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Abstract. We show that every finite algebra, which is finitely related and

lies in a congruence modular variety, has few subpowers. This result, com-
bined with other theorems, has interesting consequences for the complexity

of several computational problems associated to finite relational structures –

the constraint satisfaction problem, the primitive positive formula comparison
problem, and the learnability problem for primitive positive formulas. Another

corollary is that it is decidable whether an algebra given by a set of relations

has few subpowers.

1. Introduction

By an algebra A we mean a nonempty set, called the universe of A, together
with a set (possibly indexed) of finitary operations on it, called the basic operations
of A. An algebra is finite if its universe is finite. The main result of this paper
shows that two important properties of finite algebras are equivalent under certain
additional finiteness assumption.

Finitely related algebras. We first discuss the required finiteness condition.
Most interesting properties of an algebra, like its subuniverses, congruences,

automorphisms, etc., depend on its term operations rather than on the particular
choice of basic operations. Therefore, the clone of an algebra, i.e., the set of all its
term operations, is an invariant of an algebra which is sufficient for most purposes.
Every clone C on a finite set A is determined by a set of relationsR on A in the sense
that C is equal to the set of all operations which are compatible with every relation
in R [15, 29] (see Section 2 for definitions). If R can be chosen finite, we call C
finitely related. We call a finite algebra finitely related if its clone is. Informally, an
algebra is finitely related if it has a finite description in terms of relations. Finitely
related algebras have been also called predicately describable, finitely definable, of
finite relational degree, or of finite degree.

A classical result of Baker and Pixley [2] implies that every finite algebra with
a near-unanimity term operation (that is, an operation t of arity at least 3 such
that t(a, . . . , a, b, a, a . . . a) = a for any a, b and any position of b) is finitely related.
This includes all finite lattices and their expansions, i.e., algebras obtained from
lattices by adding operations. A recent result of Aichinger, Mayr, and McKenzie [1]
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is another source of examples: it implies that all finite quasigroups and their ex-
pansions (like finite groups, rings and modules) are finitely related. There are both
finitely related and non-finitely related (expansions of) semigroups [24, 25, 40]. The
simplest example of a non-finitely related algebra is the two-element implication al-
gebra ((0, 1); {→}), where → is the implication regarded as a binary operation (see
[24] for an elementary proof).

Finitely related algebras play an important role in several computational prob-
lems parametrized by finite sets of relations, including the constraint satisfaction
problem (CSP).

Congruence modularity and few subpowers. A variety is a class of algebras
of the same signature defined by a set of identities, where an identity is a univer-
sally quantified equation. We say that a variety V is congruence modular if the
congruence lattice of every algebra in V is modular. We denote by CM the class of
all algebras which are members of a congruence modular variety.

Congruence modular varieties (and algebras therein) are among the most studied
objects in universal algebra. On one hand, they are in a sense manageable since
strong results are applicable to all algebras in CM, in particular, the commutator
theory [27]. On the other hand, the class CM contains most of the classical types
of algebras – groups, rings, modules, lattices (but not all semigroups or semilat-
tices). In fact, the mentioned examples belong to one of two important subclasses
of CM: CD and CP. An algebra is in CD (CP) if it belongs to a congruence distributive
(permutable) variety, where a variety V is congruence distributive (congruence per-
mutable) if the congruence lattice of every algebra in V is distributive (congruences
of each algebra in V permute with respect to the relational product). Examples
of algebras in CD include all algebras with a near-unanimity term operation (e.g.,
lattices) and also the two-element implication algebra. Expansions of quasigroups
are in the class CP.

The property of having few subpowers is of substantially more recent origin. A
finite algebra A has few subpowers if, for some polynomial p, the number of sub-
algebras of An is less than 2p(n). This notion was introduced by Berman, Idziak,
Marković, McKenzie, Valeriote, and Willard [13] (building on earlier work by Bu-
latov, Chen and Dalmau [18, 19, 23]). A number of characterizations were given in
this influential paper, among them the following: A has few subpowers iff, for some
polynomial q, each subalgebra of An has a generating set of size q(n). Such “com-
pact” representations of subalgebras of powers were used to devise a polynomial
algorithm for solving a large class of CSPs [32]. Another remarkable result based
on compact representations is that each finite algebra with few subpowers is finitely
related [1]. (In fact, by [37], a finite idempotent algebra A has few subpowers iff
each expansion of A is finitely related. )

Interestingly, an equivalent concept to having few subpowers was independently
found by Kearnes and Szendrei [35] in connection with the study of relational clones.

The class FS of algebras with few subpowers contains the classes CP and NU (the
class of algebras with a near unanimity term operation), and is contained in CM [13]
as shown in Figure 1 on the left (note that our definition of the few subpowers
property applies only to finite algebras, but some of the equivalent characterizations,
as item (iii) in Theorem 2.7, make sense in general, and mentioned inclusions are
true for general algebras with such alternative definitions).
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CP NU

FS CD

CM

(a) General algebras.

CP NU = CD

FS = CM

(b) Finitely related algebras.

Figure 1. Comparison of some classes of algebras; arrows depict
inclusions.

Main result. The main result of the paper affirmatively answers the Edinburgh
conjecture [17], also known as the Valeriote conjecture.

Theorem 1.1. If A is a finitely related finite algebra in CM, then A has few sub-
powers.

The proof of Theorem 1.1 covers Sections 3 and 4. This theorem generalizes
the main result of [3] that every finitely related finite algebra in CD has a near-
unanimity term operation (known as the Zádori conjecture). Indeed, if an algebra
has few subpowers and is in CD, then it necessarily has a near-unanimity term
operation by [13, 38]. In Figure 1 on the right, the classes NU, CP, FS, CD, CM are
compared within the class of finitely related algebras.

A combination of Theorem 1.1 with already mentioned results gives:

Corollary 1.2. The following are equivalent for a finite algebra A.

(i) A is finitely related and is in the class CM.
(ii) A has few subpowers.

Theorem 1.1 can be viewed from several perspectives.
One way how to read Theorem 1.1 is that a finite algebra A in CM can be

approximated by algebras with few subpowers. Indeed, if R = {R1, R2, . . . } is a
set of relations that determines the clone C of the algebra A and Ci is the clone
determined by {R1, R2, . . . , Ri}, then C is equal to the intersection of the descending
chain C1 ⊇ C2 ⊇ . . . and each Ci in the chain has few subpowers (this follows from
Theorem 1.1 since the class CM is closed under expansions).

Another interpretation of Theorem 1.1 is that it gives a nontrivial implication
between two Maltsev conditions under a finiteness assumption. A Maltsev condi-
tion is, roughly, a condition stipulating the existence of terms satisfying certain
identities. Many classes of algebras (e.g., CP, CD, CM, NU, FS) can be characterized
by Maltsev conditions and the corresponding terms serve as a useful technical tool
for studying these classes.

Recent development has added numerous interesting implications between Malt-
sev conditions on four finiteness levels – finitely related algebras, finite algebras,
algebras in locally finite varieties, and general algebras. Theorem 1.1 can be formu-
lated as “Gumm terms ⇒ cube term” for finitely related algebras, and its conse-
quence from [3] as ”Jónsson terms ⇒ near-unanimity term”. For finite algebras we
have, for instance, “Taylor term⇒ cyclic term” [8]. Notable recent examples for al-
gebras in locally finite varieties include “Taylor terms⇒ weak near-unanimity term”
[39], “Taylor term ⇒ Siggers term” [41, 34]. The implications “Jónsson/Gumm
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terms ⇒ directed Jónsson/Gumm terms”, which was very recently shown to hold
for general algebras [33], serves as a useful tool in this paper. See also [36] for
further interesting implications.

Finally, Theorem 1.1 can be regarded as a source of examples for non-finitely re-
lated algebras. Indeed, every finite algebra in CM which does not have few subpowers
is non-finitely related.

Consequences. Theorem 1.1, combined with other results, has interesting conse-
quences for several computational problems associated to a finite relational struc-
ture A. Theorem 1.1 together with [32] implies that the CSP over A is solv-
able in polynomial time whenever the corresponding algebra A is in CM; together
with [16, 17], it gives a P/coNP-complete dichotomy for comparison of primitive
positive formulas over A; together with [32, 22], it classifies learnability of the re-
lation defined by a primitive positive formula over A. The role of Theorem 1.1 in
the last two results is to show that there is no gap between positive (tractability)
results for the case that A has few subpowers and negative (hardness) results for
the case that A is not in CM.

The main result also implies that it is decidable (given A on input) whether A
has few subpowers.

The consequences and open problems are discussed in Section 5.

2. Preliminaries

In this section we collect necessary definitions and results. We refer to [12, 21, 42]
for the basics of universal algebra, and to [43] for graph theory.

Throughout the paper, we use the notation

[n] = {1, 2, . . . , n} .

2.1. Algebras and varieties. An n-ary operation on a set A is a mapping f :
An → A. We only consider finitary operations, i.e., n is a natural number. For
subsets A1, . . . , An ⊆ A, we write

f(A1, . . . , An) = {f(a1, . . . , an) : a1 ∈ A1, . . . , an ∈ An} .

An operation is idempotent if it satisfies the identity f(a, a, . . . , a) = a.
An algebra is a pair A = (A;F), where A is a nonempty set, called the universe of

A, and F is a set (possibly indexed) of operations on A, called the basic operations
of A. We use a boldface letter to denote an algebra and the same letter in the plain
type to denote its universe. An algebra is idempotent if all of its operations are
idempotent. Two algebras have the same signature if their operations are indexed
by the same set and corresponding operations have the same arities.

A clone on A is a set of operations on A which contains the projections (the
operations πni defined by πni (a1, . . . , an) = ai, where 1 ≤ i ≤ n) and is closed under
composition. The smallest clone containing all the basic operations of an algebra
A is denoted Clo(A) and its elements are called term operations of A. A formal
expression defining a term operation from the basic operations is called a term. If
t is a term, then we denote tA the corresponding term operation in A, or we just
write t if no ambiguity is imminent.

The idempotent reduct of an algebra A is the algebra with the same universe
whose operations are all the idempotent term operations of A.
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A subset B of the universe of an algebra A is called a subuniverse if it is closed
under all operations (equivalently term operations) of A. Given a nonempty sub-
universe B of A we can form an algebra B by restricting all the operations of A
to the set B. In this situation, we say that B is a subalgebra of A and we write
B ≤ A or B ≤ A.

The product of algebras A1, . . . ,An is the algebra with the universe equal to
A1 × · · · × An and with operations computed coordinatewise. The product of n
copies of an algebra A is the n-th power of A and is denoted An. A subalgebra, or
a subuniverse, of a product of A is called a subpower of A. If R ≤ A1 × · · · ×An

and, for each i, the projection of R onto the i-th coordinate is equal to Ai, then we
say that R is subdirect in the product and write R ≤sd A1 × · · · ×An.

An equivalence relation ∼ on the universe of an algebra A is a congruence if
it is a subuniverse of A2. The corresponding quotient algebra A/ ∼ has, as its
universe, the set of ∼-blocks, which are denoted [a]∼, a ∈ A, and operations are
defined using arbitrarily chosen representatives. The set of congruences of A forms
a lattice, called the congruence lattice of A.

A variety is a class of algebras of the same signature closed under forming sub-
lagebras, products (possibly infinite), quotient algebras and isomorphic copies. A
fundamental theorem of universal algebra, due to Birkhoff [14], states that a class
of similar algebras is a variety if and only if this class can be defined via a set of
identities. The smallest variety containing A is denoted HSP(A).

2.2. Relational structures. An n-ary relation on a set A is a subset of An, where
n is a natural number. Alternatively, a relation can be presented as a mapping
An → {true, false}. We will use both formalisms, e.g. (1, 2, 3) ∈ R and R(1, 2, 3)
both mean that the triple (1, 2, 3) is in the ternary relation R.

A relational structure is a pair A = (A;R), where A is the universe of A and R is
a set of relations onA. We say that relation S onA is primitively positively definable,
or pp-definable, from A if it can be defined from the relations in A by a pp-formula,
that is, a first only formula that uses conjunction, existential quantification, and
the equality relation. For example,

S(x, y, z) iff (∃u, v) R(x, u) ∧R(u, v) ∧R(v, y) ∧ (y = z)

is a pp-definition of a ternary relation S from a binary relation R. In accordance
with the CSP terminology, clauses of a pp-formula will be called constraints.

The equality relation on A is denoted ∆A = {(a, a) : a ∈ A}, it is pp-definable
from every relational structure on A. The projection of a relation R ⊆ An onto
coordinates i1, . . . , ik (not necessarily distinct) is denoted

πi1,...,ik(R) = {(ai1 , . . . , aik) : a = (a1, . . . , an) ∈ R} ,

it is pp-definable from R (more precisely, from any relational structure containing
R). If R ⊆ An, B ⊆ A, i ∈ [n], then by fixing the coordinate i of R to B we mean
forming the relation

{(a1, . . . , an) ∈ R : ai ∈ B} .

This relation is pp-definable from R and the unary relation B. If S, T ⊆ A2, then
the relational composition of S and T is defined by

S ◦ T = {(a, c) ∈ A2 : (∃b ∈ A) (a, b) ∈ S, (b, c) ∈ T} ,
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it is pp-definable from S and T . Projection, coordinate fixing, and relational com-
position will be performed more generally on sets R ⊆ A1× · · ·×An, S ⊆ A1×A2,
T ⊆ A2 ×A3.

We say that an operation f : An → A is compatible with a relation R ⊆ Am if,
for any a1, . . . ,an ∈ R, the tuple f(a1, . . . ,an) (where f is applied coordinate-wise)
is in R. In other words, f is compatible with R, if R is a subpower of the algebra
(A; {f}). Notice that f is idempotent iff it is compatible with every singleton unary
relation on A.

An operation compatible with all relations of a relational structure A is a poly-
morphism of A. The set of all polymorphisms of A is denoted Pol(A). This set of
operations is always a clone on A. More interestingly, every clone on a finite set
can be obtained in this way by the following theorem.

Theorem 2.1. [15, 29] For every finite algebra A there exists a relational structure
A (with the same universe) such that Pol(A) = Clo(A). In this situation, R ≤ An

iff R is pp-definable from A (assuming R 6= ∅).

A finite algebra is called finitely related if finitely many relations suffice to determine
Clo(A):

Definition 2.2. A finite algebra A is said to be finitely related if there exists a
relational structure A with finitely many relations such that Pol(A) = Clo(A).

2.3. Congruence modularity.

Definition 2.3. A variety is called congruence modular if all algebras in it have
modular congruence lattices. We define CM to be the class of all algebras that belong
to some congruence modular variety.

Gumm in [30] characterized the class CM by a useful Maltsev condition. The terms
involved in the condition are now called Gumm terms. A stronger Maltsev condition
was given in [33] by means of directed Gumm terms.

Theorem 2.4 ([33]). The following are equivalent for an algebra A.

• A is in CM.
• There exists a natural number m and a sequence of ternary terms p1, . . . , pm, q ∈

Clo(A), called the directed Gumm terms of A, such that the following iden-
tities are satisfied.

p1(a, a, b) = a
pi(a, b, a) = a for all i ∈ [m]
pi(a, b, b) = pi+1(a, a, b) for all i ∈ [m− 1]
pm(a, b, b) = q(a, b, b)
q(a, a, b) = b

Note that from the second and the fifth identity it follows that directed Gumm
terms of A are necessarily idempotent.

2.4. Few subpowers.

Definition 2.5. A finite algebra A is said to have few subpowers if there exists a
polynomial p such that, for every n, the number of subuniverses of An is less than
2p(n).
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Theorem 2.7 gives some of the many equivalent characterizations of the few
subpowers property. Especially useful for us is the one by means of cube term
blockers.

Definition 2.6 ([37]). A pair (E,D) is a cube term blocker for A if E � D ≤ A
and for every t ∈ Clo(A) there exists a coordinate i such that

t(D,D, . . . ,D,E,D,D, . . . ,D) ⊆ E ,

where E is at the i-th coordinate.

Theorem 2.7 ([13, 37]). The following are equivalent for a finite algebra A.

(i) A has few subpowers.
(ii) There are no cube term blockers for the idempotent reduct of A.

(iii) A has a cube term, that is, there exists t ∈ Clo(A) of arity 2m − 1 (for
some m > 1) such that t(ai1, . . . , a

i
2m−1) = a for every i ∈ [m] and every

a, b ∈ A, where

aij =

{
a if the i-th binary digit of j is 0

b otherwise

Proof. The equivalence of (i) and (iii) was proved in [13]. The equivalence of (ii)
and (iii) was first proved in [37] and an alternative proof was given in [11]. �

The following easy relational translation of cube term blockers will be also useful.

Lemma 2.8 ([37]). Let A be a finite algebra and (E,D) a pair of subalgebras of
A with E ≤ D. Then the following are equivalent.

• (E,D) is a cube term blocker for A.
• For each n, the relation Dn \ (D \ E)n is a subuniverse of An.

2.5. Graphs and digraphs. By a graph we mean an undirected graph with a
finite vertex set, where loops and multiple edges are allowed. A cut vertex is a
vertex whose removal increases the number of connected components. A graph
is biconnected if it is connected and has no cut vertices. A block of a graph is a
maximal biconnected (induced) subgraph. Note that the intersection of the set of
vertices of two different blocks is either empty or equal to {v} for a cut vertex v.
An example is shown in Figure 2. Notice that a connected graph, in which every
block is a single edge, is a tree.

Figure 2. A graph, its cut vertices (filled-in) and blocks (encircled)
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A walk in a graph S, or an S-walk, from a to b is a sequence of vertices a =
a1, a2, . . . , ak = b such that ai, ai+1 are joined by an edge for each i ∈ [k − 1].

A subset S ⊆ B×C can be regarded as a bipartite graph without multiple edges
whose partite sets are disjoint copies B′ (the left partite set) and C ′ (the right
partite set) of π1(S) and π2(S), and {a, b} (where a ∈ B′ and b ∈ C ′) is an edge
iff (a, b) ∈ S. In this context, S is called linked if the associated bipartite graph is
connected.

A subset S ⊆ A × A will be sometimes regarded as a directed graph with edge
set S. A directed walk in S, or a directed S-walk, of length k − 1 from a to b
is a sequence of vertices a = a1, a2, . . . , ak = b such that (ai, ai+1) ∈ S for each
i ∈ [k− 1]. It is closed if a = b. A vertex a ∈ A is a source (sink, respectively) if it
has no incoming (outgoing, resp.) edge. The smooth part of S is the largest B ⊆ A
such that S ∩ (B ×B) has no sources or sinks in B. It can be described as the set
of vertices with a directed S-walk of length |A| from them and a directed S-walk of
the same length to them. In particular, the unary relation B is pp-definable from
S.

3. Proof of the main theorem

3.1. Reduction to binary structures. In this subsection we show that in order
to prove Theorem 1.1 it is enough to consider idempotent algebras determined by
binary relational structures, i.e., relational structures with at most binary relations.
This will make the presentation technically easier.

The reduction is based on the following fact (see [3]).

Proposition 3.1. Let A be a relational structure whose relations all have arity at
most k. Then there exists a binary relational structure Ā with universe Ā = Ak

such that
Pol(Ā) = {f̄ : f ∈ Pol(A)},

where f̄ is defined (if f is n-ary) by

f̄((a11, a
1
2, . . . , a

1
k), (a21, . . . , a

2
k), . . . , (an1 , . . . , a

n
k )) =

= (f(a11, a
2
1, . . . , a

n
1 ), f(a12, . . . , a

n
2 ), . . . , f(a1k, . . . , a

n
k )).

Using this proposition we can reduce the main theorem to the following:

Theorem 3.2. If A is a finite binary relational structure containing all the single-
ton unary relations such that the algebra A = (A,Pol(A)) is in CM, then A has few
subpowers.

Proof of Theorem 1.1 assuming Theorem 3.2. Let A be a finite, finitely related al-
gebra in CM and let A be a relational structure with finitely many relations (say all
of them have arity at most k) such that Pol(A) = Clo(A). Let Ā be the relational
structure from Proposition 3.1. By Theorem 2.4, Ā = (A,Pol(Ā)) is in CM since
p̄0, . . . , p̄m, q̄ are directed Gumm terms of Ā whenever p0, . . . , pm, q are directed
Gumm terms of A.

Now we add to Ā all the singleton unary relations, call this structure Ā′ and
define Ā′ = (A,Pol(Ā′)). The algebra Ā′ is still in CM since directed Gumm terms
are idempotent. By Theorem 3.2, Ā′ has few subpowers. Therefore, by Theorem 2.7
item (iii), this algebra has a cube term h and so does the algebra Ā. By Proposition
3.1, we have that h = t̄ for some polymorphism t of A. The operation t is clearly a
cube term of A and thus A has few subpowers, as required. �
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3.2. Proof-sketch of Theorem 3.2. The proof is by contradiction. Let A be a
finite binary relational structure containing all the singleton unary relations, and
let A = (A; Pol(A)) be its algebra of polymorphisms. We assume that A is in CM

and it does not have few subpowers. Notice that A is idempotent. For convenience,
we add to A all the unary and binary relations which are pp-definable from A. By
Theorem 2.1, this change does not affect Clo(A). We fix a sequence p1, . . . , pm, q
of directed Gumm terms of A (see Theorem 2.4) and a cube term blocker (E,D)
for A (see Theorem 2.8) so that |D| is minimal. Let F = D \E (this does not need
to be a subuniverse of A). All the objects defined in this paragraph will stay fixed
throughout the proof.

Since (E,D) is a cube-term blocker of A, the relation Dn\Fn is, by Theorem 2.8,
a subpower of A for every positive integer n. It follows from Theorem 2.1 that this
relation can be defined by a pp-formula Φ from the structure A. The proof now
goes roughly as follows: We choose a large enough arity n and use Zhuk’s technique
from [44] to obtain a nicer (tree) pp-formula Φ′ defining a similar relation (so called
CTB-relation as defined in the next subsection) of the same arity n; then we get
an even nicer (comb) pp-formula Ω defining a CTB-relation of arity log2(n − 1);
finally, we reach a contradiction by showing that a CTB-relation of a sufficiently
large arity defined by a comb-formula cannot be compatible with directed Gumm
terms.

The following subsections give details of the proof using three core technical
lemmas which are proved in Section 4.

3.3. CTB-relation. We start with the definition of a CTB-relation (CTB stands
for Cube Term Blocking).

Definition 3.3. A relation R ≤ Dn is a CTB-relation if Fn∩R = ∅ and for every
i ∈ [n] there exists ei ∈ E such that Di−1 × {ei} ×Dn−i ⊆ R.

We put n = 43
|A|

+ 1 and take an n-ary CTB-relation U ≤ An, say U =
Dn \Fn. We take a pp-formula defining U from A, denote by Φ the quantifier-free
part of this formula, and denote x1, . . . , xn the free variables. For an arbitrary
sequence y1, . . . , yi of variables in Φ, we denote Φ[y1, . . . , yi] the formula obtained
by existentially quantifying over the remaining variables, and Φ(y1, . . . , yi) the i-ary
relation defined by Φ[y1, . . . , yi]. In particular, we have U = Φ(x1, . . . , xn).

Next we modify Φ and get a slightly nicer formula without changing Φ(x1, . . . , xn).
(This procedure can be applied to any quantifier-free formula Ξ such that Ξ(x1, . . . , xn)
is a CTB-relation.)

We define a graph Graph(Φ) in the following way. Vertices are the variables in
Φ and the number of edges joining x and y is the number of binary constraints of
the form S(x, y) or S(y, x) in Φ. (In the same way, a graph Graph(Ξ) is associated
to any pp-formula Ξ over A.) For the following definition, we introduce auxiliary
notation: Let x 6= y be vertices of Graph(Φ) and let Gx be the graph obtained from
Graph(Φ) by removing the vertex x (and incident edges). We denote Cut(x, y) the
set of vertices in the component of Gx which contains y.

A pp-formula will be called simple (with respect to x1, . . . , xn) if

(a) the associated graph is connected, without loops or multiple edges,
(b) the set of vertices of degree 1 is equal to {x1, . . . , xn},
(c) if x 6= y are vertices, then Cut(x, y) ∩ {x1, . . . , xn} 6= ∅,



10 LIBOR BARTO

(d) if x 6= y are vertices such that Cut(x, y)∩Cut(y, x)∩{x1, . . . , xn} = ∅, then
Cut(x, y) ∩ Cut(y, x) = ∅, and

(e) the formula has no unary constraints.

Φ can be transformed to a simple quantifier-free pp-formula (over A) which
defines the same relation Φ(x1, . . . , xn) in the following way. First we ensure that
x1, . . . , xn have degree 1 by renaming xi to x′i, adding xi, and adding the constraint
xi = x′i. Next observe that if two variables xi and xj are in different components
of Graph(Φ), then Φ(x1, . . . , xn) is a product of two relations of smaller arity. This
is not the case for a CTB-relation, so all the variables x1, . . . , xn must belong to
the same component. Thus we can make Graph(Φ) connected by removing all the
variables (and constraints) in different components. A binary constraint of the form
S(x, x) can be replaced by the unary constraint T (x) (where T is defined by T (x) iff
S(x, x); recall that A is closed under pp-definitions of unary and binary relations)
and constraints S1(x, y), . . . , Sk(x, y), S′1(y, x), . . . , S′k′(y, x) can be replaced by a
single constraint T (x, y) (where T is again defined in the obvious way). Similarly, if
x, y are different vertices such that Cut(x, y)∩Cut(y, x)∩{x1, . . . , xn} = ∅, then we
can replace all the constraints that use variables in Cut(x, y)∩Cut(y, x) by a single
constraint T (x, y). Moreover, if Cut(x, y) ∩ {x1, . . . , xn} = ∅, then we can replace
all the constraints that use variables in Cut(x, y) by a single unary constraint T (x).
Repeating application of these modifications results in a formula satisfying (a),
(b), (c), and (d). Finally, unary constraints can be hidden into binary constraints,
for example, constraints T (x) and S(x, y) can be replaced by a single constraint
S′(x, y) (with S′ = S ∩ (T ×A) – a pp-definable relation). This ensures (e).

The resulting pp-formula will be called a simplified form of the original formula.
In the next subsection we assume that Φ was already simplified.

3.4. Tree definition. We describe a construction which transforms the simple
formula Φ into a new quantifier-free simple pp-formula Φ′ such that Φ′(x1, . . . , xn)
is still a CTB-relation, possibly different from U = Φ(x1, . . . , xn). The construction
depends on a variable y and a binary constraint in Φ whose scope contains y, say
T (y, z), such that y, z 6∈ {x1, . . . , xn} (the case that the constraint is of the form
T (z, y) is completely analogous).

The construction is divided into three steps. In the first step, we build from Φ a
new formula Ψ by adding the constraints D(x1), . . . , D(xn), adding a new variable
y∗, removing the constraint T (y, z), adding the constraint T (y∗, z), and adding the
constraints C(y) and C(y∗), where C = Φ(y). See Figure 3.

In the second step, we define a new formula Θ as follows. For each i ∈ [l], where
l = |A|, we take a copy Ψi of the formula Ψ by renaming each variable w in Ψ to
wi. Then we take the conjunction of Ψ1, . . . , Ψl and identify variables yi∗ and yi+1

for each i ∈ [l − 1]. The resulting formula is shown in Figure 4.
Before describing the third step, we prove a claim which says that if we added

to Θ the equality constraints x1i = x2i = · · · = xli for each i ∈ [n] and existentially
quantified the remaining variables, then the obtained formula would define a CTB-
relation. The argument is based on the following lemma, proved in Subsection 4.2.

Lemma 3.4. Let C ≤ A, let R ≤ C2×Dn be such that ∆C ⊆ π1,2(R) and suppose
that there exists f = (f1, . . . , fn) ∈ Fn such that the smooth part of the digraph
Q = {(a1, a2) : (a1, a2, f1, f2, . . . , fn) ∈ R} is nonempty. Then (∆C ×Fn)∩R 6= ∅.
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(a) Original formula Φ.
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(b) Resulting formula Ψ.

Figure 3. The first step for n = 3
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Figure 4. The second step: formula Θ for n = l = 3

Let

V = Θ(x11, x
2
1, . . . , x

l
1, x

1
2, . . . , x

l
2, . . . , . . . , x

l
n)

and let W be the n-ary relation defined by

W (a1, . . . , an) iff V (a1, . . . , a1︸ ︷︷ ︸
l×

, . . . , an, . . . , an︸ ︷︷ ︸
l×

) .

Claim. W is a CTB-relation.

Proof. By construction, W ≤ Dn and also U ⊆ W , since any satisfying evaluation
of variables in Φ gives a satisfying evaluation of variables in Θ. It is thus enough
to check that W ∩ Fn = ∅. Suppose otherwise, that is, there exists (f1, . . . , fn) ∈
W ∩ Fn.

Let R = Ψ(y, y∗, x1, . . . , xn). By construction of Ψ, we have that ∆C ⊆ π1,2(R)
and that the projection of (∆C × An) ∩ R onto the coordinates 3, 4, . . . , n + 2
is equal to U = Φ(x1, . . . , xn). Since U ∩ Fn = ∅ by the definition of a CTB-
relation, we have (∆C × Fn) ∩ R = ∅. From the construction of Θ and from
(f1, . . . , f1, f2, . . . , f2, fn . . . , fn) ∈ V it follows that there exist b1, . . . , bl+1 ∈ C
such that (bi, bi+1, f1, . . . , fn) ∈ R for every i ∈ [l]. Therefore, the digraph Q =
{(a1, a2) : (a1, a2, f1, . . . , fn) ∈ R} contains a walk of length l = |A| which implies
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that Q contains a closed walk. Hence the smooth part of Q is nonempty. Lemma 3.4
now implies (∆C × Fn) ∩R 6= ∅, a contradiction. �

In the third step, we modify Θ using the data provided by the following lemma,
which is proved in Subsection 4.3.

Lemma 3.5. Let V ≤ Dln be such that

W = {(a1, . . . , an) : (a1, . . . , a1︸ ︷︷ ︸
l×

, a2, . . . , a2︸ ︷︷ ︸
l×

, . . . , an, . . . , an︸ ︷︷ ︸
l×

) ∈ V }

is a CTB-relation. Then there exist mi ∈ [l] for each i ∈ [n] and Cji ≤ A for each
i ∈ [n], j ∈ ([l] \ {mi}) such that

U ′ = {(am1
1 , . . . , amn

n ) :(a11, . . . , a
l
1, a

1
2, . . . , a

l
2, . . . , a

1
l , . . . , a

l
n) ∈ R,

(∀i ∈ [n])(∀j ∈ [l], j 6= mi) a
j
i ∈ C

j
i }

is a CTB-relation.

Note that we can apply this lemma in our situation, since W is a CTB-relation by
the previous claim. The formula Φ′ is obtained from Θ as follows. For each i ∈ [n],
we rename the variable xmi

i to xi and, for each i ∈ [n], j ∈ [l], j 6= mi, we add

the constraint Cji (xji ). Finally, we replace the obtained formula Φ′ by its simplified
form. It follows from Lemma 3.5 that U ′ = Φ′(x1, . . . , xn) is a CTB-relation.

The presented construction is used repeatedly in the following claim (with suit-
able choices of variables and constraints) to obtain a tree-formula defining a CTB-
relation.

Definition 3.6. A tree-formula is a pp-formula whose associated graph is a tree.

Claim. There exists a tree-formula defining a CTB-relation of arity n.

Proof. The reasoning follows the proof of Theorem 5.2. in [44].
To the original formula Φ we assign a triple (α, β, γ) of integers that depend on

Graph(Φ). The first parameter, α, is the greatest number of edges in a block. To
define β, we need to introduce further notation. Let B be a block and w ∈ B a
cut-vertex. When we remove w from Graph(Φ), we get a disconnected graph whose
one component contains the remainder of B. We denote δ(B,w) the number of
vertices from the set {x1, . . . , xn} which lie in this component. Let δ(B) be the
minimum of δ(B,w) among all cut vertices w ∈ B. Now β is the maximum δ(B)
among blocks B with α edges. Finally, γ is the number of blocks B with α edges
and β = δ(B).

If α = 1, then Φ[x1, . . . , xn] is a tree-formula defining a CTB-relation and we are
done. Otherwise, we take a block B with α edges and δ(B) = β, we take a variable y
in B and an incident constraint T (y, z) or T (z, y) (where z is in B), and we perform
the construction described above. It is not hard to show that the triple (α′, β′, γ′)
assigned to Φ′ is strictly smaller than (α, β, γ) in the lexicographic ordering (see [44]
for more details; it is important here that the formulas are simple, in particular,
each block with two cut vertices is a single edge). It follows that in finitely many

steps we get a (quantifier-free) tree-formula Φ
′′...′ such that Φ

′′...′ [x1, . . . , xn] is a
CTB-relation. �
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3.5. Comb definition. An even nicer pp-definition of a CTB-relation can be found
in exchange for an exponential loss in the arity.

Definition 3.7. A pp-formula over the set of variables {x′1, . . . , x′n′ , w1, . . . , wn′}
is a comb-formula if the set of edges of its associated graph is equal to

{x′1w1, x
′
2w2, . . . , x

′
n′wn′ , w1w2, w2w3, . . . , wn′−1wn′}

(See Figure 5.)

x′1 x′2 x′3 x′4

w1 w2 w3 w4

Figure 5. Graph of a comb-formula for n′ = 4

Claim. There exists a quantifier-free comb-formula Ω with n′ ≥ log2(n − 1) such
that Ω(x′1, . . . , x

′
n′) is a CTB-relation.

Proof. Let Φ be a simple quantifier-free tree-formula such that Φ(x1, . . . , xn) is
a CTB-relation. Note that Graph(Φ) has no vertex of degree 2 and the set of its
leaves is equal to {x1, . . . , xn} (both facts follow from simplicity). We can modify Φ
to ensure that each vertex of Graph(Φ) has degree 1 or 3 by repeated application of
the following procedure: take a variable v of degree d > 3; split it into two variables
v1, v2 so that in bd/2c of the incident constraints the variable v is replaced by v1
and in the remaining dd/2e constraints v is replaced by v2; finally, add the equality
constraint v1 = v2.

Let i = 0. Starting from an arbitrary leaf we will follow a path (non-intersecting
walk), defining x′is and wis on the way. If we are at the beginning, then we continue
in the unique direction. If we are at a vertex of degree 3, then we have two options
where to continue. We select the one with more leaves ahead (in case that both
options have the same number of leaves ahead, we decide arbitrarily) and before we
continue to walk we increment i, define wi to be the vertex we are at, define x′i to be
any of the leaves in the direction we did not choose (note that x′i ∈ {x1, . . . , xn}).
When we arrive to a leaf we stop and set n′ = i. A simple computation shows that
n′ ≥ log2(n− 1).

Choose f ∈ F arbitrarily and put S = {f}. Let Ω′ be the formula obtained
from Φ by adding the unary constraint S(xi) for each xi 6∈ {x′1, . . . , x′n′}. The
relation Ω′(x′1, . . . , x

′
n′) is obtained from the CTB-relation Φ(x1, . . . , xn) by fixing

several coordinates to {f} and projecting onto the remaining coordinates, therefore
it is a CTB-relation. It is easy to see that the simplified form of Ω′ (with respect
to x′1, . . . , x

′
n′) is a comb-formula. This can be visualized as follows: straighten

the obtained path and shake the tree; after the simplification, the path becomes
w1, . . . , wn′ and the tree below each wi becomes the edge x′iwi. �

3.6. Contradiction. The proof of Theorem 3.2 is concluded using the following
lemma, proved in Subsection 4.4.
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Lemma 3.8. If Ω(x′1, . . . , x
′
n′) is a CTB-relation, where Ω is a quantifier-free comb-

formula, then n′ < 2 · 3|A|.

Recall that we have chosen n = 43
|A|

+ 1, thus log2(n− 1) = 2 · 3|A|, so that this
lemma and the last claim contradict each other.

3.7. Remarks on the proof. The structure of the presented proof is, to some
level of detail, the same as in the previous proofs [3, 44] of special cases:

(1) obtain a tree definition of a “bad” relation,
(2) obtain a comb definition of a “bad” relation,
(3) prove that a “bad” relation defined by a comb-formula cannot have large

arity.

This approach was used in [3] to prove that a finitely related algebra in CD is in
NU. Independently, Zhuk in [44] proved a slightly weaker result that finitely related
algebra in NU has a near-unanimity term of “small” arity. As for the proofs, the
difference in generality is inessential and only concerns the third item (a slightly
more work is needed to get the stronger result).

The main difference between [3] and [44] is in carrying out the first item. In [3],
this item is quite easily derived from an existing result on the CSP [6]. Zhuk, on
the other hand, introduces the construction presented in Subsection 3.4 and uses
variants of Lemmas 3.4 and 3.5. The first approach is not yet applicable for the
main result in this paper because a corresponding result on the CSP is not available.
In fact, we even do not know what the CSP result should be.

4. Technical core

In this section, we fill in the gaps in the proof of Theorem 1.1. We keep some
of the assumptions made in the last section: A is a finite idempotent algebra in CM

with directed Gumm terms p1, . . . , pm, q, (E,D) is a cube term blocker for A with
|D| minimal, and F = D \ E.

4.1. Tools. Recall from Subsection 2.5 that a set S ⊆ B ×C can be regarded as a
bipartite graph with “left” partite set π1(S) and “right” partite set π2(S) and that
we call S linked if this graph is connected.

We call two elements a ∈ B (or a ∈ C) and a′ ∈ B (or a′ ∈ C) S-linked if there
is an S-walk from a to a′. Note that it must be clear from the context whether a
and a′ are from the copy of π1(S) or π2(S) because it is often the case that B and
C are not disjoint (sometimes even B = C = A). With this agreement, we define
the left (the right, resp.) connectivity equivalences on π1(S) (π2(S), resp.):

λS = {(b, b′) ∈ B2 : b ∈ B and b′ ∈ B are S-linked}
ρS = {(c, c′) ∈ C2 : c ∈ C and c′ ∈ C are S-linked}

The neighborhood of a subset B′ ⊂ B (C ′ ⊆ C, resp.) is denoted by (B′)+S

((C ′)−S , resp.):

(B′)+S = {c ∈ C : (∃b ∈ B′) (b, c) ∈ S}
(C ′)−S = {b ∈ B : (∃c ∈ C ′) (b, c) ∈ S}

The set S is called rectangular if it is a disjoint union of sets of the form B′ × C ′
where B′ ⊆ B and C ′ ⊆ C. Observe that S is rectangular iff (b, c), (b′, c), (b′, c′) ∈ S
implies (b, c′) ∈ S for every b, b′ ∈ B, c, c′ ∈ C.
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Almost all objects in the proofs will be subuniverses of algebras in HSP(A),
with the inconvenient exception of the set F . Several constructions which produce
subuniverses are summarized in the following lemma. It will be used extensively
but silently. Also, we will always silently assume that all the algebras we talk
about are finite, although it is not always necessary.

Lemma 4.1. Let C1, . . . ,Ck ∈ HSP(A).

• Every block of a congruence of C1 is a subuniverse of C1. (In particular,
singletons are subuniverses.)
• The projection of a subuniverse R ≤ C1×· · ·×Ck onto coordinates i1, . . . , ij

is a subuniverse of Ci1 × · · · ×Cij .
• The set obtained by fixing the i-th coordinate of R ≤ C1×· · ·×Ck to B ≤ Ci

is a subuniverse of R (and thus also a subuniverse of C1 × · · · ×Ck).
• If S ≤ C1×C2, then λS (ρS, resp.) is a congruence of π1(S) (π2(S), resp.).

Moreover, if C ′1 ≤ C1 (C ′2 ≤ C2, resp.), then (C ′1)+S ≤ C2 ((C ′2)−S ≤ C1,
resp.).
• If S1 ≤ C1 ×C2 and S2 ≤ C2 ×C3, then S1 ◦ S2 ≤ C1 ×C3.

Proof. Proofs are straightforward and are omitted. We just note that the first item
require idempotency and that, in the remaining items, if C1 = · · · = Ck, then the
constructions are pp-definitions, and thus the claims follow from an (easy) part of
Theorem 2.1. �

The next lemmas are consequences of the definition of a blocker, minimality of
|D|, and directed Gumm identities. We give them names for easier referencing.

Lemma 4.2 (the DDE Lemma). q(D,D,E) ⊆ E.

Proof. By the definition of a cube term blocker, we must have q(E,D,D) ⊆ E, or
q(D,E,D) ⊆ E, or q(D,D,E) ⊆ E. But the first two inclusions are impossible
because of the identity q(a, a, b) = b applied to a ∈ E, b ∈ F . �

Lemma 4.3 (the Minimality Lemma). If C ≤ D and C ∩ E 6= ∅ 6= C ∩ F , then
C = D.

Proof. Under the assumptions, (C ∩ E,C ∩D) is a cube term blocker. Therefore
C = D by the minimality of |D|. �

Recall that a Maltsev operation on a set B is a ternary operation t on B such
that t(b, b, a) = a = t(a, b, b) for every a, b ∈ B. Note that the term q in any algebra
in HSP(A) automatically satisfies the first identity.

Lemma 4.4 (the Rectangularity Lemma). Let S ≤ B×C where B,C ∈ HSP(A).
If q is a Maltsev term in B, then S is rectangular.

Proof. If (b, c), (b′, c), (b′, c′) ∈ Q, then

Q 3 q((b, c), (b′, c), (b′, c′)) = (q(b, b′, b′), q(c, c, c′)) = (b, c′) .

�

An important tool for the proofs are Gumm-absorbing subuniverses and their
properties stated below.

Definition 4.5. Let B ∈ HSP(A). A nonempty subuniverse C of B is a Gumm-
absorbing subuniverse, written C /G B, if pi(C,B,C) ⊆ C for every i ∈ [m].
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By the definition of directed Gumm terms and idempotency of B, every singleton
{b}, b ∈ B, is a Gumm-absorbing subuniverse of B. A trivial Gumm-absorbing
subuniverse of B is B. Further Gumm-absorbing subuniverses can be obtained
from the following lemma.

Lemma 4.6 (the Forced Absorption Lemma). Let C1, . . . ,Ck ∈ HSP(A).

• Every block of a congruence of C1 is a Gumm-absorbing subuniverse of C1.
(In particular, singletons are Gumm-absorbing subuniverses.)
• If S/GR ≤ C1×· · ·×Ck, then πi1,...,ij (S)/Gπi1,...,ij (R) for any i1, . . . , ij ∈

[k].
• The set obtained by fixing the i-th coordinate of R ≤ C1 × · · · × Ck to
B /G πi(R) is a Gumm-absorbing subuniverse of R.
• If S ≤sd C1 ×C2 and B /G C1, then B+S /G C2.

Proof. Straightforward. �

The importance of (Gumm-)absorption stems from the fact that it absorbs some
connectivity properties. Two such properties are stated in the following “walking
lemmas”.

Lemma 4.7 (the Bipartite Walking Lemma). Let B,C ∈ HSP(A), Q/GS ≤ B×C,
and b, b′ ∈ π1(Q). If b and b′ are S-linked, then b and q(b, b′, b′) are Q-linked. (A
similar claim holds for c, c′ ∈ π2(Q).)

Proof. Take c, c′ ∈ C such that (b, c), (b′, c′) ∈ Q and take an S-walk

b = b1, c1, b2, c2, . . . , ck−1, bk = b′ .

Since Q is a Gumm-absorbing subuniverse of S, the pairs pi((b, c), (bj , cj), (b
′, c′)) =

(pi(b, bj , b
′), pi(c, cj , c

′)) and (pi(b, bj+1, b
′), pi(c, cj , c

′)) are in Q for each i, j. There-
fore

b = p1(b, b, b′) = p1(b, b1, b
′), p1(c, c1, c

′), p1(b, b2, b
′), . . . , p1(c, ck−1, c

′), p1(b, bk, b
′)

= p1(b, b′, b′) = p2(b, b, b′), . . . , p2(b, b′, b′) = p3(b, b, b′), . . . , . . . , pm(b, b′, b′)

= q(b, b′, b′)

is a Q-walk from b to q(b, b′, b′). �

Lemma 4.8 (the Directed Walking Lemma). Let B ∈ HSP(A), Q /G S ≤ B×B,
and a, b ∈ B. If (a, a), (b, b) ∈ Q and (a, b) ∈ S, then there are directed Q-walks
from a to q(a, b, b) and from q(b, a, a) to b.

Proof. The sequences

a = p1(a, a, b), p1(a, b, b) = p2(a, a, b) = · · · = pm(a, b, b) = q(a, b, b)

q(b, a, a) = pm(b, a, a), pm(b, b, a) = pm−1(b, a, a), . . . , p1(b, b, a) = b

are directed Q-walks. �

Lemma 4.9 (the Edge Absorption Lemma). Let B,C ∈ HSP(A), and Q /G S ≤
B×C. If S is linked, then q is a Maltsev term in π1(Q)/λQ and π2(Q)/ρQ.

Proof. By the Bipartite Walking Lemma, a is Q-linked to q(a, b, b) for every a, b ∈
π1(Q). This implies that a and q(a, b, b) are in the same λQ-block, therefore

qπ1(Q)/λQ([a]λQ
, [b]λQ

, [b]λQ
) = [a]λQ

. The other Maltsev identity qπ1(Q)/λQ([b]λQ
, [b]λQ

, [a]λQ
) =
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[a]λQ
follows trivially from q(b, b, a) = a. Similarly, q is a Maltsev term in π2(Q)/ρQ.

�

Lemma 4.10 (the Vertex Absorption Lemma). Let B,C ∈ HSP(A), S ≤sd B×C,
B′ /G B, and assume S is linked. Then S ∩ (B′ × (B′)+S) is linked.

Proof. For a contradiction, assume that S ∩ (B′ × (B′)+) is not linked. We in-
ductively define G1 = B′, G2i = (G2i−1)+S , G2i+1 = (G2i)

−S . By the Forced
Absorption Lemma, all these sets are Gumm-absorbing subuniverses of either B
(for odd k) or C (for even k).

Since S is linked and subdirect in B × C, then G2i = B,G2i+1 = C for all
sufficiently large i. Therefore we can take the largest k such that S intersected
with Gk ×Gk+1 (for odd k) or Gk+1×Gk (for even k) is not linked. For simplicity
assume that k is odd, the other case is symmetric. Let Q = S ∩ (Gk × Gk+1).
By the Forced Absorption Lemma, Q /G S and then the Edge Absorption Lemma
implies that q is a Maltsev term of Gk+1/ρQ.

By the choice of k, the intersection S ∩ (Gk+2 ×Gk+1) is linked. It follows that
there are b ∈ Gk+2, c, c′ ∈ Gk+1 such that (b, c), (b, c′) ∈ S and [c]ρQ 6= [c′]ρQ .

There exists b′ ∈ Gk with (b′, c′) ∈ S as c′ ∈ Gk+1 = G+S
k . Now

S 3 q((b, c), (b, c′), (b′, c′)) = (q(b, b, b′), q(c, c′, c′)) = (b′, q(c, c′, c′)) ,

The Q-walk q(c, c′, c′), b′, c′ shows that [c′]ρQ = [q(c, c′, c′)]ρQ . But q is a Maltsev
term of Gk+1/ρQ, thus [q(c, c′, c′)]ρQ = [c]ρQ , a contradiction with [c]ρQ 6= [c′]ρQ .

�

The last tool is Theorem 8.1 from [10] (shorter and cleaner proof is in [8], The-
orem 3.5) which is now usually refered to as “Loop Lemma”. We will use the
following special case.

Lemma 4.11 (the Loop Lemma). Let B ∈ HSP(A) and S ≤sd B × B. If S is
linked, then there exists b ∈ B such that (b, b) ∈ S.

4.2. Proof of Lemma 3.4. We require one more technical lemma.

Lemma 4.12. Let T ≤ Dn and f = (f1, . . . , fn) ∈ Fn ∩ T . Then there exist
Fi /G πi(T) with fi ∈ Fi ⊆ F (for each i ∈ [n]) such that the following holds. If
∼ is a congruence of T such that q is a Maltsev term of T/∼, then every ∼-block
intersects F1 × · · · × Fn.

Proof. We define F1, . . . , Fn inductively by F1 = {f1}, and

Fi =

{
πi(T ∩ (F1 × · · · × Fi−1 ×Dn−i+1)) if this set is a subset of F

{fi} otherwise
.

Each Fi is a Gumm-absorbing subuniverse of πi(T) by the Forced Absorption
Lemma.

By induction on i = 0, 1, . . . , n, we show that each ∼-block intersects F1 × · · · ×
Fi ×Dn−i. This claim is trivial for i = 0, so let i > 0 and suppose that the claim
is true for i− 1. For any a ∈ T we set

C([a]∼) = πi([a]∼ ∩ (F1 × . . . Fi−1 ×Dn−i+1)).

By the induction hypothesis, C([a]∼) is nonempty for every a ∈ T . We need to
show that each C([a]∼) intersects Fi.
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If C([a]∼) ⊆ F for all a, then C([a]∼) ⊆ Fi by the choice of Fi and we are done.
Otherwise pick a ∼-block [b]∼ and e ∈ E ∩ C([b]∼).
We show that each C([a]∼) intersects E. Indeed, take any c ∈ C(a) and consider

E 3 qA(c, e, e) ∈ qA(C([a]∼), C([b]∼), C([b]∼)) ⊆ C(qT/∼([a]∼, [b]∼, [b]∼)) = C([a]∼) .

Here q(c, e, e) ∈ E follows from the DDE Lemma, the inclusion follows from the
compatibility of q with T , and the last equality from the assumption that q is a
Maltsev term of T/∼.

Now C([f ]∼)∩E 6= ∅ and of course fi ∈ C([f ]∼)∩F , therefore, by the Minimality
Lemma, C([f ]∼) = D. This allows us to show that each C([a]∼) even contains F :
Take any f ∈ F , any a and any d ∈ C([a]∼). We have

f = q(d, d, f) ∈ q(C([a]∼), C([f ]∼), C([f ]∼)) ⊆ C(q([a]∼, [f ]∼, [f ]∼)) = C([a]∼) .

�

We are ready to prove Lemma 3.4. Recall the assumptions:

• R ≤ C2 ×Dn, where C ≤ A,
• ∆C ⊆ S, where S = π1,2(R), and
• there exists f = (f1, . . . , fn) ∈ Fn such that the smooth part of the digraph
Q = {(a1, a2) : (a1, a2, f1, f2, . . . , fn) ∈ R} is nonempty.

We aim to show that (∆C × Fn) ∩R 6= ∅.
First we make two adjustments to R and C so that we can make the following

additional assumptions:

• Q,S ≤sd C×C, and
• S is linked.

The smooth part C ′ of Q is a subuniverse of C since, as noted in Subsection 2.5, it
is pp-definable from Q. Thus we can redefine C := C ′ and R := R ∩ ((C ′)2 ×Dn)
(and S, Q accordingly) to satisfy the first of the additional assumptions. From
∆C ⊆ S it follows that λS = ρS . Then we can take any λS-block C ′ and redefine
C and R as before to satisfy the second assumption.

Let T = π3,4,...,n+2(R) and

Rb = {((a1, a2), (a3, . . . , an+2)) : (a1, . . . , an+2) ∈ R} ≤sd S×T ,

thus Rb is essentially R regarded as a subset of S × T .
Clearly, f ∈ Fn ∩ T , so we can apply Lemma 4.12 and obtain F1, . . . , Fn ⊆ F

with fi ∈ Fi /G πi(T) for each i ∈ [n]. Let

Q′ = (F1 × · · · × Fn)−R
b

.

This is a superset of Q ≤sd C × C, in particular, Q′ ≤sd C × C. Moreover,
F1 × · · · × Fn /G T, so Q′ /G S by the Forced Absorption Lemma. According to
the Edge Absorption Lemma, the term q is Maltsev in C/λQ′ and C/ρQ′ . Figure 6
depicts Q′, S, and Rb.

Now we consider Q′, S, and Rb modulo λQ′ in the first coordinate and ρQ′ in
the second coordinate:

Q′q = {([a1]λQ′ , [a2]ρQ′ ) : (a1, a2) ∈ Q′}
Sq = {([a1]λQ′ , [a2]ρQ′ ) : (a1, a2) ∈ S}

Rbq = {(([a1]λQ′ , [a2]ρQ′ ), (a3, . . . , an+2)) : (a1, . . . , an+2) ∈ R}
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a1

a′1

b1

a2

a′2

b2

C

[a1]λQ′

[b1]λQ′

C

[a2]ρQ′

[b2]ρQ′

(a) Q′ (thick) and S.

S

Q′

T

F1 × · · · × Fn

(b) Rb.

Figure 6. For the proof of Lemma 3.4.

The term q is Maltsev in C/λQ′ and C/ρQ′ , so q is also Maltsev in Sq ≤ C/λQ′×
C/ρQ′ . By the Rectangularity Lemma, Rbq is rectangular. Moreover, Rbq induces
an isomorphism between π1(Rbq)/λRbq = Sq/λRbq and π2(Rbq)/ρRbq = T/ρRbq .
Therefore, since q is a Maltsev term in Sq/λRbq , q is also a Maltsev term in T/ρRbq .
By the conclusion of Lemma 4.12, every block of ρRbq intersects F1×· · ·×Fn. From
this fact and rectangularity of Rbq it follows that Q′q = Sq. Indeed, any a ∈ Sq is
Rbq-adjacent to some b ∈ T and then to every element in [b]ρ

Rbq
, in particular, to

some element of F1 × · · · × Fn. But Q′q = (F1 × · · · × Fn)−R
bq

by definitions.
The proof will now be concluded using the Loop Lemma. Since ∆C ⊆ S and

Q′q = Sq, then ([a]λQ′ × [a]ρQ′ )∩Q′ 6= ∅ for each a ∈ C. It follows that λQ′ = ρQ′ .

The Loop Lemma applied to Q′ ∩ (B × B) for an arbitrarily chosen λQ′-block B

produces a pair (a, a) ∈ Q′ = (F1×· · ·×Fn)−R
b

. This witnesses (∆C×Fn)∩R 6= ∅,
as required.

4.3. Proof of Lemma 3.5. Lemma 3.4 will be proved by induction. The induction
step will be based on the following lemma.

Lemma 4.13. Let R ≤ Dn+1 be a relation such that

R1=2 = {(a1, . . . , an) : (a1, a1, a2, a3, . . . , an) ∈ R}
is a CTB-relation. Then either π1,3,4,...,n+1(R) or π2,3,...,n+1(R ∩ ({f} ×Dn)) for
some f ∈ F is a CTB-relation.

Proof. Let S = π1,2(R). Since R1=2 is a CTB-relation, there exist e1, . . . , en ∈ E
such that (d1, d1, d2, . . . , dn) ∈ Dn+1 is in R whenever di = ei for at least one i.
We fix such elements e1, . . . , en. Notice that ∆D ⊆ S.

The first step is to show that R ∩ Fn+1 = ∅. Assume the converse and take
(f1, . . . , fn+1) ∈ R ∩ Fn+1. Similarly as in the last subsection, let

Q = {(a1, a2) : (a1, a2, f3, . . . , fn+1) ∈ R} .
We will show that Q contains (f, f) with f ∈ F . This will give us a contradiction
with the assumption that R1=2 is a CTB-relation.

Since π1(Q) contains f1 and e1, then π1(Q) = D by the Minimality Lemma.
Similarly, π2(Q) = D, therefore Q ≤sd D × D. Also notice that Q /G S by the
Forced Absorption Lemma.

We distinguish two cases.
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Case 1. S ⊆ E2 ∪ F 2

From ∆D ⊆ S it follows that [a]λS
= [a]ρS for each a ∈ D. We restrict S and Q

to the λS-block of f1:

F ′ = [f1]λS
(= [f2]λS

), S′ = S ∩ (F ′ × F ′), Q′ = Q ∩ (F ′ × F ′)
Observe that F ′ ⊆ F (since S ⊆ E2 ∪F 2), Q′ /G S′ (since Q/G S), S′ ≤sd F′ ×F′,
Q′ ≤sd F′ × F′ (since Q ≤sd D ×D), and S′ is linked. By the Edge Absorption
Lemma, q is a Maltsev term in F′/λQ′ and in F′/ρQ′ .

Let

Rb = {((a1, a2), (a3, . . . , an+2)) : (a1, . . . , an+2) ∈ R} ≤sd S× π3,...,n+1(R)

R′b = R ∩
(
S′ × (S′)+R

b
)

Q′q = {([a1]λQ′ , [a2]ρQ′ ) : (a1, a2) ∈ Q′}
S′q = {([a1]λQ′ , [a2]ρQ′ ) : (a1, a2) ∈ S′}

R′bq = {(([a1]λQ′ , [a2]ρQ′ ), (a3, . . . , an+2)) : ((a1, a2), (a3, . . . , an+2)) ∈ R′b}

From {(e1, e1)}+Rb

= π3,...,n+1(R) (see the first paragraph of this proof) it follows
that Rb is linked. By the Forced Absorption Lemma, F ′ /G D, and using the same
lemma again, S′ /G S. The Vertex Absorption Lemma now implies that R′b is
linked, thus R′bq is linked.

The term q is Maltsev in the projections of S′, therefore it is a Maltsev term in S′.
Then, by the Rectangularity Lemma, R′bq is rectangular, and since it is also linked,

we get R′bq = S′q × π3,...,n(R′bq). In particular, Q′q = {(f3, . . . , fn)}−R′bq
= S′q.

Now we apply the Loop Lemma in the same way as in the last paragraph of the
last subsection and get f ∈ F ′ with (f, f) ∈ Q′ ⊆ Q ⊆ F × F , a contradiction.

Case 2. S 6⊆ E2 ∪ F 2.

In this case S contains (f, e) (or (e, f)) for some e ∈ E, f ∈ F and also (e, e) ∈ S,
therefore e, f ∈ {e}−S (or e, f ∈ {e}+S) and then {e}−S = D (or {e}+S = D) by
the Minimality Lemma. It follows that S is linked. Recall that Q ≤sd D×D and
Q /G S, so, by the Edge Absorption Lemma, q is a Maltsev term of D/λQ.

If λQ ⊆ E2∪F 2, then qD([f ]λQ
, [e]λQ

, [e]λQ
) ⊆ [f ]λQ

⊆ F for some (actually all)

e ∈ E and f ∈ F , a contradiction with the DDE Lemma. Thus λQ 6⊆ E2 ∪ F 2.
But then a λQ-block intersecting E and F must be the whole D by the Minimality
Lemma, hence λQ = D2. In other words, Q is linked.

Since (f1, f2) ∈ Q and there is a Q-walk from f2 to an element of E, then we can
find elements f, f ′ ∈ F , e ∈ E such that (f, e), (f, f ′) ∈ Q (or (e, f), (f ′, f) ∈ Q).
But then {f}+Q = D (or {f}−Q = D) by the Minimality Lemma. In particular,
(f, f) ∈ Q, a contradiction.

In both cases, we have proved thatR∩Fn+1 = ∅. It may happen that π1,3,...,n+1(R)
is a CTB-relation in which case we are done. So, assume the converse, that is,
π1,3,...,n+1(R) ∩ Fn 6= ∅. Take f ′1, f

′
3, . . . , f

′
n ∈ F and e′2 ∈ D witnessing this, i.e.

(f ′1, e
′
2, f
′
3, . . . , f

′
n+1) ∈ R. Since R ∩ Fn+1 = ∅, we have e′2 ∈ E. We will show that

Z = π2,3,...,n(R ∩ ({f ′1} ×Dn)) = {(d2, . . . , dn+1) : (f ′1, d2, . . . , dn+1) ∈ R}
is a CTB-relation by showing that (d2, . . . , dn+1) ∈ Z whenever d2 = e′2 or di = ei
for some i ∈ {3, . . . , n+ 1}.
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Let (d3, . . . , dn+1) ∈ Dn−1 be any tuple such that di = ei for some i ∈ {3, . . . , n+
1}. Let

Q′′ = {(a1, a2) : (a1, a2, d3, d4, . . . , dn+1) ∈ R}.
Clearly Q′′ /GS and ∆D ⊆ Q′′. Since also (f ′1, e

′
2) ∈ S, then, by the Directed Walk-

ing Lemma, there is a directed Q′′-walk from f ′1 to q(f ′1, e
′
2, e
′
2). As q(f ′1, e

′
2, e
′
2) ∈ E

by the DDE Lemma, it follows that there exists f ∈ F and e ∈ E such that
(f, e) ∈ Q′′. Now, repeated application of the Minimality Lemma gives F×D ⊆ Q′′:
First, the set {f}+Q′′

contains e and f , so {f}+Q′′
= D. Then, for every e′ ∈ E,

{e′}−Q′′
contains f and e′, thus {e′}−Q′′

= D. Finally, for every f ′ ∈ F , {f ′}+Q′′

contains f ′ and (every) e′ ∈ E, therefore {f ′}+Q′′
= D.

The last paragraph proves that (d2, . . . , dn+1) ∈ D whenever di = ei for some
i ∈ {3, . . . , n + 1}. To finish the proof it is enough to show that each tuple of the
form (e′2, d3, . . . , dn+1) (where di ∈ D) is in Z, equivalently, (f ′1, e

′
2, d3, . . . , dn+1) is

in R.
Let (d3, . . . , dn+1) ∈ Dn−1 be arbitrary. The subuniverse

{a : (f ′1, e
′
2, a, f

′
4, . . . , f

′
n+1) ∈ R} ≤ D

contains e3 and f ′3, therefore it is equal to D by the Minimality Lemma. In partic-
ular, it contains d3. Then, the subuniverse

{a : (f ′1, e
′
2, d3, a, f

′
5, . . . , f

′
n+1) ∈ R}

contains e4 and f ′4, so it contains d4. In this way, we eventually get (f ′1, e
′
2, d3, . . . , dn+1) ∈

R. This finishes the proof of Lemma 4.13. �

We are ready to prove a slightly stronger version of Lemma 3.5: Let l1, . . . , ln
be positive integers and V ≤ Dl1+···+ln be such that

W = {(a1, . . . , an) : (a1, . . . , a1︸ ︷︷ ︸
l1×

, a2, . . . , a2︸ ︷︷ ︸
l2×

, . . . , an, . . . , an︸ ︷︷ ︸
ln×

) ∈ V }

is a CTB-relation. Then there exist mi ∈ [li] (for each i ∈ [n]) and Cji ≤ A (for
each i ∈ [n], j ∈ ([li] \ {mi})) such that

U ′ = {(am1
1 , . . . , amn

n ) :(a11, . . . , a
l1
1 , a

1
2, . . . , a

l2
2 , . . . , a

1
n, . . . , a

ln
n ) ∈ R,

(∀i ∈ [n])(∀j ∈ [li], j 6= mi) a
j
i ∈ C

j
i }

is a CTB-relation.
The claim is proved by induction on l1 + · · ·+ ln. If l1 = · · · = ln = 1, then the

claim is trivially true. Assume that some li > 1, for simplicity, l1 > 1. Let

R = {(a′1, a1, a2, a3, . . . , an) : (a1, a
′
1, . . . , a

′
1︸ ︷︷ ︸

(l1−1)×

, a2, . . . , a2︸ ︷︷ ︸
l2×

, . . . , an, . . . , an︸ ︷︷ ︸
ln×

) ∈W} .

Clearly R1=2 = W , so we can apply Lemma 4.13. If π1,3,...,n+1(R) is a CTB-
relation, then we set C1

1 = D, l′1 = l1 − 1, and V ′ = π2,3,...,l1+···+ln(V ). If
π2,3,...,n+1(R ∩ ({f} × Dn)) is a CTB-relation, then we set C2

1 = C3
1 = · · · =

Cl11 = {f}, l′1 = 1 and V ′ = π1,l1+1,l1+2,...,l1+···+ln(V ∩ (D× {f}l1−1 ×Dl2+···+ln)).

In both cases, the mis and the remaining Cji s are obtained by applying the induc-
tion hypothesis to l′1, l2, . . . , ln and the relation V ′. It is easy to see that U ′ is then
a CTB-relation, as required.
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4.4. Proof of Lemma 3.8. Assume that a CTB-relation R is defined by

R(x1, . . . , xn) iff (∃w1, . . . , wn) S1(x1, w1) ∧ · · · ∧ Sn(xn, wn)

∧ T1(w1, w2) ∧ T2(w2, w3) ∧ · · · ∧ Tn−1(wn−1, wn) ,

where Si ≤ A2 for each i ∈ [n] and Ti ≤ A2 for each i ∈ [n − 1]. Figure 7 shows
an example of such a definition. We need to prove that n < 2 · 3|A|. Striving for a
contradiction we assume the converse.

We will need only a part from the properties of the CTB-relation R, namely
R ≤ Dn and there are f ∈ F, e1, . . . , en ∈ E such that (f, f, . . . , f) 6∈ R and
(f, . . . , f, ei, f, . . . , f) ∈ R, where ei is at the i-th position. We fix such elements
f, e1, . . . , en.

a1

b1

a2

b2

c2

an−1

bn−1

cn−1

an

bn

f

e

f

e

f

e

f

e

x1 x2 xn−1 xn

w1 wn

w2 wn−1

. . .

Figure 7. A comb-formula defining {e, f}n \ {(f, f, . . . , f)}.

The following terminology will be useful. An (i, j)-path from a to a′, where
i ≤ j ∈ [n] and a, a′ ∈ A, is a tuple (a = ai, ai+1, . . . , aj = a′) of elements of
A such that (ak, ak+1) ∈ Tk for every k ∈ {i, . . . , j − 1}. Such an (i, j)-path is
supported by (bi, . . . , bj) if (bk, ak) ∈ Sk for every k ∈ {i, . . . , j}. Observe that a
tuple (d1, . . . , dn) is in R iff there exists a (1, n)-path supported by (d1, . . . , dn).
In Figure 7, the (1, n)-path (b1, c2, a3, a4, . . . , an) is supported by any tuple from
{e, f} × {e} × {e, f}n−2.

For each i ∈ {2, . . . , n − 1} we define two subuniverses Gi, Hi of A: a ∈ Gi
iff there exists a (1, i)-path to a supported by (f, f, . . . , f), and a ∈ Hi iff there
exists an (i, n)-path from a supported by (f, f, . . . , f). The sets Gi and Hi are
indeed subuniverses of A, because they can be pp-defined from Sjs, Tjs and sin-
gletons. For every i ∈ {2, . . . , n − 1}, these subuniverses are nonempty (since
(f, . . . , f, ei+1, f, . . . , f) ∈ R and (f, . . . , f, ei−1, f, . . . , f) ∈ R) and disjoint (since
(f, f, . . . , f) 6∈ R). In Figure 7, we have Gi = {bi}, Hi = {ai}.

Now we use the fact that the arity of R is large. There are (3|A| − 2|A|+1 + 1)
ordered pairs of disjoint nonempty subsets of A and at least n/2− 1 even integers
i ∈ {2, . . . , n− 1}, so, since n/2− 1 ≥ 3|A| − 1 > (3|A| − 2|A|+1 + 1), there must be
two different even k, l such that (Gk, Hk) = (Gl, Hl). In particular, there exist k, l,
1 < k < l − 1 < n, such that Gk = Gl and Hk = Hl. We fix such k, l and denote

e = ek+1, G = Gk = Gl, H = Hk = Hl .
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For each d ∈ D we define a subuniverse Q(d) ≤ A2 so that (a, b) ∈ Q(d) iff
there exists a (k, l)-path from a to b supported by (f, d, f, f, . . . , f). In Figure 7,
if a2 = an−1 = a and b2 = bn−1 = b, then we can take k = 2, l = n − 1 and get
G = {b}, H = {a}, Q(f) = {(a, a), (b, b)}, Q(e) = Q(f) ∪ {(b, a)}.

Let Q ≤ A2 be the union of Q(d) over d ∈ D. The sets Q(d), Q are indeed
subuniverses of A2 since they can be pp-defined from subuniverses of A. Moreover,
they have the following algebraic properties.

(Alg 1): Q(d) /G Q for every d ∈ D.
(Alg 2): For any term t, say of arity z, and any d1, . . . , dz ∈ D,

tA
2

(Q(d1), Q(d2), . . . , Q(dz)) ⊆ Q(tA(d1, d2, . . . , dz)) .

(Alg 3): If (a, b) ∈ Q(d1)∩Q(d2), then (a, b) ∈ Q(d) for any d in the subuni-
verse of D generated by d1, d2.

All three properties are consequences of a simple observation: If t is a z-ary term
and, for each i ∈ [z], (aik, . . . , a

i
l) is a (k, l)-path supported by (dik, . . . , d

i
l), then

(t(a1k, . . . , a
z
k), . . . , t(a1l , . . . , a

z
l )) is a (k, l)-path supported by (t(d1k, . . . , d

z
k), . . . , t(d1l , . . . , d

z
l )).

We regard Q and Q(d)’s as digraphs (not as bipartite graphs). They satisfy the
following.

(Dig 1): Q(e) contains an edge from G to H.
(Dig 2): Q(f) has no sources in G, Q(f) has no sinks in H.
(Dig 3): Q(f) and no edge from G to outside of G and no edge from outside

of H to H.

There exists a (1, n)-path (a1, . . . , an) supported by (f, . . . , f, ek+1 = e, f, . . . , f).
Then ak ∈ G, al ∈ H, and (ak, al) ∈ Q(e) by definitions, and (Dig 1) is proved. To
prove the first part of (Dig 2), consider a vertex a ∈ G = Gl. By the definition of Gl,
there exists a (1, l)-path (a1, . . . , al−1, al = a) supported by (f, . . . , f), thus ak ∈
Gk = G and (ak, a) ∈ Q(f). This shows that Q(f) has no sources. Similarly, Q(f)
has no sinks. Finally, if a ∈ G = Gk and (a, b) ∈ Q(f), then there exists a (1, k)-path
(a1, . . . , ak = a) supported by (f, . . . , f) and a (k, l)-path (a = ak, ak+1, . . . , al = b)
supported by (f, . . . , f). Then (a1, . . . , al) is a (1, l)-path supported by (f, . . . , f),
hence al = b ∈ Gl = G. This proves the first part of (Dig 3), the second part is
analogical.

Let r1, r2 be integers such that

r1, r2 ≥ |A|, r1 + r2 + 1 = r3|A|!, where r3 ≥ |A| .
For d ∈ D, set

Q′(d) = Q(f) ◦Q(f) ◦ · · · ◦Q(f)︸ ︷︷ ︸
r1×

◦Q(d) ◦Q(f) ◦Q(f) ◦ · · · ◦Q(f)︸ ︷︷ ︸
r2×

and similarly

Q′ = Q(f) ◦Q(f) ◦ · · · ◦Q(f)︸ ︷︷ ︸
r1×

◦Q ◦Q(f) ◦Q(f) ◦ · · · ◦Q(f)︸ ︷︷ ︸
r2×

=
⋃
d∈D

Q′(d) .

It is easily seen that the primed versions of properties (Alg 1–3) and (Dig 3) are
satisfied. Moreover,

(Dig 1’): Q′(e) contains an “f -looped edge” from G to H, that is, there exist
g ∈ G, h ∈ H such that (g, h) ∈ Q′(e) and (g, g), (h, h) ∈ Q′(f), and

(Dig 4): Q′(f) is transitive.
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To prove these properties, consider the |A|!-fold composition of Q(f) with itself:

Q′′ = Q(f) ◦Q(f) ◦ · · · ◦Q(f)︸ ︷︷ ︸
|A|!×

Clearly, Q′(f) is the r3-fold composition of Q′′ with itself. From the Dirichlet
principle it follows that every vertex a ∈ A, which is contained in a closed Q(f)-
walk (equivalently, in a closed Q′′-walk), is contained in a closed Q(f)-walk of length
at most |A|, and then (a, a) ∈ Q′′. For the same reason, every Q′′-walk from a to b
of length at least |A| contains an element in a closed Q′′-walk. Since this element
has a Q′′-loop, then we can modify the walk so that we get a Q′′-walk from a to
b of any length greater than or equal to |A|. In particular, if two elements a to b
are connected by a Q′′-walk of length 2r3, then they are connected by a Q′′-walk
of length r3. Therefore, Q′(f) is transitive.

To prove (Dig 1’), take (g′, h′) ∈ Q(e), g′ ∈ G, h′ ∈ H guaranteed by (Dig 1).
By (Dig 2) and the Dirichlet principle, we can find a Q(f)-walk of length r1 from
a vertex g ∈ G contained in a closed Q(f)-walk to the vertex g′. Similarly, there
exists a Q(f)-walk of length r2 from h′ to a vertex h ∈ H which is contained in a
closed Q(f)-walk. It follows that (g, h) ∈ Q′(e) and (g, g), (h, h) ∈ Q′(f).

Armed with all these digraphs and their properties we are ready to finish the
proof. The situation is shown in Figure 8.

g

h

a

b

f

f

f

e

f, e

f

f

Figure 8. The final argument for the proof of Lemma 3.8. Label
d means that the edge is in Q′(d).

We start by fixing g ∈ G, h ∈ H as in (Dig 1’) and setting

a = q(g, h, h), b = q(h, a, a) .

Since (g, g), (h, h) ∈ Q′(f), (g, h) ∈ Q′(e) ⊆ Q′, and Q′(f)/GQ
′ (see (Alg 1)), there

is a directed walk in Q′(f) from g to q(g, h, h) = a by the Directed Walking Lemma.
From (Dig 4) it follows that (g, a) ∈ Q′(f). The edge (g, a) = q((g, g), (g, h), (g, h))
also lies in Q′(q(f, e, e)) by (Alg 2). According to (Alg 3), (g, a) is in Q(d) for any d
in the subuniverse D′ of D generated by f and q(f, e, e). Since q(f, e, e) ∈ E by the
DDE Lemma, then D′=D by the Minimality Lemma. In particular (g, a) ∈ Q′(e).

Using (Alg 2), (g, h) ∈ Q′(e), (g, a) ∈ Q′(e) ∩Q′(f), and q(e, e, f) = f , we get

(g, b) = (g, q(h, a, a)) = q((g, h), (g, a), (g, a)) ∈ Q′(q(e, e, f)) = Q′(f).

Thus b ∈ G by (Dig 3).
On the other hand, Q′(f)/GQ

′ by (Alg1), (a, a) = q((g, g), (h, h), (h, h)) ∈ Q′(f),
(h, h) ∈ Q′(f), and (a, h) = q((g, h), (h, h), (h, h)) ∈ Q′, so we can apply the second
part of the Directed Walking Lemma to obtain a Q′(f)-walk from b = q(h, a, a) to
h. Then b ∈ H by (Dig 3). We proved b ∈ G ∩H = ∅, a contradiction.
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5. Consequences and open problems

CSP. Let A be a relational structure with a finite universe. The constraint satis-
faction problem over A, denoted CSP(A), is the decision problem asking whether
a given input pp-sentence over A is true. The main open problem in the area
is the dichotomy conjecture [26] stating that, for every A, CSP(A) is tractable
(i.e., solvable in polynomial time) or NP-complete. It is known [20] that the com-
putational complexity of CSP(A) depends only on the variety generated by the
algebra A = (A; Pol(A)). Precise borderline between polynomial solvability and
NP-completness was conjectured and hardness part proved in [20]. What remains
is to show that CSP(A) is tractable whenever A satisfies a nontrivial idempotent
Maltsev condition. This was verified for algebras in meet semi-distributive vari-
eties [9] and for algebras A with few subpowers [32]. The next natural step was to
concentrate on the class CM. However, Theorem 1.1 shows that there are no new
relational structures to consider and we can use the “few subpowers algorithm”
whenever A ∈ CM.

This does not mean that the CSPs with A ∈ CM are solved in a satisfactory
way. For instance, the few subpowers algorithm heavily uses algebraic operations
similar to cube terms. It could be useful to have a different algorithm based on
(directed) Gumm terms, or even an algorithm which does not use any operations at
all. One reason is that it could make the proof of Theorem 1.1 shorter and cleaner,
see Subsection 3.7. More importantly, it could lead to more general tractability
results: an algorithm for A ∈ CD from [7], which is different from algorithm for
A ∈ NU from [26], was an important step toward the general result for algebras in
meet semi-distributive varieties from [9].

Open Problem 5.1. Find a different algorithm for solving CSP(A), where (A; Pol(A)) ∈
CM.

A natural next step is to consider algebras in varieties omitting types 1 and 5
from the tame congruence theory [31]. Indeed, A ∈ CM iff A is in a variety which
omits types 1 and 5 and has “no tails”.

Primitive positive formula comparison. Let again A be a relational structure
and A = (A; Pol(A)) the corresponding algebra.

The pp-formula equivalence problem over A asks whether given two pp-formulas
over A define the same relations. A similar problem is the pp-formula containment
problem over A that asks whether the first formula defines a subrelation of the
relation defined by the second formula.

In [17], the computational complexity of these problems is completely resolved,
showing a P/coNP-complete/Πp

2-complete trichotomy, modulo the conjectured bor-
deline for CSPs and the Edinburgh conjecture: If A does not satisfy any nontrivial
idempotent Maltsev condition, then the problems are Πp

2-complete. If this is not
the case and CSP(A) is tractable, then the problems are in coNP. If A is not in
CM, then these problems are coNP-hard. Finally, if A has few subpowers, then
both problems are solvable in polynomial time (this was already proved in [16]).
Therefore, Theorem 1.1 gives the P/coNP-hard dichotomy.

Learnability. The aim of the learning problem for pp-formulas over A is to learn
(in some sense) the relation defined by an uknown pp-formula, given access to
an oracle which can answer simple queries like “is the tuple a in the relation?”
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(see [32, 22] for precise definitions of the learning models). A positive learnability
result for A with few subpowers was given in [32] and negative learnability result
for A outside the class CM was proved in [22] (under some standard cryptographic
assumptions). Theorem 1.1 thus closes the gap.

Deciding few subpowers for relational structures. By Theorem 1.1, the prob-
lem FEWSUB of deciding whether a given relational structure A determines an
algebra A with few subpowers, is equivalent to the problem of deciding whether A
is in CM (for a given A). It is quite easy to see that the latter problem is decidable
in exponential time: we can search among the ternary operations for (directed)
Gumm terms (see [28] for details). Recently, Kazda (personal communication) has
observed that FEWSUB is in NP since local characterizations of congruence modu-
larity (as in [28]) can be encoded as CSP instances. However, the exact complexity
is open:

Open Problem 5.2. Determine the computational complexity of FEWSUB.

We remark that Kazda’s idea and [28] places the corresponding problem for NU

(or CD) to the class P.

Algebraic questions. The results in [3, 44] give upper bounds for the least arity
of a near-unanimity operation of A ∈ NU depending on |A| and the maximum arity
of a relation in A (the bounds in [44] are tighter for non-binary structures; this
is caused by using the reduction to binary structures via Proposition 3.1 in [3]).
Examples essentially achieving these bounds were given in [44]. It is not clear how
to obtain reasonable bounds for arities of cube terms from the results in this paper.

Open Problem 5.3. Find a reasonable (or even essentially optimal) upper bound
for the least arity of a cube term of A = (A; Pol(A)) depending on |A| and the
maximum arity of a relation in A.

Corollary 1.2 says, schematically, “CM + finitely related ⇔ FS”, and we also
know that “CD + finitely related ⇔ NU” [3]. Are there some other instances of this
phenomenon?

Open Problem 5.4. For which (important) Maltsev conditions P is there a Malt-
sev condition Q such that “P + finitely related ⇔ Q”, or, at least, a condition Q
stronger than P such that “P + finitely related ⇒ Q”?

The equivalence “NU ⇔ CD” for finitely related finite algebras is generalized
to “absorption ⇔ Jónsson-absorption” for finitely related finite algebras in [4].
Moreover, the difference between Jónsson-absorption and absorption for general
finite algebras is captured in the main result of [5] which rougly says “absorption
⇔ Jónsson-absorption + no bad cube term blockers”. Are there analogues of these
results for (directed) Gumm-absorption instead of Jónsson-absorption?

Open Problem 5.5. Is there a useful notion of “cube-absorption” so that “cube-
absorption ⇔ Gumm-absorption” is true for all finitely related finite algebras? Is
there an analogue to “absorption ⇔ Jónsson-absorption + no bad cube term block-
ers” for cube-absorption?
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[34] Keith Kearnes, Petar Marković, and Ralph McKenzie. Optimal strong malcev conditions for
omitting type 1 in locally finite varieties. Algebra universalis, 72(1):91–100, 2014.
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