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Introduction.

The main aim of the paper is to generalize the following result
in complex analysis to higher dimensions. Let A<C be open, let
0(f) be the ring of holomorphic functions in 0 and let fe& 0(Q).
Thenlocally around each point w of 0 , f admits a holomorphic~
primitive F , i.e. d/dz(F) = £ , in & neighbourhood of w . Of
course this result is not true globally. Hence one may construct
the quotient space 4
H = 0(9)/330(9)’
which is naturally isombrphic to the de Rham cohomology space H1(Q,C),
so that dim H equals to the number of holes in & .

In our generalization the role of the Cauchy-Riemann system in the
plane is taken over by special systems of differential eguations in

n dimensions, occuring in hypercomplex analysis (see [i] ,[é]).

Conferenza tenuta dal secondo Autore 1'8 Ottobre 1984.
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Furthermore we obtain our results by means of a splitting of the
vector-valued de Rham complex on an open set § C ‘n, which leads to
the representation of the de Rham cohomology spaces using Clifford
algebra valued differential forms such as the left monogenic forms
(see [T]). In this way the isomorphism H ErH1(Q,C) is generalized

to higher dimensions.

We also apply our theory to several complex variables in order to

obtain a similar representation for the Dolbeault cohomology spaces

H(p’q)(Q,en), el open, with values in the complex Clifford al-
gebra tn . Hence we generalize the isomorphism H = H1(Q,C) both

to R® and to C©

Our method works as follows. In the first section we start from

a complex

i 49 dhoq
0 A A - ... 07 A 0 (1)
-1 0 n
and a subcomplex
i e e
0 —= A B ...—= B —I- W 0 (2)
=1 0 n-1

and we prove conditions implying that the homnlogy spaces of (1)
are isomorphic to those of (2).

In the second section we consider a splitting of (1) which follows

from a splitting A, = A! @ A2 and which leads to a special subcom-

J J J
plex of (1) to which we may apply the results of the first section,

to obtain a representation for the homology spaces of (1).

In the third section we apply this theory to the de Rham ani the
Dolbeault complex. For the Dolbeault complex we make use of so called

weak complex monogenic functions (see [B]).

1. Homology of subcomplexes.

In this section we shall discuss the following problem. Consider

a complex of vector spaces and linear maps:

. d d 4
1 0 1 n-1 0 (1)

0 A A A e T A —

-1 0 1 n

(i.e. djdj : 0) and consider its corresponding homology spaces
A _
Hj = ker dj/im a

j=1
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Furthermore, consider a subcomplex of (1):

i 80 6, J 8
n-2 n-1
o] A_1 BO B1 e Bn—1 ~ O (2)
(1.e. Bj (= Aj’ j=0,...,n-1 and 6i=di|B ) and its homology spaces
B ker 6.
L 'im s .

Then we shall establish conditions implying that

A .
Hj = Hj 5 J=0,...,n=1
To that end, notice that the inclusions ker Gj < ker dj
induce the natural maps ¢j: H?-—~ H? , where for a € H? s
{a) = a + im 4. . As im 6, < im 4. these maps ¢. are
¢J( ) 3=1 m j=1 J—1’ P ¢J

well defined on H? and we shall prove

Lemma 1.

Consider the complex of guotient spaces induced by (1) and its

subcomplex (2)
£l 3 3
0 n-2 n-1
Qo —» AO/BO 000 An_,'/Bn_1 - An 0 (3)

If the sequence (3) 1is exact at the j-th place, j=90,...,n-1;
then

(1) ¢j is onto

(ii) ¢j+1 is a monomorphism.

Proof.

First notice that the maps d. , given by q.(a) = d.(a) + B.
J J J J+1,

ar 11 defined because d.(B.) = 6.(B.) © B.
e ve b 5¢B;) 5(35) i+t

As to (i), suppose that (3) is exact at the j-th place.

Then for every B € ker dj’ there exists «a eA.j_1 such that
d. a - 8 =b € B.. But then
J=1 J
d. b = d.d, a - d.8 =0
J i i-1 J ’

t 6.bp =d.b =0 b € ker 6. .
so tha Jb Jb or € ke j
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Hence b + imé,. € H? and so
-1 J

1 1

{b+imé ., = b + i d. = + i . €
¢J( j- ) S G [ im dJ_ H. ,
which means that ¢j is onto.
As to (ii), let j=1,...,n-1. Then we have to prove that if
BE kervSj+1 is such that [ imdj, then B € iméj and so
B + im §. = 0.
Jd

Take any B8€ ker6j+1n imdj. Then for some a EAj, g = dj(a)‘

Hence dj(u) 0 and so there exists vy € Aj such that

-1

dj_1(Y) =a , i.e. dj_1(y) - a = ¢ € Bj'

But then 6.(-¢) = d,(-¢) = d.(a) = B , so that B € imé, .
J 3 Jd J -
The previous Lemma immediately leads to
Theorem 1.
If the sequence (3) is exact for all j=0,...,n-1; then the

maps ¢j’ j=0,...,n-1 are isomorphisms between the homology spa-

ces Hj and Hj s J=0,...,n=1.

2. Subcomplexes associated to the splitting of a complex.

Consider again the complex (1) of vector spaces and linear maps:

. do d1 dn—1
= A A - ... ————F—An———’- o]

-1 0 1

Furthermore, assume that Aj may be decomposed as a direct sum of

subspaces A; and A2

J
1 2 .
Aj =AJ.@AJ. sy J=0,...,0 ,
1 2 1 2 : i
where Ao = 0 and An = 0 and denote by ﬂj and ﬂj the projection

operators from Aj onto the spaces A; and A? respectively.
Then we may introduce

Definition 1.

. - _ 1 1 _ .2
Put for j=0,...,n 13 "j+1° dlej 5 1J ﬂj+1o dJIA
= 2
§. = n |a2 = 15, ea.|A? .

.= n., ,e d. . = 7. -
J I+ J 3 J J+1 J
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Then the following diagram is called the splitting of the complex (1):

As an immediate consequence of such splitting we have

Lemma 2.
All squares occuring in the diagram (4) anticommute, i.e.

for j=0,...,n-2

Proof.
We only prove the first identity. We have that
- 2 2 1 =
6j+16j + Tj+16j = 6j+1°ﬂj+1°dlej + Tj*1."j+1‘dlej =

2 2 1 2 _ 2 2 _
T g (g *omg e lAy = e e ay =0

Now, & splitting (L) of the complex (1) gives rise to a subcomplex

of (1) in the following way. Put

_ = _ _ 2 - _ . _
BO-{ferl §,0 =010, Bj—{fEAj|6jf-0},1-1,..,n1.
Then by Lemma 2 we obtain a complex of the form (2):
. 8 [ [ [
1 0 1 n-2 n-1
0 A_, B, -5, =B _, o,

which is called the subcomplex of (1) derived from the splitting (4).

Indeed, let f € Bj’ then ij € Bj+1

't . .f = -t. &§.f = 0.
. Moreover GJ+16Jf rJ+16Jf 0
d f =58 f = 0.

Notice that when f € B .
n-1 n-1 n-1

Of course we shall use the complex (2) in order to compare its homolog)

spaces with ones of {1). First of all we have
Lemma 3.

1 1
' = i 3 . .
Let dj "j+1°dj and assume that dJ_1 AJ__1 ——-AJ,

j=1,...,n=-1 1is onto.
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Then the segquence
d0 n-2 n-1

O——’-AO/BO An_1/13n_1 —— A —=— 0

ol
2

is exact at the j-th place.

Proof.
As clearly dj+1dj = 0, we have to show that for all w € Aj such
that djme Bj+1’ there exists ¢ € Aj—1 such that
1
dj-1 ¢ - w € Bj' Put ! = nj(w) , e = n?(m). Then we have that
d.w = ?.u)1 + E.me + ‘r.m“ + 5.(1)2 € B.
J J J J J J+1
1 - 1 - 2 1.
and so m..,0d.w = T.w + §.w = 0. As 4! : A, ,— A. is onto,
J¥1 J J J-1 J-1 J
there exists ¢ € Aj—1 such that m1 = d5_1 ¢
. k 2
Furthermore, if ¢ = o (¢); k=1,23 w' =al ¢1 +d! ¢ =
J-1 J-1 J-1
=T '+ 3 2 This leads t
fj_1¢ j—1¢ . is leads to
- 1 = 2 1 2 1 2, _
dj—1 ¢ - w = (Tj_1¢ + 6j—1¢ + Tj_1¢ 5j-1¢ Y = (w + w™ ) =
1 2 2 2
= 1. . - € E
Ti_qb ¥ 8 g0 W A%
and by Lemma 2
- = ] - 2 2
§.(a. - = §.1. + 6.6, - 3. =
jE85.00 - @) S GRS 3
- = 1 - £ 2 1
= -T.7T. . + T.0 =0
J J—1¢ J J-1¢ J
Hence dj_1¢ - w € Bj’ which completes the proof for j=1,...,n-1.
For Jj=0, let w € AO be such that dow € B1. Then Xow = 0, so

that w € BO. -
From Theorem 1 and Lemma 3 we immediately obtain

Theorem 2.
Suppose that a splitting (L) of the complex (1) is given such that

-

A — « A. 1is onto for all Jj=1,...,n-1.

] =
dj—T' 51

s, J=0,...,n-1.

ot &

Then Hg = H
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Examples.
(1) Let § € R" bve open and let E be a real or complex vector

space. Then we shall now consider the spaces Cc, (Q,AJRn)QbE of
smooth j-forms on Q with coefficients in E .

If we denote this space by EJ(Q,E). ve can consider the de Rhanm
complex

i, d : a a
0—— E — E°(2,E) — E'(2,E) — ...— E°(2,E) >0 (5)

. j 3

ie. A, =E, A= EV(a,E) and a; = a = ?; ax; 5;5 .

1 2 = - U . 8 . .
The maps "j’ n,, §., 8., T.sy T., dj occuring 1n a splitting

of this complex will be denoted simply by w’. 12, 85, 8§, 1, T, 4'.

Furthermore, for the corresponding subcomplex we use the notation

M®(Q,E) for B, -

(2) Let 0 c C® bve open and let E be s complex vector space.

Then we denote by E(p’q)(Q,E) the space of all smooth (p,q)-forms

f inQ , i.e. f may be written in the form

flz) = 2_ £

— ’J(Z)dZIAdZ
*

J 1]

where

dz_ = dz. A...AdZ. .
J Ja Jq

1 ]

P

2 ) . B3

Let 3 =Y dz.>— , 3= 3 dzjf: . Then we consider the Dolbeault
z.

J

i 3
o —= 0P(0,8) — E®(qE) —» ... —>EP2N(g5) >0 (6)
vhere OP(Q,E) 1is the space of holomorphic p-forms in @ .
Here A_, = 0P(a,E) , &y = e(Prd)(g,5) , 4, =3 .
We use the notation 3' instead of dé and M(p'Q)(Q,E) instead

of B .
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3. Applications.

3.1. Monogenic differential forms in R,

Let E = tn be the real (or complex) Clifford algedbra over R"

wvith negative definite quadratic form. Then a general element a € En

may be written in the form

a= 2 =ae, , K={1,...,0), a, e€R (orC),
AcK ATA A

vhere e, = °a1"'euh' A= (a1,....ah} vith a,< ...« o

and the product in En is determined by the relationms
.e, + 2. - o0 i,3= 000 PPN i -
eleJ eJe1 = 2513 s 1,3=1, s0 s (e1. ,en) being an orthogo
nal basis of R™. An involution in fn is given by

a = > a.e, ,
A A A

where eA = euh....e;1 , ej = -ej, J=T1y.00500

Let Q0 < R™*T pe open and fE(H(Q,En). Then f 1is called left

monogeniec in & if Df = O, where
n
D=2 es53.

is a generaliz - i Cauchy-Riemann operator and e0=e’=1
j=o0 J

(see e.g. [1]).

Furthermore, in [7] the notion of monogenic differential forms has
been introduced, generalizing the theory of monogenic functions. Here
ve give a description by means of a splitting of the de Rham complex.

n+1

Let QCR be a fixed open set. Then we put EY = EJ(Q,fn) and

we introduce the basic differentials dZj = dxj - e.dx J=1,...,n,

o’
Rn¢1

where (xo,....xn) are the coordinates in
2

J
which may be written in the form

Moreover we denote by E% = A the space of Jj-forms in EJ(Q,Cn)

r=_ = AZ A...ndZ, f s
k1<°"<kj k1 kj k1...kj
fk X being fn-vnlued smooth functions in 2 , whereas ve de-
pee kg
note A; = Eg = donEg_1 , i.e. the space E? is the space of j-forms
of the form dx Aw , uéE%".

It is easy to see that E) = E‘; @ E%, vhence ve have the splitting
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T T
—_— @ ——e=F N —

2 VARV
DNANIN/AN

1

i

0——en-————v- E En¢1 0
8
— En
8 § 2 8 2
Furthermore the operators 6,3,1.; are given in
Lemma L. n
We have that 1= 0, T =6, where & = 3 dZ.%; and 3=dx°D.
= %%
Proof. -
. ]
It is easy to see that 4 = dxoD + %-1d255;j.

. . n .
Let f € Eg . Then dx aDf € E‘}” and az. A= eE*.
5= J ax‘i 2
Hence we have that

n
T =ax D eand & =iz, dZ.>— .
0 =1 Jaxj

Furthermore, as every r‘€E2 is of the form f = dXOAGa g € Eg'?

ar = 8f = - dx aég € E‘}” .

t = s .
so tha T 0 and 1t = =

Notice that d'= ﬂ1od = dxoD and that for f € Eg

22:- a A e 5
dxol\Df = k1<'..‘k. xOAd kh Adzk. ka ok,
J 1 J 1 3

Hence f € MJ(n,fn) if and only if I'GE% and the coefficients

of f are left monogenic, i.e. Df =0 . MJ(Q,Yn) is the-

1"'kj

refore called the space of left monogenic j-forms in 2 .
We now represent the de Rham cohomology by means of these forms.

First we have

Lemma 5.

The operator d': E‘]-l——--l:'J s J=1s...,0, |is surjective.
P 1

Proof.
We can even prove that §: E%-l——’ Eg ig surjective, which imp-

lies the same for d'. Let dong € E?, g € Eg-1. Then we have to

solve the equation donDf = deAg 5
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. GmAn G j~-1 .
Using the definition of Eg » this leads to the equation Df = g ,

g & cw(n), which, in view of ([1] always admits a solution f € CG(Q).

Hence, applying Theorem 2, the de Rham cohomology space HJ(Q,En),
j=0,...,n, coincide with the homology space of the complex
i 0 [ § n
o-——.-tn——- M(Q,fn) Mi(ae ) —=o0 (8)

3.2. Spinor valued differential forms (see [2] ).

First notice that in even dimensions there are two basic Spin(n+1)-

-modules, whereas there is only ore in odd dimensions (see e.g. [61).

Let E be such a basic Spin(n+1)-module. Then we shall consider
the spaces EJ - CE(Q,AJRn+1 ®_E)
of E-valued differential forms in $ICRn+1 open.

As AjRn+1QDRE is again a Spin(n+1)-module, it decomposes into
irreducible submodules and it may be proved by induction that one of
these irreducible pieces, which we denote by Ej, is isomorphic to a
basic Spin(n+1)-module. In the case of 1-forirx this was proved in

{3]; for the decomposition in general we refer to {1@ .

Let us denote by E} the invariant subspace, which is complemen-
tary to E‘:lj in AdRDY! QRE. Then we have the splitting
J oo gd J
EY = E1 E)E2 ,
where

- J
= C,(2,E3) .

J = 3 J
Ey = c (2,Ey) , &

In order to apply Theorem 2 we first prove

Lemma 6.

-1

The operators d3 H EJ ——ﬁ-Ei are onto.

-1
Proof.
We shall use a coordinate description. Of course, it is suffici-

ent to prove that the maps 71: Ei_L———-Eg are onto.

. +
Let fo,...,fn be an orthonormal basis of R™ ! and let
. . 5 n+1
(xo,...,xn) be the corresponding coordinate system in R 5
Then fo,...,fn generates the Clifford algebra En+1. Furthermo-
re, e, = -f f., j=1,...,n are generating bivectors for the even sub-

073

+
algedbra €n+1'
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As Spin(n+1) € E;+1 = tn (see [5)) and Spin(n+1) spans E;+1,

+

the space E 1is at the same time the representation space for €n+1.

It was shown in [11] that the operator T acts on ¢¢€ E$—1 in the

n n

same way as (2. £.2 ). Furthermore, the equation (2_ £, Yo = ¢
To Jax: — “jax. '
_ j=0 3 i=0 j
wélfg is equivalent with
L
(2- es33 06 = -Tov (9)
j=0 3
where ey = —fofo =1

But as the whole Clifford algebra En may be written as the sum

of basic Spin{n+1)-modules, the solvability of (9) again follows
from [1}, p.160.
Let us denote MJ = ker ngJ , j=s0,...,n3; then again we have pro-

ved that the homology spaces of the complex

0 E 2 M0 e 6 M 0 (10)

are isomorphic to the cohomology spaces HJ(Q,E) for j=0,...,n.

Example 1.

Let us now specialize to the case n=3 (i.e. Rh) in the previous
application. Then still other possibilities are available. In the ca-
se n=3 we take E = H , where H 1is the field of (real) quaternions.
Notice that, as Spin(l) = sp(1)xsp(1), H can be turned into a
Spin(L)-module either by multiplication with the first or the second
factor of the elements in Sp(1)xSp(1). In this case it is easy to des-
cribe the full decomposition of H-valued differential forms in Qt:Rh
into irreducible pieces with respect to the action of Spin(L).

Using the highest weights (see e.g. [6]) for the description of the
irreducible representations of Spin(lL), we obtain the following split-
ting. '

Suppose that the highest weight of H is ( ,%). The highest weight
of the other basic spinor module is the ( ). Hence

I\1Rh ®RH splits into V(g,%) & v(

Ath @RH splits into V(g,g) ® Vv{

A3Rh QQRH splits into V(g,
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. L 1 1 1 31
So, denoting E1 = Cw(Q,V(—,—é) 5 52 = CQ(Q,V(E;g))
2 _ 11 2 _ 33
E1 = C (Q’V(E’E)) N 52 = Cm(n’v(ﬁ’é))’
= 11 3. 1 2] 3 _ 31
By = ¢ (2,v(5,-3)), E; € (2,v(5.-5)), E5 = c_(2,v(5,5)) ,
we obtain the complete diagram
52
1
E1,///' . iiz:j\.EB
1 1
0———-H——-Eo/°\ Eg /0 \El‘———-o (11)

This splitting may be compared with one given in [9], wvhere a co-
ordinate description of some operators in (11) was given. Indeed,
using this description, it is possible to prove that the maps

1 2 2
1] L Q
d1 +dy: E——E1 62
and

0o, 2 3
ay « ———0-52

are onto.

Yow, as it was proved that the maps dé, d;, dé and dé are onto,
. ~1 1 =2 2 ~
we can apply Theorem 2 by taking E1 = E1 3 E1 = E,I E2 and E?=Eg.

In this case we again obtain a different description of HJ(Q,E).

Example 2.

Let us consider the complex case, where n=1 (i.e. in Rz). The
scheme described before may be also used here. The results may be com-
pared with the ones proved in e.g. [4].

The standard splitting of the de Rham complex on Q2 ¢C open is

given by
3 0.
0 C E /E —_— 0 (12)
Xfuo 3
It leads to the complex
3
0 ———C - M0 — ] = 0 (13)

where M0 = r(e,0) < g0 y M1 = r(n,O“O) < E .
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1,0 R . .
N and 0 ° heing the sheaves of holomorphic functions and of holo-
rnorphic 1-forms respectively. The long cohomology sequence associa-

ted to the exact sequence of sheaves

0 - C fo—a'—-()"’o—,-o
is given by

0—r(2,0) —=r(2,0) —=—1(2,0"°%) ——5"(2,0) —— #'(2,0)

But as 3f = g always admits a solution for every Q<€ C ,
H1(Q,0) = 0 . Hence

w'(a,0) = r(e,0"%/, r(a,0) °

wvhich is nothing else but the isomorphism

1 1
H (Q,C) =M™ /im Mo >

obtained from Lemma 6 and Theorem 2.

3.3. Weak complex monogenic forms in Cn+1.
Let E = ?n be the complex Clifford algebra over R® and con-
. 5 5 . . n+1
sider the Yn—valued differential operator 2D; = Dx + 1Dy in C 5
n 3 n 5
where D_ = e5 3% and D = 5> €5 37 (see [8]).
J=o 3 Y=o J
1 3
Notice that Dy =5 e; 33 and that an e -valued solution of
j=0 J
DZ f = 0 is a holomorphic function of several complex variables,

i.e. £ € 0(q,C).

Furthermore, when h € O(Q,en) and when in E(Q,En) = cm(n,en),
(Dx+iDy)f = g3 then also (Dx+iDy)(fh) = gh. Hence the space
V(Q,en) of solutions to (Dx+iDy)f = 0 as well as the space
(Dx+iDy)E(Q,?n) are right modules over O(Q,en). Especially sas

:en) >

. . . . +1
(Dx+1Dy)f = 1 admits solutions in E(C"

O(Q,Vn) < (Dx+iDy)F(Q,En), i.e. for every h € O(Q,En),
(Dx+iDy)(fh) = h.

Definition 2.

n+?

An open subset Q < C is called non isotropic, if @ is

P-convex with respect to the operator

LAY
P =3 ( = i
j=0 J J

Qs
Q)|Q)
D
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Lemma T.
Q@ is non isotropic if and only if DE: E(Q,En)———-E(Q,C ) is
n

surjective.

Proof.
. - _ 3 e 2 =
Consider the operator D_ = 5§o s Z; €5y, - Then as thDE =
J=1 J
= hDED% = P, the equation D-f = ¢g admits solutions f € E(Q,en)

for every g € E(Q,En) if and only if the equation Pf = g does.

In view of [12], the stated lemma immediately follows from this.

Notice that,by Holmgren's theorem (see [12]), examples of non

5 - . +
i1sotroplc sets Q are all convex sets 1n Cn ! and all sets Q

such that 23R is a C1—surface without characteristic points with

respect to P , i.e. the normal vector field
k = - k.e,
"o 9 9 .
to 30 does not satisfy k k = J_ k.2 = 0 (this means that the
j=o Y

vector field k 1is non isotropic at every polrt of 32 ). Of
course, intersections of non isotropic domains are still non iso-
tropic.

We shall now apply our theory in a way which is similar to 3.1.
Consider the Dolbeault complex
o ———OP(Q,?n) i _ E(p,O)(Q,ven) S E(p’nﬂ()n,’en)»o

(14)

Then we put

- AP _ {p,ya) -
A =0 (Q,\en) , Aq = F (n,‘en) , Q50,...,0%1

-1

Furthermore consider the basic differential forms dij = dEj - ejdzo;

then we call Ai = Eép’Q) the right 0(2,€ )-module of all differen-

tial forms in E(P’Q)(Q,En) of the form

= I: . dthdZ.h...Adi. £l .
,J1<...<Jq J.I Jq )J1,'-'9Jq ’

1 - (P:Q) - - (Paq'1)
vhereas we put Aq = 51 = dz, A 52
We have again E(p’Q)(n,?n) S Egp’q) ® Eép,q) and we obtain a

splitting similar to (7) . Similar to Lemma 4 we have



191

Lemma 8.
The operators 1,?,6,3 occuring in the splitting of the Dolbeault

complex are given by t =0 , & = T and

n
_ = = 1= .
s _Z dea—-_z-“ ; 3 = dzoDE = Edzo(Dany) .

Itv
Ny

n

. . = _1.- . -

Use the identity 3 §dzO(Dx+1Dy) + Z: dea )
J=1 3 |}

Notice that the operator 3'=s n'e3 is now given by ld; (D_+iD_).

Hence we have

Lemma 9.
Let @ Ybe non isotropic. Then the operator
5): E(P,Q—1)_,.E(P,q)

is surjective.

Proof.

It is sufficient to prove that the operator & = %dEO(Dx+iDy) is

surjective from Eép,q—1) onto Egp’Q) = dEOAEép’q-1) By construc-
. (p,g-1) . . .
tion of E , this immediately leads to the equation

2
(D +iD_)f = g, geC (Q), which, @ being non isotropic, admits a
x y ®

a solution fec_(0).
Hence, applying Theorem 2, the Dolbeault cohomology spaces
H(p’q)(n,fn), q=0,...,n coincide with the homology spaces of the

complex

(p) i ,(p,0) $ {(p,n) 8
0—0 (Q,En)———>}- (Q,En)——...——-—M (n,'en)———o

Notice that fehAP’Q)(Q,Qn) if and only if f 1is of the form

T N— . dz_adZ, A...x3Z7, f_ . . s
I,J1(..-<Jq I Jy J I,J1,..-,Jq
with (D +iD )f_ . . = 0 in §© . These forms are called
X I’J1y-°-an

weak complex monogenic (p,q)-forms in Q .
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