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1. Introduction

The residue theorem in complex analysis forms a highlight of the standard calculus of one
complex variable. Its generalization for monogenic functions in Clifford analysis is well
known (see [3]). As in complex analysis, the residue is not, in fact, defined for a left
(or right) monogenic function, but for a Clifford-valued (m — 1)-form of the type fdo or
dog, where f (resp. g) is a left (resp. right) monogenic function and do is the standard
Clifford-valued form do = 3 (—1)*1e;d3;.

This type of residue was extended to (m — 1)-forms of the type w = fdog, where f
and g are, respectively, right and left monogenic on a domain in R™ (see [17, 18]).

In both cases described, the residue was considered for pointwise singularities and
it was shown that it is possible to compute it using coefficients in the Taylor and Laurent
expansion around singular points, as it is standard in complex analysis.

It is known from the first papers by Fueter on quaternionic analysis that the singu-
larity set of a monogenic function need not be a point, but can have an arbitrary dimension.
So it is natural to try to find a notion of residue for higher dimensional singularities as well
and to prove the corresponding residue theorem.

Once this is done, still another generalization is possible as for the type of forms
considered. The residue studied so far was introduced for monogenic functions or monogenic
(m — 1)-forms or for their product. As the theory of monogenic functions was recently
extended to so called monogenic differential forms ([15, 4]) of any degree, it is natural to
try to formulate the residue theory for such forms as well.

A main tool used in the paper to define residue for higher dimensional singularities is
the Leray-Norguet theory of residue for a closed differential form having a singularity on a
submanifold of any codimension. The Leray residue was originally introduced in a complex
situation (singularities considered were on a complex hypersurface, see ([9]) and most of
its generalizations were formulated in the complex case. The real version, announced by
Norguet in [5], is not treated in literature in full details and was not systematically used.
It is exactly this version of the residue theory which is needed in Clifford analysis.

We are describing the Leray-Norguet residue and cobord in detail in Sect.4, giving
full proofs for the results announced in the short communication by Norguet (see [5]). It
is very convenient to do so using the language of currents (see [10]). For the convenience
of the reader, the results from the theory of currents needed are shortly reviewed in Sect.2
and a few facts on tubular neighborhoods are collected in Sect.3.

The general theory of residues for monogenic differential forms with higher dimen-
sional singularities is described then in Sect.5 and the general Residue Theorem is proved.
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A big advantage of the residue in complex analysis is that it can be often com-
puted using Taylor and Laurent series. In Clifford analysis, the corresponding notions for
monogenic functions with singularities on surfaces were not yet developed.

In sections 6 and 7, we are introducing generalized Taylor and Laurent series in the
case where singularities are on a compact subset of R? C R™ and we are proving their basic
properties.

Finally, in Sect.8 we discuss examples and show how to compute residues using
either Taylor and Laurent series or by direct calculations. Using the Cauchy transform it is
possible to show that any possible residue on a compact surface really appears as a residue
of a suitable monogenic form.

2. Direct and Inverse Images of Currents; Integration along
Fibers

The definition of the Leray residue and of the Leray cobord, given in Sect.3, is based on the
one hand on the notion of integration along fibers for differential forms and on the other
hand on the notion of the inverse image of a chain. A systematic way how to define them is
to use the language of currents. This language will also be useful in some examples discussed
in the Sect.8, so we shall summarize here some basic facts on direct and inverse images of
currents on manifolds. Details can be found in the book by L. Schwartz ({10}, Chap.IX).
The integration along fibers can also be found in the book by Bott and Tu ([2],p.61-65),
they are considering there the case of vector bundles, which is quite similar.

Even if the theory explained below can be built up for general, nonoriented manifolds
(see {2, 10]), we shall consider only oriented manifolds in our paper. The reason for it is
to keep the technical details at low level and to make basic ideas involved clear and more
understandable. So, without further explicit repetition, we suppose all manifolds to be
smooth and oriented.

2.1. Currents on manifolds

Let us consider a manifold M of dimension m and let us denote by £(M,A*) (resp.
D(M, A*)) the space of smooth k-forms on M (resp. smooth forms with a compact support).
The space E(M, A%) = E(M) (similarly for D) is the space of smooth functions.

The space of (m — k)-currents is then defined as the dual D(M, A¥)". The analogous
space £(M, A¥) is the space of compactly supported currents. So the spaces of m-currents

are the standard spaces of (compactly supported) distributions.
Example.
Let F =3, Fadz(1. mp4 be an (m — k)-form; then

il

Trle] (@, F) :=/M<P/\F

FT{p]

il

(F,¢) :=/MFw

are (m — k)-currents.
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An easy generalization of the example above leads to the notion of a distribution-
al (m — k)-form. The space T’'(M,A™*) of all such generalized forms is defined as the
completion of the space £(M, A™~*) with respect to the topology given by the set of semi-
norms p,F = | [, 0 A Fl,o € D(M,A*). Locally, on a neighborhood U with coordinates
x;, an element F € D'(M,A™ %) can be represented by a distribution-valued (m — k)-form
ZA FAdI{l ,,,,, mHA» Fa € 'D’(U)

Note that currents and distributional forms are two basically different concepts. But
there are two natural isomorphisms between D'(M, A™~F) and D(M, AF)".

The first one is given by a symbolic description

F o Tp, Tplp) = / @A F,
M

which means (again symbolically) that in a coordinate neighborhood U with o = 3~ , padz 4,
F=3, Fadz(y, mpa that

Trlp) = ) sgnA- / oafadziy,  my-
M
It leads to the (local) definition of the corresponding map as

Trlp] = ngn A Falpal

A

The map is extended then by linearity using a partition of unity on M.
The second map is given by F — gT

FTlp] = / FAo= (_1)k(m_k)/ ¢ AF = (1) P Tep).
M M
Examples.

1. Let C be a k-chain in M. Then a k-current T¢ is given by

Tc ::/(p.
C

As we know, there are two distributional (m — k)-forms 65 and 685 symbolically

defined by

Tc[«P]=/Mso/\5’c=/M§é/\sa

so that, in fact,

with é¢,.4 € £'(U) given by
Sc alp] = sgn A - Telpdza) = sgn A/ pdz 4
c
and 8 = (~1)Mm-Rge.
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2. Takey € M fixed and let p = 3~ , pwadz4. Put

Lalel = 0aly), Iya € E(M,AFY.

The distributional forms associated to I, 4 are given by

I, 4l] =/ WA bya :/ 8y N o
M M

From this it is clear that
bya =sgnA-b(z — y)d‘r{l ,,,,, mi\ A
6£‘A =sgn({l,...,m}\ A)é(z — y)de(1,  mpa-
3. Let t = 3. t;0;; € T,M; then for ¢ € E(M,A') we put

tle] = th(y):Ztm(y)
= / pjtjé(x—y)dlu ..... m}
M

- T — — 1)V dss
= [ entte-n S -1,

7

= [ nba-tldzn.m
M
= (-1)™! [6(z — y)t]dzg, my] Ao
4. Let ty,...,tx € TyM. Then we may put
AL LA ) = oY), k).
Note that for 4 = {a,..., 04}

)

Z'Ql

Ao AN Oz, 9] = waly) = Lalp)

2.2. Operations on currents

The boundary of a current. Let T € D(M,A¥) be an (m — k)-current; then we put

T[] := T|dp], ¢ € D(M, A¥).

The operator 0 generalizes the boundary' operator for chains. Indeed, let Ci(M) be the

space of k-chains; then the boundary map
0: Ci(M) — Cry (M)
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is well defined and we have Stokes’ theorem:

/dso=/ ®,
[ ac

from which it follows that
9Tce) = Tclde] = Tocly].

Furthermore, Cx(M) is dense in D(M, A*)" and so the above boundary operator is the only
possible extension of the operator § defined on chains.

The derivative of a distributional form. The operator d = }.dz;3; is defined

on D'(M,A™ %) by the extension of the outer differential defined on the dense subspace
E(M,A™F). For F € E(M,A™ %), € D(M,A*"1) we have

/np/\dF:(—l)k‘l/ dp A F.
M M

From this it is also clear that
Turlp] = (—1)F ' Tpldp] = (1)1 0Tr[y).
On the other hand,

/dF/\gp:(-—l)m_k/ F A do,
M M

from which we get 4T = (—=1)™"*9FT.
This lead to a definition of the differential of a current:

dT(p) := (1) *T[dp] = (=1)"*0T ),
Tdlg] = (~1)10Tlg),

so that also T(dp) = Trd and (dp)T =dpT.

The generalized de Rham theorem. The derivative d on the space of distributional
forms defines the differential complexes (D'(M, A*¥),d), resp. (£'(M, A*),d). The standard
de Rham complexes of differential forms (resp. forms with compact supports) are clearly
their subcomplexes. It is shown in [10] that the homologies of the corresponding complex-
es coincide. It means that the standard cohomology groups H*¥(M), resp. HF(M), are
described by the complex of distributional forms as well as by ordinary forms.

The correspondence F — T, D'(M,A*) — D(M,A™*Y, identifies distributional
forms with currents and it translates (up to a sign) d onto 4. So the homology of the
complex (D(M,A™ %Y, d) gives again H¥(M). By the Poincaré duality, it means that the
complex (D(M,A'Y,d) and its subcomplex of standard chains with the usual boundary
operator give both the same homology groups H;(M).

It is sometimes useful to represent elements of cohomology or homology groups by
currents. We shall do so in Sect.8.
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The product with a smooth form. Suppose that F € E(M,A™ %) and o € £(M, A").
Then we have for ¢ € D(M, A¥)

TaAp[go]Z/ eAhaAF =TrlpAd],
M

FAC,T[ap]:/ Frahe=rTlaAy].
M

We may now define for a current T € D(M, A*)
aAT(p]:=T[pAd],
T Aafp] = TlaA ],

where ¢ € D(M, AF!).
We have then the obvious rules

Torne = ATr, pacd = T A a.
The direct image of currents. Suppose that & : M — N is a smooth proper map
between two manifolds, dim M = m, dim N = n. For T € D(M, A*¥)’, we define

O.Tp] :=T[® ], » € D(M, A¥),

where ®¢ is the standard inverse image of the form . As an immediate consequence, we
get that for o € E(N, AY)

(aN®.T)p] = D.T[pAq]
T[® e A ®*a]
®.(P"a AT)g].

So
8.(3°aAT) = a A d.T. 2)

It is easy to deduce in the same way that

3(2.T) = ®.(T) (3)
d(®.T) = (-1)""8.(dT) (4)
(8.T)d = &.(Td). (5)

Example.
If C is a k-chain in M, then the direct image ®.Tc is always defined as a current by
the formula

<I>.Tc[90]=/cd>.<p

(whether or not @ is injective).
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Integration along fibers. Let ® : M — N be a fibration such that both M and N are
oriented manifolds and that all fibers ®~(u), u € N, are diffeormorphic to a given compact
manifold W. Let us denote dimM = m, dimN = n. Then there is a unique orientation

induced on the fibers, i.e. we can choose an orientation on W such that there is a locally
finite covering {U,} of M for which

N U,) ~ U, x W,

where on the right hand side we consider the canonical orientation of the Cartesian product.
On one piece U, x W, any differential form of degree k > n can be written as a finite
surmn of summands having the form

gaAB, g€ &EUy x W), a € E(W,AP), B € E(U,,A%), p+q=F.

(To be more precise, we mean that a is an inverse image of a form on W under the
corresponding projection, similarly for 8.)

Taking into account the convention that the integral of a form over a manifold is
defined to be zero if the degree of the form does not coincide with the dimension of the
manifold, we define the integral over fibers as the map ®. given by

b.(ga A B) = (/W ga) 8

and we extend it by linearity to any form on U, x W. Using the partition of unity subordi-
nated to the covering {U/,}, the map &. can be extended by linearity to any form of degree
kon M.

To prove that the definition of the integral over fibers is independent of all choices
made, it is sufficient to show that it coincides with the direct image in the sense of currents
which is, of course, uniquely defined. More precisely, we show that the current given by
d.(0), ¢ € E(M,A*) is the direct image of the current given by ¢, i.e. that @l =
®.(,7). In view of linearity, it can be checked in local coordinates. Now for a function g
on U x W and for forms ¢ on W and 3, on U having suitable degrees we have, using the
projection 7 : U x W — W,

0. ((gﬂ"a/\Q‘ﬁ)T) [¢] = (gr‘a/\@‘ﬁ)T[q’)‘dj} = / gﬂ-'a A @'ﬁ A ®‘¢
Uxw

(@.(gﬂ'aA()'ﬂ))T[l/)] = L [/;V gﬂ—‘a:| A ﬁ A d))

which proves the claim.

We shall not distinguish in what follows between the maps ®. and ®. and we shall
denote them both by &..

It is immediately clear from the definition that the integration along fibers is tran-
sitive, i.e. that

(®o V). =d.0 V.. (6)
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The inverse image of currents. If ® : M — N is a fibration, as above, then the
integration over fibers for differential form can be used to define, by duality, the inverse
image ®*(T') of an (m - k)-current T by the formula

3 (Tlp] = T[8.(¢)], » € D(M, A¥).

It follows immediately from the definition that ®* commutes (up to a sign) with the
boundary map 0.

3. Tubular Neighborhoods

Some properties of tubular neighborhoods of submanifolds will be needed in Sect.4. They
are described in detail in the book by Hirsch ([6]). We shall use the properties proved there
in a slightly changed situation, namely we shall assume all vector bundles and manifolds
to be oriented.

Suppose that X is a manifold and S C X is a submanifold such that dim X = m,
dim§ =n.

An oriented tubular neighborhood of S in X is a pair (f,€), where ¢ = (=, F,S) is
an oriented vector bundle over S and f: F — X is an imbedding such that:

1. f preserves the orientations
2. fIS = 1s (S being identified with the zero section of E);
3. f(E) is an open neighborhood of S in X.

An oriented closed tubular neighborhood of radius € > 0 of S in X 1s the image f(D.)
given by a tubular neighborhood (f,¢), where £ = (7, E,S,|[.||) is an oriented orthogonal
vector bundle (i.e. there is a norm [|.|[ coming from a positive definite scalar product on
fibers, depending smoothly on a point) and D, = {z € E|||z|| < ¢} is the disk subbundle
of ¢ with radius e.

The main theorem on the existence of a tubular neighborhood, proved in [6],p.116,
is:

Theorem 3.1 Let S be an oriented submanifold of an oriented manifold X. Then there
erists an oriented tubular neighborhood of S in X,

It is proved in [6] that it is always possible to choose an orthogonal structure on a
fibre bundle, so closed tubular neighborhoods exist as well.

An important information concerning different tubular neighborhoods is contained
in the following theorem.

Theorem 3.2 Let S C X be a submanifold, let both S and M be oriented. Let (f:, &, |].li, &),
1=0,1, be two oriented closed tubular neighborhoods of S in X. Then these two tubular
neighborhoods are isotopic by an isotopy of oriented tubular neighborhoods F, : Eg — X,
0 <t <1, with Fi(D.,) = fi(De,). Here the isotopy of oriented tubular neighborhoods means
a homotopy F : Eq x I — X such that: '
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1. the related map FiEyxT— X x I,F(:z:,t) = (Fy(z),t) is an imbedding;

2. S is left invariant by the isotopy;
3. Fo = fo;
4. F1(Eo) = f1(Er);

&

T1Fy : Eg — E) is an isomorphism of oriented vector bundles.

Both these theorems are stated (and proved) in [6] without any assumption concern-
ing orientations, but the proofs can be modified so to respect given orientations; the fibers
are always oriented in a compatible way with orientations of S and X.

4. The Leray-Norguet Residue and Cobord

The standard operation of inverse image of forms (resp. direct image of chains) under a
map is used for the definition of the corresponding induced maps on the cohomology (resp.
homology) groups.

The less usual operations of the integration along fibers and inverse image of currents
will be used now to define Leray-Norguet residue and cobord maps. We are following closely
the approach announced in [5].

Lemma 4.1 Let S be a submanifold of a manifold X and let (f,€) be an oriented tubular
neighborhood of S in X. Furthermore, let an orthogonal structure on € be chosen and let us
denote by U the image f(D,) of the disk subbundle of radius 1. Then the map = : 0U — S
induced by f also induces the maps

™. 1 £(0U, A7) — E(S, AT (7Y

and
7ot HP(QU) — HP~(m="=1)(§5).
Proof.
The first map is the integration along fibers, the second one is well-defined, because
the map 7. commutes (up to a sign) with d. n

Lemma 4.2 Under the same assumptions as above, the map = induces the map
7 E(S, AP mTr Y L £(9U, AP

and
5 5 Hy(S) = Hyp(mono (OU).
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Proof.

The first map is the inverse image of currents, commuting with the boundary map.
So it descends to the homology groups (represented here by the differential complex of
currents). N

Theorem 4.1 Let S be a submanifold of X, dim X = m,dim S = n. Let U = f(Dy) be an
oriented closed tubular neighborhood given by a choice of (£ 60D, Let 7 : 80U — S be the
induced projection and denote by i the inclusion AU C X \ S.

Then the map

Res := . 04" : HP(X \ S) — HP~(mm=1)(g)
is independent of all choices made.

Proof.

Let (fi, &, 1].1[:), ¢ = 0,1, be two possible choices. A consequence of the Theorem 3.2
is that there is an isomorphism @ : £ — £, between the two bundles which implies that
it is possible to take f] := f; o ® instead of f; and to define both tubular neighborhoods
using the same bundle ¢.

So let us suppose from the beginning that & = £, = £, & ={r: E — S}. Putting
Ui = fi(D1), we have maps m; : 9U; — S defining then the maps (7).

Now, the maps f; being isomorphisms of D; onto U;,

(7w = w0 (fi)w.

The isotopy theorem (Th.3.2) tells us that the maps f; are homotopic with each other which
implies that the forms (f;)*w are in the same class of cohomology. But then the same is
true also for their integral along the fibers of the maps . o (fi)w. =

Definition 4.1 The map
Res :=m, 04" : HP(X \ §) — HP—(m~n—1)(S)

is henceforth called the Leray-Norguet residue.

Theorem 4.2 Under the same assumptions as above, the map
di=id.om t Hy(S) = Hyyimono)(X \ S)
is independent of choices made.
Proof. The maps Res and § are (for a given choice of a tubular neighborhood) clearly

dual to each other. So the independence of § on choices made is a consequence of that of
Res. ]

Definition 4.2 The map

S§i=t.07": Hy(S) — e+ (mon-1)(X'\ S)
70
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is henceforth called the Leray-Norguet cobord.

In the original paper ([9]), the Leray residue and the Leray cobord were introduced
independently of each other. Their connection was then given by the following theorem.

Theorem 4.3 (Leray residue theorem) For any closed (p+m —~n —1)-formw on X\ S
and for any p-dimensional cocycle C on S, we have the formula

§Clw] = C[Resw].

Notice that when both C and §C are cocycles, the usual form of the Leray residue

theorem is
/ w:/Resw.
§C c

The definition of the Leray-Norguet cobord map being somewhat abstract, it is
useful, also for computations, to have a geometrical picture in mind.

So let us consider the simple situation in which the fiber bundle £, giving the tubular
neighborhood of S in X, is a trivial fibre bundle S x V. Let f : D; — U then be the
corresponding closed tubular neighborhood.

Consider now a p-dimensional cocycle C given, for simplicity, by a smooth map
C: I, — S, where I, is the p-dimensional interval. Let us choose any map b: I,,_,_; — S
representing the unit sphere S C V as a cocycle. Applying the definition of the Leray-
Norguet residue and cobord, it is easy to see that for every form w we have

/ w:/Resw,
fo[Cxb) c

whence the map f o [C x 8] : I,y;m_n—1 — X \ S represents the Leray-Norguet cobord 6C.

Hence, geometrically speaking, the Leray-Norguet cobord map consists of replacing
every point of a chain C by a (m —n — 1)-dimensional sphere having its center in the given
point and going to a transversal direction (given by a choice of the tubular neighborhood
and its projection).

Finally notice that we shall use the residue theorem above in a slightly more general
situation, namely in the case of vector-valued differential forms. To this end, let V be a
fixed finite dimensional real vector space. The Leray-Norguet residue for V-valued forms
is then defined by the same methods as above and it belongs to the cohomology space
Hp=(m=n=1)(§ V) with coeficients in V. Note that by choosing fixed basis for V, everything
is reduced to componentwise computation of the residue.

5. The Residue Theorem

In this section, we consider monogenic differential forms having higher dimensional singu-
larities, we introduce the notion of residue for a singularity on a ¢-dimensional surface and
we prove the corresponding Residue Theorem. It is also shown that in the case of pointwise
singularities this general notion of residue coincides with the one given by Zall in [17].
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5.1. Residues as numbers

Let us consider first the simplest case of monogenic (m — 1)-forms, i.e. the case of a form
w = do g, where g is a left monogenic function (the space of all left, resp. right, monogenic
functions on @ C K™ is denoted by My, resp. M,). We know that w is a closed form.

Definition 5.1 Let Q be a domain in R™ and let ¥ C Q) be a compact (oriented) submanifold
of dimension q, ¢=0,...,m — 2.

If w is a (left) monogenic (m — 1)-form in Q\ £ and Res w € HY(Z) is its Leray-
Norguet residue, then the number

resypw == / Res w
T

will be called the residue of the form w at the submanifold 3.

The residue resgw does not differ too much from the Leray-Norguet residue Res w
itself; it is just the evaluation of the corresponding cohomology class on a generator of the
top dimensional homology of ¥, represented by ¥ itself. Because of the fact that the vector
space H(Z) is one-dimensional, the information carried by both notions is the same.

Now, as in complex analysis, the importance of the residue is due to the fact that
the result of an integration of w over a boundary 9Q of a "big” domain Q is computable
in terms of a local information on the behaviour of w near the singularities, encoded in the
value of the residue. This is exactly the information offered in the Residue Theorem.

Theorem 5.1 (Residue Theorem) Let us suppose that Q0 is a domain in R™ and Q' CC Q
is a relatively compact subdomain with a smooth boundary (oriented by its outer normal).
Furthermore, suppose that ¥;, 1 € I, is a finite family of pairwise disjoint compact
submanifolds of V', the dimensions of which can vary from 0 up to m — 2 and let w = do f,
fe M\ (Uier £7)).
Then

/ w = E Tesy,W.
8

i€l

Proof.

For every 7 € I, we shall choose an (oriented) tubular neighborhood U; of £; in € in
such a way that their closures are pairwise disjoint and we shall consider their boundaries
OU; oriented by the outer normal (in every fiber). Then the boundary of the domain
Q" = Q' \ (UierU:) (together with the orientation given by the outer normal) will split
as a union of 9’ (oriented by the outer normal) and all 8U;, i € I (with the opposite
orientation to that described above).

By the Cauchy theorem applied to the domain Q”, we get

/BQ’w N Z~/Z;U.'w.

i€l
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But the Leray theorem tell us that

/ w = / Res w = resgw.
aU; E;

5.2. Residues as functionals

Let us discuss now the more general case of differential forms of the type w = fdog with f
and g monogenic. In complex analysis, such a case is not studied because it is just a special
case of the ordinary Residue Theorem (the product of holomorphic functions being again
a holomorphic function). No analogue of that property is available in Clifford analysis, so
it is natural to discuss the case of the form w mentioned above. The forms of such a type
are met in Clifford analysis quite often.

The Cauchy theorem tells us that w is a closed form. So if w has a singularity on a
submanifold X, the corresponding residue

resw:/ w:/Resw
5T >

is well-defined and it carries an invariant topological information concerning the form w.

A good way how to look upon it is to consider f to be a "test function”. The
knowledge of the residue for all f yields a comprehensive information on the behaviour of
the monogenic form do g near the singularity. It can be seen easily by analogy with the
complex case that it amounts to have information about all terms in the Laurent expansion
around the singularity (if anything like a generalized Laurent expansion is available).

This way of looking to residue was first introduced by F. Sommen in [13] in the
discussion of monogenic differential forms. Following ideas described there, we come to the
following defintion.

Definition 5.2 Let ¥ be a compact q-dimensional manifold in a domain  C R™, where
g =0,...,m — 2. Introducing the space of right monogenic functions on ¥ as the direct
limit

M. (Z) :=limind g5z M, (U),

we shall suppose that w = do g is an (m — 1)-form with g € M;(Q2\ ).
Then the functional Rsgw € M, (Z) given by

Rszw(f] := /EReSE(fw), feM(E)

will be called the grand residue of w at 3.

The grand residue can be used to compute integrals of the form fw over surfaces of
dimension m — 1 for any monogenic function f.

Theorem 5.2 Let ' CC Q be a relatively compact subdomain with a smooth boundary
(oriented by its outer normal) and let £;, 1 € I, be a finite family of pairwise disjoint
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compact submanifolds of ¥, the dimensions of which can vary from 0 to m — 2. Suppose

further that w = do g g € My(Q\ (Uie1Z;)) and that f € M, (Z).Then

fo =Y (Rssw)lf)

aq’ iel

The interpretation of the residue as a functional allows further generalization of the
residue to the case, where the singularity set is a compact set K without a better structure
(i.e., for example, without a structure of a manifold). In such a more general situation all
information is kept in a functional from the space M’ (K). For a certain type of monogenic
g-forms, a study of such residue can be found in [13].

5.3. Residues for monogenic g-forms

The definition of the residue in the sense of functionals can be applied to monogenic differ-
ential forms of degrees other than m — 1.

There are several different notions of monogenic ¢-forms in literature (see {12, 13,
14, 15, 16]). We shall not review these various definitions here, but we would like to explain
the general scheme how to introduce the residue for such forms.

The basic idea is to find two complementary spaces M? and M? of monogenic forms
together with a bilinear map * mapping two forms 7 € M} and w € M7 into a form 7 * w
of degree m — 1 such that the Cauchy theorem holds, i.e. that the product 7 * w is always
closed.

Then again the residue Rsgw on a surface ¥ can be defined for a monogenic form
w € M?(§2\ £) as a functional on M1(X) given by

Rszw[r] = /ERes (7 * w).

It is straightforward to formulate the corresponding Residue Theorem in such sit-
uation in the same way as above. We cannot, however, introduce the ordinary residue
(without a test form} in a general case, because monogenic forms are not necessarily closed.

In [13}, a pairing was defined between forms of degree m — g and g; in [15] the pairing
between forms of degree m — ¢ and ¢ — 1 was just the wedge product.

5.4. Pointwise singularities

The residue for (m—1)-forms w = fdog with f and g monogenic was discussed for pointwise
singularities in [17]. We would like to show how this case fits into the scheme described
above.

This is just the case, when the dimension of the manifold ¥ is zero. In such a case,
the Leray-Norguet residue is just a number and an integral of it over a point is just equal
to this number. The Leray cobord of a point p is represented by any sphere S containing
p in its interior and the integral along fibers of an (m — 1)-form w is the number given by
the integral [qw.
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So ifw = fdog, f € M (Q\ {p}), g € Mi(Q\ {p}), then (if S C 2 is small enough)

TeS{pyw = /w.
S

It was shown in (17] that if cg, resp. dp, are Taylor coefficients of f, resp. g, in the
point p and if similarly &g, resp. dg are Laurent coefficients of f, resp. g, in p, then

resgpo = Y (dgcs + dpig),
5

(in fact, this property was used there as a definition of the residue, here it is a theorem).

6. Generalized Taylor Series

Suppose now that R™ is split into the sum R™ = RP® R?. In this section, we want to obtain a
suitable generalization of the Taylor series for monogenic functions, namely a generalization
such that ¢ € R? is considered as a parameter and that we have a Taylor decomposition in
the variable £ € RP. We shall use some basic facts on the space of spherical monogenics,
for details see [3].

The first idea coming into mind is to use functions of the form P (Z)A(7) as ana-
logues of Taylor polynomials, where P4 is an element of the space M,  of all inner monogen-
ics of degree k and A(y) is analytic, and to express any monogenic function around R? as a
series in such polynomials. This does not work, however, since polynomials of the described
type are usually not monogenic on E™. Nevertheless, there is a possibility to correct such a
function by adding a series of functions of the type ' P(Z )A(7),! > 0, in such a way that
the resulting function is monogenic in R™. As we shall see, there is exactly one way to do
so. Note that all functions added to the original function Px(Z )A(Y) are also homogeneous
polynomials in p = [£], but of higher order. As a consequence, the leading term of the sum
"near” the axis R? is the original function we started with. So such a sum will serve well as
a good analogue of a Taylor polynomial in our situation. We shall show below that every
monogenic function in a symmetric domain around R? can be decomposed into functions
of the described type and that these components are uniquely characterized by the corre-
sponding ”"Taylor coefficients” A(¥), thus giving rise to a generalized Cauchy-Kowalewska
extension property.

6.1. Generalized Cauchy-Kowalewska extension

Let us consider an SO(p)-invariant domain Q C R™ and let us assume that the intersections
of 1 with all subspaces parallel to RP are convex (and hence, if nonvoid, they contain a
point in R?). Putting £} = N R?, we have

Theorem 6.1. Let P. € My be an inner monogenic of degree k and let Ao(f) be a
(Clifford-valued) analytic function in Q. Then there ezists a unique sequence {Ai(7))}iso
of analytic functions such that the series
f(&,9) =) T P(F)AT)
=0
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is convergent in a neighborhood U C R™ of the domain Q and its sum f is monogenic in U.
The function Ao(Y) is determined by the relation

PUE)A0(§) = limy —c (2.7), & = oE.

Furthermore, the sum f is formally given by the expression

(k+5)
7@, 5) =7 (k+F) ("\/_> K

p\/_—JkJrE 1 (P\/——) O -]k+2 (P\/—>

where /Ay denotes the square root of the Laplacian A; (of which only even powers occur
in the resulting series).

Ao(¥)),

Proof.
Let us state first the following basic identities:
0% = (-1)'7'0;,
where J; and 7! are both considered as operators on functions, and
0z (Z¥P(Z)) = =2 "1 P(T),
Oz (M P(T)) = —(21 + 2k + p)T ¥ Pu(T).

The last two formulae can be found in {11]; they express the fact that the space M, , of
inner monogenics of order k and its shifts of the form %! M, , are characterized exactly as
subspaces of Clifford-valued polynomials of a given order such that the operations 8z and
multiplication by & are inverses of each other (modulo a suitable constant).

If we apply now the operator 8; + J; to the (formal) sum f, we get, using the
formulae above:

(21 + 2k + p) Pe(Z ) A (§) = 07 [Pu()Au(¥)],
@ +2)Pe(T)Aupa(¥) = —07[Pu(Z) A2 (7))
Hence the functions A;(¥) are uniquely determined by the formulae
(—1) 2 [Py(Z) Aol7)] )
2120-2)...220+2k+p—2)...(2k + p)
(=1)'T(k + )07 [Pe(Z ) Ao(7)]
2210T(U+k+E) ’

Pe(Z)Au(y) =

and
(=1)'03* [Pu(Z ) Ao (7)) B
2021 —2)...2(2l + 2k +p)... 2k +p)
(—1)'T(k + )32+ [Pu(F ) Ao(¥)]
22T+ k+E241)

Pi(@) Az (¥)
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The last formula of the theorem follows from the expansion (for an indeterminate
variable &)

21

> iy T (3 (3 st

I=0

Finally, we have to show that the series converges in a neighborhood of € in R™. To
this end, it is sufficient first to note that a function f € Coo(Q) 1s real analytic iff for every
compact set K C (2 there exists R;(K) > 0 such that the series

d Aln 71/ n e o y
Z_(_éi)!_‘)z WS, K) = sup 183 1(7)],

n=0

has the radius of convergence equal to R;(K) (see [1]) and then to use Stirlings inequality
to prove that, up to factors of slow growth in &, we have

, 21 21
20T+ k+ g-) ~ 22 (1) & (—6%{ ~ (20).

Definition 6.1 Let k € N be fized and let Q be a domain in R. Then T () stands for
the space of all functions of the form

f=SF A7)

=0

such that

L. for anyy fized, A(Z,7),7 = p{, belongs to the space M, ; of inner monogenics

2. the sum converges in a neighborhood of Q and f is monogenic there.

Functions belonging to T (Q) will be called generalized Taylor functions of order k.

The spaces 74(§2) are direct generalizations of the one dimensional spaces
{axz*|ax € C},k >0,

generated by z* in complex analysis. We shall show now that every element of 7 ({Q) can
be characterized by an M, 4-valued function of § which is playing the role of a Taylor
coefficient.

Theorem 6.2

1. For every f € T((Q) and every y € Q, the limit
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exists. Moreover, putting

—

Tu(F)(E\7) o= r* - lim — (o ,7)

=0 p

we have that for every y € Q fized, Te(f)(Z,7) is inner monogenic, whence Ti(f)
can be considered to be an M, ;-valued analytic function on .

2. For every M, r-valued analytic function A on §Q, there exists a unique element f € Ty
such that

T(f) = A.

Proof. Suppose first that f € T4(§2) is given by

where Ai(Z,7) are M, 4-valued functions on . Then, because of homogeneity in p,

}71‘{%,0 f( fyy) = Ao(éay):
whence Ti(f) =
Suppose next that an M, -valued function A(Z,
basis for the finite dimensional space M, 4, then A(Z,7

form
5 37 Zpka tka

where t; (%) are analytic functions on €. If fx(Z,¥) are the monogenic functions corre-
sponding to tx (7 ) by Theorem 6.1, then their sum f = 2B, fro clearly belongs to Tx()
and Tix(f) = A. The unicity follows from the fact that if

¥) is given. If {Pio}aen, is any
) can be uniquely written in the

Zz (Z,7) € TH(Q)

with Ag = 0, then the condition of monogenicity implies immediately (by induction) that
all other functions A;,! > 0 are trivial. n

Definition 6.2 For any f € T(Q) given, the associated function
co. 1 = .
T(f)(r€,§) =" lim il (08, 9)

is henceforth called the generalized Taylor coefficient of f of order k.
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6.2. Generalized Taylor series

Let us recall (see [7]) that any function on the sphere SP~ admits an expansion
f&) =Y Tf(E),
k=0

where

e f(€) = Pf(€) — EPE F)(E),

Py being the projection onto the space My x of inner spherical monogenics. The series
converges uniformly.

For any function f(Z,%) on Q and for any fixed pair (p,7) such that (Z,7) € Q,
T = p¢, we can thus decompose f as a function of £ by the procedure above.

Definition 6.3 The projection operator I will be extended to the space of smooth Clifford-
valued functions on 0 by the formula

(Ao, 7) = Wl f (o, €, 7)),
(I being applied on the right hand side for (p,¥) fized).

The projections Iz commute with 8z + 9y, (see [7]), hence if f is monogenic in Q,
then the functions Il f are monogenic.

The image of the space M;(?) of (left) monogenic functions under the map II will

be denoted by T 4(2).

Theorem 6.3 (Generalized Taylor theorem)

1. Suppose that f is a monogenic function in Q0. Then f can be written in a unigue way
as

f = kayfk € Tk(ﬁ)9

k=0

the series converges uniformly on compact sets in ). The functions fx are given by
the formula

fo = Pef(p,€,7) — EPAEF)(p,E,7)-

2. The functions fy are generalized Taylor coefficients of order k, i.e. fi € T1x(Q) and
the generalized Taylor coefficients of fi are given by given by

Tk(fk)(rg) g‘) = rk ! })1_1"1’(1) pl_kPkf(pvgy ?j)

The function f is uniquely determined by its set of generalized Taylor coefficients.
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Proof.

The first part of the theorem follows immediately from the properties of the projec-
tion operator Ilx. The uniform convergence on compact sets was proved in (7).

As for the second part, the spaces M, ; are finite dimensional, hence any function
I f can be written as a (finite) sum of functions of the form

Pi(E)A(p,§) + EPUE)B(p, 7), (7)

where Py € My and A, B are analytic. But a function of the form (7) is analytic in points
belonging to §) iff it can be written in the form

Pu(Z)a(p®, ) + £ Pu(2)b(p%, ),

where a and b are (for fixed ) analytic near p? = 0 and P(Z) = p*P(€) € M, ;. This
implies that such functions belong to 7,(Q).

The uniqueness of the Taylor series follows from the fact that the spaces T((Q) are
linearly independent. In the limit, only the part Pi(Z )a(p?,§) survives, which proves the
rest of the theorem. n

Definition 6.4 Let f = 3, fi, fi € T«(Q), be monogenic in Q) and let T%(fx) be the gener-
alized Taylor coefficient of fr. Then Ti(fi) is called the generalized Taylor coefficient of f
of order k and will be denoted by Ti(f).

It a basis {Pra},ep, for the space M, 4 is given, then the generalized Taylor theorem
can be written in a form which is closer to the standard Taylor theorem, the variable
playing the role of a parameter.

Theorem 6.4 Let f be a monogenic function in ). Then the generalized Taylor coefficient
of f of order k can be decomposed in a unique way as

TAEF) =Y Peal)Tual£)F),
«€By

where Tr o(f)(§) are real analytic functions on .

If the generalized Taylor functions, corresponding to kaa(E)Tm(f)(g), are denoted
by Tk o, then

f:ZZTk,a

k a€By
in a neighborhood of Q.

7. Generalized Laurent Series

Knowing what the generalized Taylor series for a monogenic function is, we now wish to
define generalized Laurent series. The basic idea behind it is to use the duality between
left and right monogenic functions g and f given by

/3Q fdog.

80 132



Moreover, the notion of a generalized Laurent coefficient is introduced which appears to be
an M, ; x-valued analytic functional (the subscript r referring to right monogenicity). It
will be convenient to identify below the spaces M; 4 and M, , (the isomorphism being
the restriction to the unit sphere).

7.1. Taylor and Laurent part of the series

Before proceeding further, let us first show how any monogenic function in Q\ K, K C R
being compact, can be written as a sum of its Taylor and Laurent parts.

In what follows we are assuming that R™ = R? x R?, Q ¢ R™ is an SO(p)-invariant
domain such that the intersections of Q with all subspaces parallel to- RP are convex,
Q=0QNR? and K C Q is compact. Calling Mio(R™\ K) the space of left monogenic

functions in R™ \ K which vanish at infinity, we have

Theorem 7.1
M(Q\ K) = Mio(R™\ K) & M/(9),

ie. each f € Mi(Q\ K) admits a unique decomposition of the form f =T f + L f, where
TfeMp(R*"\ K)and L fe M(Q).

Proof. Suppose first that  is a bounded set. We can exhaust by a sequence {2, of open
domains with a piecewise smooth boundary such that Qn cC Qn-f—l c Q. Indeed, taking a
suitable sequence €, > 0,¢ | 0, we choose for every n a finite cover of the compact set 90
by balls B(p;, €),1 € A, of radius €, and we define a neighborhood of 9 by

Un = Bpir en)-
€4
Analogously, we may define a neighborhood of K by
U, = | B, en).
ieAr

Then we shall define
Tf ::/ E(Z —g§)do; f
auy,
on R™\ U} and

Lf= E(@ —y)dog f
8UnNG

on Q\ U,. The first integral defines, in fact, a sequence of monogenic functions, vanishing
at co, which coincide on the intersection of domains of definition, so it gives a monogenic
function on R™ \ K, vanishing at co. The function L f is defined, in the same way, on ).
The fact that f =T f + L f follows then from the Cauchy theorem.

In the case that  is not bounded, we shall exhaust it first by an increasing sequence
of bounded domains and then we shall apply the above procedure. ]
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7.2. Generalized Laurent series

The generalized Laurent series will be defined now by using the duality between the space
M;o(R™\ K) and the space M,(K) given by

fdog,
au

where U is a suitable neighborhood of K.
The spaces M,(K) are defined as the inductive limits
1\4,(1() = lirnindUDKM,(U).

The standard duality theory tells us (see [3]) that we have the following

Theorem 7.2 Let X C R™ be compact. Then
Mio(R™\ K) ~ M, (KY

as topological vector spaces (the topology of uniform convergence on compact subsets is
taken on Mio(R™ \ K) and the strong topology is taken on M,(K)'). The corresponding
isomorphism is given by the Cauchy transform

. -1

T(z) = Z—(Ts, =———), T € M,(K)',& € R"\ K,

where A, is the area of the (m — 1)-dimensional unit sphere.

The map B : Mio(R™ \ K) — M,(K) inverse to the Cauchy transform can be
described as follows:

B(f)lg} =/6Ugdaf, feMyR "\ K),ge M(K),

where U is a suitable neighborhood of K. The notation T instead of B(f) is often used.
The spaces Mio(R™ \ K) and M,(K) thus form a so called dual pair of topological
linear spaces (see [8]), which means by definition that the duality is nondegenerate in both
variables.
The splitting of monogenic functions on open domains into generalized Taylor func-
tions was described in the last section. By duality, it leads to a splitting of M;o(R™ \ K).
Let us denote by 7.;(K) the inductive limit of the spaces T,x(U),U > K (the
subscript r referring to right monogenic functions). Then Theorem 6.3 implies that

M,(K) = écr,'ku{). (8)

The spaces T, x(K) are closed subspaces, hence the dual splitting is induced on the
dual space:

M(K) = D T u(K), 9)
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where the spaces 77 (K are orthogonal to @7, (K). More precisely, the direct sum
in (9) means that each element of M,(K)' can be written in a unique way as the sum of
elements in 7} (K), where the sum is taken in the weak topology. The Cauchy transform
then translates the splitting to the space £;4(R™ \ K). It leads to the following definition.

Definition 7.1 The space L11(R™\ K) of (left) generalized Laurent functions of order k
on R™\ K is defined by

Lix(R™\ K) :={f € Mio(R™ \ K)|B(f)[g] =0 for all g € Ty, k' # kY.

As an immediate consequence of the definition we get
Theorem 7.3 (Generalized Laurent theorem) We have
Mo B\ K) = ) Loa( R\ K)

and 0

M(Q\K) = {éiﬂ,k(fl) &

P Lie(R™\ 1{)] ,
0
both series being uniformly convergent on compact subsets.

Proof. The Cauchy transform gives (topological) isomorphism
Lip(R™\K) > T, (K).

The assertion follows from the fact that the space M/(K) is a Frechet-Montel space ([8)),
whence the weak and strong sequential convergence coincide. =

7.3. Generalized Laurent coefficients

We have seen that the generalized Taylor functions can be characterized by their generalized
Taylor coefficients. We would like to do the same with generalized Laurent functions.

Let us denote by A(U, M, 4 k) the space of all M, , s-valued analytic functions on a
domain U and by A(K, M. ; &) their inductive limit over open neighborhoods of K, similarly
for 7, x(K). The Theorem 6.2 implies then that the spaces A(K, M, 4 1) and T, 4(K) are
isomorphic. By duality, we then have the following diagram:

Tor(K)—2 e A(K, M,y )

} !
(5 A(K, M- 4 )

tB Ly
Llik(Rm \ ]\/) /

Here B denotes the inverse to the Cauchy transform. The map T} is an isomorphism,
so the same is true for 7. The map Ly is then defined as the composition of (T71) and B,
hence it follows immediately that it is an isomorphism as well.

T
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Definition 7.2 For each f € Lix(R™ \ K), the functional
Lk(f) € ‘AI(I(a Mr,+,k)

15 called the generalized Laurent coefficient of f of order k.

Note that the function f € £;4(R™\ K) is uniquely determined by its Laurent
coefficients Lg(f). It is desirable to have a possibility to compute the Laurent coefficients
of functions effectively.

Let us recall that the generalized Taylor coefficients of a generalized Taylor function
f of order k were defined as the limit

the limit being pointwise.

We would like to have a similar formula for the computation of the generalized Lau-
rent coefficients. Pointwise limits similar to that described above cannot be used anymore
and should be substituted by a limit taken in a suitable topology on the corresponding
function space. It is necessary first to describe how the space A(U, My i) of M 4x-
valued functions on U,U C R™ open is imbedded into the space A(U, M, ;). The (finite
dimensional) spaces M ; r and M, ;  are dual to each other, the corresponding duality
being

(frg)= | S(E)a(E)dS, f € Mrsss g € My

where dS stands for the standard surface element on the sphere.

For f € A(U, M, 1+x), g € AU, Mi4x), the duality is given by

(f.a)u = /U (7). o(d))di

The spaces M, , r and M, 4« are usually identified (the isomorphism being the restriction
to the unit sphere).

Let us study now in more details the action of the Laurent coefficient Li(f) of a
function f € Lix(R™\ K) on an element ¢ € A(K, M, 1 ).

By definition,

(Le(f)p) = [ ¢dof, (10)
av
where V is a suitable neighborhood of K in R™ and Tx(¢) = ¢, ¢ € T4 (K).
It is possible to choose V in the form V = B, x U, where B, is a ball in R? of radius
p and U is a neighborhood of K in RI. We can suppose that V CC Q and that & is defined
on a neighborhood of V. Denoting the restriction of ¢ to 8B, x U by ¢,(£,7), we know
that we can write it as a sum

$ = ¢} — ¢2¢,
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where ¢! are in A(U, M, ;&) and that Ti($) = ¢ is given by

T(6)(E,7) = lim ~ (&, 7). (1)

The restriction f, of the function f to 0B, x U can be decomposed in the same way into
the sum

fo=1y €8,
where f} are in A(U, My 4 x). Moreover,

1 2E,9) = 2

lim 22, 7) = 0 (12)
Under the duality (10), only two of the four pieces survive and because of (12), only the
piece

/ ¢ldo € 12
8B,xU

is expected to be important for us.
In analogy with the case of generalized Taylor functions, an expression for the gen-
eralized Laurent coeflicient Lx(f) of a monogenic function f can be guessed:

— -

L(AE7) = lim g7 12E,7), FHE ) = PUEL)E).
It 1s far from being clear, however, if such a limit exists and in what sense it should be taken.
We are going to show now that for every neighborhood U of K in 1 the limit exists in the
weak topology of the space A'(U, M, ) and that the limit is equal to the corresponding
Laurent coefficient. The proof of this fact will be done in several steps.

Theorem 7.4 Let us suppose that f € L4(R™\ K) and that f, = f; — Efz, where f; are
in .A(Rq, /\4,,+,k).
If the limits

fo=limp*PNf, i = 1,2

exist in the weak topology of the space A'(U, M, , 1) for every open neighborhood U of K
in R7, then the limit fZ does not depend on U and

- -

Proof.

Let f3|u denote the limit of p**7~! f? in the weak topology of the space A'(U, M, 4 x).
It is sufficient to show that (Li(f),») = (f3|uv,%)uv for all neighborhoods U of K and for
all o € A(U, M, 4 1)
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So let us consider a neighborhood U and a fixed element ¢ € AU, M, +4). Let us
define again ¢ = T, '(¢) € T-x(U). Then the open sets

V.= B(0,1/n) x U
contain K and the element (L(f), ) can be computed by
(Le(f)yp)y = [ ¢dof
aVn

for all n > no, n, big enough.
Recalling that the restrictions of f and ¢ to the boundary of V, define elements f{/n

and ¢§/n in A(U, M 4x) and AU, M, 4 i), respectively, and that do = pP~ 1 dSdy on
Siyn x U, we get

(Lu(f)g) = lim /U P G (), FonT )T +

=00

n—o00

+ him [ P (§ ) fi(9))dT -
U
But ,/)“'J”""If{'/ﬂ — f¢lu and p"‘¢}/n — p, p"‘(ﬁf/n — 0, whence

(L(f), ) = Hm (0™ ¢y, 07 ) = (folu, o)

n-—

Using the theorem just proved, we shall be able to compute some important examples
of generalized Laurent coefficients.
Examples.
1. Let us consider first the Cauchy kernel
3 1 F47
(E+9)=-7- B

It is easy to see that E belongs to £;o(R™\{0}) and its parts E* in the decomposition
E = E' — ¢ E? are given by

1 1 y 2 1 P

= [’ = T
An [p? + 17 P72 An [p? + 17 P]/?
We shall show that for every ball U C R? with the center in the origin the limit

lim () — £ E}) = 6()

p—0
exists in the weak topology on the space A'(U, M, x), whence

LO(E) = 5(17)
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Indeed, for each ¢ analytic in a neighborhood of U we have

: p“/ e —7) o,

1 LN —V) 454

0 oo (g2 + TP
—1

— 1 Ppp p y) d

e e

. 1—-4)
-1 Ap p(pi )( Ji
Ln/u Al 1 2P

Ap »(0) .

Am Jpo L+ [ 772"

O AA [T 5971
S A o Gren® 0

lim " ((E; ~ £ E}), o)u

2. If F € A(K) is an analytic functional on a compact subset K in RY, then we can
define its Cauchy transform C(F) by the action of the functional F on E

C(F)( +§) = Fs|E(Z +§ - )], § +7 € R*\ K.

The Cauchy transform C(F') is a (left) monogenic function in the domain R™ \ K.
Moreover, Lo(C(F)) = F,i.e. the Cauchy transform is the inverse of Lg.

Indeed, for each ¢ analytic in a neighborhood of U we have
limy [ FolBolo 47 - D)lotd)ar =
= tim Folp [ Bulof 43 - 9)lela)ar]

. A, olpii + 7)1 — ),
= lim Fj; -2 d
= (/‘;.u An Grfapr )

= Fgle(v)].

3. Let Pi(Z) be a (left) inner spherical monogenic of degree k in R?. Then it is an inner
spherical monogenic of degree k in R™ as well and its inverse in R™

Y -1 Z+7 z
K = Py
=
-1 47
A 7 L 2ktm )
An [T + 7]

is monogenic in ™ \ {0} and vanishes at infinity. It is clear that it is a generalized
Laurent function of degree k and its two parts I} are given by

L1 PR . 1 pMIP(E)
Kio = 3 D irppenga Khe = T-Ta T e
N4 Am [p2 + ly |2] +m/2 ' Am [p'l + |y 12] +m/2
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We shall compute the Laurent coefficient Li(Kg). Let us consider again a test function
0 € AU, M, 1), then

lim p***" (K, 0)u

p—0
2k+p—1 T z =
p e, 9)PE)p=T) 10,
d dSd
Am /s;,- (02 + |7 |?]ktm/2 Y

o o€, pi ) P(E)(1 — @)
= kg/.\épl AL+ [a e 4948

s771 - .
B —.—/ (1 + 52 k+m/2d5/5p_‘ ?(£,0)F(£)dS

(k+5I(%) 1 ~ ~
= W;—)A_p/ @(&,0)Pc(€)dS

The final answer is hence

= lim
p—0

LK) = LB+ 2)0(E)

The computation in the last example leads us to the following definition.

Definition 7.3 Let K be a compact subset of R? and let F ¢ A'(K). Let us choose a (left)
monogenic Pr(Z) of degree k in R9.
Then the Cauchy transform Cy(F) of order k of F is defined by the convolution

Ce(F)T +y)=Fs[Ku(€ +7 —7)], ¥ +§ € R™\ K,
where

1 F4i-7%

S

P(Z)
(note that the kernel Ky depends on the choice of P).

The Cauchy transform (of order k) Cx(F') is a monogenic function in R™ \ K. As in
Example 2, the computation done in Example 3 yields, by convolution, that all weak limits

of the correspondlng restrictions exist and that the generalized Laurent coeflicient is given
by

I(k+2T(3)
LTk +2)

where Ly(C(F)) € A(K) @ M1 ~ A(K, M, ). So the Cauchy transform of order
k describes the inverse of the map L;. Now we are finally able to prove that the Laurent
coefficients can be computed by the corresponding limits in all cases.
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Theorem 7.5 Let us suppose that f belongs to Lix(R™\ K) and that f, = 5 —Efz, where
fi are in A(R?, M, 1x). Then

folo :=lim g™ £, i = 1,2

exists in the weak topology of the space A’(U,M,,hk) for every open neighborhood U of K
in R? and

Li(£)(E,7) = f2u(E, ).

Proof.
Let us take any f € £;4(R™\ K) and let us choose a basis {Pia}ep, for the space
M. Then Li(f) € A'(K, M, ;1) ~ A'(K) @ M, ; can be written as a sum

Li(f) = ) caPra, ca € A(K).

a€By

If we denote the Cauchy transform of order k& corresponding to the monogenic Py,
by Cr4, we can define

m

I= {F(‘E)F(k + §)} aggk Cralca)-

Then Li(f) = 2-aeB, CaPra = Li(f), whence f = f. So we can use all information on the
limits computed in the examples, which finishes the proof. ]

8. Computation of Residues

In this section, we shall describe a few basic results showing how residues can be computed.
It 1s clear that the technique for calculations of residues should be developed in more details
in future.

8.1. Residues of indicatrices

If ¥ is 2 compact submanifold of R™ of dimension ¢, then any g-form «w on ¥ defines, by
convolution with the Cauchy kernel, a monogenic function & outside . We shall call it, by
tradition, the indicatrix of w. As could be expected, the Leray-Norguet residue of @ is, as
a cohomology class, represented by w (see Theorem 8.1 below).

It shows at the same time that the theory of residues is rich enough, it gives a
possibility to construct for any class of cohomology a suitable monogenic function f such
that the residue of do f is represented by w.

More generally, let us recall that the cohomology groups of ¥ can also be represented
by closed distributional forms in £(E, A?). Then the corresponding indicatrix & can be
defined by the same formula

o(#) = [ B - 9)eli),

111 89



and we have again that Res (dod) is represented by the distributional form w in H(X).

As a typical example, the residue Resz £y of the Cauchy kernel in a point § € ¥ is
represented in HI(X) by the destributional ¢-form é;.

We would like to stress now that even much more is true, if we consider the residue
as a functional. We know that the grand residue Rsg(w) is a functional in M.(X), acting
on test functions ¢ which are restrictions of monongenic functions on a neighborhood of ¥.
For some monogenic forms, the grand residue can well belong to the subspace £'(£, A?) of
distributinal g-forms. It means that the action of Rsg(dod) can be extended to the space
of all smooth functions. It is true in the case described above. Note that as a special case
we have RsgEy = 6;.

Theorem 8.1 Let & be a compact submanifold of R™ of dimension q and let w € £'(Z, A%).
Let us define the indicatriz & by

() = / (7 — §)ld),

where E is the Cauchy kernel.
Then

Rss (do ) = w.

Proof. To prove that Rsy (do &) is equal to w, it is sufficient to prove that for all f € M, (X)

fdacb:/gfw.

§8

But

/52 fdoo = [ (7 )dos /E B(E -7 (i),

Il
o
oy
—
o
t1
LY
~
—_
8y
=
)
8y
—
!
8
|
@2y
—
€
A
2y

1l
o
L

-
—
2y
—

€
=
@y
—

8.2. Computation of residues by Laurent series

The theory developed above on Taylor and Laurent coefficients can be used to computed
residues of monogenic differential forms.

Theorem 8.2 Let ¥ be a compact submanifold of dimension ¢ in ) C R™ and letw € E£1T).
Let K C Q be a compact subset such that there is an open subset Q0 of an affine subspace
A, of dimension q containing K. Then for all functions f € M, (Q\ K) and g € MI(Q\K),

we have
resg(fdog] = Z(Lk NTk(9)] + Li(9)[Te( ),



where Li(f) € A(K, My ), Li(g) € A'(K, M, 4 ), To(f) € A(K, M, 1) and Ti(g) €
A(1(1Ml,+,k)'

Proof.
After a suitable Euclidean transformation of coordinates, we can supose that ) C R*.
Taking into account that X C Q and that f and g are monogenic in 2\ K, the
Cauchy theorem implies that for a sufficiently small neighborhood U of K in R™

Azfdag:/aufdag.

We can write now the generalized Laurent series for f and g and to use the orthogonality
relations for spherical monogenics in dimension m — k, (i.e. for values of f and g) to get
the result. Note that if the set K above is a point, then we can imbed it into an affine
space of dimension 0 and the theorem above coincide with the one given by Zoll (see [17]).
Note also that it is necessary to have a flat piece of dimension g around K to apply the
decomposition into generalized Laurent series. It is a quite interesting problem to ttry
to formulate generalized Laurent series for non-flat manifolds. We shall not discuss this
difficult problem here.
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