
SPASS-XDB goes Mathematical

David Stanovský1?, Martin Suda2, and Geoff Sutcliffe3

1 Charles University in Prague, Czech Republic
2 Max-Planck-Institut für Informatik, Germany

3 University of Miami, USA

1 Introduction

There is a growing demand for automated reasoning with world knowledge [2].
For example, a reasoning system with knowledge of what cities are located near
water, and access to data describing current weather conditions, would be able
to predict which cities might be flooded (e.g., by tidal surge). World knowledge
is available from a growing number of sources, e.g., online databases, SPARQL
endpoints, web services, and computational systems. For deep reasoning, world
knowledge is used in conjunction with ontological axioms that describe the struc-
ture of the world in which the knowledge resides. Automated Theorem Proving
(ATP) systems have traditionally not been well suited to reasoning with world
knowledge, because they expect to load all the formulae before deduction starts.
The large (possibly infinite) number of axioms available from world knowledge
sources dictates that the axioms be retrieved dynamically during deduction.

Mathematics is an established facet of automated reasoning [1], and is of-
ten required when reasoning with world knowledge. The requirement is often
computational, e.g., evaluating ground arithmetic expressions, but can be more
abstract. ATP systems have traditionally lacked arithmetic capabilities, because
arithmetic cannot be finitely axiomatized, and building in arithmetic has not
meshed well with reasoning over uninterpreted symbols. Recent developments
have started to overcome this weakness – the TPTP [4] was extended to support
the Typed First-order Form (TFF) language, which provides the basis for the
Typed First-order with Arithmetic (TFA) part of the TPTP.

SPASS-XDB [3] is an ATP system that incorporates world knowledge axioms
from multiple external sources, asynchronously on demand, during its deduction
process. SPASS-XDB includes internal support for evaluation of ground arith-
metic expressions, and uses Mathematica as an external source of mathematical
knowledge. This paper describes SPASS-XDB.

2 The SPASS-XDB Architecture

SPASS-XDB is a modified version of the well-known, state-of-the-art, first-order
ATP system SPASS [6]. The complete system architecture is comprised of the
SPASS-XDB system itself, mediators, and external sources of world knowledge

? Supported by MSM 0021620839 and GAČR 201/08/P056.

WWW

Specify mediators and external sources

WWW servicehtml/xml

SQL database

SPARQL SPARQL endpoint

SQL

Internal
formulae

ATP
machine

External source
specications

Internal axioms
Conjecture

Prolog

SQL

SPARQL

Prolog appsProlog

Mediators External sourcesSPASS-XDB

Problem le

S2M2S MathematicaSymbolic

Fig. 1. System Architecture

axioms, as shown in Figure 1. The problem file, including the external source
specifications, is written in the TPTP language. The external sources currently
supported include DBPedia, the Linked Movie Database, Mathematica (see Sec-
tion 3), Mondial, and large fragments of the YAGO database. The addition of
new external sources is quite simple. SPASS-XDB augments SPASS’ classic CNF
saturation algorithm with steps to request and accept axioms from the exter-
nal sources. Requests are made when a negative literal of the “given” clause (of
SPASS-XDB’s saturation loop) matches the template of an external specification.
A request is sent in TPTP format to the corresponding mediator, which mar-
shals the request into a query for the external source, retrieves matching facts
from the external source, unmarshals the facts into TPTP format axioms, and
delivers them to SPASS-XDB. The requests are made and axioms delivered asyn-
chronously, so that SPASS-XDB continues its deduction process while axioms are
being retrieved. The axioms are integrated into the deduction process by adding
them to SPASS-XDB’s “usable” list. SPASS-XDB additionally implements new
inference rules that provide arithmetic reasoning, described in Section 3.

3 SPASS-XDB goes Mathematical

The TPTP language provides constructs for writing Typed First-order with
Arithmetic (TFA) problems.4 Separate signatures are assumed for integer, ra-
tional, and real arithmetic, each comprised of infinitely many unequal numeric
constants. A suite of arithmetic function and predicate symbols are defined, as
shown in Table 1 (with their Mathematica equivalents – see below). For SPASS-
XDB, TFA problems are translated to First-Order Form (FOF) using a standard
translation, converting types to monadic type predicates, using the type check
predicates of Table 1 for numeric variables. SPASS-XDB solves these problems
using its regular inferencing, some new inference rules for arithmetic, and exter-
nal arithmetic axioms provided by Mathematica.

Numbers are represented in SPASS-XDB as special constant symbols that
carry both the type and the value. The GMP arithmetic library is used for arbi-
trary precision computation. The basic mathematical functionality is provided

4 http://www.tptp.org/TPTP/TR/TPTPTR.shtml#Arithmetic

Operation TPTP predicates and functions
Mathematica operators

Comparison = $less $lesseq $greater $greatereq

== < <= > >=

Computation $uminus $sum $difference $product

− + − ∗
Coincidence $is int $is rat

Element[X,Integers] . . . Rationals

Coercion $to int $to rat $to real

Floor[X] X X

Type check $int $rat $real

Element[X,Integers] . . . Rationals . . . Reals
Table 1. TPTP and Mathematica Arithmetic

by a new inference rule called ground arithmetic rewriting. Given a clause as a
premise, it traverses the term structure of all its literals in a bottom up fashion,
and performs the symbolically represented arithmetic operations whenever all
arguments are numbers (thus even terms below uninterpreted symbols may get
simplified). Arithmetic predicates (including equality) may get evaluated, which
simplifies the clause, or might show its redundancy.

To extend the mathematical capabilities of SPASS-XDB beyond ground arith-
metic rewriting, Mathematica is used as an external source of axioms. SPASS-
XDB generates requests from negative arithmetic literals (see below for how the
one-literal-at-a-time approach is extended to multiple-literals-at-a-time in re-
quests for arithmetic knowledge). The S2M2S mediator translates a request from
SPASS-XDB into the Mathematica language, following the interpretation given
in Table 1, and calls the FindInstance function of Mathematica. FindInstance
inputs an expression and a set of variables that occur in the expression, and finds
an instance of the variables that makes the statement true. Multiple answers can
be demanded and a time limit can be imposed. The mediator reads the answer,
and creates new axioms that are passed back to SPASS-XDB.

External sources of mathematical knowledge have several special features:
semantically, the polarity of arithmetical literals is undefined (e.g., ¬(x < y) iff
x ≥ y); there is a potentially infinite language to describe the answer; there can
be infinitely many answers to a single query. To solve the polarity issue, an ad-
ditional inference rule has been implemented in SPASS-XDB, which converts all
syntactically positive arithmetic literals to negative ones, e.g., x < y is converted
to ¬(x ≥ y). Positive equations are converted to negated inequations, which are
represented using a new internal predicate symbol $$arith uneq. A complemen-
tary inference rule is applied to a clause to convert negated inequations back to
positive ones so that they can take part in superposition inferences. The po-
tentially infinite language manifests itself (at least) when irrational solutions are
found, such as for the request ∃X.[($real(X) ∧ (X∗X = 2)]. Mathematica returns
a precise value (e.g.,

√
2), in its internal language (e.g., Sqrt[2]). The answers

are passed to SPASS-XDB using a new internal function symbol $$mathematica,
with a string argument that contains the Mathematica expression describing the

number (in the example, $$mathematica("Sqrt[2]")). Such values can be used
in further calls to Mathematica, e.g., $product($$mathematica("Sqrt[2]"),
$$mathematica("Sqrt[2]")) is evaluated by Mathematica to 2.

To reduce the number of solutions, multi-literal queries are used. The existing
SPASS-XDB implementation built requests using only a single negative literal of
the given clause. For problems with arithmetic, SPASS-XDB takes advantage of
the fact that Mathematica understands all arithmetic and logical symbols, and
can build requests from multiple literals of the given clause. When SPASS-XDB
selects a negative literal that contains arithmetic symbols, all negative literals in
the clause are scanned to check whether they can be conjoined with the selected
literal into a single request. This often reduces the number of solutions (i.e.,
axioms that could be delivered to SPASS-XDB) from infinitely many to very
few. For example, consider the following clause:

¬$int(X) ∨ ¬$int(Y) ∨ ¬(X ≤ 0) ∨ ¬(X ∗X = 10000) ∨ p(X,Y)

Assume the literal ¬(X ≤ 0) is selected. SPASS-XDB detects that the literals
¬$int(X) and ¬(X ∗ X = 10000) can be conjoined with it to form the request
∃X.[(X ≤ 0) ∧ $int(X) ∧ (X ∗X = 10000)], and Mathematica computes the
single solution −100. Without multi-literal querying there would be infinitely
many answers to a request based on only the first literal, and the chance of
obtaining a solution that matches the other literals would be very low. For
multi-literal requests, axioms that are instances of the first literal in the request
are returned, e.g., (−100 ≤ 0). Such axioms resolve with the original clause, e.g.,
resulting in the clause

¬$int(−100) ∨ ¬$int(Y) ∨ ¬((−100) ∗ (−100) = 10000) ∨ p(−100, Y)

which is reduced to ¬$int(Y) ∨ p(−100, Y) by ground arithmetic rewriting.
Note that the multi-literal request capability is necessary to include the type
predicates even in cases based on a single literal.

4 Performance

SPASS-XDB and other TFA-capable ATP systems have been tested on the 875
TFA problems in TPTP v5.1.0. All the other systems, except Otter, ran in the
TFA demonstration division of CASC-J5 [5]. Their system descriptions can be
found on the CASC-J5 web site. Testing was done on a computer with a 2.8GHz
Intel Xeon CPU, 3GB memory, running Linux FC8, with a 300s CPU time limit.
Table 2 summarizes the results. The table shows 60 theorems are proved by all
systems, and 100 by none; none of the systems can establish non-theoremhood;
SPASS-XDB—0.8 gets the most timeouts, i.e., the most problems that might
be solved with a larger time limit; with the exception of leanCoP-Omega, av-
erage times for solutions are very low; and SPASS+T is the system to use if
you want a quick answer. Examination of the individual problem results shows
that SPASS-XDB’s strengths (relative to the other systems) are on systems of
equations and inequations (thanks to Mathematica), and high compliance to
the TPTP arithmetic standard. SPASS-XDB’s major weaknesses are proving

Avg CPU Unique
System THM CSA TMO UNK for solns solns

Problems 810 65
SPASS-XDB—0.8 558 0 218 99 1.22 15
SPASS+T—2.2.12 499 0 0 376 0.00 55
SNARK—20080805r027 482 0 143 250 0.34 5
MetiTarski—1.7 372 0 2 501 0.57 6
leanCoP-Omega—0.1 304 0 163 408 19.35 1
Otter—3.3 91 0 69 715 0.97 0

Union 775 0 267 814 82
Intersection 60 0 0 10

Table 2. TFA Results

universal claims, and dealing with arithmetic mixed with uninterpreted sym-
bols. SPASS+T and MetiTarski have strengths that complement SPASS-XDB’s
weaknesses, which contributes to the larger union of theorems proved. It is con-
jectured that SPASS+T’s use of an SMT solver for arithmetic with uninterpreted
symbols is a source of its strong performance.

5 Conclusion

SPASS-XDB’s new arithmetic reasoning capabilities will be useful in SPASS-XDB
primary mission: applications of reasoning with world knowledge. Furture work
includes improving mathematical reasoning mixed with uninterpreted symbols,
and solving universal mathematical conjectures. Additionally, SPASS-XDB is
currently being extended to obtain world knowledge axioms from web search.

References

1. M. Beeson. The Mechanization of Mathematics. In C. Teuscher, editor, Alan Turing:
Life and Legacy of a Great Thinker, pages 77–134. Springer-Verlag, 2004.

2. D. Gunning, V. Chaudhri, and C. Welty. Introduction to the Special Issue on
Question Answering. AI Magazine, 31(3):11–12, 2010.

3. M. Suda, G. Sutcliffe, P. Wischnewski, M. Lamotte-Schubert, and G. de Melo. Ex-
ternal Sources of Axioms in Automated Theorem Proving. In B. Mertsching, editor,
Proceedings of the 32nd Annual Conference on Artificial Intelligence, number 5803
in Lecture Notes in Artificial Intelligence, pages 281–288, 2009.

4. G. Sutcliffe. The TPTP Problem Library and Associated Infrastructure. The FOF
and CNF Parts, v3.5.0. Journal of Automated Reasoning, 43(4):337–362, 2009.

5. G. Sutcliffe. The 5th IJCAR Automated Theorem Proving System Competition -
CASC-J5. AI Communications, page To appear, 2011.

6. C. Weidenbach, A. Fietzke, R. Kumar, M. Suda, P. Wischnewski, and D. Dimova.
SPASS Version 3.5. In R. Schmidt, editor, Proceedings of the 22nd International
Conference on Automated Deduction, number 5663 in Lecture Notes in Artificial
Intelligence, pages 140–145. Springer-Verlag, 2009.

