PREMIERE PARTIE

MATHEMATIQUES

Présentation de P. Lelong

Les articles qu’on trouvera dans ce livre développent des exposés faits lors du Colloque de
Géométrie Complexe tenu a Paris a I’Université Paris 7 2 ’occasion du premier Congres de
I’'Union Mathématique Européenne en Juillet 1992. On trouvera dans le Sommaire la liste
compléte des auteurs et le titre de leurs communications, ainsi que la liste et le titre des
conférences qui n’ont pas été rédigées pour ce volume. Plusieurs des exposés concernent
des problémes qui intéressent les physiciens en méme temps que les mathématiciens et la
plupart portent sur des problemes de Géométrie Complexe.

L'article de J. Bures et V. Soucek étudie la transformation de Penrose en dimensions
paires et ses applications aux équations de Laplace et de Dirac complexes.

Larticle de K Campana donne des propriétés des variétés projectives complexes
connexes dites de Fano en liaison avec des problémes de connexité rationnelle.

Dans leur étude des résidus de formes méromorphes, A. Dickenstein et C. Sessa
développent la notion de cohomologie modérée et précisent les propriétés des courants
résiduels.

R. Gérard développe des résultats obtenus en collaboration avec T. Tahara et
donne des conditions générales qui assurent que le probléme de Cauchy pour un systéme
d’équations aux dérivées partielles a une solution analytique lorsqu’existe une solution
formelle.
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Résumé

Dans un article précédent [8], nous avons décrit la transformation de Penrose en dimension
paire pour les champs de masse nulle généralisés. Les outils essentiels sont d’une part,
I'isomorphisme de Dolbeault pour la d"-cohomologie, les formules intégrales de I’analyse
de Clifford et d’autre part, la théorie des résidus de Leray ; en outre, il contient une formule
simple et explicite de la transformation de Penrose inverse. Le but du présent article est de
présenter de nombreux exemples de cette transformation et de son inverse en dimensions 4
et 6. Dans ce cadre, on donne des formules explicites de formes sur l'espace des twisteurs
et les solutions correspondantes pour les états élémentaires dans 1’espace de Minkowski.

1. Introduction.

In this paper we study the Penrose transform in even dimensions for complex Laplace and
Dirac equations. This is a generalization of the Penrose transform for massless fields in
dimension 4 (see [10],[11],[13],[16],[17]) and it fits into the general scheme of generalized
Radon transform introduced by Helgason (see [12]). Such a generalization was studied
first by R. Baston and M. Eastwood (see [1],[2]), compare also [14]). Their approach
is based on an extended use of sheaf cohomology, resolutions, spectral sequences and
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the fundamental facts used are Bott-Borel-Weil theorem and Bernstein-Gelfand-Gelfand
resolution. Another point of view was used in [7],(8), where the Penrose transform was
presented from analysist’s point of view. The Penrose transform is given in terms of
differential forms and Dolbeault cohomology, main tools for the description of the inverse
Penrose transform are coming from Clifford analysis ([9]). The advantage of the second
approach is that it leads to a quite explicit inversion formula. For a given solution of the
considered equation, a suitable J-closed form representing the Dolbeault cohomology class
which is mapped to the solution by the Penrose transform is given by a simple explicit
formula.

The aim of this paper is to discuss the inversion formula in the cases of lower
dimensions 4 and 6 with necessary details. We shall consider so called elementary states
on C?* (i.e. polynomial solutions of the equations). In Sections 2 - 5 we summarize basic
facts on the Penrose transform, more details and proofs can be found in [7],[8]. In the last
Section, we introduce local nonhomogeneous coordinates and we give explicit formulas for
the inverse transform in dimensions 4 and 6.

2. Dirac and complex Laplace equation on c*,

Let {Py,..., Ps,} be coordinates in C?", let ~ be an antilinear involution
P= [P,, Pu] € CZn N P — [P”,Pl}; P',P” eC"

and let

QP,Q) = (PQnti + PntiQi)
i=1

be a nondegenerate symmetric bilinear form on C?".
Let us denote by

{fl""afnafly-”yfn}
the standard (coordinate) basis of C?" and
Wo = span {fl,...,fn},W'o = span {fl,...,fn}

subspaces of C".
Then

Cr =Wy W,
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and the involution ~ on C?* maps Wy onto Wg. Let us embed the Euclidean space R*"
into C?" as the set of fixed points of the complex conjugation . Let us denote by CS, the
complex Clifford algebra of (C?", Q). We suppose that C** ¢ C§, and Spin(2n) C CS,.

Let S be the irreducible CS, - module and let S = ST @S~ be the decomposition of
S into irreducible Spin(2n)-modules (called the basic Spin-modules). The C$, - module S
can be embedded into Clifford algebra cg, as a maximal left ideal (see [9]) in the following
way:

S =C$.I=A"(Wp).I,

where I = fi fi...fn fn is an idempotent, and A*(W) =~ C(Wp, 0)(as algebras) is the Clif-
ford algebra of W) corresponding to the trivial (zero) bilinear form. If @ is a holomorphic
function on C?", then the complex Laplace equation is given by

n 2
_oe 0. (1)
& 0P 0P,y

If ® is a holomorphic spinor field on C?™ with values in S, the Dirac equation is given by

" 88 00
Dq)':;(fi‘a_n fi-m)- (2)

3. The twistor diagram

The Penrose transform is a special case of generalized Radon transforms on homogeneous
spaces. Let Q be a nondegenerate symmetric bilinear form on C?"*2, The isotropic
Grassmannian IGy = IGg.on+2 i< the subspace of the Grassmannian G consisting of all
isotropic subspaces L of dimension k in C™*2 (je. Q|1 = 0). Similarly, the isotropic flag
manifold IG; n+1 is a subspace of the ordinary flag manifold of couples of 1-dimensional
and (n + 1)-dimensional isotropic subspaces. The usual double diagram (with natural
projections) is then given by two projections

IGiny1 — IG;

l“ (3)
IGn+1
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The space IG; is a nondegenerate quadric in P>"*1(C), so M = C?" can be
embedded into it as an open dense subset. This subset is usually considered as a complex-
ification of the 2n-dimensional Minkowski space by physicists. To describe solutions of
complex Laplace and Dirac equation on a domain 2 C M, we restrict the diagram given
by the maps (3) to

Q¥ o0

I (4)
QII

where ' = v=1(Q) C IGi,n41 and Q7 = p(Q) C IGnq1.
The isotropic Grassmanian IGp, = IGy,;2, can be defined as a homogeneous space
by the following ways:

IG, = S0(2n,C)/H = Spiny(2n,C) /H = SO(2n,R)/U(n, C).

The groups SO(2n, C), SO(2n,R) and U(n, C) are defined with respect to our choice of
quadratic form Q in Sect.2, the group Spiny(2n, C) is the connected identity component of
the group Spin(2n, C) ; the subgroups H and H are the isotropic subgroups of the point
Wy € IG,,.

Let ISt be the isotropic Stiefel manifold of isotropic n-frames in C%". Then we

have the diagram: ~
Sping(2n, C) A, IG,

12:1 l=
so@2n,c) 2 1G,

ISt, GLG,

We shall use the spaces Spiny(2n, C) and ISt, as spaces of “homogeneous coor-
dinates” on IG,. Let us denote for any s € S* — {0}:

us)={Z € C*; Zs=0}.

The space
Spure = {S S S+;dim L(S) = T'L}

is called the space of (positive) pure spinors. For any s € St — {0} the vector space ¢(s)
is always isotropic. The map
L: P(Spure) — IG,
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given by ¢ is a biholomorphic map.
Let us define a map S : Spingy(2n, C) — S* by

S(g) =glI. (5)

With respect to the decomposition C" = Wy @ Wy, the group H C SO(2n,C)
has the following form

H= {h= (‘3 (A?l),)\AB‘nLBA‘:O, AeGL(n,C)}

and the map
det: H — C — {0}; det(h) =det A,

where det A denotes the determinant of A, is a holomorphic representation of H on C.
We can find a holomorphic representation v/det of H on C such that (v/det)? = det. The
principal role in the considerations is played by the line bundle L on IG,, defined as a
homogeneous bundle given by representation (\/E)-l of the group H.

Denote by &, an SO(2n, R)-invariant volume form on IGy, this is ((3), (3))-form

on IG,. Then there exists a form o, € (30 (IG,,,LZ'"'?) which is a holomorphic
SO(2n, R)-invariant form on IG,, such that

Qn

= an A T
;1M 2t

Kn

where M are the Pliicker coordinates on IG,, I C {1,...,2n},#I =n.

The form &, is an element of “,'(0'(3))(IG,1,1_12"_2

(O 1My Py~
1

), and the expression

is an element of £0-9(IG,,, (L ® L)?~2"). We shall use below the realization of elements

of the cohomology group H (0’(3))(9, L") by the Dolbeault cohomology.

3.1 The Penrose transform for complex Laplace equation.

Let us denote by HW(Q) the space of all holomorphic solutions of the complex Laplace
equation on §2.
We want to construct the map

P . HOG)(Q", L) - HW(Q)
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called the Penrose transform for complex Laplace equation in Q.

THEOREM 1. _
a) Let 2 be a domain in C?™. If a B-closed form B represents a cohomology class

(8] € HOGD (", L7, then the function

#P)y=P(BNP) = [

LB Aan
P)

depends only on the class (3.
b) The Penrose transform f(P) = P([B])(P) is a holomorphic function on the
domain Q and it satisfies the complez Laplace equation (1) there.
c) If Q satisfies suitable topological conditions (see [2],5],{7],[9]), the map P is
one-to-one map onto HW(S).
3.2 The Penrose transform for Dirac equation.
Let us denote the set of all holomorphic solutions of the Dirac equation on §2 by HS(R).

We want to construct a map

P HG Q" L2 5 HS(Q)

called the Penrose transform for the Dirac equation in €.
The double fibration (5) will be lifted for our purposes to the diagram given by the
double fibration

| (6)
Q0
where

Q' = #"1(Q) ¢ C*" x Spiny(2n, C)
is a principal fibre bundle with the group H over  and the domain
Q" = #71(Q") C C™ x Spiny(2n, C)

is a principal fibre bundle with the same group over 2.
The Penrose transform is defined for cohomology classes in the cohomology group

H (0’(;))(9”, Ll‘z"). To compute with them, we need to lift them to the domain Q7. The
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d-closed form on Q' with values in powers of L will be represented by an ordinary d-closed

form on satisfying suitable homogeneity conditions.
To define the Penrose transform, we shall need the map S(g) introduced in Sect.2.
Let S* denote the trivial bundle with fiber S* on Q.

THEOREM 2.
a) Let Q be a domain in C*". If ¢ D-closed form B represents a cohomology class

(8] € HG) Q" L1=2"), then the form
Si*BAan

represents a well defined element in E"~1(Q, S*) and the Penrose transform
P([8]) defined by

F(P) = P(B)(P) = / SE*B A .

v=1(P)

is a spinor field on Q which depends only on cohomology class [B].

b) The Penrose transform f(P) = P([B])(P) is a holomorphic spinor field on the
domain Q and it satisfies the Dirac equation (2) there.

c) If Q satisfies suitable topological conditions (see e.g. [2],/8],[9]), then the mep
P is one-to-one map onto HS(Q).

4. The Penrose transforms on c*.

In the rest of the article we want study the special but interesting case £ = C>* in more
details. The corresponding double diagram is given by the maps

cCrx1¢c, - c*
1 (7)
I‘(Czn x IG,)

For simplicity, the scalar product given by Q is denoted by (.,.).

(i) Local coordinates for F := v~1(C?*) ~ C?" x IG,.
We shall need often “homogeneous coordinates” on IG,, given by the isotropic Stiefel
manifold ISt, defined as the space

{Z2=1(2",...,2")|Z" € C*", rank Z = n,(Z',2%) = 0; i,j = 1,...,n}.
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The manifold ISt, is a principal fiber bundle 7 : ISt,, — IG, with a group GL(n, C)
acting from the right.

The projection 7 maps a matrix Z into an isotropic subspace generated by columns
of Z. The identification ISt,/GL(n,C) ~ IG, is fixed by a choice of a point in IG,,
and a choice of its isotropic basis. Our choice is the first half w,, ..., w, of the canonical
basis in C>™ and the isotropic space Wy C C2™ generated by it.

The space IG), is also a homogenous space of the group SO(2n, C). The homoge-
neous coordinates on IG,, given by the Stiefel manifold or by SO(2n, C) are sufficient for
complex Laplace but not for the Dirac operator. We shall need a bigger set of homogeneous
coordinates given by the group Spiny(2n,C) acting on IG,,. The identifications

Sping(2n,C) /H ~ SO(2n,C)/H ~ IG,

is given by the choice of Wy for a preferred element in IG,,.

The projection p : Sping(2n, C) + ISt, and its restriction p : H — GL(n, C) will
be denoted by the same symbol. Components ZJ‘: S Z;(g) of the map p are holomorphic
functions on the group Sping(2n, C) , they will be often used below.

Homogeneous coordinates on the space F = C2* x IG,, are given by (P,2) €
F° = C?" x ISt,, resp. by (P,g) € F := C™ x Sping(2n,C) , with the action
(P,2) = (P,Z-7);v € GL(n,C), resp. (P,g) — (P,g-p(h));h e H.

(ii) Local coordinates for T = u(F).

Homogeneous coordinates on the twistor space are given by (7, Z), where Z =
(Z2%,...,2™), 2 € C?™ are Stiefel coordinates for the vector space associated with the
affine space W € T and n € C" is given by * = (P,Z"),i = 1,...,n, P € W. The
mapping u is given in these coordinates by u(P, Z) = (n, Z), n* = (P, Z*). The space
To := C™ x ISt, is a principal fibre bundle over the twistor space T with the group
GL(n,C) acting by (n,Z) — (n-v,Z - 7),7 € GL(n, C). The corresponding projection
7 is holomorphic. We shall also use a bigger coordinate space T := C™ x Sping(2n, C)
for T. It is again a principal fiber bundle with the group H acting by (n,9) — (7-p(h), gh).

All coordinates are then summarized in the double diagram given by the maps

F~(Pg -5 C™~(P)
iﬂ:n‘=(P,Z"(g))

T ~ (n,9)
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The forms with values in L¥ will be represented by equivariant forms on F, T, resp.

Fy, To. Every element g € Sping(2n, C) is projected to an element {Z1(g), .. . ,2Z™(g)} €
ISt,; the vectors

{Z 9),..-,Z2™(9), Z2"(9),-..,2"(9)}

form a basis of C2". Let us denote the dual basis (with respect to (,.,)) by
{rh,...,y" v, .. Y"}.

We have
n
P=) ((P,Z)Y +(P,27)Y).
j=1

Let us note that span {Y7} = span {Z7} = W.

5. The inverse Penrose transform

Let f be a solution of the complex Laplace ( Dirac) equation on C*". We are going to
describe the cohomology class [3] on T such that P([3]) =
Even more, we also shall write a simple explicit formula for the inverse Penrose
transform giving a (special) representative of the cohomology class. Let us define a constant
K(n) by
T (2) N (n)
c (2, IMs(2)2)mY 2)

Kn) ! =
THEOREM 3. Let f(P) be a holomorphic solution of the compler Laplace equation (1) in
C?™. Let us define a form B on the twistor space T by

an(Z)
(s IMy(2)P)n-t

8= Km)(Y a9 )

j=0
where VI f = %lof((l +7)Q),Q =>1n;Y?, and

1(2n-2)!
) (Tl—'l)' » Qn— 1"'1

I Gy E

ap =



12 J. Bures-V. Souéek

The form 3 is an equivariant form representing a 0-closed element of the space
£@GN(T, 127" and we have

P(l8)) = f, PeQ.

THEOREM 4. Let f(P) be a holomorphic solution of the Dirac equation (2) in C*". Let
us define a form 3 on the twistor space T by

_ Ig) o an(9)
b =K gp (Z S AT

where VI f = 2o f(1+7)Q) ,Q = L5 n;Y7, and

(2n - 2)! (2n-2)! (n-1\ .
= i = ii=1,.,n—2, an_1 =1.
ag (n-1)' 1aJ (n+]—l)‘ ] ) yorey 1B y Qn—1

The form B is an equivariant form representing a 8-closed element of the space
OGN (T, L1=?") and we have

P((8) = f, Pe Q.

6. Elementary states.

A solution of the Dirac equation (resp. complex Laplace equation) on the whole space C"
which is polynomial and homogeneous of order k in the coordinates {P*} on C?", is called
an elementary state of order k. The set of elementary states of all orders form a dense set
in the space of all holomorphic solutions on C?". We want now to describe a basis of the
space of elementary states of order k in lower dimensions (4 and 6) and to show how the
inverse Penrose transform works quite explicitely. All maps involved in Theorems 3 and
4 can be written down explicitely.

ExAMPLE. (Elementary states on C%.)

We use the following coordinates:
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a) On C*.
P = (Illrz7y11y2)'

b)On F = C* x IG, 4. We take nonhomogeneous coordinate £ which corresponds to one
of standard coordinate neighborhoods on IG3 4. The basis of the corresponding isotropic

subspace is given by:
Zl = (11 01 07 _6)

Zy =(0,1,£,0) ®)

c) On the twistor space T = p(F), we take the coordinates:

(n,€) = (n*,n%,€).

The projection p on T has the form:

p(z,y,€) = (n,€)

with
L
7’ =y + €zt

The corresponding basis is:

g s e

Z, =(1,0,0, —¢€)
Z, = (0,1,£,0)
Zy = (0,-£,1,0)
Zy = (£,0,0,1)
and the dual basis
i = [|€17*(0, =€, 1,0)
Yz = [€171(£,0,0,1)
Y1 = [l€l71(1,0,0,¢)
i Y2 = ll€l™(0,1,€,0),

where

el = (1 + 1€).
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For the inverse transform we need the following coordinate form of Q(7, £) (Q was defined
in Theorem 3 by Q = > n;Y7):

=t = |l¢} 1 (n%€)

22 = ||gll 7 (-n"€) (1)
y' =gl n}

y? = (€I~ (n?)

Note that the all 4 functions are holomorphic in the variable 7, as a consequence the forms
written below are manifestly d-closed.
A direct computation gives:

> IMi? = g2

I

The spinor space S* can be identified with
S* ={(a.1+b.fifo)I ;a,b€ C},

and the corresponding contraction I§/|g|? is given (up to a multiplicative factor) by
I(1 + £f1£2)/||€]l, where & is a nonhomogeneous coordinate of the element in 1St, given
by the projection of g. Note that the multiplicative factors in the formula for the form B
express the fact that 3 has values in a suitable line bundle.

A. The complex Laplace equation.

From the general theory (esp. Theorem 3), we get:

THEOREM 5. Let ®(z,y) be a homogeneous polynomial of degree k on C* which is a

solution of the complex Laplace equation. Let C—f)(n, @) = ®(z(n,€),y(n,€)) be the
function on T obtained by substitution (11).
Then the form

_—t 5 4
Po = 5 U+ By

is manifestly 0-closed form on T, so it represents an element

[Bs] € HOV(T, L2,
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Moreover, we have

P([Bs]) =2

The fact that the class [Bg] is the inverse image of ® can be in this simple situation verified
directly. By a direct computations we get the following formulae:

2dE A d
/(‘f‘_*_léz)kfz or Z( 1):()m l=0,...,k. (12)

and

2k g7 g
/ [€]°dE AdE  2im (13)

cU+TEP ~ k41

Let us describe the space in the cohomology group which corresponds to elementary
states of order k = 0 and 1. Let

_Ci &

s am L+
then we have the following representants of cohomology classes and their Penrose trans-
forms:

Let k =0.
Bo =k — P([Bo]) =1, (14)

because it immediately follows from (13) that

—i dE N dE
PUD = 31 o e =

From the formulas (12), (13), we get also the following results for k = 1.

or F
b= 1Bk — (A1) =2
_—m€ _
B2=7 TiEE” P((B2]) = 22 o
2m
Ps =1 i |§|2 = P([Bs)) =
Ba 2z 'P([ﬁd)
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Let us show how the formulas work e.g. for ®(z,y) = z'. We get

_ =i, midf
b= Tr ey

and

_ i, [ TPl nde
P =52 o " ey =

For general k we shall show as an example the procedure for ®(z,y) = (y')*. The
corresponding form is

_ T (n')*d€
o= U T e

and its Penrose transform is

> 1k g7
P((B)) = o (k + 1)/C %;ﬁ W

We can now state a general result:
Let Hy (m1,n2) denote the set of all homogeneous polynomials of order k in (11, 72)
and let Ry, denote the set of all cohomology classes

Ric = {{8(k, Po,., P)] s Py € He(m,m2)} € HOD(T,L72),

where )
Z_’;=o Pj (nl ) 772)§j df_
(L+g2)x 1+

then P maps the space Ry on the space of elementary states of degree k on C? in one-to-one
way.

B(k, Po,...,P) = ;_7:(1 +k)

It is easy to see that the set of classes {[3(k, Py, ..., Px)]}, where {P;} are homo-
geneous monomials of order k, is a basis of Ry and that dimP(Ry) = (k + 1)2.

B. The Dirac equation.

THEOREM 6. Let ®(z,y) = (¥%(z,y) + ®'%(x,y)f1 f2)I be a holomorphic spinor-valued
function on C* such that ®° and ®'2 are homogeneous polynomials of degree k on C*
and ® is a solution of the Dirac equation on C*. Let 5(77, @) = ®(z(n, €),y(n,€)) be
the spinor-valued function on T obtained by substitution (11).
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Then the form

o &
Beo = 2W(2+k)1(1 +€f2f1)‘1>(—1~+w

is manifestly d-closed form on T which represents an element [Bs) € H (0’1)(T,L_3)
satisfying P(|Bs]) = &.

As an illustration let us describe the correspondence in the case k = 1. The basis for
elementary states of homogeneity 1 and the corresponding Penrose transforms are given by
the following expressions:

. ’j:f;gn —P(8) =y I

b= % — P(8]) = y2.I

B=1 Zlélw = P(B) = (~* + 3" fuf)] 0
- Té,?n —P(B) = (=" + v Fifo)l
= 1—+"|—§|2 — P(8]) = (z* fufo)1
= T3hens = PU8) = @ fufo)l

For general £, let us show how the procedure works e.g. for & = (y!)kI. We have

k_ b (n')*d¢
A

and

(1 + £ f1 fo) IdE A de = (WL

—; 1_ ¢y
P = e [

We can state the following general result:
Denote by Hj(n1,m2) the set of all homogeneous polynomials of order k in (m,n2),
Dy the set of all cohomology classes

{[B(k, Po, ..., Pe1)] Pj € Hx(m,m2)} € HOD(T,L~3)
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where
T Pimm)E  dE
A+ €+ (1 +1€15)2

B(k, Po,...,Pc) = 2_—;(2+ k)

then P(Dx) is the space of elementary states of degree k on ct.

We shall see immediately, that the set of classes {[3(k, Po, .. ., Pr+1)]} where {P;}
are homogeneous monomials of order k is a basis of P(Dx) and dimP(Dy) = (k+1)(k+2).

exAMPLE. (Elementary states on C‘?).

Following general theory, we use the following coordinates:
a) On ct:
P =(z!,2%,2% 4", 4%, y°)
b) On a part of F = C°® x IG3 g, we take nonhomogeneous coordinates (1, &2, €3) corre-

sponding to one basic coordinate neigborhood on IG3 6. The cormresponding isotropic basis

15

Zl = (1,0,0,0, "{l; _52)
ZZ = (0’ 11 0151,0) —63) (17)
Z3 = (090) 1a€21€310)

c) On the twistor space T we take the coordinates:
M8 = (', 1"’ 61, €2, €3).

The projection y on ' has the form:

wz,y,€) = (n,€)

with
nt =y! - &z? - o
n° =y + &zt - &8
1° =y° + &z + €3z’
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The corresponding basis are:

Z1=(1,0,0,0,-&, &)
Z2=(0,1,0,£,0, &)
23=1(0,0,1,£2,65,0)

21 =(0,~61,-£,1,0,0)
22 = (£,0,-85,0,1,0)
Z3 = (£,85,0,0,0,1)

and the dual basis

Y1 = [lE1710, ~61, —€2, 1 + |€a]?, —€3da, £31)
Y2 = (€71 (61,0, =&, — &85, 1 + |&2]%, —&261)
Y = [|€]71(€2,€3,0, 6185, —€1&2,1 + |&1]%)

Vi =€l (1 + l&l?, — €263, €265,0, €1, —€2) |
Ya = [l€ll7! (—€sba 1 + €2, —6162, 61,0, —&a)
Ys = |l (ésér, —€261, 1 + 1611%, €2, €3, 0)

e A i g B

where
€l = 1+ [&]? + &1 + (&)

For the inverse transform we have the following coordinate form of Q(7, £):

z' = €I~ (n?& +nE)

22 = el (—n'é + %)

2 = €l (—n'&: — n°&3)

vt = (1 + 161%) + 0P (=6263) + 7P (61da))
yv? = (€17 (0 (—€s€2) + n*(1 + |21?) + (—6162))
v® = €7 (" (661) + n?(=66) + n* (1 + |&]?)

(18)

Note again that all coordiantes are holomorphic functions of 7. A direct computation gives :

Do IMp P = ).
I
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A. The complex Laplace equation.

THEOREM 7. Let ®(z,y) be a homogeneous polynomial of degree k which is a éolution
of the complezx Laplace equation on C®. Let U(n,£) = O(z(n,€),y(n,€)), and a3 =
d§1 A d€z A d€s.
Then
[e%
€4+

is O-closed form on T which represents a class [8s] in H®3)(T,L™°) and

P([62]) = @

_ Tt 2
Be = 167r2(6+5k+k o

The theorem can again be proved by direct computation, all what is needed is the
following formula:

272

— _ 3
= T

/ 3 (1+ &%) a3 Aag (19)

llg]j+

To illustrate it, let us write down the case of the function ®(z,y) = (y®)* explicitely. It
has the inverse Penrose transform

¢ (6 + 5k + k2) (771536—1 - 7726251 +n3(1 + lfll)2)k513 Aag
1672

S GEE

and it is straightforward to check that it gives back the function (y3)*.

B. The Dirac equation.

Let ST be the spinor space of positive spinors. We have the identification of spinor space
with the subspace of C§ as follows:

S* = {a+bfifa+ cfifs +dfafs)] |a,b,c,d, € C}

where I = f1 fi f2f2fsfs.
The image S(g), g € Sping(2n, C) is defined (up to a multiplicative factor) by

(I+&fifa+afifs +&fafa)l

Similarly, the element "é‘qu is given (up to a factor) by

i~ I fafo + Efafi + Erfafr +1)
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Let ® : C® — S* be a solution of the Dirac equation. Let

&(z,y) = (alz,v)1 + b(z,y) fLfa + c(z,v) fifs + d(z,y) fof3)] (20)

be the coordinate form of .

THEOREM 8. Let ®(z,y) of a form (20) be a solution of the Dirac equation on CS,
such that a,b,c,d are homogeneous polynoms in (z,y) of degree k. Denote ¥(n,§) =
o(z(n,£),y(n,€)), then

1
1672

B = or 12+ Th + K (Gafafa + afofy + &y + V(06 e

is B-closed form on T which represents a class [Bs] in H®3(T,L™°) and

P([Be]) = 2.

We can present a simple example here. Take the following solution of the Dirac

equation ®(z,y) = (y')*I. The procedure announced in the theorem above gives us the
form

(1 + &)%) as
(lg]5+*

and using (19), the corresponding Penrose transform applied on 3 can be computed ex-
plicitely, the result is

B =K(3)

&%)k as Aas
€<+

= (y ) TK(3)(k* + Tk + 12)(K(3)(k* + 7Tk + 12))!
= (y")*I.

P((8)) = (") TK (3)(k? + Tk + 12) /03 (1+]
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