wadsworth \& Brooks/Cole, Monterey, CA, 1987.

Department of Algebra, Charles University, Sokolovská 83, 18675 Praha 8, Czech Republic

E-mail address: jezek@karlin.mff.cuni.cz

[^0]: 1991 Mathematics Subject Classification. 20N02.
 Key words and phrases. groupoid, variety, nonfinitely based.
 The work is a part of the research project MSM0021620839 financed by MSMT.

