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Introduction.

The purpose of the paper is to discuss generalizations of the
standard operators 9 and 3 1in complex analysis to higher dimen-
sional cases. There is already a lot of work done in this direction.
A variety of ways was suggested for such generalizations ( [1}-[10}).
A general scheme, describing the operators mentioned above from the
point of view of representations of groups, was presented in [1ﬂ
Here we are going to discuss flat cases only (the general scheme is
formulated on manifolds; a lot of results is known e.g. for Dirac a
and twistor operators on manifolds [12]-[1ﬂ ). The operators descri-
bed here include not only elliptic operators, but also hyperbdolic
(or ultrahyperbolic) ones.

After the description of the group theoretical classification, we
shall discuss in §.1. main examples included in the scheme. The basic
facts on (complex) representations of Spin(n) are shortly summarized
in §.2. and the decomposition of tensor products of such modules,
needed later, are discussed in §.3. The most of examples is concer-
ning with the case of real representation spaces and the correspon-
ding decomposition of tensor products of real modules. This problem
is treated in §.4. In §.5. we are finally able to prove that the ope-
rators, coming from the group theoretical point of view,coincide with
the operators studied before in various generalizations of Cauchy-

Riemann equations.

Conferenza tenuta il 3.10.1984 dal secondo Autore.



1. The classification scheme, examples.

Let us consider a real, irreducible G-module E (i.e. a represen-
tation space of G over R). We shall concentrate to the case of the
group G = Spin(p,q) in the paper. Let us denote by ¢”(V) the space

of smooth maps from a fixed domain 2 < R"™ into the vector space V.
. j =

Denoting shortly Ad = AJRn , we can split the vector-valued de Rham

sequence on &

c™ (A0 ®RE)—d- c™(A’ ®F) d ¢ c™(A" ®E) (1)

in the following way. The tensor products Ad QRE split into irreduci-
. m 5
ble pieces (as G-modules overR ), say A? QRE =3 F .

Then we have the splitted de Rham sequence

3 1, e T— > n-1
1 ® \
c™( E)\ : : /c“(An®RE) (2)
® ®
O A - 0 S
m4 T— — My

where the operators aj are defined as the composition of the exte-

rior derivative d with the projection to corresponding pieces in the

decomposition. Any operator in the diagram (2) can be consider to be

a generalization of 3 or 3 (acting on functions or forms) from com-

plex case to higher dimensions (strictly speaking it is true for Spin(n)).
Note that the same operator can appear in different diagrams for

different G-modules E and that it is possible to classify them

) . ‘y
by the corresponding modules Fi and F§,1. Every such operator can
appear in the first array of operators in the diagram (2) for E = Fi,

. 1
so we shall discuss only operators from E to one of spaces Fk.

In some examples a little bit different version of the diagram (2)
will be used. For complex G-modules E (i.e. representation space of G
over C ) we shall consider complex valued differential forms and we

shall split E-valued differential forms into complex irreducible G-mo-
J . 3 = J
dules Fp (i.e. Ay QCE Y Fk).
To describe possible applications of the scheme we shall discuss now

examples of various higher dimensional generalizations of C-R equations,

studied by different authors. Ve shall present results first, i.e. we



state which choice of the group G and of the G-module E leads to
the corresponding differential operators. The proof of these state-

ments will be given in §.h.

Example 1.(Regular spinor fields[sl).

Let us take @< RP*? g = spin(p,q) (RP*? nas the quadratic form
with p positive and ¢ negative signs). Let E be a basic (real)
G-module (see §.3.).

The tensor product E@RA1(RP’Q)‘ splits into two pieces F, , F,.
One of them, say F,, is again a basic (real) spinor G-module (usually

isomorphic to E). If = is the projection of A‘G)RE onto F1 , then

1
the equation (ﬂ10d)¢ = 0 is just the condition of regularity for
spinor fields, described in[5] . The equation is of elliptic type for
p=0 or q=0 , while for other cases it is hyperbolic or ultrahyperbolic

system.
Example 2 (Clifford analysis p])

Let us take & < r01 , G = 8pin(n) , E = Cn, wvhere Cn is the

0,n The group Spin(n) is defined usu-

(real) Clifford algebra for R
ally (see §.3.) as a multiplicative subgroup of tm s SO th is the
G-module (using, say, the left multiplication). The space E = Cn is
not irreducible, however, hence in this example, strictly speaking,

the described scheme cannot be used. But the space th can be decom-

posed into a sum of irreducible (real) G-modules (see §.3.) and all

irreducible pieces in the decomposition Cn = E1 ® ... Ek are the

same basic spinor G-modules. So we can apply the above scheme to

each piece with the same result as in Example 1:
1
E.® A = F, F.
J R Ja‘e Js2

and we shall add them together after:

.. 9F ) c“(tn)

c™(F
C“(C)/ 1, o1

n
\c"’(F1 ,® .. 8F )

Then the operator n1°d is just the standard differential operator

c (E19 eEk) =

for regular Clifford valued maps:

vy i RO, ¥ (T 1;2/0x;) ¥ (3)

-M

wvhere f1""’fn are generators of tn'
It is now more common to study the following a little bit diffe-

rent version of regular Clifford valued maps.
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O,n+1
bl

Take o € R G = Spin(n+1) and consider the corresponding Clif-

ford algebra C with generators ¢ fn. Then we can identify

o+ 1 0%
. +

the algebra E = Ch with the even subalgebra Ch+1 of C%+1 by the

correspondence e; ~ - fo.fi 3 i=1,...,n .

Then the maps ¥: Q ——*—th are special cases of maps into Cn+1

and the equation (3) takes form (after multiplication by —fo)

o, 3, = 3/bx,

n
(%’eiai) ) ;

where €q = —fo.ro = 1 , The function theory and the transform analy-

ses for such maps is carefully studied in [1].

The well-known Fueter's regular functions of quauaternionic variable
( [9]) constitue the special case of Clifford analysis ([1]) for dimen-

0,k

sion n=3 . In this case we have 0 < R H and E = 63 T HSH

Each of the two components of the corresponding maps are then (after a

suitable identification) just Fueter regular functions.
Example 3 (Stein-Weiss generalization of C-R equations [8])

The representation spaces E of the group Spin(n) in this examp-

le are complex G-modules, maps are defined on Q € Rn. The most inte-

resting examples are the cases E = A (where A is a basic {complex)
spinor representation - see §.2.) and E = Ar.QRC = AZ.

The procedure given by Stein and Weiss uses the fact that there is
the exceptional irreducible piece in the product EGDCA; » called the
Cartan product of E and A; . Jt is characterized by the fact that1
its heighest weight is the sum of the heighest weights of E and Ac .
Let us denote it by F1 s, SO E®CI\; = F1OF2 , where F2 can be now

a reducible G-module. Denoting n, the projection to F2, we can write

2
Stein and Weiss's equation as (wzod)W = 0. They contain as special

cases (the Euclidean form) of Dirac equation (if E 1is a basic spinor
representation) and the Hodge operator 4 + & (if E = AZ). Both the-

se special cases are well studied on manifolds ({137
Example 4 (Massless fields on Minkowski space ‘h])

In this example hyperbolic systems of equations will be discussed.
They are not, being hyperbolic, generalization of C-R equations, but
they are closely connected with the corresponding elliptic system, gi-
ven by ‘'analytic continuation to Euclidean spacetime'. The correspon-

ding maps are very often considered on the complexified Minkowski spa-

ce ( D121, Dol)
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1 . .
Let us take Q c R >3 (Minkowski space), G = Lorentz group. There

are two basic spinor representations A* and o™ of G (see 5.2.)

and we shall denote EJ’k = SJA* SkA— , where s” denotes the n-th

symmetric tensor product of the corresponding vector spaces. The de-

composition of the tensor product EJ’kQD A: looks like
Ej+1,k+1

® gd- ok g pd*t1k=1 g pi=1,k=1
The four differential operators obtained in such a way are just the
equations described by Carding ( [¥] ) In the case j=0 or k=0 the-
re are only twvo pieces in the decomposition.

In the standard spinor notation ([20]) the equations looks like

AA? _ A(A' B'..F'
vV Yp Ear..Fr 0O v "a.E 0
L
oA (AYB'..Ez =0 (A B ..E) _
A'..F') V(arTr..pr) - ©

The special cases when the field carries only one type of indices
are the most interesting ones. It is either massless field equation
( 1123,1[19)) or twistor (or Killing) equation for spinor fields with
(possibly) higher spins.( [12], 1)),

2. Tensor product of complex modules.

The classification of finite dimensional, irreducible (complex)
Spin(p,q)-modules is nowadays well-known, classical fact. Tensor
products of such modules decompose, as a rule, into several irre-
ducible pieces and there are general formulae describing the decom-
position ([22)). But to compute explicit examples an efficient pro-
cedure for the decomposition is needed. We have found an algorithm
for it in(23] (general theorems [22]seems to be of no practical use
for somebody who is not an expert, so it is very useful to have such
an explicit algorithm, derived from them, at hend).

We shall review first shortly necessary facts on the heighest
weight classification, then we reproduce the algorithm and use it to
compute some examples needed later. We shall consider only complex
modules in this paragraph.

The heighest weight classification of irreducible, finite dimen-
sional G-modules coincide for all real forms of a complex Lie group G
(see [22], chapter 8), so we shall explain it on the most convenient
case of the compact Lie group G = Spin(n). Let p: spin(n) —= s0(n)
be the double covering of the orthogonal group. It is necessary to di-

stinguish even and odd dimensions now.
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Let k ©be a positive integer such that n = 2k or n = 2k+1 .

Let us denote by T SO(n) the maximal torus of block diagonal ma-
trices (exp(it1),...,exp(itk)), vhere exp(itj) denotes the 2x2

real matrix costj —sintj
sint. cost .
J J
(for n = 2k+1 there is 1 1in the last place on the diagonal).
-1, . . . .

Then T = p (T) is the maximal torus in G . If E is a G-mo-
dule, then E is a direct sum of one-dimensional T-modules. Every
piece in the sum is of the form

(exp(1t1),...,exp(1tk)) ———= exp 1(m1t1+..+mktk)
wvhere components of the vector m = (m1,...,mk)€ Rk are either all
integral or half-integral. Such & vector is called a weight of the
representation. Let us use the lexicographic ordering on the set of
weights. Among all weights occuring for the given representation the-

re is the unique highest one.

Let us denote

n=2k+1: C = {m| m =...2m320}; C ={m|m1>...>mk>0}

1

n = 2k : c {m] m1>...;mk_13|mkl} 3 C = {m] my>..>my > Imkl}
The weights me C(C) are called (strictly) dominant weights.

Theorem 2.1 ( [8],[22])

There is 1-1 correspondence between irreducible, finite dimen-

sional G-modules and dominant weights.

Given two G-modules Em . En with heighest weights m , resp. n ,

then every weight of their tensor product EmGDEn can be expressed
in the form a + B ,vhere a (resp. B) is a weight of E_ (resp. En).
It is very difficult, however, to find, which heighest weights will
occur in the decomposition of Em8>En into irreducible pieces and
what will be their multiplicity. The following algorithm for it can
be found in [23]).

Let us denote 6 = (k-3,k-2,...,3) for n 2k+1

and § (k-1,k-2,...,0) for n = 2k .

Further we have to know all wveights of the representation Em (so

it is worth to take for E_ in the algorithm the representation with

more simple set of weights).
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Let us denote further W the group of all permutations and sign
changes acting on coordinates in R® in the case n = 2k+1 , while
for n = 2k the group W consists from all permutations together
with even number of sign changes. The signum of an element W means
the signum of the corresponding permutation. The diagram gives the
method for computing all irreducible components V(ki) of the tensor

product V(m)® V(n),vwhere k;,m,n are their heighest weights.

Write down all weights of]

v(im) with multiplicities

[Add 8 + n to each}

result is result lies result does not
c in € lies in €

T~
) © g

on

IDiscard it| Retain it and Apply some oeVW

subtract 6 to get result in C.

Discard,if on bounda

Combine.

Ir @ was used, can-

ry, otherwise retain

with sig&n o

cellation may occur

One of the simplest information which can be gained from the pro-
cedure is the fact that m + n occurs as the heighest weight in the
decomposition with the multiplicity one. The corresponding G-module

E +n is called the Cartan product ([8]) or the Jung product ([22])

of E and E .
m n

Now there is k fundamental representations of G with the pro-
perty that any irreducible representation of G is obtained by suc-
cesive Cartan products from fundamental representations. The list
of these fundamental modules is ( we shall denote simply the modules
by their heighest weights):

n = 2k+1: E, = (1,0,...,0) n = 2k: E

(1,0,...,0)

. .

E 4 (1,00.,1,0)
= (},.....,3) E

(1,...1,0,0)

=
L

(3,......,3)
(%,""sg’-%)

tx
n
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A1l these fundamental modules have the standard realizations.

Modules Ej with integral components of h.w. are simply J-th

exterior powers AJCn of the basic représentation of so{n) on Cn’

while the other three are vasic spinor modules, which are usually re-

alized as ideals in Clifford slgebras as follows.

Let e, ,.--s8 be the standard basis in Cn. The (complex) Clif-

ford algebra Cz is the associative algebra with unit 1 of dimen-
sion o0 oyer C with generators e,,...,€, satisfying relations

= s . c _ + -
eiej + ejei —26ij . There is the standard grading tn t; (<] Cn .

They have nice realization using matrix algebras C(x) = Mat(kxk,C).
For n = 2k we have the isomorphism ‘Cﬁ = C(2k) , while for
n = 2k+1 we have Cz = C(2k)€BC(2k) .

The algebra C(k) being simple, it has only one cless of irredu-

cible modules, namely representations on Ck by multiplication.

This module is very often defined more invariantly to be & minimal
left ideal in C(k).

c
n-1

114

. +
Because Spln(n) < th , so we have two standard modules

+ - . - . .
A and A for n = 2k (both of dimension ok 1) , while there 1is

only one basic module A (of dimension 2k) for n = 2k+1.
They are just three fundamental spinor modules, described above.

(For more details on Spin groups and Clifford algebras see [2“]-[27])

We shall end the paragraph with a few examples of the decomposi-

tion of tensor products needed later.

Example 5.(see 1161

Take E = Cn = (1,0,...,0) and E_ = (3,...,3) . Let n = 2k.

The set of all weights for Em is

(1,0,00450), oo ,(o,...,0,1),(—1,0,...,0), vee {0,...,0,-1)
The inspection of possibilities in the algorithm is very quick
(with a little of practice) and gives the result

Ems En = (}g,%,...,%)e (%,---:%,—%) .

In the same way we have
(1,0,0...50) ® (3,...,3,-3) = (3,0,...,3,-3) @ (},....1)
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Example 6 (see [16])

Take the same Em » E as in Example 5. Let n = 2k+1.

The set of all weights for Em now looks like

(1,0,..,0), o« ,(0,..,0,1),(=1,0,..,0), .. ,(0,..,0,-1),(0,...,0).
So the algorithm gives

(1,0,...,0)&(%,.--,%) = (3333"03%)0(5"'°15) .
Example 7 (see [8]).

Choose Jj&{1,...,k}. Take Em as before and

F .= (1,...,1,0,...,0) with 1 Jj-times.

n
J
Then the procedure gives
E @E__ = E ® E ® E .
m nj; m+n; LEP n;_4

Example 8.
Take G = Spin(3,1). The classification of irreducible G-modules

is the same as for the group Spin(bl), i.e. by couples of integers

or half-integers satisfying the relation m,> |m2|. The fundamental

. . . . +
modules are in this case just both spinor moduls A and A

with heighest weights (3,3), resp. (3,-3).

. j .+ .
The symmetrized tensor products SJA are succesive Cartan pro-

ducts of A' , hence they have h.w. (j/2,j/2). Similarly, the modu-

les SkA_ have h.w. (k/2,-k/2). Their tensor product Y% is ir-"
reducible and have hence h.w. (3(j+kx),3(j-k)). There are simple

relations my, 4+ m, = j » m, -m_ = k between two corresponding

1 1 2

classification of irreducible G-modules (see Example k).
Using the algorithm it is easy to find the decomposition of the
tensor product A; QDEﬂ’k . There are four weights for A; (as in

Fxample 5) and for every weight there is the corresponding irredu-

cible piece in the decomposition. The result is as in Example L.

3. Real representations of Spin(p.qg).

For the procedure, described in §.1., we have to consider real
Spin(p,q)-modules and the decomposiotons od their tensor products

over R with A1Rn . To handle the problem, we shall collect ne-

cessary notions and theorems from [21], [26] » [28] .
A confusion could arise as to the definition of real, resp. qua-

ternjonic G-modules. The most natural definition is the represen-
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tation on a vector space over R , resp. # . But very often another
definition (not completely equivalent) is used, where the module is
always a complex vector space E with so called structure map J .
To distinguish these two possibilities, we shall use the name G-mo-

dule with real (resp. quaternionic) structure in the second case.

Definition 3.1.

Let V be a G-modul over { . A structure map on V 1is a map
j: Y—=V such that
(i) geoj = jeg for all geG,
(ii) j is conjugate-linear, i.e. jlzv) = z(jv) , z<€C , veV,
(iii) 32 = =1 .
Definition 3.2.
(i) Let V be a G-module over R , define ¢V = C®RV , regarded

as G-module over C .
(ii) Let V %be a G-module over C , let rV have the same under-
lying set as V and the same operations from G , but regard it
as a vector space over R .
(iii) Let V be a G-module over C . We define tV to have the
same underlying set as V and the same operations from G , but we
make € act in a new way: z acts on tV as =z used to act on V.
(iv) Let V has a real structure. Then the 41 and -1 eigenspaces
of j are G-modules over R we shall denote

»
Re V = {VEV[ Jjv = v} .

Remarks.

1. If V is a G-module over H# , we may regard it as G-module
over C with a structure map J j2 = -1 (actually in two ways,
see[28],p. 24). Conversely, given G-module over C with a struc-
ture map j , § = -1, we can get back the corresponding G-module

over H .

5. The situation is a little bit more complicated in real case (a
confusion could arise here). It is usual (see[Ih], P6]) to regard
G-module V' over C with a real structure j as being equivalent
to a G-module V over R , if V' = cV and Vv = Re V' (see [2@ .
p.25). For our purposes it will be better to distinguish clearly

between them.
Theorem 3.1.([28],p.27)

Let V be a G-module over C , then crV =V ® tV .
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Theorem 3.2 ( [28] »p.64)
Representations V with real or quaternionic structure are self-

conjugate, i.e. tVE V .
Theorem 3.3 ( [28],p-h5)

If V and W are two G-modules over R such that ¢V T cW
then v W

114

Theorem 3.4 ( [28] ,p.k2)

Let Vi,ie I run over the inequivalent irreducible G-modules

over R . Let m. o, 0y be nonnegative integers (all but a finite
number equal to 0 ).
If ®mv. = ®n, V. , then m. =n, , i€l .
i 1 3 i i

Our main interest in the paper lies in basic spinor representati-

ons of Spin(p,q) over R . To discuss them and to show their stan-

dard realization, we shall use the Clifford algebras Cp q "
’
Let us consider RP’% with the quadratic form
p+a 2 . o= 41 j=1
Z ijj s where EJ s J ’ P
J3=1 Ej = -1, j=p+l,...,p*q .

The Clifford algebra E; q is a real associative algebra, generated
1]

by the standard basis e1""’ep+q of RP*% yith relations
e.e, + e,e, = 2¢.6..
i~J joi itij .

+ -
There is the -gradin t = t QC .
t,-¢ € “p,a P,q  P,.q

All Clifford algebras can be realized as matrix algebras. The

standard list of Cp q ( p+q <8) looks like ( [5],[27] )
»

o] -7 6 -5 -4 -3 -2 -1 0 1 2 3 L 5 6 1
0

1 ¢ 2R

) H R(2)  R(2)

3 2y c(2) 2r(2) c(2)

L H(2) H(2) R(L) R(k) H(2)

5 c(k) 2H(2)  Cc(x) 2R(W)  c(y)  2H(2)

6 R(8)  HM(W)  H(L) R(8)  R(8)  H(L)  H(b)

7 | 2r(8) c(8) 2H(L) c(8) °r(8) c(8)  2H(W) c(8)
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n

. +
Now, Spln(p,q)f-tp’q tp q-1 » 1% (see {5] ). The bvasic
»

spinor module E for G = Spin(p,q) over R is any minimal left

ideal in ‘tp The module E 1is moreover the vector space

:Q'1 '
over C for p-q = 2,6(mod 8) and over H for p-q = 3,4,5 (mod 8)

(see [S] ). It can be easily seen from the list of t@ q 8bove,
?

any column in the corresponding matrix group being the minimal left
ideal (for more invariant definition of multiplication by C ,resp. H
see[5] )

Let us compare now the basic G-module E with the fundamental

+ - . s s tas
(complex) modules A,A ,A . There are three different possibilities

(i) ‘ﬁp a-1 is matrix group over C (then p+gq 1is even, say 2k).
,a-

There is only one such modul E, moreover E S Re(A+ +47),
: _ oas + k
d1mR E = dlmc A =27,

(ii) fb q-1 is the matrix group over #H . We can (by imbeeding Cc #)
,q-

consider the modul E as complex vector space. For p+g=2k+1
there is only one modul E , moreover E £ A and
dimR E = %dimgA = 2k+1, while for p+q=2k there are two mo-

dules E' ¥ o', BT ¥ o ena aimp E¥ = 2dimp A% = ok

(iii)C

.

is the matrix group over R ., For p+q=2k+1 there is

p,qa-1
only one modul E, E ¥ Re &, dimR E = dimc A = Ek; .
vhile for p+q=2k there are again two modules E S Re &,
E- = Re A~ and dimR E = dimc A = ok-1,
Note that we have (using A % ta , A+ Z tp”) in cases (i),(ii)
the relation E@pC T VY®tV, wvhere V is 4, At or AT . Ve are

able novw to describe the decomposition of E-valued 1-forms.

Theorem 3.5.

Let E be a basic Spin(p,q)-module over R . Then ve have the

decomposition E@RA1(Rp’q) = F,® F, , wvhere F, , F, are sum-
marized in the following table.

The (complex) modules z* , resp. & , used in the tadble, are
characterized by their heighest weights {(3,},...,3) , resp.

+ - . .
($,3,...,3,-3) ; the modules A,A , A were described in §.2.
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In

3.

The table of E ®ph (RP*%) = F @F,.
field p-q p+q E F1 F2
-1,0,1 2k+1 E % Re A Re A Re ¥
- + -
R mod 8 E*S Re & Re & Re i+
2k _ _ . e
E £ Re A Re A Re A
3,4,5 2k+1 EZ A A 3
= 4 -
H mod 8 EY = 2 A g*
2k
E- = A” at 1
c 2,6 ok |E ¥ Re(a%®a™) | Re(a'@a™) | Re(3'0%7)
mod 8
Proof.

We shall discuss separately real, complex and quaternionic cases.

each case we shall prove only one subcase (other being similar).

-~

Let E ¥ Re A. Then we have

n

c(E‘syt,»/\‘(rzf”‘l)") cE®A'C , F (1,...,1)@(1,0,...,0) =

pta

-

(3,.... Y@ (2,3,...,3) T cE®c(Re 8) .

We have used the fact that A1Cp+q has real structure, hence

"

is self-contragredient representation (seef21] ,p.1b41).

Let E Z A (as complex modules). The modules A,Z,AOZ have
quaternionic structure (seef21),p.143,14k), it follows that
CEE A@A , cE T i@ , c(0@K) T rei®r®h . So

n
4

1, pP,qy* ]
c(E @ph (R ) ) (408) @A Cp

+q
[(3....he (... )@ (1,0,...,0) #
2rA@28 = c(A®R).

nt

n

Let EE'Re(A,OA-) then }

1, pDsq\* + - 1 =
(EORA (R Y (479 A7) @A Cp+q
i,....0®(3,...,1,-3) ®(1,0,...,0) F
(3,...53,-0)@(},...,.3) @(1,},..,0)8(%,3,.1,-1)
rrertexter = c[Re(A+0 A") @Re(2 @ 2”) .

m o om .

mn

The assertion of the theorem follows in all three cases from

Theorem 2.3 and Theorem 2.L.
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4L, The coordinate description of the operators.

We are going to show now that the operators, coming from the
group theoretical approach, coincide with the operators studied be-
fore in coordinate descriptions (see Examples 1 - 4). The main ef-

fort is needed in the case of regular spinor fields (Example 1).

Let usconsider once more RP-1 with the basis e1,...,ep+q
. b*a 2
and with the form J_ £;%; where £,= ..=¢ =1, =,.=¢
=

P p+1 -1.

p+a

Tha basic formula, relating the spinor representation and the funda-

mental representation p on rP-Q , is

n
-1
g e. g =3 op..(g) e, , n = p+q (%)
i §ov 19 3
P p.a
Let 51""€p+q be the dual basis in (R ), then the contra-
»
gredient representation o® on A’(Rp’q) acts as

o*(g) : e, — i

The target space of maps, consideredin [5] is a minimal left

jdeal Vv in € . The two spaces
P.q

+ + - -
' = val E- = Va
T,q ? tb.q

are both basic spinor modules of Spin(p,q), discussed in §.3. Let

us denote E any of the two modules and S the spinor representation.
. 1 . .
The representation o’o S on A ORE is then described by the

formula  [%(g) @s(e)] (c;@v) = X bs(e e, @&V , & espin(p,a).

We shall find now both invariant subspaces in A10RE .
Theorem bL.1.
= . . E a ¢ = 4{Ze. v.l X’.e.v.=o} .
Denote F {% eJOer\ v € } an {JcJ@ j jEJ 575
Then both F and G are invariant subspaces of A‘Gm E under the
action of o"® S.

Proof.

* . . = £Z (g ! @®ge.v =
1. We have {o QS](ZjeJoer) F kka(g )ek ge s

_ -1 = -1 = €eF .
= Z};ekOs[ZJokj(g )ej]v )):(ckeg[g eye]v = Zey@c v
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2. Take Ze¢.®v, € G, so XE.e.v. =0 .
35503 j

J
* _ -
Then [0*® S]( dejavj) = Z kakj(g

- —1 -
Zek (Z:iokj(g )gvj) = Zkekawk
and - -1 = -1
Zegevy = Z};%Ekekokj(z Yvs = J,(Zkﬁkekokj(g Nev; .
Now to have the possibility to use again the relation (l) let us

note that the matrices o in SO0(p,q) satisfy the relation

S 3.0 . = Zo,.J, = .
3 1J° ik jp,]l jk? where ij Ek's,)k .
-1
Hence Eipik = Ekpki . So
Zee = (3.0, . = (gesg gv. = e.v. =0 .
- Ex®xVk j( - £ Jk(g)ek)ng Z?ica(ge‘]g dev; gzggJerJ 0

It is easy now to write projections onto both summands F and G .

Let Z e, OV be an element of I\‘@ E . Then
k k k R
PF( Zkek ka) = chkﬂek.(zjﬁjejvj).(1/n)
Pl Ze v = Ze,® v - ek(z:jgjejvj)u/n)]
Counting dimensions of F and G , it is easy to see that F has

to be one of basic spinor moduls.

Going back to the Example 1, the condition regularity for spinor

field f : @ — E is hence

pplar) = %dxkeek(ﬂn)(Zgﬁjejaf/axj) =0 ,
which is (replacing some generators e, by —ei) just the condition
of regularity, used in {5] .

The coordinate form of the operator arising in Example 2 follows
from that in Example 1, because all irreducibdle pieces in the decompo-

sition of tn are isomorphic to the same spinor module and the ope-

rator has the same coordinate form for every piece.
The decompositions discussed in Examples 3 and 4 are proved in

Examples 5 - 8.
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