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Abstract. Higher spin analogues of the (massless) wave and Dirac equation on Minkowski space are
well understood in dimension 4. They appear usually under the name massless field equations. In
the paper, higher-dimensional analogues of the massless field equations are studied in Riemannian
sctting and basic results of the function theory are described. Another set of conformally invariant
equations - the so called twistor equations for any spin - were studied in the physical case by
R. Penrose and others. We are discussing the higher-dimensional analogues of these equations
(in Riemannian situation) and their possible role in Clifford analysis. Multiplicative properties of
solutions of the twistor equation are discussed.
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1. Introduction

The Dirac equation and its solutions studied in Clifford analysis are considered ei-
ther for Clifford-valued or for spinor-valued functions (see (Delanghe et al. , 1992)).
Higher spin analogues of the Dirac equation are well known in the physical situa-
tion (on four-dimensional Minkowski space), they are usually called massless field
equations ((Penrose, Rindler , 1984)). They include, besides the vawe and the Dirac
equation, Maxwell equations (spin 1 case) and linearized gravity (spin 2 case). Meth-
ods of Clifford analysis were applied already to Maxwell equations (see (Jancewicz
, 1988)), but the function theory for higher spin and higher-dimensional cases were
not studied yet. Higher-dimensional analogues of massless field equations were de-
fined in an abstract representation theory language in (Fegan , 1975) or (Baston,
Eastwood , 1991). The purpose of the paper is to pave a few first roads into this wast
teritory and to show that all this subject should form an integral part of Clifford
analysis. It indicates as well that a study of further conformally invariant equations
with values in other spin representations from the point of view of function theory
could be of interest.

Another important issue coming back again and again since Fueter’s discovery
of his equation is the fact that the space of solutions of the Dirac equation is not an
algebra - product of two solutions need not be a solution. The basic reason behind
it is clearly the fact that Dirac equation is (in principle) an equation for a spinor
field. From that point of view it is understandable that only natural multiplication
available for spinor fields is (a variant of) tensor multiplication which leads directly
to higher spin fields. No version of a product for two spin % fields is known which
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would garantee that the product of two such solutions is always a solution of spin 1 4

massless field equation.

On the other hand, the twistor equation (which is not very interesting in spin ]

% case, because solutions are linear) is becoming more interesting for higher spins;
the space of its solutions is bigger and bigger (higher order polynomials). Moreover,
it is possible to define a product in such a way that the product is commutative
and product of two solutions is again a solution (of higher spin). Hence solutions
of twistor equations (considered for all spins at the same time) offer an interesting
generalization of Cauchy-Riemann equations to higher dimensions with the property
that the space of solutions form a commutative algebra. The solutions with specific
spins are analogues of homogeneous solutions of Cauchy-Riemann equations. All
that together with a lot of relationships among solutions of massless field equations
and twistor equations for any spin is well understood in dimension 4 due to the
work of R. Penrose ((Penrose, Rindler , 1984), see also (Hitchin, 1980)), but higher
dimensional analogues were not studied yet. So at the end of the paper we discuss
basic multiplicative properties for solutions of the twistor equation in higher dimen-
sions. THe paper gives a review of cartain results in this area but complete proofs
of theorems given will be published in another paper.

2. The Cartan Powers of the Spinor Representation

Let us consider negative definite Euclidean space R™, the corresponding Clifford
algebra Ry, = C and its complexification C°. As is standard in Clifford analysis,
we consider functions defined on domains in R™ but their values will generally be
in higher spin representations of the group Spin (n). In this section, we are going to
describe these irreducible representations together with their elementary properties
and we are setting the notation used in other sections.

It is necessary to distinguish even- and odd-dimensional cases.

The case n = 2k.

There is exactly one (up to isomorphism) irreducible representation S of the
Clifford algebra C* which splits, as a representation of the even part (C°)*, into two
irreducible parts denoted by S4 and S4r. The corresponding dual (contragredient)
representations are denoted by S4, resp. S4'. All finite-dimensional irreducible
representations of the group Spin (n) are classified by their highest weights u € Aw,

where
1
Aw ={(p1,...,m) €2*U(Z + 5)”!#1 >p2 22> peer > |}

(a lot of useful details concerning the discussion in this section can be found in
(Fulton, Harris , 1991), Chap.19). The basic spinor representations Sy, resp. Su:
have the highest weights a = (,...,1), resp. o' = (G- %,—%). The spinor
representations 54, Sy are selfdual for k even and they are dual to one another
for k odd.

The higher spin representations we are interested in can be realized as invariant
subspaces of suitable tensor products of S, and Sy. It is convenient to use the

Penrose abstract index notation (for details see (Penrose, Rindler , 1984)) where

,‘




i
¥

B L

T

CLIFFORD ANALYSIS FOR HIGHER SPINS 225

indices are used as abstract (not coordinates) labels. Whenever same symbols ap-
pear up and down inside a tensor product, it will indicate the contraction in the
corresponding pieces of the product, a round bracket around a set of indices means
the symmetrisation. The tensor product S4.. g of p copies of the representation
54 decomposes into a sum of irreducible representations. The symmetric power
S(4...p) *= SymP(54) is an invariant subspace but it is an irreducible representation
only in dimension 4; it decomposes further in higher dimensions.

The Clifford algebra C° can be identified with the space End(S) = S ® S*.
For the even and odd parts, we get (C°)* = S4 @ Sf,' and (C¢)~ = Sﬁ' ® S4.
Hence the complexification C™ = R™ ®¢ C is a subset of S4 @ S4, and for a given
vector v € C", we denote by vf, resp. vﬁ, the corresponding components of the
sum. The projections of C™ into Sf, resp. S4. will be denoted by (C")f resp.
(C™)4.. These both spaces are isomorphic (as representations) to the fundamental
representation C™.

The case n = 2k + 1.

The situation is different in odd dimensions. There are two inequivalent irre-
ducible representation S4, resp. S4r of C¢ but they are isomorphic as representations
of (C°)*, hence as Spin (n)-representations. They are selfdual representations.

The set Aw of dominant weights is given by

1
Aw ={(p1,...,8) € Z2* U(Z + 5)"!#1 24222 pro1 > pi > 0}

The basic spinor representation S4 has the highest weight « = (%, ceny %)

The Clifford algebra is described as C© = S“: &) Sﬁ,'. The projection of vectors in
C™ into 54 are hence denoted as v4. It is convenient to note that in the discussion
below, a transition from even- to odd-dimensional case can be usually done simply
by converting all primed indices to unprimed ones.

We need below a notion of the Cartan product (let us consider now any dimension,
even or odd). If V; and V; are two irreducible representations of Spin (n) and if »,,
resp. vz are their highest weight vectors, then v; ® v; is a highest weight vector of
an irreducible component of the product V; ® V; called the Cartan product of V;
and V3; let us denote it by V3@ V3. In terms of highest weights, it is characterized by
the sum of highest weights of V; and V;. The corresponding orthogonal projection
769" : V1 ® V3 — Vi [® V3 makes it possible to define the Cartan product of any two
elements v; € V1,v; € V3; we define v; ® vz = %" (v; ® v3). The Cartan product
is associative. Indeed, if V;,i =,1,2,3 are three irreducible representations and
vi, i = 1,2, 3 are the corresponding highest weight vectors, then both (ViR V2)R V3
and V; ® (V2 ® Va) have vy ® v ® vz as their highest weight vector. It implies
associativity of the product of vectors.

If v € S, is a highest weight vector, then v®...®v € S4 ®...® Sg is a highest
weight vector of an irreducible piece of the product. This piece is characterised
by its highest weight p-a = (%,..., %) and will be denoted by S{4...g} or shortly
(S4)7; it is usually called the Cartan p-th power of S4. The orthogonal projection
(with respect to the Killing form) from S4...g to S{a...e} will be denoted again by
x°°" and indicated by braces {} around the corresponding set of indices. Using
the projection, we can define the Cartan product of any two elements s, g €
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S{a..e} tr..0 € Sip..uy by

sa.E@tp g =s(s. Etr.m}=7°"(s4.8®sp. n)

Due to the fact that the Cartan power is a subspace of the symmetric power, it is
clear that the multiplication

R:(Sa)f x (Sa)?— (Sa)Pt?

is commutative. This property is playing an important role in the discussion below.
The same notation will can used in the primed version.

3. Conformally Invariant First Order Equations.

An important feature of the (massless) wave and Dirac equations is that they are
conformally invariant. We are looking for their higher spin analogues and it is
natural to require conformal invariance for these generalizations as well. There is a
classification of all conformally invariant first order differential equations (see (Fegan
y 1975)). We are going to consider equations for fields with values in the p-th Cartan
power (S4)? of the basic spinor representation (there is the corresponding primed
case in even dimensions with the same theory). In this cases, there are two first
order conformally invariant equations available. They are constructed as follows (we
are going to treat only even-dimensional case, the odd-dimensional case means just
to forget all primes).

Definition 3.1 Let us consider the product (C™)4' ® (S4)P of irreducible represen-
tations. Its decomposition into two irreducible parts is

(C™)4 ® (S = E1 0 By, (1)

where Ey, resp. E; are characterized by their highest weights 8, = (5+1,8,...,8),
resp. B3 = (§,...,5,8 — 1). Let us consider fields f on R™ with values in (Sa)?.
The de Rham differential d is applied to such a field componentwise. If vy, resp. T3
denote the corresponding projections onto parts with heighest weights 8, and Ba, then

we have the following two equations for f : .
x1(df) =0 2 ¢

and

xa(d f) = 0. (3)
The first one is called the lwistor equation and the second one the massless field
equation for spin .

The massless field equations and the twistor equations are defined here on a
flat space but they are well defined, using Levi-Civita covariant derivative, on spin
manifolds, see e.g. (Soucek , 1986). 3

The coordinate description and basic properties of their solutions will be given B
in the paper. The equations are conformally invariant under the assumption that 5
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a suitable conformal weight for spinor fields, uniquely determined and different in
each case, is considered but conformal properties of solutions will not be discussed
here. This is a nice subject and it needs a more space than available here; it is one
of places where the behaviour of individual cases for different spins is different so
that information available from the standard case is not immediately applicable.

4. A Coordinate Description

To write down a coordinate form of these two types of equations is a delicate and
a subtle task. An explicite decomposition proved in spin % case in (Bures, Soucek
; 1986) has to be used in the considered higher spin case. First it is necessary to
understand the decomposition of the spinor spaces S A{B..E} and S 4'{B...E} into

irreducible components.

Lemma 4.1 Let n = 2k or n = 2k +landletusfizpe Z,p> 1. The weights
ui = (§...,&, ?;—2, ceey %’) with k — j components equal to £ are dominant, the
irreducible representations with highest weights yi; are denoted by F; = F(u;). Then

the irreducible components of Sa{B..E} and Sa'{B...E} are characterized by:
i) the case n = 2k:
Sa.EYZEFo@®F@...,
(the sum ends with F, or Fi_1) and

Saip.ey=EF 0 Fo...,
(the sum ends with F; or Fi_1).
1) the case n = 2k + 1:
Sai8. 5} 2 Fo®F1&...0 F.

Let e € R™ be a unit vector. In even dimension, the map e from S4(B...5} to
Sa{B..E} given by s4 g+ ej,s,“g_,_g is an isomorphism and the inverse map € is
given by sqip._ g+ —efsA:B___E. In odd dimensions, the same is true when primed
indices are substituted by unprimed ones.

The restriction of e (resp. of &) to F; has values in Fj;y and Fj_; (where
F_y = Fey1={0}).

The following theorem is the key theorem showing an explicit form of the decom-
position of the tensor product in the Def.3.1. It makes possible to write down the
corresponding projections explicitely.

Theorem 4.1 Lete,,.. -y€n be an orthonormal basis in R™ and let €1,...,6, be the
dual basis. Then the components E; in the decomposition (1) are given by (in odd
dimensions all primes should be Jorgotien)

E = Z‘J’ ® (e; )(:'3A'B...E} |sa'B..E € F1}
J
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and

E; = {Z,- € ® (3;)45...8 |(3;)45...8 € Fo such that there ezist (sj)ap...5 € F2
with 5 (eYAl(57) 45...5 = ()az..5] = 0.}

The corresponding projections are given by

Py (z € ® (Sj)A...s) = %ij ® () (A (Z(ek)ﬁ"(u)ps...m) )
i i %

Y6 ®(s)ae]| =) 6@ |(s)a.m+ (e: (Z(Ck)Ar(Sk)FB E})J
j 3

Using Theorem 4.1., an explicit form of the twistor and massless field equations
can be deduced.

Theorem 4.2 The massless field equation (3) for a spinor field fa.. g with values ¢
in (S4)" is given by %

Ofap..E

_ |4 B _

(Df)a's..E = zj:(% )ar o7 0 (4)
and the twistor equation (2) is equivalent to the set of equations (7=1,...,n)

2'%:;2 ){A (D(f)arp...5) - (5)

5. Massless field equations

It is easy to see that the spin % case reduces back to the Dirac equation

Diefa "Z(e tom= ©

studied in Clifford analysis (see e.g. (Bures, Souéek , 1986)). Note that the contrac- i
tion in the index A substitutes the usual Clifford multiplication.

To relate and to apply the wealth of results available in Clifford analysis to
solutions of massless field equation with higher spin, it is important to understand
the relation between the massless field equation and the so called twisted Dirac
equation. By that we mean the equation

D(f)a'p..E = E( )4 3f.wJ E _p (7)

for fields with values in S4 ® (S4)P~!. This system of equations decomposes into
many copies of the standard Dirac equation, the term (S4)P~! in the tensor product
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B plays Only auxiliary role and can be treated componentwise. The twisted Dirac
quation is an elliptic system of equations, while the massless field equation is (a
“lxghtly) overdetermined system of equations. The form of the massless field equation
éhown in Theorem 4.2 confirms the important fact that solutionsof the massless field
¢quations are special solutions of the twisted Dirac equation. constrained by the
E additional requirement that values of the field belong to S? CSA® 57~1 Let us
o state it exphc1tely ‘

Theorem 5.1 The twisted massless field equation (7) resiricted to the space of
spinor fields with values in SP coincides with the massless field equation (3).

£ It is clear that Theorem 5.1 is a key information making possible to apply many
esults already known in Clifford analysis to higher spin case. We are going to
how how the basic facts such as Cauchy theorem, Cauchy integral formula, Laurent
eries and Residue Theorem can be formulated for higher spins. We are going to
ormulate theorems only for even-dimensional case, small changes needed for the
dd-dimensional case are easy to make.

In our notation, the basic (n — 1)-form do of Clifford analysis looks like

(do)4r =D (-1 (ej)Aidz1 A ... AdEj A ... Adzy,. o (8)

‘The Cauchy theorem is an example where the classical result cannot be applied
1rectly, but the computation goes in the same way as in the classical case.

Theorem 5.2 (Cauchy) Let f4..p be a function on a domain Q C R™ with values
- w = (do)4: fa..5 - (9)
cloaed on Q iff f is a solution of the massless field equation (.9)

nTo formula.te the Cauchy integral formula, let A,, denote the area of the unit
here in: R™.

"heorem 5.3 (Cauchy integral formula) Let f4.. g be a solution of the mass-
ess field equation (3) on a domain Q and let ¥ CC Q be a relatwely compact
:subdomain with a smooth boundary. Then for each point z € €U,

) A : -
fa..e(z) = zﬂl— - %;Tz)fii’(dav)ﬁ'fFB...E}(y)o (10)

Cauchy integral formula is an example of a theorem which can be deduced by
‘applying the theorem known in spin } case (we can write the standard formula for
‘fields twisted by SP~! and to apply the projection x€%" to the both udes of the

quation.

Weierstrass theorem or Mean Value Theorem, for cxample, hold mthout a change
’ d they are 1mmed1ate consequences of the standard version apphed component-
a el .,i",f‘) AR
As for Taylor a.nd Laurent series, let us recall the standa.rd ‘sets. of monogemc
inctions Vi (z), |e| = k having values in the even part of the Clifford algebra (see

&
&
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(Delanghe et al. , 1992)). In spinor notation, they belong either to S2 or to.S5, 4,

They form a ba.axa for the space of inner spherical monogenics of dcgrce k. oy 4
‘Similarly, the functions Wi, |a] = k form a basis for outer spherical monogemcs

of degree k. They are vector valued, so they will be interpreted as functions with

values in Sﬁ (5] Sﬁ,

Theorem 5.4 (Laurent expansion) Let a field f4..g with values in (S4)P .bea
solution of the spin & massless field equation (3) in an annular domain Q C R

Then

fa..5(z) = }: ( Y (Va){a(z)(sa)re.. E}) +E ( o (Wa ){A(z)(ﬂa)A'B 5})

la|=k laj=k

the convergence being normal on each closed annular subdomain. The coeﬂ’icunta in
the ezpansion are given by

(ba)FB...5 = [,B(Wa(z))F' (do2)S fos...5(2),

(hadars..s = [ (Val@)(don)5: os..5(2)
where the ball B is any concentric ball with its boundary inside 0.

With Laurent series at our disposal, we can define the residue for a aolutlonfvnth
a pointwise singularity and to prove the Residue Theorem.

Definition 5.1 Let a field fa.. .5 with values in (SA)? be a solution of thc spm E
massless field equation (3) in B(z) \ {z}, where B(z) is a ball with the centersin z

Then the first coefficient (4ia)a’B...E of the negatlive part of the Laurent series is
called the residue of f at the point z and denoted by resz(f).

Theorem 5.5 Let Q' CC Q be a relatively compact subdomain with a smooth bound -
ary (oriented by its outer normal) and let {z;}icr be a finite set of points in'Q.
Then for every solution fa..g of (3) in Q\ (Uier) we have

[ @k an = T resei(£).

sel

So we have shown how the basic amount of standard function theory can be
extended to higher spin cases. It needs clearly a cartain amount of workto go
through Clifford analysis and to try to extend its results to higher spins, it is not
always straightforward (e.g. it is not easy to implement the standard proof of the
Cauchy-Kowalewski theorem). Note also that ideas used for the proof of generalized
integral formulae in (Bures, Souéek , 1985) are applicable in the case of massless

field equations. -
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. Twistor equations

; Let us recall (see Sect.2) that the Cartan product of irreducible representations is
sociative and that the Cartan multiplication between Cartan powers of the spinor
representations (X : (S4)* x (S4)" > (S4)*+! is commutative. Let (S4)° be defined
> ‘a8 the space of constants C. Then the sum (S4)® = ®§2,(S4)* (only finite number
@ of terms nontrivial) is an infinite-dimensional commutative algebra.

We propose now to consider the twistor equation for functions with values in the
;upace (54)™.

efinition 6.1 A function f = 3777, f;, f; € (Sa) on a domain in R™ with values
“in (S4 )™ is called a solution of the twistor equation (2), if T(f) =0, i.e. if T(f;)=0
forallj =1,2,.

The space of solutions of the twistor equations introduced above is an analogue
of the space of all polynomials in complex function theory. Suitable completions
of the space can be, of course, considered. A main and remarkable feature of this
generalization of holomorphicity to higher dimensions is the fact that if the product
used is the Cartan product, then the space of solutions is a commutative algebra.
Without going into a more detail study of the properties of solutions of the twistor
equation, we need not use spinor algebra notation, so that formulas are kept simple
and understandable.

Theorem 6.1 If f; € (Sa)’ and gx € (S4)*; j,k=0,1,... are two solutions of the
twistor equation, then f; ® gr = gr R f; is again a solution of the twistor equation.
Hence the space of all solutions of the twistor equation with values in V® is a
commutative algebra.

"o see why it is so, let ey,...,e, be an orthonormal basis, (z1,...,2,) the cor-
responding coordinates and ¢y,..., e, the dual basis, then

T(f; B gr) = 7% (d(f; @ ga) = 7O (T, e @ 2fEen))

= [Zi(eilﬂ as.-)gk + Y= (az,-)gf]
=T(f;)Rg+T(gx)Rf=0

. Few remarks are in order at this place. History of Clifford analysis started in the
30’s with works of Fueter and his coworkers studying analogues of Cauchy -Riemann
equations for quaternion functions. At that time and many times independently
after, it was found that a natural generalization of holomorphicity in quaternionic
case — namely the requirement of differentiability in quaternionic sense — is too
strong condition; all differentiable functions in this sense are linear. It is worth to
% point out that the differentiability condition can be expressed using a set of partial
;:, differential equations similar to Cauchy-Riemann equations. This time, however,
: the set of equations is highly overdetermined and, as a consequence, the space of
solutlons is too small. In the quaternionic case, it is possible to identify functions
' with quaternionic values with spin ; fields (Fueter equation than coincides with
the Dlrac equation). It was pointed out some time ago ((Souéek , 1986)) that

R
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(using this identification), the mentioned analogue of Cauchy-Riemann equations,
describing differentiability in quaternionic sense, concides with the twistor equation
for spin 3 L fields. Hence in dimension 4, we see that quaternionic differentiability, if
considered for all possible spins, leads to a rich family of solutions and that the space
of solutions has nice multiplicative properties. It brings back a question whether the
twistor equation, considered for all spins, could not be a suitable generalization of
Cauchy-Riemann equations to higher dimensions.

Another result proved in dimension 4 (see (Hitchin, 1980)) brings a new light to
the discussion. It is shown in the paper that the space of solutions of the twistor
equation of a given spin is the image of the 0-th order cohomology group on the
twistor space of a certain homogeneity. The sum of these cohomology groups with
different homogeneity forms clearly a commutative ring, so the algebra structure
of the space of solutions of the twistor equation for all spins is translated by the
Penrose transform to the commutative structure of polynomials in several complu
variables.

There are many others interesting interlations among solutions of massless ﬁeld
equations, twistor equations and other conformally invariant equations which "are
well understood in dimension 4 (see (Penrose, Rindler , 1984)), it would be valuable
to understand their generalization to higher dimensions.
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