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The projective space of complex quaternions is defined as a basic example of a new type of
complex-quaternionic manifolds. It is shown that this manifold has a quite nonstandard topology
and the relevance of it to the twistor correspondence is discussed.

1. INTRODUCTION

The use of complex quaternions in mathematical physics is far from being new,
many relativistic notions have been naturally expressed in terms of complex quater-
nions [1 —3]. Here we want to describe another field, where the space CH of complex
guaternions comes quite naturally into mathematical physics.

The twistor theory has been quite successful recently, many nice applications to
various problems (for example Yang-Mills fields, instantons, monopoles) were found
recently. To show the connection of the space CH to the twistor theory we describe
first briefly the basic twistor diagram, which expresses the basic twistor geometry
lying behind twistor theory.

After a short discussion of the basic properties of the space CH (§2.) we shall de-
scribe (§3.) the properties of the projective space of complex quaternions P'(CH)
and its relevance to twistor theory.

Basic twistor diagram:

Let us consider 4-dimensional complex vector space 7. We shall use the flag manifolds
of vector subspaces of 7T defined by

PYC)={L, = T|dmL, =1},
Gys=1{L, = T|dimL, =2},
Fi,=4{[L,L]|L,cL,=T,dmL, =1,dimL, =2}.

The Grasmanian G, 4 can be considered to be the conformal compactification of the
complex Minkowski space CM. Set-valued maps ¢, ¥ defined using natural forgetting

*) Presented at the International Symposium *‘Selected Topics in Quantum Field Theory and
Mathematical Physics’, Bechyné, Czechoslovakia, June 14—19, 1981.
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projections in the basic twistor diagram

/ \\ O(L)) = (L,| L, > L,) ~ P¥C)

P3(C) ""“‘“"’ Goe L 'L1 CL7J ~ PI(C)
W

are fundamental maps giving the twistor correspondence. The images o(L,) in the
complex Minkowski space CM are usually called the x-planes.

2. THE RING CH

The space CH of complex quaternions is the space of all numbers q = q, +
+ i1Gy + 1292 + 13955 qos ..., 43 € C; (iy, i3, i3 are the quaternion units, the com-
plex unit i in C is supposed to commute with all i, i,, i3). There are two conjugations
in CH:

49" =qo— i1d, — i2q; — isq;
49— q* =q; +iqy + 45 + iyq}
and we shall denote |¢q]*> = q.q* e C.

The set N = {ge CH | ||q||* = 0} is the set of points in CH without an inverse.
for g ¢ N we have g~' = ¢g* . |q] %
The space CH is often identified with the complex Minkowski space CM under

identification
X = [xgs .0, X3]€CM > g = xo + §i;x; + iiyx, + iiyx;.

It is casy to see that x,x* = |
in CM.
The Lorentz group action on CH is described by ([1])

%, the set N corresponds to the complex light cone

AHZ —

—

real Lorentz group: q — Aq

(Minkowski space M is invariant subspace).

Two interesting differential operators are defined on CH. They are an analytic ex-
tension of the two generalizations of Cauchy-Riemann equations to real quaternions.

2

(i) The function f:H — H is said to be differentiable, iff lim [ f(q + h) — f(q)]. h~!
h—0

g € H exists. It can be shown ([3]) that only a linear function has this property. Such
a function can be described as a solution of a differential operator equation D, f = 0.
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(ii) The function f is said to be regular iff D,f = 0, where the operator D,f =
= (¢léqo + iy ¢|éqy + i, ¢Jéqy + iy ¢)éqs) f was introduced by Fueter (for more
details see [2]).

The differential operators Dy, D, can be extended to holomorphic mappings from
CH to CH. After restriction to real Minkowski space M « CM a nice physical
interpretation can be given to those operators. The operator D, is identical with the
Penrose twistor operator, the operator D, can be identified with the Weyl operator
for massless fields. For more details see ([4]).

3. THE PROJECTIVE SPACE PY(CH)

If the space CH is a model for flat (complex) Minkowski space, it seems to be na-
tural that some sort of manifold, modeled over open subsets of CH should describe
curved (complex) spacetimes; such types of spacetimes have been discussed very often
recently [5, 6]. To begin we can try to study the simplest possible nontrivial ¢xample —
the projective space. Let us compare the situation with complex and quaternion
cases. If C is the model for Euclidean space R,, then P'(C) is conformal compacti-
fication of ®,, i.e. S,; if H is the model for R,, then P'(H) is conformal compactifica-
tion of Ry, i.e. S,. It seems to be natural that P'(CH) should be a conformal com-
pactification of CM, which was shown ([6]) to be the Grasmanian G, ,. But it is not
the case, an unexpected suprise is hidden in the complex-quaternion version of the
projective space.

Let us define PI(CH) = [CH x CH] \ [0, 0]/~, where

(91, 421 ~ [41, 5] = 3 CHL |22 + 0, [4}. 93] = [a17, 927] .

The space P'(CH) is a topological space (with factor-topology). We can divide it
into two parts

[CH X CH] N [0, O] =BuC; P’(CH) = (B/~) @ (C/~)
and after some effort we find that

B/~ ;02‘4, C/"" gPS(C)
SO
PY(CH) = G,., U PXC).

The topology in the whole P!(CH) is a nonstandard one, it is not Hausdorff
topology. We can prove the following facts on this topology:

1) For every fe B/~ = G, , it holds that
clos (B) = B U y(p).
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2) Forevery ye C/~ = P3(C) it holds that

NO =yue@y).
¢ open, yel

If we restrict the topology only to G, , or P*(C), we shall recover the usual topology
on them. So “strangeness” or the topology describes exactly the twistor corresponden-
ce @, ¥ between G, 4 and P3(C).

The nice example described above shows a possible way to a new, highly nonstan-
dard type of a manifold modeled over open subsets of P! (CH). It is possible that
this approach can be useful for further investigation of curved (comp]ex) spacetimes.
Some objects living on such manifolds could give new insight into the twistor descrip-
tion of massless fields and other related questions.
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