
Steady periodic waves
Given c > 0, we are looking for two-dimensional periodic steady waves traveling at speed c, that is, the space-time
dependence of the free surface, of the pressure, and of the velocity field has the form (x − ct) and is periodic with
period L > 0. Let the y -axis point vertically upwards, with the origin lying on the mean water level so that the

wave profile y = η(x − ct) oscillates around the flat surface y =

Z L

0
η(x) dx = 0. The flat bed is given by

y = −d , with d > 0 representing the mean water depth. Let (u, v) be the velocity field.
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We define the stream function √(x, y) by

√x = −v, √y = u − c,

and let ω = uy − vx = ∆√ be the vorticity of the flow.



The free boundary problem for steady periodic water waves can be simplified eliminating time by the change of
frame (x − ct, y) 7→ (x, y). In the new reference frame, in which the origin moves in the direction of propagation
of the wave with wave speed c, the wave is stationary and the flow is steady. The mass flux across x = x0 at time

t0 relative to the uniform flow at speed c is

Z η(x0−ct0)

−d
u(x0 − ct0, y) dy , and we define the relative mass flux as

p0 =

Z η(x)

−d

“

u(x, y) − c
”

dy,

which is independent of x by the kinematic boundary conditions (tk) and (bk). These boundary conditions also
ensure that √(x, y) is constant on the free surface [y = η(x)] and on the flat bed [y = 0]. We normalize √ by
choosing √ = 0 on the free surface. Then, as a consequence of our definition of p0, the flat bed is the streamline

[√ = −p0]. From the equation of mass conservation (mc) we deduce that

Z L

0
v(ξ, y) dξ is independent of y and

(bk) shows that this constant is 0, so that √ is L-periodic in x .

The waves we investigate are such that the propagation speed c of the surface wave is larger than the horizontal
velocity u of each individual water particle, that is,

u < c throughout the closed fluid domain (ns).

Field evidence indicates that this assumption holds for wave patterns that are not near the spilling or breaking
state, while in laboratory experiments c is an order of magnitude greater than u cf. [Lighthill]. We will show below
that the assumption (ns) guarantees the existence of a function ∞, called the vorticity function, such that
ω = ∞(√) throughout the fluid. Thus ∆√ = ∞(√). Let

Γ(p) =

Z p

0
∞(−s) ds

have maximum value Γmax for p ∈ [p0, 0]. Notice hat p0 < 0 by (ns) and the definition of p0.



From the Euler equation (ee) we obtain Bernoulli’s law, which states that

E =
(c − u)2 + v2

2
+ gy + P + Γ(−√)

is constant thoughout the flow. Therefore the dynamic boundary condition (d) is equivalent to stating that

√2
x + √2

y

2
+ g(y + d) = Q on y = η(x),

where Q = E − Patm + gd . The hydraulic head E , and hence also Q, has for any flow a constant value that will
be regarded as a parameter for the family of solutions that we will construct. In our analysis the mean water depth
d is not fixed but will also depend on the particular solution.

Summarizing the above considerations, we can reformulate the free boundary problem as

8

>

>

>

>

>

<

>

>

>

>

>

:

∆√ = ∞(√) in − d < y < η(x),

|∇√|2 + 2g(y + d) = Q on y = η(x),

√ = 0 on y = η(x),

√ = −p0 on y = η(x),

(fbp)

which is to be solved in the class of functions that are of period L = 2π in the x-variable. The main difficulties
associated with the problem (fbp) are its nonlinear character and the fact that the free surface [y = η(x)] is
unknown. The approach we present follows that developed in [Constantin & Strauss], with minor changes — some
aspects are simplified and certain inaccuracies are removed (the main one being the fact that the vorticity therein
had the opposite sign to the physical vorticity).



The latter difficulty can be overcome by introducing a coordinate transform devised by Dubreil-Jacotin in 1934.
Since √ is constant both on the free surface and on the flat bed, with y 7→ √(x, y) strictly decreasing in view of
(ns), for every fixed x the height

h = y + d

above the flat bed is a single-valued function of √. This leads us to the change of variables

q = x, p = −√,

that transforms the (unknown) fluid domain Dη = {(x, y) : x ∈ (−π, π), −d < y < η(x)} of one wavelength
into the (known) rectangular domain R = (−π, π) × (p0, 0). We choose the wave crest on the line x = 0.
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Since

hq =
v

u − c
, hp =

1

c − u
,

we have

v = −
hq

hp
, u = c −

1

hp
, @x = @q −

hq

hp
@p , @y =

1

hp
@p .

Consequently

@q ω =
“

@x +
hq

hp
@p

”

ω =
“

@x −
v

c − u
@y

”

ω .

Taking the curl of the Euler equation (ee) we get (c − u)ωx − vωy = 0. Consequently ωq = 0 and ω is a
function of p throughout the rectangle, ω = ∞(−p), with

∞(−p) = ∞(√) = ω = @y u − @x v =
1

hp
@p

“

c −
1

hp

”

−
“

@q −
hq

hp
@p

” “

−
hq

hp

”

,

and (fbp) becomes
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:

(1 + h2
q)hpp − 2hqhphqp + h2

phqq = ∞(−p)h3
p in p0 < p < 0,

1 + h2
q + (2gh − Q)h2

p = 0 on p = 0,

h = 0 on p = p0,

(bp)

with h of period 2π in the q-variable and (ns) replaced by

hp > 0 throughout the closed rectangle R. (hs)

The boundary problems (fbp) under the assumption (ns) and (bp) under the assumption (hs) are equivalent. To

see this one has to recover √, the free surface η and the mean depth d , assuming that h ∈ Ck
per (R) with k ≥ 2

solves (bp) and satisfies (hs), where the subscript per indicates 2π-periodicity in the q-variable.



The free surface is easily identified as η(x) = h(x, 0) − d , where d =
1

2π

Z π

−π
h(q, 0) dq. To recover √ we

define the Ck−1
per (R) function F (q, p) =

1

hp(q, p)
. For a fixed x0 ∈ R we solve the ordinary differential equation

√y (x0, y) = −F (x0, −√(x0, y)) (de)

with initial data √y (x0, η(x0)) = 0. Since F ∈ C1(R) there is a unique local solution. Moreover, (hs) ensures

F ≥ δ > 0 throughout R, for some δ > 0, so that y 7→ √(x0, y) is strictly increasing as y decreases and the
solution can be continued uniquely until it reaches the value −p0 at some y(x0) < η(x0). This shows that for any
x ∈ R we can define √(x, y) on some interval [y(x), η(x)] with y(x) < η(x). By uniqueness for (de), the fact
that F is 2π-periodic in q ensures the 2π-periodicity of √ in the x-variable. For x ∈ R fixed, differentiating the
expression with respect to y ∈ [y(x), η(x)] and using (de), we see that

y + d − h(x, −√(x, y))

is independent of y ∈ [y(x), η(x)]. Since at y = η(x) the expression is zero we infer that

y + d − h(x, −√(x, y)) = 0, y ∈ [y(x), η(x)]. (hp)

As √(x, y(x)) = −p0 yields

h
“

x, −√(x, y(x))
”

= 0,

we deduce that
y(x) = −d, x ∈ R.

The fact that √ is of class Ck follows by the dependence on data for the solutions to (de). To show that the
constructed √ satisfies (fbp), observe that we already know that √ = −p0 on y = −d , and √ = 0 on y = η(x).
Differentiating (hp) with respect to x , we obtain

√x (x, y) =
hq(x, −√(x, y))

hp(x, −√(x, y))
,

while (de) and the definition of F yield

√y (x, y) =
1

hp(x, −√(x, y))
.



The nonlinear boundary condition in (fbp) follows at once. As for the partial differential equation, differentiating
(de) with respect to y , we get

√yy (x, y) = √y (x, y) Fp(x, −√(x, y)) = − F (x, −√(x, y)) Fp(x, −√(x, y)) =
hpp

h3
p

(x, −√(x, y)),

while differentiating the identity √x (x, y) hp(x, −√(x, y)) = hq(x, −√(x, y)) with respect to x yields

√xx (x, y) =
“ hqq

hp
− 2hqp

hq

hp
+ hpp

h2
q

h3
p

”

(x, −√(x, y)).

Now
√xx + √yy = ∞(√)

follows from the quasilinear partial differential equation in (bp). Defining v = −√x and u = √y + c we obtain a
solution of the original problem, where c > 0 specifies the moving frame in which the wave is stationary.

For further considerations we notice that if the solution to (bp) is more regular, h ∈ C3,α
per (R) for some α ∈ (0, 1),

then ∞ ∈ C1,α([0, |p0|]) and the physical solution

(u, v, η) ∈ C2,α
per (Dη) × C2,α

per (Dη) × C3,α
per (R),

where Dη is the closure of the fluid domain

Dη = {(x, y) : x ∈ R, −d < y < η(x)}.



The choice of function spaces
We seek classical solutions so that the function h should be periodic in the q-variable and at least twice

continuously differentiable and periodic in both variables. The Ck
per (R) Banach spaces (here k ≥ 0 is a integer) of

all functions which are periodic in q and k times continuously differentiable in q ∈ R and p ∈ [m, 0], with the
norm given by

khk
Ck (R)

=
X

0≤i+j≤k

sup
(q,p)∈R

|@i
q@j

p f (q, p)|

are not appropriate for elliptic PDEs, while the Hölder spaces Ck,α
per (R) and the Sobolev spaces W k,s

per (R) are

particularly useful.

Hölder spaces Hölder continuity is a quantitative measure of continuity (think of it as fractional differentiability),

the Hölder spaces Ck,α
per (R) with 0 ≤ α < 1 being designed to fill up the gaps between Ck

per (R) and Ck+1
per (R).

For k = 0 and 0 ≤ α ≤ 1 these spaces are defined as the subspace of functions h ∈ C0
per (R) which obey the

Hölder continuity bound
|f (Θ) − f (Θ1)| ≤ C |Θ − Θ1|α

for some constant C > 0 and all Θ, Θ1 ∈ R, and endowed with the norm

kf k
C0,α(R)

= sup
Θ∈R

{|f (Θ)|} + sup
Θ, Θ1∈R, Θ6=Θ1

n |f (Θ) − f (Θ1)|
|Θ − Θ1|α

o

they are Banach spaces. The restriction to α ≤ 1 is due to the fact that α > 1 would imply that all partial
derivatives exist and are zero so that the function would be constant. For α = 1 the space C0,1

per (R) is the space of

Lipschitz functions - a space slightly larger than C1
per (R) since e.g. the function

Θ = (q, p) 7→ |Θ| =
q

q2 + p2

belongs to C0,1
per (R) but is not continuously differentiable, so that the scale C0,α

per (R) with 0 ≤ α ≤ 1 provides a

near-continuum of spaces between C0
per (R) and C1

per (R).



For k ≥ 1 we define Ck,α
per (R) as the subspace of functions h ∈ Ck

per (R) whose norm

khk
Ck,α(R)

= khkk +
X

i+j=k

sup
(q,p)∈R

k@i
q@j

p f (q, p)k
C0,α(R)

is finite. Equipped with these norms, Ck,α(R) are Banach spaces, and if f1 ∈ C
k1,α1
per (R), f2 ∈ C

k2,α2
per (R), then

the product f1f2 ∈ Ck,α
per (R), where k + α = min {k1 + α1, k2 + α2}. Moreover, the Arzela-Ascoli theorem

ensures that the inclusion map C
k2,α2
per (R) ↪→ C

k1,α1
per (R) is compact if k2 + α2 > k1 + α1. A good reference

for Hölder spaces is [Gilbarg & Trudinger].

Sobolev spaces The spaces W k,s
per (R) with k ≥ 0 integer and 1 < s < 1 offer also a suitable setting for elliptic

PDEs. They consist of locally integrable functions h : R → R that are periodic in the q-variable and such that for

i, j ≥ 0 with i + j ≤ k the distributional derivative @i
q@j

ph belongs to Ls (R). W k,s
per (R) are Banach spaces —

respectively Hilbert spaces for s = 2, in which case they are denoted Hk (R) — if endowed with the norm

khk
W k,s (R)

=
“

X

0≤i+j≤k

khks
Ls (R)

”1/s
, where khkLs (R) =

“

ZZ

R
|h(q, p)|s dqdp

”1/s
.

We denote by W k,s
0 (R) the closure in W k,s

per (R) of the test functions, that is, of the C1 functions of compact

support in (−π, π) × (m, 0) which are extended by periodicity in the q-variable to the strip R × (m, 0). Since the

top and bottom boundary @R of R is C1 (due to periodicity in the q-variable, we may ignore the lateral boundary),

functions in W 1,s
per (R) have a trace on @R that belongs to Ls (@R), and h ∈ W 1,s

per (R) is in W 1,s
0 (R) if and only if

its trace is zero. Notice that @R has planar Lebesgue measure zero so that restricting an integrable function in R

to the boundary has no direct meaning, the problem being resolved by the notion of the trace operator which

associates to h ∈ C0(R) its continuous restriction to @R and extends to a bounded linear operator from W 1,s
per (R)

to Ls (@R). Good modern sources for Sobolev spaces are [Evans] and [Evans & Gariepy].



Schauder estimates To explain why it is necessary to introduce Hölder and Sobolev spaces into elliptic theory

(as opposed to the more intuitive Ck (R) spaces), for a given function f : R → R that is periodic in the q-variable,
let us consider the Poisson equation

∆h = f in R, (∗)

with homogeneous Dirichlet boundary conditions

h = 0 on @R = {(q, 0) : q ∈ R} ∪ {(q, m) : q ∈ R}. (∗∗)

Then for any f ∈ Ls (R) with 1 < s < 1 there is a unique solution h ∈ W 2,s
0 (R) of (∗) − (∗∗), and

khk
W

2,s
0 (R)

≤ c̃s kf kLs (R) (Sp)

where c̃s depends only on s. Also, for f ∈ C0,α
per (R) with α ∈ (0, 1) there is a unique solution h ∈ C2,α

per (R) and

khk
C2,α(R)

≤ cα kf k
C0,α(R)

(S)

where cα depends only on α. For the proofs of these assertions we refer to [Gilbarg & Trudinger].

The Schauder estimates (Sp) and (S) assert, roughly speaking, that if ∆h belongs to Ls (R) or has C0,α regularity,

then all second derivatives of h belong to Ls (R) or have C0,α regularity as well. This remarkable phenomenon —
that control of a special linear combination of derivatives of h at some order implies control of all derivatives of h
at that order — is known as elliptic regularity. The scales of Hölder and Sobolev spaces are thus suitable to express

elliptic regularity, in marked contrast to the Ck (R) spaces.

The failure of the Ck (R) spaces to express elliptic regularity can be seen by considering the homogeneous Dirichlet

problem for the Poisson equation (∗) in the open set B∗ = {(q, p) ∈ R2 : q2 + p2 < 1
4 } with

f (q, p) = −
qp

q2 + p2

n

2 f
−1/2
0 +

1

4
f

−3/2
0

o

∈ C0(B∗),

where f0(q, p) = − 1
2 ln (q2 + p2).



Indeed, a direct calculation shows that

h∗(q, p) = qp
“

f
1/2
0 −

√
ln 2

”

,

belongs to C1(B∗) with h∗
qq , h∗

pp ∈ C0(B∗) and satisfies ∆h∗ = f in B∗ with h∗ = on @B∗, while

h∗
qp = f

1/2
0 −

√
ln 2 −

1

2
f

−1/2
0 +

q2p2

(q2 + p2)2

n

f
−1/2
0 −

1

4
f

−3/2
0

o

→ 1 for q, p → 0.

This proves that a Schauder estimate of type (S) on the Ck (R) scale, asserting that

khk
C2(B∗)

≤ c0 kf k
C0(B∗)

,

simply does not exist. Moreover, in this case there is no C2 solution in B∗: were h ∈ C2(B∗) a solution, the

difference h − h∗ would be a C1 harmonic function in B∗ with zero boundary values on @B∗ and thus
h − h∗ ≡ 0 throughout B∗. But then h∗ would be C2 at the origin and this is not the case.

The previous considerations explain why Hölder or Sobolev spaces are proper for elliptic theory. Since we deal with
classical solutions and in the degree-theoretic considerations showing the existence of waves of large amplitude as
well as in proving the symmetry of the waves we rely upon maximum principles, the most suitable setting for our
purposes is that of Hölder spaces — the maximum principles lend themselves well to the suprema that appear in
the definition of the norms.



Local bifurcation

When describing the structure of the set of solutions of an equation that depends on a parameter, local bifurcation
is the appearance of new solutions when the parameter reaches a critical value. If X, Y are real or complex Banach
spaces — we mainly discuss the case of real Banach spaces but all considerations are equally valid in the case of
complex scalars — and F : R × X → Y is a map such that

F (∏, 0) = 0, ∏ ∈ R, (B1)

local bifurcation addresses the question: for which ∏0 is there a sequence (∏n, xn) ∈ R × X with xn 6= 0 of
solutions to F (∏n, xn) = 0, converging to (∏0, 0) ∈ R × X? ∏0 is then called a bifurcation point.

If F ∈ C1(R × X, Y) and if the bounded linear map @x F (∏0, 0) ∈ L(X, Y) is a homeomorphism from X to Y, by
the implicit function theorem all solutions to F (∏, x) = 0 in a neighborhood of (∏0, 0) ∈ R × X lie on a unique

curve {(∏, x) : x = ϕ(ε)} with ϕ : (∏0 − ε, ∏0 + ε) → X of class C1, for some ε > 0. From (B1) we conclude
that ϕ(∏) = 0 for all ∏ ∈ (∏0 − ε, ∏0 + ε). Consequently a necessary condition for ∏0 to be a local bifurcation

point is that @x F (∏0, 0) : X → Y should not be a homeomorphism. Since @x F (∏0, 0) ∈ L(X, Y) as F is C1, in
view of the open mapping theorem this is equivalent to @x F (∏0, 0) not being a bijection. This condition is
however not sufficient for local bifurcation, as can be seen by regarding X = C as a Banach space over R (we do

not identify X with R2 since we want to take advantage of multiplication by complex numbers) and consider the

compact operator F ∈ C1(R × X, X) given by

F (∏, z) = z − ∏z − i|z|2z, ∏ ∈ R, z ∈ X. (B2)

Then @x F (∏, 0) ∈ L(X, X) is the multiplication operator (1 − ∏) which fails to be bijective at ∏0 = 1. But

∏0 = 1 is not a bifurcation point since a solution z 6= 0 of F (∏, z) = 0 should satisfy (1 − ∏) |z|2 = i |z|4 after

multiplication by z and this is impossible for ∏ ∈ R.



Crandall-Rabinowitz theorem Let X, Y be Banach spaces and let F ∈ Ck (R × X, Y) with k ≥ 2 satisfy:

(i) F (∏, 0) = 0 for all ∏ ∈ R;

(ii) L = @x F (∏0, 0) ∈ L(X, Y) is a Fredholm operator of index zero (i.e. its range is closed and has finite
codimension equal to the finite dimension of the kernel) with ker(L) one-dimensional;

(iii) the transversality condition [@2
∏x F (∏0, 0)] (1, ξ0) 6∈ range(L) holds, where ξ0 ∈ X, ξ0 6= 0, is such that

ker(L) = {sξ0 : s ∈ R} and @2
∏x F (∏0, 0) = @∏[@x F (∏, 0)]

˛

˛

˛

∏=∏0
∈ L(R, L(X, Y)) = L(R × X, Y).

Then ∏0 is a bifurcation point: there exists ε0 > 0 and a branch of solutions

{(∏, x) = (Λ(s), s χ(s)) : s ∈ R, |s| < ε0} ⊂ R × X

of F (∏, x) = 0 with Λ(0) = 0, χ(0) = ξ0, and such that s 7→ Λ(s) ∈ R, s 7→ sχ(s) ∈ X are of class Ck−1 on
(−ε0, ε0). Furthermore, there exists an open set U0 ⊂ R × X with (∏, 0) ∈ U0 and

{(∏, x) ∈ U0 : F (∏, x) = 0, x 6= 0} = {(Λ(s), s χ(s)) : s ∈ R, 0 < |s| < ε0}.

Let us briefly discuss the hypotheses of this theorem — for a proof of the result we refer to [Buffoni & Toland].
Example (B1) shows the importance of hypothesis (ii). Concerning the transversality condition (iii), for

F (∏, x) = x(∏2 + x2), (∏, x) ∈ R × R, (B2)

we have L = @x F (0, 0) = 0 ∈ L(R, R) with ker(L) = {0} and range(L) = {0} of codimension 1 but the

transversality condition is not satisfied since @2
∏x F (0, 0) = 0 ∈ L(R × R, R). In this case ∏0 = 0 is not a

bifurcation point since F (∏, x) = 0 is only possible if x = 0.

The Crandall-Rabinowitz local bifurcation theorem has wide applicability (and in particular it is well-suited for our
purposes) but does not exhaust all possible bifurcations. For example, ∏0 = 0 is a bifurcation point for

F (∏, x) = x(∏3 + x2), (∏, x) ∈ R × R, (B3)

even though the transversality condition fails.



The existence of rotational waves of small amplitude
Given p0 < 0, α ∈ (0, 1) and the vorticity function ∞ ∈ C1,α(R), we seek solutions h ∈ C3,α(R) to the
problem (bp), subject to the condition (hs). Such solutions correspond to solutions

η ∈ C3,α
per (Dη), u, v ∈ C2,α

per (Dη), P ∈ C1,α
per (Dη),

of the governing equations, with specified vorticity ∞. Notice that a solution h that depends on q corresponds to
an undulating free surface, while q-independent solutions h correspond to laminar flows — parallel shear flows with
a flat free surface and such that each particle moves horizontally with a speed that depends on the height above
the flat bed — representing pure currents.

Local bifurcation theorem Let ∞1 = k∞kC [p0,0], p1 = max {p ∈ [p0, 0] : Γ(p) = Γmax } and assume that

g >

√
2

3
∞3/2

1 |p1|1/2 +
2
√

2

5
∞1/2

1 |p1|3/2 . (lbc)

Then there is a C1-curve Cloc of solutions h ∈ C3,α
per (R). Moreover, the solution curve Cloc contains precisely one

function that is independent of q.

The proof of this result relies on an application of the Crandall-Rabinowitz theorem. In order to apply it we have to
identify the bifurcating parameter. For this notice that the laminar flow solutions to (bp) are given explicitly by

H(p, ∏) =

Z p

0

ds
p

∏ − 2Γ(s)
+

Q − ∏

2g
=

Z p

p0

ds
p

∏ − 2Γ(s)
, p0 ≤ p ≤ 0, (tf )

the parameters ∏ and Q being related by

0 <

Z 0

p0

ds
p

∏ − 2Γ(s)
=

Q − ∏

2g
(Q)

with 0 ≤ 2Γmax < ∏ < Q.



The bifurcation parameter ∏ =
1

H2
p (0, ∏)

is the square of the current velocity at the surface in the moving frame,

“

c − u(0, 0)
”2

. We point out that ∏ is not a single-valued function of Q, as the function ∏ 7→ Q(∏) is strictly

convex for ∏ > 0, its minimum Q0 on (0, 1) being attained at the unique point ∏0 > 0 where

Z 0

p0

“

∏ − 2Γ(s)
”−3/2

ds =
1

g
.

Q

Q

Q

*

0

!! !*
0

0

For every Q > Q0 there is exactly one ∏ > ∏0 satisfying (Q), and generally only for certain Q > Q0 there is
another solution ∏ ∈ (2Γmax , ∏0). We will see that the bifurcation point ∏∗ is located to the left of ∏0.



The linearization In order to find waves of small amplitude, we first linearize the problem (bp) about a laminar

solution H. We seek solutions h ∈ C3,α
per (R), even in the q-variable and zero on p = p0, of the form

h = H + ε m.

The symmetry of the waves is expressed by requiring m to be even. Denoting

a(p, ∏) =
q

∏ − 2Γ(p),

at order ε we obtain for m ∈ C3,α
per (R) even in the q-variable the boundary problem

8

>

>

<

>

>

:

(a3 mp)p + a mqq = 0 in R,

a3mp = gm on p = 0,

m = 0 on p = p0 .

(lp)

We claim that m ∈ C3,α
per (R) even in the q-variable has the Fourier series representation

m(q, p) =
1
X

k=0

mk (p) cos(kq) in C2
per (R), (fs)

with C3,α[p0, 0] coefficients

m0(p) =
1

2π

Z π

−π
m(q, p) dq, mk (p) =

1

π

Z π

−π
m(q, p) cos(kq) dq, k ≥ 1.

The other cases being similar, it suffices to prove that
1
X

k=0

m00
k (p) cos(kq) converges in Cper (R). Notice that

|m00
0 (p)| =

˛

˛

˛

1

2π

Z π

−π
mpp(q, p) dq

˛

˛

˛

≤ kmkC2
per (R),

m00
k (p) =

1

π

Z π

−π
mpp(q, p) cos(kq) dq = −

1

kπ

Z π

−π
mppq(q, p) sin(kq) dq, k ≥ 1.

by using integration by parts in the last step.



Thus for N ≥ n ≥ 1 we have

˛

˛

˛

N
X

k=n

m00
k (p) cos(kq)

˛

˛

˛

2
≤

“

N
X

k=n

|m00
k (p)|

”2
=

N
X

k=n

1

kπ

˛

˛

˛

Z π

−π
mppq(q, p) sin(kq) dq

˛

˛

˛

”2

≤
n

N
X

k=n

1

k2

o n

N
X

k=n

“ 1

π

Z π

−π
mppq(q, p) sin(kq) dq

”2o

≤
π2

6

n 1

π

Z π

−π
m2

ppq(q, p) dq
o

≤
π

6
kmk2

C3
per (R)

.

Therefore
1
X

k=0

m00
k (p) cos(kq) converges in Cper (R). Similarly we show that

1
X

k=0

mk (p) cos(kq) converges in

Cper (R) and the convergence of the right-hand side of (fs) to m(·, p) in L2[−π, π] for every fixed p ∈ [p0, 0]

yields m(q, p) =
1
X

k=0

mk (p) cos(kq) in Cper (R). Then
1
X

k=0

m00
k (p) cos(kq) converges to mpp(q, p) in the sense of

distributions and this permits us to identify the limit of
1
X

k=0

m00
k (p) cos(kq) in Cper (R) as being precisely

mpp(q, p). Repeating this procedure we establish the validity of (fs).

From (fs) we deduce that m is a solution to (lp) if and only if each mk solves the Sturm-Liouville problem

8

>

>

<

>

>

:

(a3 Mp)p = k2a M in (p0, 0),

a3Mp = gM on p = 0,

M = 0 on p = p0,

(slp)

with m being q-dependence amounting to mk 6≡ 0 for some k ≥ 1. We seek solutions of period 2π so that we
investigate (slp) for k = 1.



The variational approach We associate to (slp) with k = 1 the minimization problem

µ(∏) = inf
ϕ∈H1(p0,0), ϕ(p0)=0, ϕ6≡0

{F(ϕ, ∏)} with F(ϕ, ∏) =

−g ϕ2(0) +

Z 0

p0

a3ϕ2
p dp

Z 0

p0

aϕ2 dp

, (µ)

suggested by the fact that for a solution M of (slp) we have F(M, ∏) = −k2, while the choice of the function
space is motivated by the quest for the largest possible Hilbert space for which the F is well-defined, with the
boundary condition on p = p0 captured while that on p = 0 is encoded in the form of F(·, ∏). For each
∏ > 2Γmax the existence of µ(∏) ∈ R is ensured since if ε(∏) = inf

p∈[p0,0]
{a(p, ∏)} > 0, then

Z 0

p0

a3ϕ2
p dp +

4g2

ε4(∏)

Z 0

p0

aϕ2 dp ≥ ε3(∏)

Z 0

p0

ϕ2
p dp +

4g2

ε3(∏)

Z 0

p0

ϕ2 dp ≥ 4g

Z 0

p0

ϕϕp dp = 2gϕ2(0) (ivi)

whenever ϕ ∈ H1(p0, 0) satisfies ϕ(p0) = 0. Thus µ(∏) > −
4g2

ε4(∏)
. We now claim that the infimum in (µ) is

attained by a function M ∈ C3,α[p0, 0]. Choose a minimizing sequence ϕn ∈ H1(p0, 0) with ϕn(p0) = 0 and
such that F(ϕn, ∏) → µ(∏). Since F(θϕ, ∏) = F(ϕ, ∏) for any number θ 6= 0, we can normalize the sequence

{ϕn}n≥1 by setting

Z 0

p0

a ϕ2
n dp = 1 so that, using (ivi), we infer that

F(ϕn) = −g ϕ2
n(0) +

Z 0

p0

a3 (@pϕn)2 dp ≥
1

2

Z 0

p0

a3 (@pϕn)2 dp −
2g2

ε4(∏)
≥

ε3(∏)

2

Z 0

p0

(@pϕn)2 dp −
2g2

ε4(∏)
.

Since F(ϕn, ∏) → µ(∏) we deduce that the sequence
n

Z 0

p0

(@pϕn)2 dp
o

n≥1
is bounded. As

1

ε(∏)
=

1

ε(∏)

Z 0

p0

a ϕ2
n dp ≥

Z 0

p0

ϕ2
n dp, n ≥ 1,

we have that {ϕn}n≥1 is bounded in the Hilbert space H1(p0, 0) and consequently cf. [Evans] has a weakly

convergent subsequence {ϕnk
} with limit M ∈ H1(p0, 0).



Notice that @p ϕnk
* ϕp weakly in L2(p0, 0) and ϕnk

(p0) = 0 yield

ϕnk
(p) =

Z p

p0

@p ϕnk
(s) ds →

Z p

p0

Mp(s) ds = M(p) at every p ∈ [p0, 0] . (pl)

From @p ϕnk
* ϕp we can generally not infer the a.e. convergence of some subsequence as wild oscillations are

possible, and nonlinear operations with weakly convergent sequences are generally prohibited cf. [Evans].
Fortunately, the sequence {ϕnk

} is minimizing and the functional F(·, ∏) has suitable structural properties:

Z 0

p0

a3 M2
p dp ≤ lim inf

nk →1

Z 0

p0

a3 (@p ϕnk
)2 dp (il)

since
Z 0

p0

a3 (@pϕnk
)2 dp −

Z 0

p0

a3 M2
p dp =

Z 0

p0

a3(@pϕnk
− Mp)2 dp + 2

Z 0

p0

a3(@pϕnk
)Mp dp − 2

Z 0

p0

a3 ϕ2
p dp

and a3Mp ∈ L2(p0, 0) together with @pϕnk
* Mp weakly in L2(p0, 0) ensure that the last two terms converge

towards zero as nk → 1. From (pl) and (il) we infer that

−g M2(0) +

Z 0

p0

a3 M2
p dp ≤ lim inf

nk →1

n

− g ϕ2
nk

(0) +

Z 0

p0

a3 (@pϕnk
)2 dp

o

and since the sequence {ϕnk
} is minimizing for F(·, ∏), the infimum is a minimum attained at M ∈ H1(p0, 0).

Actually, M ∈ C3,α[p0, 0]. Indeed, as a minimum M satisfies the Euler-Lagrange equation

0 =
d

dε
F(M + εϕ, ∏)

˛

˛

˛

ε=0
(el)

for every ϕ ∈ H1(p0, 0) with ϕ(p0) = 0. Observe that F(M, ∏) = µ(∏) and

Z 0

p0

a M2 dp = 1 by the dominated

convergence theorem in view of (pl), the normalization of {ϕnk
}, and the fact that the boundedness of {ϕnk

} in

H1(p0, 0) ensures an L1[p0, 0] uniform bound for {ϕnk
}. This allows us to explicitate (el) as

−gM(0)ϕ(0) +

Z 0

p0

a3ϕpMp dp = µ(∏)

Z 0

p0

aMϕ dp for every ϕ ∈ H1(p0, 0) with ϕ(p0) = 0. (ele)



Choosing ϕ smooth and compactly supported in (p0, 0), we infer that

(a3 Mp)p = −µ aM in H−1(p0, 0) . (eli)

associated to the variational problem (µ). Since a ∈ C2,α[p0, 0] ⊂ H2(p0, 0), we have aM ∈ H1(p0, 0) so that

a3Mp ∈ H2(p0, 0) and Mp ∈ H2(p0, 0), that is, M ∈ H3(p0, 0) ⊂ C2[p0, 0]. Consequently (eli) holds classically

and a ∈ C2,α[p0, 0] yields M ∈ C3,α[p0, 0]. Multiplying (eli) by some ϕ ∈ H1(p0, 0) with ϕ(p0) = 0 and
integrating yields

−a3(0)Mp(0)ϕ(0) +

Z 0

p0

a3ϕpMp dp = µ(∏)

Z 0

p0

aMϕ dp .

Choosing above and in (ele) ϕ(p) = p − p0 we obtain the missing boundary condition at p = 0 so that the

minimizer M ∈ C3,α[p0, 0] is a classical solution of the (weighted) Sturm-Liouville problem

8

>

>

<

>

>

:

(a3 Mp)p = −µ a M in (p0, 0),

a3Mp = gM on p = 0,

M = 0 on p = p0 .

(slps)

For the existence of linear waves it is necessary that µ(∏) = −1 for some ∏ > 2Γmax and we will see that this
also suffices for the existence of nonlinear waves of small amplitude. First we prove that µ(∏) depends smoothly on

∏ > 2Γmax . Since for ∏ > g + 2Γmax we have a(∏, p) =
p

∏ + 2Γ(p) >
√

g for p ∈ [p0, 0] and thus

Z 0

p0

(a3ϕ2
p + aϕ2) dp >

√
g

Z 0

p0

(gϕ2
p + ϕ2) dp ≥ 2g

Z 0

p0

ϕϕp dp = gϕ2(0)

whenever ϕ ∈ H1(p0, 0) is such that ϕ(p0) = 0, we deduce from (µ) that µ(∏) > −1 for ∏ > g + 2Γmax .
Consequently the existence of some ∏ > 2Γmax with µ(∏) = −1 is ensured if µ(∏) ≤ −1 for some ∏ > 2Γmax .
In this context notice that, given p0 < 0, there are constant vorticities ∞ < 0 such that µ(∏) > −1 for all
∏ > 2Γmax , which explains the need of some assumption of type (lbc).



Example: large constant negative vorticity If ∞ < 0 satisfies

|∞| >
1

2
+

g2

2 |p0|3

“ 3

2
+ |p0|

”2

then

(|2∞|)3/2 >
q

|2∞| >
g ( 3

2 + |p0|)
|p0|3/2

,

while Γ(p) = ∞p on [p0, 0] with Γmax = ∞p0, so that

a(p, ∏) =
q

∏ − 2Γ(p) >
q

2Γ(p0) − 2Γ(p) =
q

2|∞|(p − p0), p ∈ [p0, 0], ∏ > 2Γmax .

Therefore, if ϕ ∈ H1(p0, 0) with ϕ(p0) = 0, ϕ 6≡ 0, then we have

Z 0

p0

(a3ϕ2
p + aϕ2) dp > (|2∞|)3/2

Z 0

p0

ϕ2
p (p − p0)3/2 dp +

q

|2∞|
Z 0

p0

ϕ2 p

p − p0 dp

≥
g

|p0|3/2

Z 0

p0

ϕ2
p (p − p0)3/2 dp +

g ( 3
2 + |p0|)

|p0|3/2

Z 0

p0

ϕ2p

p − p0 dp

=
g

|p0|3/2

n

Z 0

p0

ϕ2
p (p − p0)3/2 dp + |p0|

Z 0

p0

ϕ2 p

p − p0 dp +
3

2

Z 0

p0

ϕ2p

p − p0 dp
o

≥
g

|p0|3/2

n

Z 0

p0

ϕ2
p (p − p0)3/2 dp +

Z 0

p0

ϕ2 (p − p0)3/2 dp +
3

2

Z 0

p0

ϕ2p

p − p0 dp
o

≥
g

|p0|3/2

n

2

Z 0

p0

ϕϕp (p − p0)3/2 dp +
3

2

Z 0

p0

ϕ2p

p − p0 dp
o

= g ϕ2(0)

and the characterization (µ) yields µ(∏) > −1 for ∏ > 2Γmax .
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Ground state dependence on the parameter We now prove that ∏ 7→ µ(∏) is real-analytic (in the sense
that near any point it may be represented by a convergent power series on some interval of positive length centered
at that point) for ∏ > 2Γmax , with µ(∏) depending monotonically on ∏ > 2Γmax whenever µ(∏) < 0.



We first prove the smooth dependence of µ(∏) on ∏ > 2Γmax . Let M(p, ∏) be the C3,α[p0, 0]-eigenfunction of
(slps) corresponding to the eigenvalue µ(∏), normalized by requiring M(0, ∏) = 1; M(0; ∏) = 0 would imply
M ≡ 0, as can be easily seen by multiplying the differential equation for M by M, and integrating by parts on
[0, p0]. Notice that

M(p, ∏) = ϕ(p, ∏, µ(∏))

where ϕ(p, ∏, µ) is the unique solution of the linear differential equation

(a3ϕp)p = −µaϕ in (p0, 0) (dem)

with initial data
8

>

<

>

:

ϕ(0) = 1,

ϕ0(0) =
g

a3(0)
,

(idm)

depending analytically on (∏, µ) by the dependence of solutions on parameters. The variational approach that
provided the existence of µ(∏) yields

µ

Z 0

p0

aM2 dp + g −
Z 0

p0

a3M2
p dp = 0, (fem)

which we regard as a functional relation between µ(∏) and ∏. Differentiating (dem) with respect to µ, multiplying
by = M and integrating on [p0, 0], yields, in view of (idm) and the fact that M(p0, ∏, µ) = 0, that

2µ

Z 0

p0

aMMµ dp − 2

Z 0

p0

a3MpMpµ dp = −2

Z 0

p0

aM2 dp.

Therefore the partial derivative with respect to µ of the function of (µ, ∏) on the left side of (fem) equals

Z 0

p0

aM2 dp + 2µ

Z 0

p0

aMMµ dp − 2

Z 0

p0

a3MpMpµ dp = −
Z 0

p0

aM2 dp < 0.

By the implicit function theorem we deduce the real-analytic dependence of µ(∏) on ∏ > 2Γmax > 0.



Denoting ȧ =
@a

@∏
and so on, we compute

ȧ =
1

2a
, ȧp = −

ap

2a2
.

From (slps) we obtain that Ṁ satisfies

8

>

>

>

>

>

<

>

>

>

>

>

:

(a3Ṁp)p +
3

2
(aMp)p = −µ̇ aM −

1

2a
µM − µaṀ in (p0, 0),

3

2
aMp + a3Ṁp = gṀ at p = 0,

Ṁ = 0 at p = p0 .

Multiplying the above differential equation by M and the differential equation in (slps) by Ṁ, integrating on (p0, 0)
and substracting the outcomes we obtain

µ̇

Z 0

p0

aM2 dp = −
1

2
µ

Z 0

p0

a−1M2 dp +
3

2

Z 0

p0

aM2
p dp . (mu0)

Consequently ∏ 7→ µ(∏) is increasing in any interval where it is negative and the solution ∏∗ to µ(∏) = −1, if it
exists, is unique. Moreover, a solution exists if and only if lim∏↓2Γmax µ(∏) < −1.



Existence of solutions for the linearization Assuming the validity of (lbc) we prove the existence of
non-trivial solutions to the linearized problem (lp). The previous developments show that this amounts to proving
that for some ∏ > 2Γmax we have µ(∏) ≤ −1. Let p1 = min {p ∈ [p0, 0] : Γ(p) = Γmax } and define for

k >
1

2
and n ≥ 2 the function

ϕn(p) =

(

0, p0 ≤ p ≤ pn,

(p − pn)k , pn ≤ p ≤ 0,

where

pn =
“

1 −
1

n

”

p1 +
1

n
p0 < 0.

Clearly ϕn ∈ H1(p0, 0) is such that ϕn(0) = 0 and ϕn 6≡ 0; the reason why we introduced pn < 0 instead of
simply setting pn = p1 was to prevent ϕn ≡ 0 in the special case when p1 = 0. We have

a(p, 2Γmax ) =
q

2Γmax − 2Γ(p) =
q

2Γ(p1) − 2Γ(p) ≤
q

2∞1 |p1 − p|, p ∈ [0, p0],

so that
Z 0

p0

a3(p, 2Γmax )
“

@pϕn(p)
”2

dp +

Z 0

p0

a(p, 2Γmax ) ϕ2
n(p) dp

≤ (2∞1)3/2k2
Z 0

pn
|p − p1|3/2 (p − pn)2k−2 dp + (2∞1)1/2

Z 0

pn
|p − p1|1/2 (p − pn)2k dp

= (2∞1)3/2k2
n

Z p1

pn
|p − p1|3/2 (p − pn)2k−2 dp +

Z 0

p1

|p − p1|3/2 (p − pn)2k−2 dp
o

+ (2∞1)1/2
n

Z p1

pn
|p − p1|1/2 (p − pn)2k dp +

Z 0

p1

|p − p1|1/2 (p − pn)2k dp
o

≤ (2∞1)3/2k2
n

|p1 − pn|3/2
Z p1

pn
(p − pn)2k−2 dp +

Z 0

p1

(p − pn)2k−1/2 dp
o

+ (2∞1)1/2
n

|p1 − pn|1/2
Z p1

pn
(p − pn)2k dp +

Z 0

p1

(p − pn)2k+1/2 dp
o

.



The last expression can be computed explicitly as

(2∞1)3/2k2
n |pn|2k+1/2

2k + 1/2
+

3(p1 − pn)2k+1/2

(2k − 1)(4k + 1)

o

+ (2∞1)1/2
n |pn|2k+3/2

2k + 3/2
+

(p1 − pn)2k+3/2

(2k + 1)(4k + 3)

o

= ϕ2
n(0)

n

(2∞1)3/2k2 |pn|1/2

2k + 1/2
+ (2∞1)1/2 |pn|3/2

2k + 3/2

o

+ ϕ2
n(0)

n

(2∞1)3/2k2 3(p1 − pn)2k+1/2

|pn|2k (2k − 1)(4k + 1)
+ (2∞1)1/2 (p1 − pn)2k+3/2

|pn|2k (2k + 1)(4k + 3)

o

.

since ϕ2
n(0) = |pn|2k . On the other hand, by construction we have

|p1 − pn|
|pn|

≤ 1 while limn→1 |p1 − pn| = 0.

Using (lbc), we can find k >
1

2
sufficiently small and some integer N ≥ 2 such that for some ε > 0 we have

(2∞1)3/2 k2 |pn|1/2

2k + 1/2
+ (2∞1)1/2 |pn|3/2

2k + 3/2
< g − ε ,

whenever n ≥ N. With this specified value of k we can now choose n ≥ N large enough to ensure

(2∞1)3/2k2 3(p1 − pn)2k+1/2

|pn|2k (2k − 1)(4k + 1)
+ (2∞1)1/2 (p1 − pn)2k+3/2

|pn|2k (2k + 1)(4k + 3)
< ε .

This provides us with ϕn satisfying

Z 0

p0

a3(p, 2Γmax )
“

@pϕn(p)
”2

dp +

Z 0

p0

a(p, 2Γmax ) ϕ2
n(p) dp < g ϕ2

n(0).

Since a depends continuously on ∏, the previous inequality ensures that F(ϕn) < −1 for some ∏ > 2Γmax . At
this specific ∏ we have µ(∏) < −1.

Example: non-negative vorticity If ∞ ≥ 0 then Γmax = 0 so that p1 = 0 and the linearized problem has
solutions as (lbc) clearly holds true. Earlier we saw that this can not be expected for negative constant vorticities
with |∞| sufficiently large!


