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DUNKL OPERATORS AND A FAMILY OF REALIZATIONS OF

osp(1|2)

H. DE BIE, B. ØRSTED, P. SOMBERG, AND V. SOUČEK

Abstract. In this paper, a family of radial deformations of the realization
of the Lie superalgebra osp(1|2) in the theory of Dunkl operators is obtained.
This leads to a Dirac operator depending on 3 parameters. Several function
theoretical aspects of this operator are studied, such as the associated mea-
sure, the related Laguerre polynomials and the related Fourier transform. For
special values of the parameters, it is possible to construct the kernel of the
Fourier transform explicitly, as well as the related intertwining operator.
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1. Introduction

The notion of Howe duality (see [18]) has received considerable attention lately.
The basic framework where this duality is apparent is in the setting of classical
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harmonic analysis in Rm. Indeed, introducing the O(m)-invariant operators

∆ =

m∑

i=1

∂2xi
Laplace operator

r2 =

m∑

i=1

x2i

E =

m∑

i=1

xi∂xi
Euler operator,

it is well-known that ∆, r2 and E+ m
2 generate the Lie algebra sl2, i.e.

[
∆, r2

]
= 4(E+

m

2
)

[
∆,E+

m

2

]
= 2∆

[
r2,E+

m

2

]
= −2r2.

More importantly, the sl2 action completely reduces the decomposition of the space
P of polynomials in Rm to irreducible subspaces (the so-called spherical harmonics)
under the action of the orthogonal group O(m). In other words, the action of the
dual pair O(m) × sl2 yields the complete multiplicity free decomposition of P .
This decomposition is usually called Fischer decomposition and has, apart from its
obvious importance in representation theory, also applications in e.g. the solution
of the algebraic Dirichlet problem (see e.g. [2] and references therein).

In the late eighties, Dunkl introduced in his seminal paper [11] the so-called
Dunkl operators. These operators Ti, i = 1, . . . ,m are deformations of the classical
partial derivatives by non-local operators which form a commutative family and
allow to construct the Dunkl Laplacian ∆k =

∑m
i=1 T

2
i . This operator is no longer

invariant under the whole orthogonal group but only under a finite reflection group
G (a finite subgroup of O(m)). Although this operator is much more complicated
than the classical Laplace operator, Heckman noted in [17] that the sl2 relations
are still valid in this case. Namely, one has

[
∆k, r

2
]

= 4(E+
µ

2
)

[
∆k,E+

µ

2

]
= 2∆k

[
r2,E+

µ

2

]
= −2r2.

where µ is a numerical parameter related to the group G (for a precise definition
we refer the reader to section 2).

The introduction of the Dunkl operator introduces a twist in the Fischer de-
composition of the space of polynomials P that preserves the radial structure but
changes what happens on the sphere. That is, spherical harmonics for the classi-
cal Laplace operator are no longer necessarily spherical harmonics for the Dunkl
Laplacian. For a discussion of the Fischer decomposition in both the classical and
Dunkl case we refer the reader to [23].

A natural question to ask now is whether one can also change the radial structure
but nevertheless retain the sl2 structure. This is taken up in a recent preprint (see
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[4]), where it was noted that the sl2 relations also hold for the deformed operators
r2−a∆k, r

a and E+ a+m−2
2 , with a in general a complex parameter, i.e.

[
r2−a∆k, r

a
]

= 2a(E+
a+ µ− 2

2
)

[
r2−a∆k,E+

a+ µ− 2

2

]
= ar2−a∆k

[
ra,E+

a+ µ− 2

2

]
= −ara.

In that paper, several other results pertaining to these deformed operators are ob-
tained. In particular the associated Laguerre polynomials are developed for the
study of the Fourier transform and the connection with the Gelfand-Gindikin pro-
gram (for understanding a family of irreducible representations by using complex
geometric methods) is elucidated. Two special cases are given a more detailed
treatment, namely the classical case a = 2 and the case a = 1 (the study of which
was introduced in [21, 22]).

Instead of considering the sl2 Lie algebra generated by the three basic operators,
one can also introduce two new operators, namely the Dirac operator and the vector
variable. These operators enable us to factorize the Laplace operator and r2. In
the case of the orthogonal group, this yields the theory of Clifford analysis (see
e.g. [5, 16, 10]). Indeed, by introducing the orthogonal Clifford algebra Cl0,m one
can refine sl2 to the Lie superalgebra osp(1|2). Considering an orthonormal basis
{ei}, i = 1, . . . ,m of Rm, we have that Cl0,m is generated by this basis under the
relations

eiej + ejei = −2δij.

We then introduce the Dirac operator ∂x and the vector variable x by

∂x =
m∑

i=1

ei∂xi
, Dirac operator

x =

m∑

i=1

eixi, vector variable.

These operators satisfy

∂2x = −∆

x2 = −r2

∂xx+ x∂x = −2(E+
m

2
)

and generate a realization of osp(1|2) (for the complete defining relations of this
algebra, we refer the reader to theorem 1). In this case, the classical Fischer de-
composition given by the dual pair O(m) × sl2 can be refined using the dual pair
Spin(m)× osp(1|2) if one lets the operators act on spinor-valued polynomials.

As the Dunkl operators are commutative, there also exists a Dunkl version of
the Dirac operator, given by

Dk =

m∑

i=1

eiTi
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which satisfies (see [23])

Dkx+ xDk = −2(E+
µ

2
).

Let us now discuss the motivation and aims of the present paper. Firstly, finding
a set of commuting operators Di, i = 1, . . . ,m such that

∑m
i=1D

2
i = r2−a∆k

would seriously facilitate the study of the harmonic analysis related to the operator
r2−a∆k. For example, the Fourier transform related to r2−a∆k is defined by the
operator exponential (see [4])

Fa = e
iπ(µ+a−2)

2a e
iπ
2a (r2−a∆k−ra)

and the eigenfunctions and some of the properties are studied in detail there. How-
ever, except for the rank one case and the cases a = 1 and a = 2, the kernel of this
integral transform is not explicitly known. In the non-Dunkl case the existence of
the operators Di would yield a system of PDEs allowing to either determine the
kernel (if one can explicitly solve the system) or at least obtain more information
about its analytic behaviour (in a similar way as is done in e.g. [9]).

Secondly, from the point of view of Clifford analysis, the existence of a Dirac
operator related to r2−a∆k would allow us to refine the sl2 relations to osp(1|2),
hence enabling to extend the related function theory to the radially deformed case.
Several interesting problems can then be addressed, such as determination of a
fundamental solution, determination of the eigenfunctions and spectrum of the
operator, existence of related Cauchy integral formulae etc.

As it turns out, it will not be possible to obtain a factorization of r2−a∆k except
for the special case a = ±2. We will however obtain an interesting new family of
Dirac type operators, parametrized by three complex parameters a, b and c and
defined as follows

D = r1−
a
2 Dk + br−

a
2−1x+ cr−

a
2−1xE.

The square of this operator consists of r2−a∆k plus some other terms. If one chooses
the parameter c = 2/a−1 the square of D is scalar. For other values of c the square
of D contains a bivector term.

In other words, by further deforming the operator r2−a∆k introduced in [4], one
obtains an operator which can be factorized nicely. The properties of this operator
are directly related to those of the classical Dirac operator via a generalized Kelvin
transform. This Kelvin transform takes over the role played by the intertwining
operator in the Dunkl case (see e.g. [13]), although in our case we obtain an explicit
formula for the operator.

The paper is organized as follows. In section 2 we introduce the necessary back-
ground on Dunkl operators. In section 3 we obtain the new family of Dirac operators
and show that they generate the Lie superalgebra osp(1|2). We explicitly calculate
the square of D and determine the measure related to D. In section 4 we first
discuss the analogues of polynomial solutions for D and obtain a Fischer decom-
position. Next we introduce the Laguerre polynomials and functions related to D.
This allows us to introduce in section 5 a new class of Fourier transforms, which
are related to D. We determine the kernel explicitly when the square of D is scalar
and also discuss the very special case where a = −2. In section 6 we discuss several
topics for further research.

Remark 1. The Dirac operator D that we will introduce in section 3 depends
on three parameters a, b and c. To simplify the reading, we will in the subsequent
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theorems not always mention the values that can be taken by these parameters. This
can be verified easily by the reader when consulting the resulting formulae. As a
general rule we can say that although in the basic definition all parameters can be
complex, we will usually restrict ourselves to a > 0 and b, c real. Moreover, we
always exclude the case c = −1. Concerning the multiplicity function k related to
the Dunkl operators, we will restrict ourselves to k > 0 (although extensions are
again possible). From section 4 on, we will also exclude the parameter values given
by formula (4.8). These values have to be compared with the singular values of k
described in [13].

2. Preliminaries on Dunkl operators

Denote by 〈., .〉 the standard Euclidean scalar product in Rm and by |x| =
〈x, x〉1/2 the associated norm. For α ∈ Rm−{0}, the reflection rα in the hyperplane
orthogonal to α is given by

rα(x) = x− 2
〈α, x〉

|α|2
α, x ∈ Rm.

A root system is a finite subset R ⊂ Rm of non-zero vectors such that, for every
α ∈ R, the associated reflection rα preserves R. We will assume that R is reduced,
i.e. R ∩ Rα = {±α} for all α ∈ R. Each root system can be written as a disjoint
union R = R+∪(−R+), where R+ and −R+ are separated by a hyperplane through
the origin. The subgroup G ⊂ O(m) generated by the reflections {rα|α ∈ R} is
called the finite reflection group associated with R. Following standard references
(see e.g. [9, 25]) the roots in the root systems can be uniformly normalized in such
a way that 〈α, α〉 = 2 for all α ∈ R. We assume such normalization throughout the
article without further notice. For more information on finite reflection groups we
refer the reader to [20].

A multiplicity function k on the root system R is a G-invariant function k : R→
C, i.e. k(α) = k(hα) for all h ∈ G. We will denote k(α) by kα.

Fixing a positive subsystem R+ of the root system R and a multiplicity function
k, we introduce the Dunkl operators Ti associated to R+ and k by (see [11, 14])

Tif(x) = ∂xi
f(x) +

∑

α∈R+

kααi
f(x)− f(rα(x))

〈α, x〉
, f ∈ C1(Rm)

where αi is the i-th coordinate of α. An important property of the Dunkl operators
is that they commute, i.e. TiTj = TjTi.

The Dunkl Laplacian is given by ∆k =
∑m

i=1 T
2
i , or more explicitly by

∆kf(x) = ∆f(x) + 2
∑

α∈R+

kα

(
〈∇f(x), α〉

〈α, x〉
−
f(x)− f(rα(x))

〈α, x〉2

)

with ∆ the classical Laplacian and ∇ the gradient operator.
If we let ∆k act on |x|2 we find ∆k|x|

2 = 2m+4γ = 2µ, where γ =
∑

α∈R+
kα. We

call µ the Dunkl dimension, because most special functions related to ∆k behave
as if one would be working with the classical Laplace operator in a space with
dimension µ. We also denote by Hℓ the space of Dunkl-harmonics of degree ℓ, i.e.
Hℓ = Pℓ ∩ ker∆k with Pℓ the space of homogeneous polynomials of degree ℓ. The
space of Dunkl-harmonics of degree ℓ has the same dimension as the classical space
of spherical harmonics of degree ℓ.
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It is possible to construct an intertwining operator Vk connecting the classical
derivatives ∂xj

with the Dunkl operators Tj such that TjVk = Vk∂xj
(see e.g. [13]).

Note that explicit formulae for Vk are only known in a few special cases.
The operators ∆k, r

2 and E+ µ
2 satisfy the defining relations of the Lie algebra

sl2 (see [17])

[
∆k, r

2
]

= 4(E+
µ

2
)

[
∆k,E+

µ

2

]
= 2∆k

[
r2,E+

µ

2

]
= −2r2.

We collect some basic properties of Dunkl operators in the following proposition.

Proposition 1. One has the following relations

(i) Ti(fg) = (∂if)g + f(Tig), if f is invariant under G and f, g ∈ C1(Rm)

(ii) [xi,∆k] = −2Ti

(iii)
∑m

j=1 (xjTj + Tjxj) = 2E+ µ

(iv) ∂rTi = Ti∂r +
xi
r2
∂r −

1

r
Ti.

Proof. (i) see [11]; (ii) see [11]; (iii) see [17].
Now we prove property (iv). As the Dunkl operators Ti are operators of degree

−1 and as the Euler operator can be written as E = r∂r , we have

r∂rTi = Tir∂r − Ti.

Applying (i) then yields

r∂rTi = rTi∂r +
xi
r
∂r − Ti.

Dividing both sides by r gives the desired result. �

For the sequel, we also need to know that the operator Tixj + xiTj is symmetric
under i↔ j. This is obtained in the following way

Tixj + xiTj = xi∂xj
+ xj∂xi

+
∑

α∈R+

kααjxi
f(x)− f(rα(x))

〈α, x〉

+
∑

α∈R+

kααi
xjf(x)− [rα(x))]jf(rα(x))

〈α, x〉

= xi∂xj
+ xj∂xi

+
∑

α∈R+

kα(αjxi + αixj)
f(x)

〈α, x〉

−
∑

α∈R+

kα(αjxi + αixj − 〈α, x〉αiαj)
f(rα(x))

〈α, x〉
,

which is clearly symmetric in i and j.
The weight function related to the root system R and the multiplicity function

k is given by wk(x) =
∏

α∈R+
|〈α, x〉|2kα . For suitably chosen functions f and g
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one then has the following property of integration by parts (see [12])

(2.1)

∫

Rm

(Tif)g wk(x)dx = −

∫

Rm

f (Tig)wk(x)dx

with dx the Lebesgue measure.
Recall that the classical Fourier transform is given by

Fclass(f)(y) = (2π)−
m
2

∫

Rm

e−i〈x,y〉f(x)dx, 〈x, y〉 =
m∑

j=1

xjyj .

There also exists a Fourier transform related to the set of Dunkl operators Ti (see
a.o. [9]). This so-called Dunkl transform Fk : L1(Rm, wk(x)dx) → C(Rm) is
defined as follows

Fkf(y) := c−1
k

∫

Rm

f(x)D(x,−iy)wk(x)dx (y ∈ Rm)

with ck =
∫
Rm e−r2/2wk(x)dx the Mehta constant related to G and where D(x, y)

is the Dunkl kernel. This kernel is the unique solution of the system

Ti,xD(x, y) = yiD(x, y), i = 1, . . . ,m

which is real-analytic in Rm and satisfies K(0, y) = 1. The eigenfunctions of this
transform are studied in a.o. [12, 25]. They are given by

φkj,ℓ = L
µ
2 +ℓ−1
j (r2)Hℓ e

−r2/2, Hℓ ∈ Hℓ

and satisfy Fk(φ
k
j,ℓ) = (−i)2j+ℓφkj,ℓ.

There also exists an exponential notation of both transforms

Fclass = e
iπm
4 e

iπ
4 (∆−r2)

Fk = e
iπµ
4 e

iπ
4 (∆k−r2)

In the Dunkl case, this is studied in depth in [3]. This notation is important for us,
as it will provide us with the correct generalization of the Fourier transform to the
new family of Dirac operators.

3. A new family of realizations of osp(1|2)

In this section we introduce a new class of Dirac operators that will generate
osp(1|2). We try to stay as close as possible to the operators r2−a∆k, r

a and
E+ a+µ−2

2 introduced in [4].
We begin by factorizing the operator ra. This is easily obtained by putting

xa = r
a
2−1x,

because then x2a = −ra. Defining an a-deformed Dirac operator is less straight-
forward. We take inspiration from the classical case a = 2, where (see [23])

Dk = −
1

2
[x,∆k]

and define

Dk,a = −
1

2
[xa, r

2−a∆k].
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This commutator can be explicitly calculated as follows
[
xa, r

2−a∆k

]
= r1−

a
2 x∆k − r2−a∆kr

a
2−1x

= r1−
a
2 [x,∆k]−

(a
2
− 1
)(

µ+
a

2
− 3
)
r2−ar

a
2−3x

−2
(a
2
− 1
)
r2−ar

a
2−3Ex

= −2r1−
a
2 Dk −

(a
2
− 1
)(

µ+
a

2
− 3
)
r−

a
2−1x

−2
(a
2
− 1
)
r−

a
2−1xE+ 2

(a
2
− 1
)
r−

a
2−1x

= −2r1−
a
2 Dk −

(a
2
− 1
)(

µ+
a

2
− 1
)
r−

a
2−1x

−2
(a
2
− 1
)
r−

a
2−1xE

where we have used proposition 1. Hence we obtain the following Ansatz for an
a-deformed Dirac operator

(3.2) Dk,a = r1−
a
2 Dk +

1

2

(a
2
− 1
)(a

2
+ µ− 1

)
r−

a
2−1x+

(a
2
− 1
)
r−

a
2−1xE.

Note that this operator encompasses the classical Dirac operator (a = 2, k = 0)
D0,2 = ∂x and the Dunkl Dirac operator (a = 2) Dk,2 = Dk. It turns out that we
can work even slightly more general, by considering instead the operator

(3.3) D = r1−
a
2 Dk + br−

a
2−1x+ cr−

a
2−1xE.

where b and c are now arbitrary complex numbers.

The operators D and xa again generate a Lie superalgebra. This is the subject
of the following theorem.

Theorem 1. The operators D and xa generate a Lie superalgebra, isomorphic with
osp(1|2), with the following relations

(3.4)

{xa,D} = −2(1 + c)
(
E+ δ

2

) [
E+ δ

2 ,D
]
= −a

2D[
x2a,D

]
= a(1 + c)xa

[
E+ δ

2 , xa
]
= a

2xa[
D

2, xa
]
= −a(1 + c)D

[
E+ δ

2 ,D
2
]
= −aD2

[
D

2, x2a
]
= 2a(1 + c)2

(
E+ δ

2

) [
E+ δ

2 , x
2
a

]
= ax2a,

where

(3.5) δ =
a

2
+

2b+ µ− 1

1 + c
.

Proof. We start with the first anti-commutator

{xa,D} = {xa, r
1− a

2 Dk + br−
a
2−1x+ cr−

a
2−1xE}

= {xa, r
1− a

2 Dk}+ c{xa, r
− a

2−1xE} − 2b.

The first term is calculated as

{xa, r
1− a

2 Dk} = xDk + r1−
a
2 Dkr

a
2−1x = {x,Dk} −

(a
2
− 1
)

and the second as

{xa, r
− a

2−1xE} = −E+ r−
a
2−1xEr

a
2−1x = −2E−

a

2
.
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Collecting everything then yields {xa,D} = −2(1 + c)
(
E+ δ

2

)
.

Note that all relations in the second column are trivial. Using them and the
previous calculation, we then obtain

[
x2a,D

]
= x2aD−Dx2a

= x2aD+ xaDxa − 2(1 + c)

(
E+

δ

2

)
xa

= −2(1 + c)[xa,E]

= a(1 + c)xa.

Similarly, we have
[
D2, xa

]
= D2xa − xaD

2

= −DxaD− xaD
2 − 2(1 + c)D

(
E+

δ

2

)

= −2(1 + c)[D,E]

= −a(1 + c)D

and finally
[
D2, x2a

]
= D2x2a − x2aD

2

= D
(
x2aD− a(1 + c)xa

)
− x2aD

2

= −a(1 + c)Dxa +
(
x2aD− a(1 + c)xa

)
D− x2aD

2

= −a(1 + c){xa,D}

= 2a(1 + c)2
(
E+

δ

2

)
.

Now, taking ã and 1̃ + c such that ã2 = a and 1̃ + c
2
= 1+ c, we can rescale the

operators as follows

xa → xa/(ã1̃ + c), D → D/(ã1̃ + c), E+
δ

2
→ (E+

δ

2
)/a

which makes the isomorphism with osp(1|2) explicit (see e.g. [15]). �

Note that, although we have obtained a family of realizations of osp(1|2), we
have by no means shown that D2 = −r2−a∆k. Moreover, except for two special
cases a = ±2 this will never be the case. In the following subsection we give the
general result for the square of D, which is a complicated formula.

Remark 2. A special case of the operator D has already been studied in [6]. There
the case a = 2, b = 0 and c = −(1 + α) is studied (for k = 0) and the authors
determine the eigenfunctions of this operator.

3.1. The square of D. The deformed Dirac operator in formula (3.3) is a vector-
valued differential operator, i.e. D is of the following form

D =

m∑

i=1

Diei.

Introducing l = 1 − a/2 to simplify notation, we are thus lead to consider the
operators

Di = rlTi + brl−2xi + crl−1xi∂r, b, c, l ∈ C
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for i = 1, . . . ,m where the Ti are the Dunkl operators. The square of D is then
given by

D2 = −
m∑

i=1

D2
i +

∑

i<j

eiej(DiDj −DjDi),

consisting of a scalar term−
∑m

i=1D
2
i and a bivector term

∑
i<j eiej(DiDj−DjDi).

We calculate these two terms separately. First we simplify DiDj by moving all
Dunkl operators and derivatives to the right, and collecting all terms, symmetric
under i↔ j in Sij . We obtain

DiDj =
(
rlTi + brl−2xi + crl−1xi∂r

) (
rlTj + brl−2xj + crl−1xj∂r

)

= rlTir
lTj + brlTir

l−2xj + crlTir
l−1xj∂r + br2l−2xiTj + br2l−4xixj +

bcr2l−3xixj∂r + crl−1xi∂rr
lTj + bcrl−1xi∂rr

l−2xj + c2rl−1xi∂rr
l−1xj∂r

= Sij + lr2l−2xiTj + r2lTiTj + b(l− 2)r2l−4xixj + br2l−2Tixj

+c(l − 1)r2l−3xixj∂r + cr2l−1Tixj∂r + br2l−2xiTj + clr2l−2xiTj

+cr2l−1xi∂rTj + bc(l − 2)r2l−4xixj + bcr2l−3xi∂rxj

+c2(l − 1)r2l−3xixj∂r + c2r2l−2xi∂rxj∂r

= Sij + (l + b + cl)r2l−2xiTj + br2l−2Tixj + cr2l−1Tixj∂r

+cr2l−1xi

(
−Tj + Tj∂r +

1

r2
xj∂r

)
+ bcr2l−3xi

(xj
r

+ xj∂r

)

+c2r2l−2xi

(xj
r

+ xj∂r

)
∂r

= Sij + (l + b + cl− c)r2l−2xiTj + br2l−2Tixj + cr2l−1Tixj∂r

+cr2l−1xiTj∂r

= Sij + (l + cl − c)r2l−2xiTj + br2l−2 (Tixj + xiTj)

+cr2l−1 (Tixj + xiTj) ∂r

= Sij + (l + cl − c)r2l−2xiTj,

where we have used proposition 1, (i) and (iv), and also the fact that Tixj + xiTj
is symmetric. Hence we conclude that DiDj = DjDi if and only if

l + cl − c = 0

or

c = −
l

l− 1
=

2

a
− 1.

We now calculate
∑m

i=1D
2
i . We first have

D2
i =

(
rlTi + brl−2xi + crl−1xi∂r

) (
rlTi + brl−2xi + crl−1xi∂r

)

= rlTir
lTi + b2r2l−4x2i + c2rl−1xi∂rr

l−1xi∂r + brlTir
l−2xi + br2l−2xiTi

+crlTir
l−1xi∂r + crl−1xi∂rr

lTi + bcr2l−3x2i ∂r + bcrl−1xi∂rr
l−2xi

= b2r2l−4x2i + br2l−2xiTi + bcr2l−3x2i ∂r + r2lT 2
i + lr2l−2xiTi

+c2r2l−2xi∂rxi∂r + c2(l − 1)r2l−3x2i ∂r + br2l−2Tixi + b(l − 2)r2l−4x2i

+c(l − 1)r2l−3x2i ∂r + cr2l−1Tixi∂r + clr2l−2xiTi + cr2l−1xi∂rTi

+bc(l− 2)r2l−4x2i + bcr2l−3xi∂rxi
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= r2lT 2
i +

(
b2 + b(l − 2) + bc(l − 2)

)
r2l−4x2i + (b+ l + cl)r2l−2xiTi

+
(
bc+ c2(l − 1) + c(l − 1)

)
r2l−3x2i ∂r + c2r2l−2xi

(xi
r

+ xi∂r

)
∂r

+br2l−2Tixi + cr2l−1Tixi∂r + cr2l−1xi

(
−
1

r
Ti +

xi
r2
∂r + Ti∂r

)

+bcr2l−3xi

(xi
r

+ xi∂r

)

= r2lT 2
i +

(
b2 + b(l − 2) + bc(l − 2) + bc

)
r2l−4x2i + (b+ l + cl − c)r2l−2xiTi +

+
(
2bc+ c2(l − 1) + c(l − 1) + c2 + c

)
r2l−3x2i ∂r + c2r2l−2x2i ∂

2
r + br2l−2Tixi

+cr2l−1 (Tixi + xiTi) ∂r.

Summing over i = 1, . . . ,m then yields

m∑

i=1

D2
i = r2l∆k +

(
b2 + b(l − 2) + bc(l − 1)

)
r2l−2 +

(
2bc+ c2l + cl

)
r2l−1∂r

+c2r2l∂2r +
∑

i

(l + cl − c)r2l−2xiTi +
∑

i

br2l−2 (xiTi + Tixi)

+
∑

i

cr2l−1 (Tixi + xiTi) ∂r

= r2l∆k +
(
b2 + b(l − 2) + bc(l − 1) + bµ

)
r2l−2 +

(
c2 + 2c

)
r2l∂2r

+
(
2bc+ c2l + cl+ cµ+ 2b

)
r2l−1∂r

+
∑

i

(l + cl − c)r2l−2xiTi.

Hence
∑n

i=1D
2
i = r2−a∆k if and only if the following system of equations is satisfied

l = 1−
a

2
c(c+ 2) = 0

b (b+ c(l − 1) + (µ+ l − 2)) = 0

2b+ c(l + µ) + lc2 + 2bc = 0

l + cl− c = 0.

Note that the last equation is the same as the one guaranteeing the commutativity
of the Di. This system has exactly two solutions, namely

• b = c = l = 0 and a = 2
• b = 2− µ, c = −2, l = 2 and a = −2.

In the special case where the multiplicity function k = 0 (so µ = m), we obtain
that

∑n
i=1D

2
i = r2−a∆ if and only if the following system of equations is satisfied

l = 1−
a

2
c(c+ 2) = 0

b (b+ c(l − 1) + (m+ l − 2)) = 0

2b+ l + c(2l+m− 1) + lc2 + 2bc = 0,

i.e. the last two equations in the previous system are merged. In this case, the
system has exactly 4 solutions, namely
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• b = c = l = 0 and a = 2
• b = 0, c = −2, l = 2−m and a = 2m− 2
• b = m− 2, c = 0, l = 4− 2m and a = 2(2m− 3)
• b = 2−m, c = −2, l = 2 and a = −2

where now only the first and the last solution are compatible with the commuta-
tivity of the Di.

We summarize our results in the following theorem:

Theorem 2. The deformed Dunkl Dirac operator D factorizes r2−a∆k if and only
if a = 2 or a = −2. In the case a = 2 this is the classical Dunkl Dirac operator Dk

satisfying D2
k = −∆k. In the case a = −2 this is the operator

Dk,−2 = r2Dk − (µ− 2)x− 2xE

which satisfies D2
k,a = −r4∆k.

The relation between Dk and Dk,−2 will be discussed in section 5.2.
For general values of b and c, the square of D is a complicated operator, given

by

D2 = −r2−a∆k − b
(
b − 1−

a

2
(1 + c) + µ

)
r−a

−
(
2bc+ (c2 + c)(1−

a

2
) + cµ+ 2b

)
r1−a∂r

−
(
c2 + 2c

)
r2−a∂2r − (1−

a

2
(1 + c))r−a

∑

i

xiTi

+(1−
a

2
(1 + c))r−a

∑

i<j

eiej(xiTj − xjTi)

and if c = 2/a− 1 by

D2 = −r2−a∆k − b
(
b− 1−

a

2
(1 + c) + µ

)
r−a

−
(
2bc+ (c2 + c)(1 −

a

2
) + cµ+ 2b

)
r1−a∂r −

(
c2 + 2c

)
r2−a∂2r .

3.2. The measure associated to D. We want to associate a measure to the
operator D in such a way that we can perform integration by parts. Concretely, as
the operator D can be written as D =

∑m
i=1Diei with

Di = r1−
a
2 Ti + br−1− a

2 xi + cr−
a
2 xi∂r

we want to determine a radial function h(r) such that for all i = 1, . . . ,m

(3.6)

∫

Rm

(Dif)gh(r)wk(x)dx = −

∫

Rm

f (Dig)h(r)wk(x)dx

for all scalar functions f and g such that the integrals exist and formula (2.1) can
be applied.
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We start by calculating the left-hand side, yielding
∫

Rm

(Dif)gh(r)wk(x)dx =

∫

Rm

r1−
a
2 (Tif)gh(r)wk(x)dx

+b

∫

Rm

r−1− a
2 xifgh(r)wk(x)dx

+c

∫

Rm

r−
a
2 xi(∂rf)gh(r)wk(x)dx.

The first integral can be rewritten, using formula (2.1), as
∫

Rm

r1−
a
2 (Tif)gh(r)wk(x)dx = −

∫

Rm

fTi
(
r1−

a
2 gh(r)

)
wk(x)dx

= −

∫

Rm

f(Tig)r
1− a

2 h(r)wk(x)dx

−

∫

Rm

fg (∂rh(r)) r
− a

2 xiwk(x)dx

−(1−
a

2
)

∫

Rm

fgh(r)r−1− a
2 xiwk(x)dx.

Now we consider the third integral. First note that

(3.7)

∫

Rm

(∂rf) gdx = −

∫

Rm

f (∂rg) dx+ (1 −m)

∫

Rm

fgr−1dx.

Using this, we obtain
∫

Rm

r−
a
2 xi(∂rf)gh(r)wk(x)dx = −

∫

Rm

f∂r
(
r−

a
2 xigh(r)wk(x)

)
dx

+(1−m)

∫

Rm

r−
a
2−1xifgh(r)wk(x)dx

= −

∫

Rm

f (∂rg) r
− a

2 xih(r)wk(x)dx

−

∫

Rm

fg (∂rh) r
− a

2 xiwk(x)dx

+(
a

2
− µ)

∫

Rm

fgr−
a
2−1xih(r)wk(x)dx.

Combining the three integrals and comparing with the right-hand side in equation
(3.6), we obtain the following differential equation for h(r)

(1 + c)r
d

dr
h =

(
2b− 1 +

a

2
− c(µ−

a

2
)
)
h.

We exclude the case c = −1 as it leads to singular behaviour. For all other values
of a, b and c, the solution is, up to a constant, given by

h(r) = r
a
2+

2b−1−cµ
1+c .

Note that the entire measure associated to D is now given by h(r)wk(x)dx and that
its radial part is given by

rδ−1dr

which indicates that the parameter δ (appearing in theorem 1) behaves as the
dimension describing the system.

Summarizing, we have obtained the following proposition.
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Proposition 2. If c 6= −1, then for suitable differentiable functions f and g the
following holds for all i = 1, . . . ,m

∫

Rm

(Dif)gh(r)wk(x)dx = −

∫

Rm

f (Dig)h(r)wk(x)dx

with h(r) = r
a
2+

2b−1−cµ
1+c , provided the integrals exist.

4. Special functions related to D

4.1. The Fischer decomposition and the dual pair related to D. We first
consider null-solutions of D. Recall that polynomial null-solutions of the Dunkl-
Dirac operatorDk are the so-called Dunkl-monogenics (see [23]). More precisely, the
spaceMℓ of Dunkl-monogenics of degree ℓ is the space of homogeneous polynomials
of degree ℓ which are in the kernel of Dk, i.e. Mℓ = kerDk ∩ (Pℓ ⊗ S). In this
notation S is a representation of the Clifford algebra Cl0,m. Possible choices include
the (irreducible) spinor spaces or the whole Clifford algebra itself. Note that clearly
Mℓ ⊂ Hℓ ⊗ S.

We now want to find the analogues of these solutions for the new operator D.
Due to the form of D, it makes sense to propose solutions of the form

f = rβMℓ, Mℓ ∈ Mℓ

with β to be determined. Expressing Df = 0 we obtain

(β + b+ c(β + ℓ))rβ−2xMℓ = 0

yielding

β = βℓ = −
b+ cℓ

1 + c
.

It is important to note that β depends on the degree of the Dunkl-monogenic
considered. Hence the space rβℓMℓ takes over the role played by the space of
Dunkl monogenics Mℓ.

Next we need the following basic lemma.

Lemma 1. One has the following relations

D
(
x2ta r

βℓMℓ

)
= −(1 + c)at x2t−1

a rβℓMℓ

D
(
x2t+1
a rβℓMℓ

)
= −(1 + c)(γℓ + at)x2ta r

βℓMℓ

with Mℓ ∈ Mℓ, γℓ = 2βℓ + 2ℓ+ δ and t ∈ N.

Proof. We have, using theorem 1,

D
(
xar

βℓMℓ

)
= −xaD

(
rβℓMℓ

)
− 2(1 + c)

(
E+

δ

2

)
rβℓMℓ

= −(1 + c)(2βℓ + 2ℓ+ δ)rβℓMℓ.

The general formulae follow easily using induction. �

We define the space of homogeneically shifted Dunkl monogenics of degree ℓ by

Mβℓ

ℓ = rβℓMℓ.
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So clearly DMβℓ

ℓ = 0. Starting from this space, we can now generate an infinite-
dimensional representation of the Lie superalgebra osp(1|2) as follows

Mβℓ

ℓ

xa
//

E+ δ
2

UU

xaM
βℓ

ℓ

E+ δ
2

UU

xa
//

D

oo x2aM
βℓ

ℓ

E+ δ
2

UU

xa
//

D

oo x3aM
βℓ

ℓ

E+ δ
2

UU

xa
//

D

oo x4aM
βℓ

ℓ

E+ δ
2

UU

xa
//

D

oo
. . .

D

oo

provided that γℓ/a 6∈ −N (see lemma 1). This means that

(4.8)
γℓ
a

=
1

2
+
µ− 1 + 2l

a(1 + c)
6∈ −N.

Note that this condition is e.g. always fulfilled if a(1 + c) > 0 and the multiplicity
function k > 0.

In the classical case a = 2, b = c = 0 one can put all these infinite-dimensional
representations in one scheme as follows

P0 ⊗ S P1 ⊗ S P2 ⊗ S P3 ⊗ S P4 ⊗ S P5 ⊗ S . . .

M0
// xM0

// x2M0
// x3M0

⊕

// x4M0
// x5M0

. . .

M1
// xM1

// x2M1

⊕

// x3M1
// x4M1

. . .

M2
// xM2

⊕

// x2M2
// x3M2

. . .

M3
// xM3

// x2M3
. . .

M4
// xM4 . . .

M5 . . .

Each column now yields the decomposition of the space of S-valued homogeneous
polynomials of a certain degree into Dunkl monogenics. If S is an irreducible repre-
sentation of Cl0,m, then we have obtained the Fischer decomposition of P⊗S under
the action of the dual pair Spin(m) × osp(1|2) (when the multiplicity function
k = 0).

The fact that one can collect particular weight spaces generated by several ho-
mogeneically shifted monogenic functions according to the same value of E+ δ/2 is
not generically true in the case of the deformed operator D. This is only the case
when βℓ−1 + (ℓ − 1) + a/2 = βℓ + ℓ or equivalently c = 2/a− 1 (note that this is
also the special case when the square of D is scalar). In this case, the scheme is
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given by

Pβ0 ⊗ S Pβ1+1 ⊗ S Pβ2+2 ⊗ S Pβ3+3 ⊗ S Pβ4+4 ⊗ S Pβ5+5 ⊗ S . . .

Mβ0

0
// xaM

β0

0
// x2aM

β0

0
// x3aM

β0

0

⊕

// x4aM
β0

0
// x5aM

β0

0
. . .

Mβ1

1
// xaM

β1

1
// x2aM

β1

1

⊕

// x3aM
β1

1
// x4aM

β1

1
. . .

Mβ2

2
// xaM

β2

2

⊕

// x2aM
β2

2
// x3aM

β2

2
. . .

Mβ3

3
// xaM

β3

3
// x2aM

β3

3
. . .

Mβ4

4
// xaM

β4

4
. . .

Mβ5

5
. . .

In this scheme, spaces of the type Pβk+k ⊗ S are defined by

Pβk+k ⊗ S =
k⊕

j=0

xk−j
a M

βj

j

where all summands have the same homogeneity, as measured by the Euler operator.

4.2. Laguerre polynomials related to D. In this subsection and the rest of the
paper, we will always consider functions (and Dunkl monogenics) taking values in
the full Clifford algebra Cl0,m.

We start with the following technical result.

Lemma 2 (gauging of D). One has the following operator equality:

er
a/a

De−ra/a = D− (1 + c)xa.

Proof. We calculate this identity as follows

er
a/aDe−ra/a = er

a/a
(
r1−

a
2 Dk + br−

a
2−1x+ cr−

a
2−1xE

)
e−ra/a

= er
a/ar1−

a
2

(
∂xe

−ra/a
)
+ r1−

a
2 Dk + br−

a
2−1x

+cer
a/ar−

a
2−1x

(
Ee−ra/a

)
+ cr−

a
2 −1xE

= D− (1 + c)xa.

�

We now have all the tools necessary to introduce Laguerre polynomials and
functions related to the operator D.

To each Dunkl monogenic Mℓ ∈ Mℓ we associate two sets of functions, namely
the set of functions {ψt,ℓ} and the set of functions {φt,ℓ} as follows:

(4.9) ψt,ℓ = (D− 2(1 + c)xa)
t
rβℓMℓ, t ∈ N
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and
(4.10)

φt,ℓ =
(
(D− 2(1 + c)xa)

t rβℓMℓ

)
e−ra/a = (D− (1 + c)xa)

t rβℓMℓe
−ra/a, t ∈ N

where the last equality follows from lemma 2.
The set of functions ψt,ℓ is a generalization of the so-called Clifford-Hermite

polynomials introduced by Sommen in [26]. The set φt,ℓ = ψt,ℓe
−ra/a is then a gen-

eralization of the Clifford-Hermite functions. These functions are very important,
as they will turn out to be eigenfunctions of a generalized Fourier transform. Now
we proceed by obtaining the basic properties of these new functions.

Theorem 3 (Differential equation). ψt,ℓ is a solution of the following differential
equation:

D
2ψt,ℓ − 2(1 + c)xaDψt,ℓ − C(t, ℓ)ψt,ℓ = 0

with {
C(2t, ℓ) = 2(1 + c)2at
C(2t+ 1, ℓ) = 2(1 + c)2(γℓ + at).

Proof. We will in fact prove something slightly stronger, namely

(4.11)
Dψ2t,ℓ = 2(1 + c)2at ψ2t−1,ℓ

Dψ2t+1,ℓ = 2(1 + c)2(γℓ + at)ψ2t,ℓ.

The theorem then immediately follows by acting on (4.11) with D− 2(1 + c)xa.
Using formula (4.9) and lemma 1, it is easy to see that we can expand the

functions ψt,ℓ as follows

ψ2t,ℓ =
∑t

i=0 b
2t
2ix

2i
a r

βℓMℓ

ψ2t+1,ℓ =
∑t

i=0 b
2t+1
2i+1x

2i+1
a rβℓMℓ.

The recursion relation ψt+1,ℓ = (D− 2(1 + c)xa)ψt,ℓ then yields the following re-
lation among the coefficients

b2t2i = −(1 + c)(γℓ + ai)b2t−1
2i+1 − 2(1 + c)b2t−1

2i−1

b2t+1
2i+1 = −a(1 + c)(i + 1)b2t2i+2 − 2(1 + c)b2t2i.

In terms of the coefficients bij , formula (4.11) takes the following form

ib2t2i = −2(1 + c)tb2t−1
2i−1

(γℓ + ai)b2t+1
2i+1 = −2(1 + c)(γℓ + at)b2t2i.

which can now be proven using induction. Indeed, it is easy to check the theorem
for t = 0, 1. So suppose that formula (4.11) holds for ψt,k, t ≤ 2s. We show that it
also holds for t = 2s+ 1. We have

(γℓ + ai)b2s+1
2i+1 = −(γℓ + ai)(1 + c)(2b2s2i + a(i + 1)b2s2i+2)

= −(γℓ + ai)(1 + c)(2b2s2i − 2a(1 + c)sb2s−1
2i+1 )

= −2(γℓ + ai)(1 + c)b2s2i − 2a(1 + c)s(b2s2i + 2(1 + c)b2s−1
2i−1 )

= −2(γℓ + at)(1 + c)b2s2i − 2a(1 + c)ib2s2i − 4a(1 + c)2sb2s−1
2i−1 )

= −2(γℓ + at)(1 + c)b2s2i .

Similarly we can prove that if the theorem holds for t ≤ 2s+ 1, then it also holds
for t = 2s+ 2. �
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The previous proof can be used to give explicit formulae for the coefficients bij
in the expansion of ψt,ℓ. This yields the following result.

Theorem 4 (Explicit form). The coefficients bji in the expansion of the functions
ψt,ℓ take the following form

b2t2i = 22t(1 + c)2t
(
t
i

)
Γ(γℓ/a+ t)

Γ(γℓ/a+ i)

(a
2

)t−i

b2t+1
2i+1 = −22t+1(1 + c)2t+1

(
t
i

)
Γ(γℓ/a+ t+ 1)

Γ(γℓ/a+ i+ 1)

(a
2

)t−i

.

Proof. We first prove the formula for b2t2i. Using the expressions from the previous
proof we obtain

b2t2i = −2(1 + c)
t

i
b2t−1
2i−1

= 4(1 + c)2
t

i

(γℓ + a(t− 1))

(γℓ + a(i− 1))
b2t−2
2i−2

= . . .

= 22i(1 + c)2i
t . . . (t− i+ 1)

i(i− 1) . . . 1

(γℓ + a(t− 1)) . . . (γℓ + a(t− i))

(γℓ + a(i− 1)) . . . γℓ
b2t−2i
0

= 22i
(
t
i

)
Γ(γℓ/a+ t)Γ(γℓ/a)

Γ(γℓ/a+ t− i)Γ(γℓ/a+ i)
b2t−2i
0 .

So we need a formula for b2t0 . This can be done as follows

b2t0 = −(1 + c)γℓb
2t−1
1

= 2(1 + c)2(γℓ + a(t− 1))b2t−2
0

= . . .

= 2t(1 + c)2tat
Γ(γℓ/a+ t)

Γ(γℓ/a)
.

Combining these results gives the desired formula for b2t2i. The formula for b2t+1
2i+1

follows from the observation that

b2t+1
2i+1 = −2(1 + c)

γℓ + at

γℓ + ai
b2t2i.

�

We can now connect the functions ψt,ℓ with Laguerre polynomials on the real
line. This is the topic of the next theorem.

Theorem 5. One has that

ψ2t,ℓ = 22t(1 + c)2tt!
(a
2

)t
L

γℓ
a
−1

t

(
2

a
ra
)
rβℓMℓ

ψ2t+1,ℓ = −22t+1(1 + c)2t+1t!
(a
2

)t
L

γℓ
a

t

(
2

a
ra
)
xar

βℓMℓ,

where Lα
n are the generalized Laguerre polynomials on the real line.
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Proof. This follows immediately by comparing the coefficients given in theorem 4
with the definition of the generalized Laguerre polynomials:

Lα
t (x) =

t∑

i=0

Γ(t+ α+ 1)

i!(t− i)!Γ(i+ α+ 1)
(−x)i.

�

Now we introduce the following Cl0,m-valued inner product

(4.12) 〈f, g〉 =

∫

Rm

fg h(r)wk(x)dx

where h(r) is the measure associated to D (see proposition 2) and with .̄ the main
anti-involution on the Clifford algebra Cl0,m defined by

ab = ba

ei = −ei, i = 1, . . . ,m.

The set of functions φt,ℓ satisfies nice orthogonality relations with respect to this
inner product. They are given in the following theorem.

Theorem 6 (Orthogonality). One has

(4.13) 〈φt,ℓ, φs,m〉 = c(t, ℓ)δtsδℓm

∫

Sm−1

Mℓ(ξ)Mℓ(ξ)dσ(ξ)

where

c(2t, ℓ) =
1

2
(2a)2t(1 + c)4tt!Γ

(γℓ
a

+ t
)(a

2

) γℓ
a

c(2t+ 1, ℓ) =
1

2
(2a)2t+1(1 + c)4t+2t!Γ

(γℓ
a

+ t+ 1
)(a

2

) γℓ
a

.

Proof. There are two possibilities to obtain this result. One can use the expression
of φt,ℓ and φs,m in terms of Laguerre polynomials (see theorem 5) and then reduce
this to the well-known orthogonality relation of the Laguerre polynomials on the
real line, combined with the orthogonality of Dunkl monogenics of different degree
on the unit sphere (see [8]).

Alternatively, one can note that the adjoint of D− (1 + c)xa with respect to 〈, 〉
is given by D+ (1 + c)xa. We then have the following calculation (suppose t ≥ s)

〈φt,ℓ, φs,m〉 = 〈(D− (1 + c)xa)φt−1,ℓ, φs,m〉

= 〈φt−1,ℓ, (D+ (1 + c)xa)φs,m〉

= 〈φt−1,ℓ, e
−ra/aDψs,m〉

= C(s,m)〈φt−1,ℓ, e
−ra/aψs−1,m〉

= . . .

= C(s,m) . . . C(1,m)〈φt−s,ℓ, e
−ra/aψ0,m〉

= C(s,m) . . . C(1,m)δtsδℓm〈φ0,ℓ, φ0,ℓ〉
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where we used theorem 3 and the orthogonality of Dunkl monogenics of different
degree (see [8]). Finally, we obtain

〈φ0,ℓ, φ0,ℓ〉 = 〈rβℓMℓe
−ra/a, rβℓMℓe

−ra/a〉

=
1

2

(a
2

) γℓ
a

Γ(γℓ/a)

∫

Sm−1

Mℓ(ξ)Mℓ(ξ)dσ(ξ).

Putting everything together and substituting the values of C(s,m) then yields the
normalization constants. �

We can also associate a quantum harmonic oscillator with the operator D. This
will be the basis for developing a Fourier transform in the next section. The equation
of this harmonic oscillator is discussed in the following theorem.

Theorem 7 (Harmonic oscillator). The functions φt,ℓ satisfy the following second-
order PDE

(4.14)
(
D

2 − (1 + c)2x2a
)
φt,ℓ = (1 + c)2(γℓ + at)φt,ℓ.

Proof. Using the gauge property of D (see lemma 2) we calculate consecutively

D2φt,ℓ = D2ψt,ℓe
−ra/a

= e−ra/a (D− (1 + c)xa)
2
ψt,ℓ

= e−ra/a
(
D2 − 2(1 + c)xaD+ (1 + c)2x2a − (1 + c)[D, xa]

)
ψt,ℓ

= e−ra/a
(
C(t, ℓ) + (1 + c)2x2a − (1 + c)[D, xa]

)
ψt,ℓ,

where we have also used the differential equation satisfied by ψt,ℓ (see theorem 3).
To simplify this further, we need to calculate the action of [D, xa] on ψt,ℓ. We first
prove that [[D, xa], x

2
a] = 0. Indeed, using theorem 1 we obtain

[[D, xa], x
2
a] = Dx3a − xaDx

2
a − x2aDxa + x3aD

= Dx3a + x3aD− xa{D, xa}xa

= x2aDxa − a(1 + c)x2a + x3aD+ 2(1 + c)xa

(
E+

δ

2

)
xa

= −2(1 + c)x2a

(
E+

δ

2

)
− a(1 + c)x2a + 2(1 + c)xa

(
E+

δ

2

)
xa

= −2(1 + c)xa[xa,E]− a(1 + c)x2a
= 0.

Using this result, combined with theorem 5, we find

[D, xa]ψ2t,ℓ = 22t(1 + c)2tt!
(a
2

)t
L

γℓ
a
−1

t

(
2

a
ra
)
[D, xa]r

βℓMℓ

= −(1 + c)γℓ 2
2t(1 + c)2tt!

(a
2

)t
L

γℓ
a
−1

t

(
2

a
ra
)
rβℓMℓ

= −(1 + c)γℓ ψ2t,ℓ

and similarly

[D, xa]ψ2t+1,ℓ = −(1 + c)(a− γℓ)ψ2t+1,ℓ.

Combining these results with the previous calculation then yields the theorem. �
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5. Associated Fourier transforms

Denote byM
(m)
ℓ ∈ Mℓ, (m = 1, . . . , dimMℓ), an orthonormal basis of the space

of Dunkl monogenics of degree ℓ, in the sense that
∫

Sm−1

[
Mℓ

(m1)
(ξ)M

(m1)
ℓ (ξ)

]

0
dσ(ξ) = δm1m2

where [ . ]0 denotes the projection on the 0-vector part in the Clifford algebra Cl0,m.
Then the functions

φt,ℓ,m = (c(t, ℓ))−1/2
(
(D− 2(1 + c)xa)

t
rβℓM

(m)
ℓ

)
e−ra/a

with t, ℓ ∈ N and m = 1, . . . , dimMℓ form an orthonormal basis for the Hilbert
space L2(R

m, h(r)wk(x)dx) of functions taking values in Cl0,m, equipped with the
inner product

〈f, g〉 =

∫

Rm

[
fg
]
0
h(r)wk(x)dx.

Note that theorem 7 can now be rewritten as follows

1

a(1 + c)2
(
D2 − (1 + c)2x2a

)
φt,ℓ,m −

(
1

2
+

µ− 1

a(1 + c)

)
φt,ℓ,m = (

2ℓ

a(1 + c)
+ t)φt,ℓ,m.

We can hence introduce the associated Fourier transform by

(5.15) FD = ei
π
2 (

1
2+

µ−1
a(1+c) )e

−iπ

2a(1+c)2
(D2−(1+c)2x2

a).

It is clear that this transform satisfies

FD(φt,ℓ,m) = (−i)te−
iπℓ

a(1+c)φt,ℓ,m.

Using the Hadamard identity for two linear maps A,B given by

exp(A)B exp(−A) = adAB = B + [A,B] +
1

2!
[A, [A,B]] + . . . ,

one can check that

FD(D ·) = i(1 + c)xaFD(·)

FD(xa ·) =
i

1 + c
DFD(·).

If we represent the Fourier transform FD as an integral transform as follows

FD(f) =

∫

Rm

K(x, y) f(x) h(r)wk(x)dx

with K(x, y) the integral kernel, then we find that, using proposition 2, the kernel
has to satisfy the system of PDEs given by

iDyK = (1 + c)Kxa

iKDx = (1 + c)y
a
K,

where the subscript denotes the variables under consideration.
Note that, as in general D2 is not a scalar operator, we do not expect the kernel

K(x, y) of the associated Fourier transform to be a scalar function, but rather a
Cl0,m-valued function.
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5.1. Determination of the kernel when D2 is scalar. Let us now consider the
special case where D2 is scalar. Then c = 2

a − 1 and D reduces to

D = r1−
a
2 Dk + br−

a
2−1x+

(
2

a
− 1

)
r−

a
2−1xE.

The Fourier transform now acts as follows

FD(φt,ℓ,m) = (−i)t+ℓφt,ℓ,m

which is the same behaviour as the classical Fourier or Dunkl transform.
As the Fourier transform is proportional to

e
−iπa

8 (D2− 4
a2 x2

a),

we also know that K(x, y) is a scalar function and that this function is determined
by the system (j = 1, . . . ,m)
(5.16)(

r
1− a

2
x Tj,x + br

−1− a
2

x xj +

(
2

a
− 1

)
r
− a

2
x xj∂rx

)
K(x, y) = −

2

a
iyjr

a
2−1
y K(x, y),

where we again use subscripts x and y to denote the variables under consideration.
For general reflection groups this system seems quite complicated to solve. So we
start with discussing the case where the symmetry is O(m) (= non-Dunkl case with
k = 0). Then the system reduces to (j = 1, . . . ,m)
(5.17)(

r
1− a

2
x ∂xj

+ br
−1− a

2
x xj +

(
2

a
− 1

)
r
− a

2
x xj∂rx

)
K(x, y) = −

2

a
iyjr

a
2−1
y K(x, y).

Multiplying each equation by xj and summing from 1 to m yields

rx∂rxK +
ab

2
K = −i〈x, y〉(rxry)

a
2−1K.

This equation can be integrated immediately, leading to

(5.18) K(x, y) = d(rxry)
− ab

2 e−
2i
a
〈x,y〉(rxry)

a
2
−1

where d is a constant that is still to be determined. Note that it can be checked
that (5.18) indeed satisfies the system (5.17). To determine the constant, we put

f = φ0,0 = r
− ab

2
x e−rax/a and calculate

∫

Rm

K(x, y)f(x)h(r)dx

where we have put wk(x) = 1 as we are considering the non-Dunkl case. Using the
Funk-Hecke theorem and an integral identity for Bessel functions, we can calculate
this integral as

∫

Rm

K(x, y)f(x)h(r)dx = d(2π)
m
2

(
2

a

)1−m
2

r
− ab

2
y e−ray/a

so we conclude that

d = (2π)−
m
2

(
2

a

)m
2 −1

.

Hence, in the case k = 0 we have obtained that

(5.19) FD(g) = (2π)−
m
2

(
2

a

)m
2 −1 ∫

Rm

(rxry)
− ab

2 e−
2i
a
〈x,y〉(rxry)

a
2
−1

g(x)h(rx)dx
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with the measure h(rx) = r
ab−(1− a

2 )m
x .

Interpretation:

By slightly changing the Laplace operator proposed in [4] from r2−a∆k to

D2 = −r2−a∆k − b (b+ µ− 2) r−a −

(
4
b

a
+

(
2

a
− 1

)2

+

(
2

a
− 1

)
µ

)
r1−a∂r

−

(
4

a2
− 1

)
r2−a∂2r ,

we have obtained a Fourier transform which behaves exactly as the classical Fourier
transform (i.e. that has the same eigenvalues) and of which the kernel is known
explicitly. Moreover, this modified Laplace operator can also be factorized (D2 =
−
∑m

i=1D
2
i ). Note that in the resulting operator there is still quite a lot of freedom,

as there are no restrictions on the value of b. So if one takes e.g. b = 0, the result
simplifies even more.

To gain more insight in this new Fourier transform, we introduce the following
two operators P and Q defined by

Pf(x) = rbf

((a
2

) 1
a

xr
2
a
−1

)

Qf(x) = r−
ab
2 f

((
2

a

) 1
2

xr
a
2−1

)
.

These two operators act as generalized Kelvin transformations (for a discussion of
the classical Kelvin transformation in harmonic analysis we refer the reader to [1]).
Indeed, it is easily calculated that

QP = PQ =

(
2

a

) b
2

,

hence they are each others inverse up to a constant. They allow to write the
transform (5.19) in terms of the classical Fourier transform as follows (see also the
subsequent theorem 8)

FD =
(a
2

) b
2

QyFclassPx,

where the subscript denotes on which variables the operators act.
First we show that the Dunkl operators Ti transform nicely under the action of

P and Q. This is the subject of the following proposition.

Proposition 3 (Intertwining relations). One has that

r1−
a
2 Ti + br−

a
2 −1xi +

(
2

a
− 1

)
r−

a
2 xi∂r =

(a
2

) b−1
2

QTiP, i = 1, . . . ,m.
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Proof. We first calculate ∂xi
P as follows

∂xi
Pf(x)

= Tir
bf

((a
2

) 1
a

xr
2
a
−1

)

= brb−2xif

((a
2

) 1
a

xr
2
a
−1

)
+ rb∂xi

f

((a
2

) 1
a

xr
2
a
−1

)

= brb−2xif

((a
2

) 1
a

xr
2
a
−1

)

+rb
m∑

j=1

(∂xj
f)

((a
2

) 1
a

xr
2
a
−1

)(
δij

(a
2

) 1
a

r
2
a
−1 + (

2

a
− 1)

(a
2

) 1
a

r
2
a
−3xixj

)

= brb−2xif

((a
2

) 1
a

xr
2
a
−1

)
+
(a
2

) 1
a

rb+
2
a
−1(∂xi

f)

((a
2

) 1
a

xr
2
a
−1

)

+(
2

a
− 1)

(a
2

) 1
a

rb+
2
a
−3xi

m∑

j=1

xj(∂xj
f)

((a
2

) 1
a

xr
2
a
−1

)
.

Applying Q then yields

(a
2

) b−1
2

Q∂xi
Pf(x) =

(
r1−

a
2 ∂xi

+ br−
a
2−1xi +

(
2

a
− 1

)
r−

a
2 xi∂r

)
f(x).

We also have

(Ti − ∂xi
)Pf(x)

= (Ti − ∂xi
)rbf

((a
2

) 1
a

xr
2
a
−1

)

= rb
∑

α∈R+

kααi

f
((

a
2

) 1
a xr

2
a
−1
)
− f

((
a
2

) 1
a rα(x)r

2
a
−1
)

〈α,
(
a
2

) 1
a xr

2
a
−1〉

((a
2

) 1
a

r
2
a
−1

)
.

Again applying Q gives

(a
2

) b−1
2

Q(Ti − ∂xi
)Pf(x) = r1−

a
2 (Ti − ∂xi

)f(x)

and putting everything together completes the proof. �

Remark 3. As a consequence of proposition 3 we obtain that D =
(
a
2

) b−1
2 QDkP .

This means that P and its inverse Q act as analogues of the intertwining operator
Vk in the theory of Dunkl operators (see e.g. [13]).

Using proposition 3 we can also give a more explicite expression for the related
Fourier transform in the Dunkl case (i.e. k 6= 0). This the subject of the following
theorem.
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Theorem 8. When c = 2/a−1 and k ≥ 0, one has the following explicit expressions
of the Fourier transform related to D

FD = e
iπµ
4 e

−iπa
8 (D2− 4

a2 x2
a)

=
(a
2

) b
2

QyFkPx(.)

= c−1
k

(
2

a

)µ
2 −1 ∫

Rm

(rxry)
− ab

2 D

((
2

a

) 1
2

xr
a
2−1
x ,−

(
2

a

) 1
2

iyr
a
2−1
y

)
(.)

×h(rx)wk(x)dx

where D(., .) is the Dunkl kernel and h(rx) = r
ab−(1− a

2 )µ
x .

Proof. Consider the basis of L2(R
m, h(r)wk(x)dx) given by {φt,ℓ,m} (t, ℓ ∈ N and

m = 1, . . . , dimMℓ). Using the explicit expressions in theorem 5, it is easy to see
that the set {Pxφt,ℓ,m} is an eigenfunction basis of the Dunkl transform Fk, i.e.

Fk(Pxφt,ℓ,m(x)) = (−i)t+ℓPyφt,ℓ,m(y).

Acting with Qy then yields the first equality in the theorem.
Now we can calculate

QyFkPxf(x) = c−1
k Qy

∫

Rm

D(x,−iy) rbxf

((a
2

) 1
a

xr
2
a
−1

x

)
wk(x)dx

= c−1
k

∫

Rm

r
− ab

2
y D

(
x,−i

(
2

a

) 1
2

yr
a
2−1
y

)
rbx

×f

((a
2

) 1
a

xr
2
a
−1

x

)
wk(x)dx.

We perform a change of variables given by zi =
(
a
2

) 1
a xir

2
a
−1

x , i = 1, . . . ,m. The
absolute value of the determinant of the Jacobian of this transformation is given
by

| detJ | =

(
2

a

)m
2 −1

r
m( a

2−1)
z ,

as can be calculated using the matrix determinant lemma. Putting everything
together then yields the second equality of the theorem. �

5.2. The case a = −2. In this case, the Dirac operator takes the form

Dk,−2 =

m∑

i=1

Diei = r2Dk − (µ− 2)x− 2xE

Its components Di are commutative and given by

Di = r2Ti + (2− µ)xi − 2rxi∂r.

We also introduce the operator Ik, acting on functions defined in Rm as

(5.20) Ik (f(x)) = r2−µf
( x
r2

)
.

Note that if k = 0 this operator reduces to the classical Kelvin inversion. It is
moreover easy to calculate that I2k = id. Now we obtain the following proposition
(the proof is similar to the proof of proposition 3):
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Proposition 4. The operator Ik intertwines the Dirac operator for a = 2 with the
Dirac operator for a = −2 in the following way:

Dk,−2 = IkDkIk.

We can also connect a Fourier transform with the Dirac operator Dk,−2. This
transform is given by

Fk,−2(f) = Ik,yFkIk,xf

= c−1
k

∫

Rm

(rxry)
2−µD

(
x

r2x
,−i

y

r2y

)
f(x) r−4

x wk(x)dx.

6. Conclusions and outlook for further research

In this paper we have obtained a new class of deformations of the realization
of osp(1|2) using Dunkl operators. Some elements of this new class clearly have
preferred properties. In the case where c = 2/a−1 the square of D is scalar and one
can explicitly construct the related Fourier transform and the intertwining operator.
Another interesting case appears to be when b = c = 0. This is in some sense the
easiest deformation of the classical osp(1|2) realization and in spirit the closest to
the sl2 deformation obtained in [4]. One expects that a better understanding of
this case will also yield the key to study the more general cases. Finally, also the
deformation in formula (3.2) seems interesting, as this case preserves as much as
possible of the sl2 relations already obtained in [4].

It is important to note that the class of deformations we have obtained is in
some sense relatively limited. It is in general possible to add additional terms to D,
as long as they are of homogeneity −a. Typical examples of such terms would be
powers of xDkE multiplied with suitable powers of r. This would allow to introduce
even more parameters, and at this point it is not entirely clear whether one can
still study the resulting operators in a systematic way.

For some special values of the parameters, we were able to construct an explicit
intertwining map relating the deformed Dirac operator with the classical one. One
can not expect to obtain explicit constructions of intertwinors between all elements
of the family (as e.g. in the theory of Dunkl differential operators the intertwining
operators are only explicitly known for a few special cases). However, the existence
or non-existence of such operators is clearly a very important topic for further
research.

In the case of the deformation of the realization of sl2 introduced in [4], the
parameter a interpolates between representations of different Lie algebras. From
that point of view, one expects something similar to happen for the family of op-
erators introduced in this paper. Our expectation is that one of them is realized in
the kernel of Dirac operator (which is similar to the realization of the minimal or-
thogonal representation in the kernel of the conformally invariant Laplace-Yamabe
operator). It is subject of ongoing work to describe the kernel of the conformally
invariant Dirac operator (see [24]). More abstractly, in [4] everything is based on
the emergence of dual pairs with one member sl2 and the other some Lie alge-
bra. Similarly, in our case one should consider a theory of super dual pairs in Lie
superalgebras, one of the members being osp(1|2).

It would be very insightful if one could obtain explicit expressions of the kernel
of the Fourier transform related to D for other special values of the parameters. At
least in the non-Dunkl case (k = 0) one hopes that the first order system describing
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the kernel can somehow be solved explicitly. This ties in with the general study of
Fourier transforms in Clifford analysis inaugurated in [7] and might also shed new
light on the Fourier transforms introduced in [4]. A related question is whether
there exists an uncertainty relation for the new type of Fourier transforms. Also, so
far we have only studied the special case z = −iπ/2 of the holomorphic semigroup

e
z

a(1+c)2
(D2−(1+c)2x2

a).

In the future we plan to study this semigroup for general complex values z.
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