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Modeling (I)

We consider two (macroscopically) immiscible incompressible, viscous
fluids like oil and water.
Classical Models: Interface is a two-dimensional surface.
Surface tension is proportional to the mean curvature.

But: Sharp interface is an idealization (van der Waals).
Fluid mix in a thin interfacial region.
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Free Energy of a Two-Component Mixture

We consider a binary mixture e.g. Al-/Ni alloy, water and oil, polymeric
mixture, . . .
Let cj : Ω→ R be the concentration of the component j = 1, 2,
c = c1 − c2, and let

Eε(c) =
ε

2

∫
Ω
|∇c(x)|2 dx + ε−1

∫
Ω

f (c(x)) dx

be the free energy of the mixture, where Ω ⊆ Rd ,
d = 1, 2, 3, ε > 0 and

f : R→ [0,∞) with f (c) = 0⇔ c = ±1.

Example:
f (c) = 1

8
(1− c2)2

Moreover, we assume

1

|Ω|

∫
Ω

c(x) dx = c ∈ (−1, 1) if |Ω| <∞.
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Remarks

A “typical” profile of a diffuse interface is

c(x) = tanh
x

2ε
, x ∈ R,

which minimizes Eε in the case Ω = R with constraint
c(x)→x→±∞ ±1.

Modica-Mortola ’77, Modica ’87 proved

Eε →ε→0 σP

in the sense of Γ-convergence (w.r.t. L1), where

P(v) =

{
Hd−1(∂∗E ) = ”area(∂E )” if v = 2χE − 1

+∞ else.

and σ = σ(f ).
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Cahn-Hilliard Equation (I)

Let J : Ω× (0,∞)→ Rd be the mass flux, i.e.

d

dt

∫
V

c(x , t) dx = −
∫
∂V

n · J(x , t) dσ(x) = −
∫

V
div J(x , t) dx

for all V ⊂ Ω, t ≥ 0.

Then

∂tc(x , t) = − div J(x , t) for (x , t) ∈ Ω× (0,∞).

Assumption (Cahn-Hilliard ’58): For some m(c) > 0 we have

J = −m(c)∇µ (generalized Fick’s law)

µ =
δEε
δc

= −ε∆c + ε−1f ′(c) (chemical potential)

Remark: µ = δEε
δc ≡ const.⇔ J ≡ 0
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Cahn-Hilliard Equation (II)

We consider

∂tc = div(m(c)∇µ) in Ω× (0,∞), (1)

µ = −ε∆c + ε−1f ′(c) in Ω× (0,∞) (2)

in a bounded smooth domain Ω ⊂ Rn together with

n · ∇c|∂Ω = n ·m(c)∇µ|∂Ω = 0 on ∂Ω× (0,∞), (3)

c|t=0 = c0 in Ω. (4)

Remark: For every smooth solution we have:

d

dt
Eε(c(t)) = −

∫
Ω

m(c(t, x))|∇µ(t, x)|2 dx .

Questions:

Does a unique solution c(t, x) exist for all t > 0?

Does c(t, x) converge as t →∞ to a critical point of Eε?
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Well-Posedness and Convergence

If f (c) is smooth, m(c) ≡ const.:
Existence: Elliott & Zheng ’86, Convergence: Hoffmann & Rybka ’99

Problem: Does c(t, x) ∈ [−1, 1] hold if c0(x) ∈ [−1, 1]?

One solution: Use a singular free energy density as e.g.

f (c) = θ((1− c) log(1− c) + (1 + c) log(1 + c))− θc c2, c ∈ [−1, 1],

with 0 < θ < θc , cf. Cahn & Hilliard ’58.

Existence: Elliott & Luckhaus ’91,
Debussche & Dettori ’95, Kenmochi et al. ’95

Convergence: A. & Wilke ’07

Remark:
For every solution c(t, x) ∈ (−1, 1) a.e.

Other results: Existence of weak solutions for degenerate mobility (Elliott
& Garcke ’96) and double obstacle potential (Blowey & Elliott ’91)
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Monotone Operators and Subgradients (I)

Let H be a real Hilbert space with inner product (., .)H .

Definition

A : D(A) ⊆ H → H is monotone if

(A(x)−A(y), x − y)H ≥ 0 for all x , y ∈ D(A).

Remark: If E : H → R is differentiable and convex, then DE : H → H is
monotone.

Proof: Consider f (t) = E (tx + (1− t)y), t ∈ [0, 1].
Then f : [0, 1]→ R is convex, f ′ : [0, 1]→ R is non-decreasing and

f ′(t) = (DE (tx + (1− t)y), x − y)H .

Hence
f ′(1) ≥ f ′(0) ⇔ (DE (x)− DE (y), x − y)H ≥ 0
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Monotone Operators and Subgradients (II)

Definition

Let E : H → R ∪ {+∞} be convex. Then the subgradient
∂HE : H → P(H) of E is defined by

w ∈ ∂HE (x) ⇔ E (y) ≥ E (x) + (w , y − x)H for all y ∈ H.

Remark: ∂HE : H → P(H) is a multi-valued monotone operator, i.e.,

(w − z , x − y)H ≥ 0 for all w ∈ ∂HE (x), z ∈ ∂HE (y)

Application: In the following let

E0(c) =
ε

2

∫
Ω
|∇c(x)|2 dx + ε−1

∫
Ω

f0(c(x)) dx

with f0(c) = θ((1− c) log(1− c) + (1 + c) log(1 + c)) be the “convex
part” of the free energy Eε(c) and

H ≡ L2
(0)(Ω) =

{
u ∈ L2(Ω) :

∫
Ω

u(x) dx = 0

}
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Subgradient of the Free Energy

Let P0 be the orthogonal projection of L2(Ω) onto L2
(0)(Ω) =: H.

Theorem (A., Wilke ’07)

∂L2
(0)

E0(c) =

{{
−ε∆c + ε−1P0f ′0(c)

}
if c ∈ D(∂L2

(0)
E0),

∅ else

where

D(∂L2
(0)

E0) =
{

c ∈ L2
(0)(Ω) : ∇2c , f ′0(c) ∈ L2(Ω), n · ∇c |∂Ω = 0

}
.

Moreover, we have for every c ∈ D(∂L2
(0)

E0):

‖∇2c‖L2(Ω) + ‖f ′0(c)‖L2(Ω) ≤ C
(
‖∂L2

(0)
E0(c)‖L2(Ω) + 1

)

⇒ −∆c + P0f ′0(c) is a (maximal) monotone operator.
⇒ Existence of solutions of the Cahn-Hilliard equation from general theory.
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Sketch of the Proof

Formal Proof: Let cs(x) = c(x) + s f ′0(c(x)), s > 0.

Then

(∂L2
(0)

E0(c), f ′0(c))L2(Ω) =
d

ds
E0(cs)

∣∣∣∣
s=0

=

∫
Ω
∇c · ∇(f ′0(c)) dx +

∫
Ω

f ′0(c)f ′0(c) dx

=

∫
Ω

f ′′0 (c)|∇c |2︸ ︷︷ ︸
≥0

dx +

∫
Ω

f ′0(c)2 dx

Hence
‖f ′0(c)‖L2(Ω) ≤ ‖∂L2

(0)
E0(c)‖L2(Ω).

To justify formal calculation:

Approximate f0 by non-singular fm : R→ R, m ∈ N.

Correct mean value of cs suitably to obtain cs ∈ L2
(0)(Ω).
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Subgradient of the Convex Part of the Energy (II)

Now we consider E0 as functional on H−1
(0) (Ω) = (H1(Ω) ∩ L2

(0)(Ω))′ by

setting E0(c) = +∞ if c 6∈ dom(E0) ⊂ L2
(0)(Ω).

Corollary

∂H−1
(0)

E0 is a (maximal) monotone operator on H−1
(0) (Ω) and

∂H−1
(0)

E0 = −∆N∂L2
(0)

E0. Moreover,

D(∂H−1
(0)

E0) =
{

c ∈ D(∂L2E0) : ∂L2
(0)

E0(c) ∈ H1(Ω)
}

Here ∆N : H1(Ω) ∩ L2
(0)(Ω)→ H−1

(0) (Ω) is defined by

〈−∆Nu, ϕ〉H−1,H1 = (∇u,∇ϕ)L2(Ω), ϕ ∈ H1(Ω) ∩ L2
(0)(Ω).
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E0(c) ∈ H1(Ω)
}

Here ∆N : H1(Ω) ∩ L2
(0)(Ω)→ H−1

(0) (Ω) is defined by

〈−∆Nu, ϕ〉H−1,H1 = (∇u,∇ϕ)L2(Ω), ϕ ∈ H1(Ω) ∩ L2
(0)(Ω).
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Cahn-Hilliard Equation with Singular Free energies

We consider

∂tc = div(m∇µ) in Ω× (0,∞), (5)

µ = −ε∆c + ε−1f ′(c) in Ω× (0,∞) (6)

with the initial and boundary conditions

n · ∇c |∂Ω = n ·m∇µ|∂Ω = 0 on ∂Ω× (0,∞), (7)

c |t=0 = c0 in Ω. (8)

Let m ≡ ε = 1. Use that

f (c) = f0(c)− θc

2
c2,

where f0 is convex. Then (5)-(6) are equivalent to

∂tc −∆(−∆c + f ′0(c))︸ ︷︷ ︸
monotone operator

= −θc ∆c︸ ︷︷ ︸
“Lipschitz perturbation”

Existence of solutions:
General result on perturbations of (maximal) monotone operators.
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Lipschitz Perturbations of Subgradients

Let Hj be Hilbert spaces such that H1 ↪→ H0 densely. We consider

du

dt
(t) + ∂H0ϕ(u(t)) 3 B(u(t)) + g(t), t ∈ (0,T ), (9)

u(0) = u0. (10)

and assume that B : H1 → H0 is globally Lipschitz continuous.
(In our case: B = −m

ε θc ∆, H0 = H−1
(0) (Ω), H1 = H1

(0)(Ω).)

Theorem ( A./Wilke ’07)

Let ϕ = ϕ1 + ϕ2 be a proper, l.s.c., convex functional such that

ϕ2 ≥ 0 is convex,

domϕ1 = H1 and ϕ1|H1 is a bounded, coercive, quadratic form on H1.

Then for every g ∈ L2(0,T ; H0), u0 ∈ dom(ϕ) there is a unique solution
u ∈W 1

2 (0,T ; H0)∩L∞(0,T ; H1) of (9)-(10). Moreover, ϕ(u) ∈ L∞(0,T ).
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Main Existence Result for Cahn-Hilliard Equation

Theorem (A./Wilke ’07)

For every c0 ∈ H1(Ω) with Eε(c0) <∞ there is a unique solution
c ∈ L∞(0,∞; H1(Ω)) ∩ L2(0,∞; H2(Ω)) of (5)-(8) with
∂tc ∈ L2(0,∞; H−1

(0) (Ω)), f ′(c) ∈ L2((0,∞)×Ω), µ ∈ L2
loc ([0,∞); H1(Ω)),

satisfying

Eε(c(T )) +

∫ T

0
‖∇µ(t)‖2

L2(Ω) dt = Eε(c0)

for all T > 0.

Furthermore, for δ > 0

c ∈ L∞(δ,∞; H2(Ω)), f ′(c) ∈ L∞(δ,∞; L2(Ω)),

µ ∈ L∞(δ,∞; H1(Ω)),

∂tc ∈ L∞(δ,∞; H−1
(0) (Ω)) ∩ L2(δ,∞; H1(Ω)).

Remark: If additionally c0 ∈ D(∂E ), then the last statement holds with
δ = 0.
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Convergence to Stationary Solutions (I)

Theorem (A./Wilke ’07)

Let f be analytic in (−1, 1). Then

lim
t→∞

c(t) = c∞ in H2r (Ω), r ∈ (0, 1),

for some c∞ ∈ H2(Ω) with c∞(Ω) ⊂ (−1, 1) solving the stationary system

−∆c∞ + f ′(c∞) = const. in Ω, (11)

∂νc∞|∂Ω = 0 on ∂Ω. (12)

Main ingredients:

c(t, x) ∈ [−1 + ε, 1− ε] for all t ≥ T1, x ∈ Ω and some T1, ε > 0.

For t > T1 replace f by smooth f̃ with f̃ |[−1+ε,1−ε] = f |[−1+ε,1−ε].
Apply the Lojasiewicz-Simon inequality to the modified E .
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Convergence to Stationary Solutions (II)

The proof is based on the Lojasiewicz-Simon gradient inequality:

|Eε(c)− Eε(c∞)|1−θ ≤ C‖DEε(c)‖H−1
(0)
, θ ∈ (0, 1

2 ] (LS)

for c in a neighborhood of a critical point c∞.

Consider

H(t) := (Eε(c(t))− Eε(c∞))θ ,

⇒ − d

dt
H(t) = θ

‖∇µ(t)‖2
L2

(Eε(c(t))− Eε(c∞))θ−1

(LS)

≥ C
‖∇µ(t)‖2

L2

‖DEε(c(t))‖H−1
(0)

≥ ‖∇µ(t)‖L2

since d
dt Eε(t) = −‖∇µ(t)‖2

L2(Ω) and ‖DEε(c(t))‖H−1
(0)
≤ C‖∇µ(t)‖L2 .

Hence∫ ∞
0
‖∂tc(t)‖H−1

(0)
dt ≤ C

∫ ∞
0
‖∇µ(t)‖2 dt ≤ C ′ (Eε(c0)− Eε(c∞))1−θ

⇒ limt→∞ c(t) = c0 +
∫∞

0 ∂tc(τ) dτ exists.
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Coarse Graining/Ostwald Ripening

Question: What is the asymptotic behavior of c(t) as t →∞?

Sternberg & Zumbrun ’98: For every stable critical point of Ω the diffuse
interface is connected.

This is related to the effect of Ostwald ripening.
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Sternberg & Zumbrun ’98: For every stable critical point of Ω the diffuse
interface is connected.

This is related to the effect of Ostwald ripening.
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Basic Modeling (I)

Idea: Sharp interface is an idealization. (Korteweg/van der Waals)

Therefore: Introduce an interfacial region, where both fluids mix.

Moreover: Take diffusion effects of particles into account.

Ansatz: Let c be the concentration difference of both fluids.
Assume that the interfacial energy is given by

Eε(c) =
ε

2

∫
Ω
|∇c(x)|2 dx + ε−1

∫
Ω

f (c(x)) dx ,

where the free energy density f is a suitable double well potential.

Diffusion: Assume that

∂tc + v · ∇c = div J

J = m∇µ (Fick’s law)

µ :=
δEε
δc

= −ε∆c + ε−1f (c) (chemical potential)

Classical models: Pure transport of the interface (m=0).
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Basic Modeling (II)

Conservation of mass and momentum yield

ρ∂tv + ρv · ∇v − divT(c , v, p) = 0

ρt + div(ρv) = 0

where T(c , v, p) is the stress tensor to be specified later.
Assumption ρ(c) ≡ const.(= 1). Hence div v = 0.

The kinetic energy is given by

Ekin(v) =
1

2

∫
Ω
|v(x)|2 dx

and the total energy of the system is

E (c , v) = Eε(c) + Ekin(v).
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Energy Dissipation
d

dt
E (c(t), v(t))

= −
∫

Ω
T(c ,∇c ,Dv, p) : Dv dx −

∫
Ω

m|∇µ|2 dx −
∫

Ω
µ∇c · v dx

= −
∫

Ω
(S(c ,∇c ,Dv) + ε∇c ⊗∇c) : Dv dx −

∫
Ω

m|∇µ|2 dx

where T(c ,∇c ,Dv, p) = S(c ,∇c ,Dv)− pI and

µ∇c = −ε div(∇c ⊗∇c) +∇
(
ε−1f (c) + ε

|∇c |2

2

)

Constitutive Assumption:

S(c ,∇c,Dv) + ε∇c ⊗∇c = ν(c)Dv

for some viscosity coefficient ν(c) > 0.

⇒ d

dt
E (c(t), v(t)) = −

∫
Ω
ν(c(t))|Dv(t)|2 dx −

∫
Ω

m|∇µ(t)|2 dx
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Diffuse Interface Model in the Case of Matched Densities

We derived:

∂tv + v · ∇v − div(ν(c)Dv)︸ ︷︷ ︸
inner friction

+∇p = −ε div(∇c ⊗∇c)︸ ︷︷ ︸
surface tension

(13)

div v = 0 (14)

∂tc + v · ∇c = m∆µ (15)

µ = −ε∆c + ε−1f ′(c) (16)

where Dv = 1
2 (∇v +∇vT ) together with

v|∂Ω = n · ∇c |∂Ω = n · ∇µ|∂Ω = 0 on ∂Ω× (0,∞), (17)

(v, c)|t=0 = (v0, c0) in Ω. (18)

Derivation: Hohenberg & Halperin ’74, Gurtin et al. ’96
Analytical results:
Starovoitov ’93, Boyer ’03, X.Feng ’06, Gal & Grasselli ’09, A. ’07/’09
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Well-Posedness of Model H

Theorem (Existence, Regularity, Uniqueness, A. ’07/’09)

Let d = 2, 3. For every v0 ∈ L2
σ(Ω), c0 ∈ H1(Ω) with Eε(c0) <∞ there is

a weak solution (v, c , µ) of (13)-(16), which satisfies

(v,∇c) ∈ L∞(0,∞; L2(Ω)), (∇v,∇µ) ∈ L2(0,∞; L2(Ω)),

∇2c , f ′(c) ∈ L2
loc ([0,∞); L6(Ω)).

Moreover, c ∈ BUC ([0,∞); W 1
q (Ω)) with q > d. For (v0, c0) sufficiently

smooth:

1 If d = 2, then the weak solution is unique and regular.

2 If d = 3, there are some 0 < T0 < T1 <∞ such that the weak
solution is regular and (locally) unique on (0,T0) and [T1,∞).

3 There is a critical point c∞ of Eε s.t. (v(t), c(t))→t→∞ (0, c∞).

Remark: Here ε > 0 and m > 0 are essential!
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Structure of the Proof

First study the separate systems:

1 Cahn-Hilliard equation with convection and singular potential
(based on Eε(c) = E0(c)− θ

2‖c‖
2
2 with E0 convex)

2 (Navier-)Stokes system with variable viscosity

Existence of weak solutions:
Approximation and compactness argument

Higher Regularity: Use regularity results for separate systems

Uniqueness: Gronwall’s inequality once c ∈ L∞(0,T ; C 1(Ω)) and
v ∈ L∞(0,T ; W 1

s (Ω)), s > d .

Crucial ingredient for higher regularity:
A priori estimate for c ∈ BUC ([0,∞); W 1

q (Ω)), q > d!

Convergence to stationary solutions: Based on regularity for large times
and the Lojasiewicz-Simon inequality.
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Cahn-Hilliard Equation with Convection – Existence

We consider

∂tc + v · ∇c = m∆µ in Ω× (0,∞), (17)

µ = −ε∆c + ε−1f ′(c) in Ω× (0,∞) (18)

n · ∇c |∂Ω = n · ∇µ|∂Ω = 0 on ∂Ω× (0,∞), (19)

c |t=0 = c0 in Ω. (20)

where m ≡ const., ε > 0 for a given v ∈ L∞(0,∞; L2
σ) ∩ L2(0,∞; H1)

Theorem (A. ’07/’09)

For every c0 ∈ H1(Ω) with Eε(c0) <∞ there is a unique solution
c ∈ L∞(0,∞; H1(Ω)) ∩ L2

uloc([0,∞); W 2
6 (Ω)) of (17)-(20) with

∂tc ∈ L2(0,∞; H−1
(0) (Ω)), f ′(c) ∈ L2

uloc([0,∞); L6(Ω)),

µ ∈ L2
uloc([0,∞); H1(Ω)). Moreover, for every T > 0

Eε(c(T )) +

∫ T

0
‖∇µ(t)‖2

L2(Ω) dt = Eε(c0)−
∫ T

0

∫
Ω
v · µ∇c dx dt
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A priori Estimates for c

W 2
r -estimate for c : Formally multiply

µ(x , t) = −∆c(x , t) + f ′(c(x , t))

by f ′(c(x , t)) = f ′0(c(x , t))− θcc(x , t) to obtain∫
Ω

f ′0(c(t))2 dx +

∫
Ω

f ′′0 (c(t))︸ ︷︷ ︸
≥0

|∇c(t)|2 dx ≤ C (‖µ(t)‖2
2 + ‖∇c‖2

2).

Similarly, multiplying with f ′0(c)|f ′0(c)|r−2 for 2 ≤ r <∞ yields

‖f ′0(c(t))‖r + ‖c(t)‖W 2
r
≤ Cr (‖µ(t)‖r + ‖∇c(t)‖2) .

⇒ c ∈ L2
uloc([0,∞); W 2

6 (Ω))

where
‖c‖L2

uloc([0,∞);X ) = sup
t≥0
‖c‖L2(t,t+1;X ).
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Cahn-Hilliard Equation with Convection – Regularity

Lemma

Let (c , µ) be the solution above, c0 ∈ D(∂H−1
(0)

E0), and let 0 < T <∞.

1 If ∂tv ∈ L1(0,T ; L2(Ω)), then (c , µ) satisfy

∂tc ∈ L∞(0,T ; H−1
(0) (Ω)) ∩ L2(0,T ; H1(Ω)),

c ∈ L∞(0,T ; W 2
6 (Ω)), f ′(c) ∈ L∞(0,T ; L6(Ω)),

µ ∈ L∞(0,T ; H1(Ω)).

2 If v ∈ Bα
4
3
∞(0,T ; Hs(Ω)) for some −1

2 < s ≤ 0 and α ∈ (0, 1), then

κc ∈ Cα([0,T ]; H−1
(0) (Ω)) ∩ Bα

2∞(0,T ; H1(Ω)).

Remark: In general we only have ∂tv ∈ L
4
3
uloc(0,∞; H−1(Ω)d ) and the first

part cannot be applied; but the second part.
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Higher Time Regularity for c

First part: L∞(0,∞; H−1
(0) )-estimate of ∂tc follows from: Multiplying

∂2
t c + ∆(∆∂tc − f ′′0 (c)︸ ︷︷ ︸

≥0

∂tc) = −∂t(v · ∇c)− θc ∆∂tc

by −∆−1
N ∂tc yields

‖∂tc‖L∞(0,∞;H−1
(0)

) + ‖∇∂tc‖L2(Q) ≤ C (c0)

(
1 + ‖∂tv‖

L
4
3
uloc(0,∞;V ′n)

)
where Vn(Ω) = {ϕ ∈ H1(Ω)d : n · ϕ|∂Ω = 0}.
⇒ µ ∈ L∞(0,∞; H1(Ω))

⇒ c ∈ L∞(0,∞; W 2
r (Ω)), r = 6 if d = 3 and 1 < r <∞ if d = 2.

Second part: Replace ∂tc by h−α∆hc . Use v ∈ Bα
4
3
∞;uloc

([0,∞); H−s(Ω))

with 0 < s < 1
2 as well as Hs

0(Ω) = Hs(Ω) and H−s(Ω) = Hs(Ω)′.
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Maximal Regularity for the Stokes Equation

We consider the Stokes equation with variable viscosity

∂tv − div(ν(x , t)Dv) +∇p = f in Ω× (0,T ), (21)

div v = 0 in Ω× (0,T ), (22)

v|∂Ω = 0 on ∂Ω× (0,T ), (23)

v|t=0 = 0 in Ω (24)

where Dv = 1
2 (∇v +∇vT ) in a suitable domain Ω ⊆ Rd with

∂Ω ∈W
2− 1

r
r , ν ∈ BUC ([0,T ]; W 1

r (Ω)), where 2 ≤ d < r ≤ ∞.

Theorem (A. & Terasawa ’09, A ’10/ A ’07 (q=2))

Let 1 < q <∞ with q, q′ ≤ r , ν(x) ≥ ν0 > 0, and 0 < T <∞. Then for
every f ∈ Lq(Ω× (0,T ))d there is a unique solution of v of (21)-(24) s.t.

‖(∂tv,∇2v,∇p)‖Lq(Ω×(0,T )) ≤ CT‖f‖Lq(Ω×(0,T )).

NB: fg ∈W 1
q (Ω) if f ∈W 1

q (Ω), g ∈W 1
r (Ω), 1 < q ≤ r , and r > d .
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2 (∇v +∇vT ) in a suitable domain Ω ⊆ Rd with

∂Ω ∈W
2− 1

r
r , ν ∈ BUC ([0,T ]; W 1

r (Ω)), where 2 ≤ d < r ≤ ∞.

Remark: If ν(x , t) = ν0(x), (21)-(24) can be written as X -valued ODE:

d

dt
v(t) + Aqv(t) = Pqf(t), t ∈ (0,∞),

v|t=0 = 0

where Aqv = −Pq div(ν0(x)Dv), Pq is the Helmholtz projection, and
X = Lq

σ(Ω) = {f ∈ Lq(Ω)d : div f = 0,n · f|∂Ω = 0}.
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r , ν ∈ BUC ([0,T ]; W 1

r (Ω)), where 2 ≤ d < r ≤ ∞.

If q = 2, ν(x , t) = ν0(x), the results follows from the fact that
A2 : D(A2) ⊆ L2

σ(Ω)→ L2
σ(Ω) is a positive self-adjoint operator, where

D(A2) = H2(Ω)d ∩ H1
0 (Ω)d ∩ L2

σ(Ω).
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2 (∇v +∇vT ) in a suitable domain Ω ⊆ Rd with

∂Ω ∈W
2− 1

r
r , ν ∈ BUC ([0,T ]; W 1

r (Ω)), where 2 ≤ d < r ≤ ∞.

If 1 < q <∞, Dore & Venni ’87 implies the result if Aq possesses bounded
imaginary powers, i.e.,

Aiy
q :=

1

2πi

∫
Γ
(−λ)iy (λ+ Aq)−1dλ, y ∈ R,

is bounded on Lq
σ(Ω), where (λ+ Aq)−1 = O(|λ|−1).

Proof: Approximation of (λ+ Aq)−1 with pseudodifferential operators.
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Quasi-Incompressible Model
Lowengrub &Truskinovsky’98 derived:

ρ∂tv + ρv · ∇v − div(ν(c)Dv) +∇p = −ε div(∇c ⊗∇c)︸ ︷︷ ︸
surface tension

(25)

∂tρ+ div(ρv) = 0 (26)

ρ∂tc + ρv · ∇c = m∆µ (27)

µ = −ρ−2 ∂ρ

∂c

(
p +
|∇c|2

2

)
+ ε−1f ′(c)− ερ−1∆c (28)

in Ω× (0,T ), where Dv = 1
2 (∇v +∇vT ), together with suitable initial

and boundary conditions.

v, p are the velocity and pressure of the fluid mixture.

ρ = ρ̂(c) is the density given as a constitutive function.

c = c1− c2 is the difference of the (mass) concentrations of the fluids.

µ is the chemical potential and m > 0 the (constant) mobility.

f : R→ [0,∞) is a (homogeneous) free energy density
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(25)

∂tρ+ div(ρv) = 0 (26)

ρ∂tc + ρv · ∇c = m∆µ (27)

µ = −ρ−2 ∂ρ

∂c

(
p +
|∇c|2

2

)
+ ε−1f ′(c)− ερ−1∆c (28)

New difficulties:

div v 6= 0 and p enters equation for chemical potential (28).
(25)-(26) and (27)-(28) are coupled in highest order if ρ 6≡ const.!

Analytic results:
A. ’09: Existence of weak solutions for modified free energy/system

Eε(c) = εq−1

∫
Ω

|∇c|q

q
dx + ε−1

∫
Ω
ρf (c(x)) dx with q > d!

A. ’12: Strong well-posedness locally in time in L2-Sobolev spaces.
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New Diffuse Interface Model (A., Garcke, Grün ’12)

In the case of non-matched densities one can derive

ρ∂tv + (ρv + ∂ρ
∂c Jϕ) · ∇v

− div(2ν(ϕ)Dv) +∇p = −ε div(∇ϕ⊗∇ϕ) (29)

div v = 0 (30)

∂tϕ+ v · ∇ϕ = div(m(ϕ)∇µ) (31)

where Jϕ = −m(ϕ)∇µ together with

µ = ε−1f ′(ϕ)− ε∆ϕ (32)

Here

v = ϕ1v1 + ϕ2v2 – volume averaged velocity.

vj – velocity of fluid j .

ϕj – volume fraction of fluid j , ϕ = ϕ2 − ϕ1.

ρ = ρ(ϕ) = 1−ϕ
2 ρ̃1 + 1+ϕ

2 ρ̃2 and ρ̃j are the specific densities.

Lowengrub,Truskinovsky: v is the mass averaged velocity ρv = ρ1v1 + ρ2v2
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∂tϕ+ v · ∇ϕ = div(m(ϕ)∇µ) (31)

where Jϕ = −m(ϕ)∇µ together with

µ = ε−1f ′(ϕ)− ε∆ϕ (32)

Conservation of mass:

∂tρ+ div
(
ρv − ρ̃2 − ρ̃1

2
m(ϕ)∇µ︸ ︷︷ ︸

=−∂ρ∂c Jϕ

)
= 0

Here ρ̃2−ρ̃1
2 m(ϕ)∇µ = ∂ρ

∂ϕm(ϕ)∇µ is a flux relative to ρv related to
diffusion of the particles.
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Modeling: Conservation of Linear Momentum

Starting point:

∂t(ρv) + div(ρv ⊗ v) + div

(
v ⊗ ∂ρ

∂ϕ
Jϕ

)
= divT

where Jϕ = m(ϕ)∇µ, cf. Alt ’09.

This is equivalent to

ρ∂tv +

(
ρv +

∂ρ

∂ϕ
Jϕ

)
· ∇v = divT (33)

and, if V (t) is transported by ρṽ = ρv − ∂ρ
∂ϕm(ϕ)∇µ,

d

dt

∫
V (t)

ρ|v|2

2
dx =

∫
∂V (t)

n · T dx

Note:

The left-hand side of (33) is objective in contrast to ρ∂tv + ρv · ∇v
and ∂t(ρv) + div(ρv ⊗ v) in our situation.

Therefore T is objective too.
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∫
∂V (t)

n · T dx

Note:

The left-hand side of (33) is objective in contrast to ρ∂tv + ρv · ∇v
and ∂t(ρv) + div(ρv ⊗ v) in our situation.

Therefore T is objective too.
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Derivation of the Model

Starting Point

ρ∂tv + (ρv + ∂ρ
∂ϕJϕ) · ∇v = divT (conservation of momentum)

div v = 0 (conservation law for components, I)

∂tϕ+ v · ∇ϕ+ div Jϕ = 0 (conservation law for components, II)

∂te + v · ∇e + div Je ≤ 0 (local energy inequality)

Here T is the stress tensor, Jϕ, Je are fluxes, and

e = e(v, ϕ,∇ϕ) = ρ̂(ϕ)
|v|2

2
+ ε−1f (ϕ) + ε

|∇ϕ|2

2
.

Lagrange multiplier approach:

Exploiting the energy inequality and the conservation laws give
restrictions for the constitutive assumptions on T, Jϕ, Je .
The chemical potential µ and the pressure p arise as Lagrange
multipliers to the constraints given by the conservation laws.

∂te + v · ∇e + div Je + µ(∂tϕ+ v · ∇ϕ+ div Jϕ) ≤ 0

for a Lagrange multiplier µ (“chemical potential”).
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Existence of Weak Solutions: Assumptions
We consider

ρ∂tv + (ρv + ∂ρ
∂c Jϕ) · ∇v

− div(2ν(ϕ)Dv) +∇p = −ε div(∇ϕ⊗∇ϕ) (34)

div v = 0 (35)

∂tϕ+ v · ∇ϕ = div(m(ϕ)∇µ) (36)

µ = ε−1f ′(ϕ)− ε∆ϕ (37)

where Jϕ = m(ϕ)∇µ with 0 < m0 ≤ m(ϕ) ≤ M0 in Ω× (0,T ), where
Ω ⊆ Rn is a bounded smooth domain, together with

v|∂Ω = n · ∇ϕ|∂Ω = n · ∇µ|∂Ω = 0 (38)

(v, ϕ)|t=0 = (v0, ϕ0)(39)

For f we choose e.g.:

f (ϕ) =
{
θ((1− ϕ) log(1− ϕ) + (1 + ϕ) log(1 + ϕ))ϕ− θcϕ

2, ϕ ∈ [−1, 1],

+∞ else.
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Theorem (A., Depner, Garcke ’11)

Let d = 2, 3. For every v0 ∈ L2
σ(Ω), ϕ0 ∈ H1(Ω) with Eε(ϕ0) <∞ there is

a weak solution (v , ϕ, µ) of (34)-(39), which satisfies

(v,∇ϕ) ∈ L∞(0,∞; L2(Ω)), (∇v,∇µ) ∈ L2(0,∞; L2(Ω)),

∇2ϕ, f ′(ϕ) ∈ L2
loc ([0,∞); L2(Ω)).

In particular, ϕ(t, x) ∈ (−1, 1) almost everywhere.

Energy dissipation: Proof is based on a priori estimates deduced from

d

dt
E (ϕ(t), v(t)) = −

∫
Ω
ν(ϕ)|Dv|2 dx −

∫
Ω

m(ϕ)|∇µ|2 dx with

E (ϕ(t), v(t)) =

∫
Ω

(
ε
|∇ϕ|2

2
+

1

ε
f (ϕ)

)
dx +

∫
Ω

ρ|v(t)|2

2
dx

Helmut Abels (U Regensburg) Sharp and Diffuse Interface Models EVEQ 2012 – July 9-13, 2012 46 / 78



Structure of the Proof

We approximate (34)-(39) by an implicit time discretization for which
we have an analogous discrete energy estimate.

In order to deal with the singular logarithmic terms, we use again that

f (ϕ) = f0(ϕ)− θc

2
ϕ2,

where f0 is convex. Then

µ = −ε∆ϕ+ 1
ε f ′(ϕ) = −ε∆ϕ+ 1

ε f ′0(ϕ)︸ ︷︷ ︸
=∂E0(ϕ)

−θcϕ

Essential step: Use regularity result for ∂E0:

‖ϕ‖H2(Ω) + ‖f ′0(ϕ)‖L2(Ω) ≤ C
(
‖∂E0(ϕ)‖L2(Ω) + 1

)
⇒ ∆ϕ, f ′(ϕ) ∈ L2(0,T ; L2(Ω))
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Strong Compactness of Velocity Field

Let (ϕk , vk , pk ) be a sequence of solutions with bounded energies.

In order to pass to the limit in

∂t(ρkvk ) + div
(
vk ⊗ (ρkvk + ∂ρ

∂ϕJk )
)

− div(2ν(ϕk )Dvk ) +∇pk = −ε div(∇ϕk ⊗∇ϕk )

we use that this equation implies (for a subsequence)

Pσ(ρkvk )→k→∞ Pσ(ρv) in L2(Ω× (0,T ))

by the Lemma of Aubin-Lions. Here Pσ is the Helmholtz projection.

Hence∫ T

0

∫
Ω
ρk |vk |2 dx dt =

∫ T

0

∫
Ω

Pσ(ρkvk)vk dx dt →k→∞

∫ T

0

∫
Ω
ρ|v|2 dx dt

and therefore vk →k→∞ v in L2(Ω× (0,T )) since ρk →k→∞ ρ a.e.
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Weak Continuity of the Velocity

Goal: Show v : [0,∞)→ L2(Ω) is weakly continuous and v|t=0 = v0

Problem: Weak formulation of moment equation (34) only gives control of

∂tPσ(ρv) ∈ L2(0,T ; H−s(Ω)) for some s < 0 and all T <∞.

Since ρv ∈ L∞(0,T ; L2(Ω)), standard arguments imply

Pσ(ρv) ∈ C ([0,∞); H−1) ∩ L∞(0,∞; L2) ↪→ Cw ([0,∞); L2)

Hence Pσ(ρv|t=0) = Pσ(ρ0v0). To conclude ρv|t=0 = ρ0v0, we use:

Lemma

Let vj ∈ L2
σ(Ω), j = 1, 2 such that∫

Ω
ρv1 ·ϕ dx =

∫
Ω
ρv2 ·ϕ dx for all ϕ ∈ C∞0,σ(Ω).

Then v1 = v2.

Using this lemma, one can also show v ∈ Cw ([0,∞); L2(Ω)).
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Sharp Interface Limit of Cahn-Hilliard Equation

We consider

∂tc = m∆µ, (40)

µ = −ε∆c + ε−1f ′(c) (41)

together with suitable boundary and initial conditions. Then (40)-(41)
converges to the Mullins-Sekerka equation if m = m(ε) ≡ const. > 0:

V = −m

2
[nΓ(t) · ∇µ] on Γ(t)

µ|Γ(t) = σH on Γ(t)

∆µ = 0 on Ω±(t)

due to

Alikakos et al. ’94 (local strong solutions)

X. Chen ’96 (global varifold solutions).
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Theorem (X. Chen ’96)

Let (cε, µε)0<ε≤1 be solutions of (40)-(41). Then for a suitable
subsequence

cε →ε→0 −1 + 2χE in C
1
9

loc ([0,∞); L2(Ω)) and a.e.

µε ⇀ε→0 µ in L2
loc ([0,∞); H1(Ω)),

where χE ∈ L∞(0,∞; BV (Ω)) and

∂tχE =
m

2
∆µ in D′(Ω× (0,∞)),

−µ∇χE =
1

2
δVt in D′(Ω× (0,∞)),

where

〈δV t , ψ〉 =

∫
Ω
∇ψ :

(
I dν − d(νij )

d
i ,j=1

)
for all C 1

0 (Ω)d and 0 ≤ (νij )
d
i ,j=1 ≤ Iν in M(Ω)d×d .
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Sketch of the Proof (due to X. Chen) (I)

Energy estimate: For every 0 < T <∞:

Eε(cε(·,T )) + m

∫ T

0

∫
Ω
|∇µ|2 dx dt ≤ Eε(c0,ε) ≤ M.

Moreover, ∂tcε = m∆µε is bounded in L2(0,∞; H−1(Ω)). Arguments by
Modica and Mortola and embeddings give

cε →ε→0 −1 + 2χE in C
1
9

loc ([0,∞); L2(Ω)) and a.e.,

where ‖∇χE (t)‖M(Ω) ≤ 1
σM for a.e. 0 < t <∞.
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Sketch of the Proof (due to X. Chen) (II)

Let eε = ε |∇cε|2
2 + f (cε)

ε . Then (eε)0<ε≤1 ⊆ L∞(0,∞; L1(Ω)). Hence

eε ⇀
∗
ε→0 ν in L∞w∗(0,∞;M(Ω))

ε∇cε ⊗∇cε ⇀
∗
ε→0 (νi ,j )

d
i ,j=1 in L∞w∗(0,∞;M(Ω)d×d )

Using

µε∇cε = div (eεI− ε∇cε ⊗∇cε)

yields in the limit ε→ 0

2µ∇χE = div
(
νI− (νi ,j )

d
i ,j=1

)
= δV

Essential step: To show 0 ≤ (νi ,j )
d
i ,j=1 ≤ Iν in M(Ω)d×d one uses that

(ξε(cε))+ dx dt ⇀∗ε→0 0 in M(Ω× (0,∞)),

where ξ(cε) := ε |∇cε|2
2 − f (cε)

ε (discrepancy measure).

Helmut Abels (U Regensburg) Sharp and Diffuse Interface Models EVEQ 2012 – July 9-13, 2012 54 / 78



Sketch of the Proof (due to X. Chen) (II)

Let eε = ε |∇cε|2
2 + f (cε)

ε . Then (eε)0<ε≤1 ⊆ L∞(0,∞; L1(Ω)). Hence

eε ⇀
∗
ε→0 ν in L∞w∗(0,∞;M(Ω))

ε∇cε ⊗∇cε ⇀
∗
ε→0 (νi ,j )

d
i ,j=1 in L∞w∗(0,∞;M(Ω)d×d )

Using

µε∇cε = div (eεI− ε∇cε ⊗∇cε)

yields in the limit ε→ 0

2µ∇χE = div
(
νI− (νi ,j )

d
i ,j=1

)
= δV

Essential step: To show 0 ≤ (νi ,j )
d
i ,j=1 ≤ Iν in M(Ω)d×d one uses that

(ξε(cε))+ dx dt ⇀∗ε→0 0 in M(Ω× (0,∞)),

where ξ(cε) := ε |∇cε|2
2 − f (cε)

ε (discrepancy measure).
Helmut Abels (U Regensburg) Sharp and Diffuse Interface Models EVEQ 2012 – July 9-13, 2012 54 / 78



Overview
1 Phase Separation and Cahn-Hilliard Equation

Free Energy and the Cahn-Hilliard Equation
Monotone Operators and Subgradients
Analysis of the Cahn-Hilliard Equation with Singular Free Energies
Asymptotic Behavior for Large Times

2 Model H – Diffuse Interface Model for Matched Densities
Basic Modeling and First Properties
Well-Posedness of Model H
Cahn-Hilliard Equation with Convection
Stokes Equation with Variable Viscosity

3 Diffuse Interface Models for Non-Matched Densities
A Model by Lowengrub and Truskinovsky
Modified Model H

4 Sharp Interface Limits and Analysis of a Limit Model
Sharp Interface Limit for the Cahn-Hilliard Equation
Sharp Interface Limit for Modified Model H
Analysis of the Navier-Stokes/Mullins-Sekerka System

Helmut Abels (U Regensburg) Sharp and Diffuse Interface Models EVEQ 2012 – July 9-13, 2012 55 / 78



Diffuse Interface Model (A., Garcke, Grün ’12)

We consider

ρ∂tv + (ρv + ∂ρ
∂ϕJϕ) · ∇v

− div(2ν(ϕ)Dv) +∇p = −ε div(∇ϕ⊗∇ϕ) (42)

div v = 0 (43)

∂tϕ+ v · ∇ϕ = div(m(ϕ)∇µ) (44)

where Jϕ = −m(ϕ)∇µ together with

µ = ε−1f ′(ϕ)− ε∆ϕ (45)

Here

v = ϕ1v1 + ϕ2v2 – volume averaged velocity.

vj – velocity of fluid j .

ϕj – volume fraction of fluid j , ϕ = ϕ2 − ϕ1.

ρ = ρ(ϕ) = 1−ϕ
2 ρ̃1 + 1+ϕ

2 ρ̃2.
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Sharp Interface Limits via Matched Asymptotics (AGG ’12)
Bulk equations: In Ω±(t) we have

ρ∂tv + (ρv + ρ1−ρ2
2 J) · ∇v − div(ν±Dv) +∇p = 0

div v = 0

Interface equations:

Case I: m = εm0: On Γ(t) we have

−
[
n · (ν±Dv − pI )

]
= σHn

V = n · v|Γ(t)

V is the normal velocity, H is the mean curvature, n is a normal. J ≡ 0

Case II: m = m0 > 0: On Γ(t) we have

−
[
n · (ν±Dv − pI )

]
= σHn

V = n · v|Γ(t) − m0
2 [n · ∇µ]

2µ|Γ(t) = σH

together with ∆µ = 0 in Ω±(t), J = m0
2 ∇µ.
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Theorem (Sharp Interface Limit in Varifold Sense (A. forthcoming))

Let (vε, ϕε, µε)0<ε≤1 be weak solutions of (13)-(16) with
m = m(ε)→ m0 ≥ 0 such that limε→0 εm(ε)−1 = 0. Then for a suitable
subsequence

(vε,m(ε)µε) ⇀ε→0 (v,m0µ) in L2
loc([0,∞); H1(Ω))

ϕε →ε→0 −1 + 2χE in C
1
9

loc ([0,∞); L2(Ω)) and a.e.

where χEt ∈ L∞(0,∞; BV (Ω)) and

∂t(ρv) + div(v ⊗ (ρv + m0
ρ1−ρ2

2 ∇µ))− div(ν(χEt )Dv) +∇q = −δV

∂tχEt + v · ∇χEt =
m0

2
∆µ

If m0 > 0 : −µ∇χEt =
1

2
δVt

in D(Ω× (0,∞)), where δV is as in X. Chen ’96 and ρ = ρ(χE ).

Case ρ1 = ρ2, m0 > 0: See A. Röger ’09.
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Sketch of the Proof (I)

Energy estimate: For every 0 < T <∞:

Eε(ϕε(T )) +

∫
Ω
ρ(cε(T ))

|v(T )|2

2
dx

+

∫ T

0

∫
Ω

(
ν(ϕε)|Dvε|2 + mε|∇µ|2

)
dx dt ≤ Eε(ϕ0,ε) +

∫
Ω
ρ(c0,ε)

|v0|2

2
dx .

Adapting the arguments of X. Chen/Modica and Mortola one shows

cε →ε→0 −1 + 2χE in C
1
9

loc ([0,∞); L2(Ω)) and a.e.,

where ‖∇χE (t)‖M(Ω) ≤ 1
σM for a.e. 0 < t <∞.

Strong convergence of vε: First one shows

Pσ(ρ(ϕε)vε)→ε→0 Pσ(ρ(χE )v) in L2(Ω× (0,T ))

for all 0 < T <∞ using the Lemma of Aubin-Lions. This implies

vε →ε→0 v in L2(Ω× (0,T )) for all 0 < T <∞

similarly as in A., Depner, Garcke ’11 since div vε = div v = 0.

Helmut Abels (U Regensburg) Sharp and Diffuse Interface Models EVEQ 2012 – July 9-13, 2012 59 / 78



Sketch of the Proof (I)

Energy estimate: For every 0 < T <∞:

Eε(ϕε(T )) +

∫
Ω
ρ(cε(T ))

|v(T )|2

2
dx

+

∫ T

0

∫
Ω

(
ν(ϕε)|Dvε|2 + mε|∇µ|2

)
dx dt ≤ Eε(ϕ0,ε) +

∫
Ω
ρ(c0,ε)

|v0|2

2
dx .

Adapting the arguments of X. Chen/Modica and Mortola one shows

cε →ε→0 −1 + 2χE in C
1
9

loc ([0,∞); L2(Ω)) and a.e.,

where ‖∇χE (t)‖M(Ω) ≤ 1
σM for a.e. 0 < t <∞.

Strong convergence of vε: First one shows

Pσ(ρ(ϕε)vε)→ε→0 Pσ(ρ(χE )v) in L2(Ω× (0,T ))

for all 0 < T <∞ using the Lemma of Aubin-Lions. This implies

vε →ε→0 v in L2(Ω× (0,T )) for all 0 < T <∞

similarly as in A., Depner, Garcke ’11 since div vε = div v = 0.
Helmut Abels (U Regensburg) Sharp and Diffuse Interface Models EVEQ 2012 – July 9-13, 2012 59 / 78



Sketch of the Proof (II)

As before let eε = ε |∇cε|2
2 + f (cε)

ε . Then (eε)0<ε≤1 ⊆ L∞(0,∞; L1(Ω)).
Hence

eε ⇀
∗
ε→0 ν in L∞w∗(0,∞;M(Ω))

ε∇cε ⊗∇cε ⇀
∗
ε→0 (νi ,j )

d
i ,j=1 in L∞w∗(0,∞;M(Ω)d×d )

Using

µε∇cε = div (eεI− ε∇cε ⊗∇cε)

yields in the limit ε→ 0

2µ∇χE = div
(
νI− (νi ,j )

d
i ,j=1

)
= δV

Essential step: To show 0 ≤ (νi ,j )
d
i ,j=1 ≤ Iν in M(Ω)d×d one uses that

(ξε(cε))+ dx dt ⇀∗ε→0 0 in M(Ω× (0,∞)),

where ξ(cε) := ε |∇cε|2
2 − f (cε)

ε (discrepancy measure), cf. X. Chen ’96.

To this end one needs: εm(ε)−1 →ε→0 0!
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Sketch of the Proof (II)

As before let eε = ε |∇cε|2
2 + f (cε)

ε . Then (eε)0<ε≤1 ⊆ L∞(0,∞; L1(Ω)).
Hence

eε ⇀
∗
ε→0 ν in L∞w∗(0,∞;M(Ω))

ε∇cε ⊗∇cε ⇀
∗
ε→0 (νi ,j )

d
i ,j=1 in L∞w∗(0,∞;M(Ω)d×d )

Using

µε∇cε = div (eεI− ε∇cε ⊗∇cε)

yields in the limit ε→ 0

2µ∇χE = div
(
νI− (νi ,j )

d
i ,j=1

)
= δV

Essential step: To show 0 ≤ (νi ,j )
d
i ,j=1 ≤ Iν in M(Ω)d×d one uses that

(ξε(cε))+ dx dt ⇀∗ε→0 0 in M(Ω× (0,∞)),

where ξ(cε) := ε |∇cε|2
2 − f (cε)

ε (discrepancy measure), cf. X. Chen ’96.

To this end one needs: εm(ε)−1 →ε→0 0!
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A Model by Lowengrub and Truskinovsky
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Analysis of the Navier-Stokes/Mullins-Sekerka System
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Analytic Results for the Mullins-Sekerka Equation:

We consider

V = m[nΓ(t) · ∇µ] on Γ(t) (46)

µ|Γ(t) = σH on Γ(t) (47)

∆µ = 0 on Ω±(t) (48)

together with Γ(0) = Γ0 ⊂⊂ Ω = Ω+(t) ∪ Ω−(t) ∪ Γ(t).

Existence of local, classical solutions:
X. Chen, Hong & Yi ’93, (d = 2),
Escher & Simonett ’96/’97 (d ≥ 2).

Stability of spheres: X. Chen ’93, (d = 2), Escher & Simonett ’98, Prüß,
Simonett, & Zacher ’09, Köhne, Prüß & Wilke ’10 (d ≥ 2).

Existence of weak solutions: Röger ’05
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Existence of Strong Solutions (Escher & Simonett ’96/’97)
Basic idea: Write Γ(t) as a graph over a smooth reference manifold Σ:

Γ(t) =
{

x ∈ Ω : x = s + nΣh(t, s) =: θh(t)s for s ∈ Σ
}

= θh(t)(Σ)

where h(t) ∈ C 2(Σ). Extend θh(t) to a diffeomorphism

Θh(t) : Ω→ Ω (Hansawa transformation)

Then (46)-(48) is equivalent to

∂th + G (h) = 0 on Σ× (0,T ), h(0) = h0, (49)

where G (h) = D(h)H(h) and

H(h) is the transformed mean curvature of Γ(t).

D(h) is a transformed Dirichlet-to-Neumann-Operator.

Here DG (0) ≈ (−∆Σ)
1
2 (−∆Σ) generates an analytic semigroup e.g. on

hα(Σ) = C∞(Σ)
Cα(Σ)

Local existence: Theory of abstract quasi-linear parabolic equations
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Local Existence of Strong Solutions

∂tv + v · ∇v − div T (v, q) = 0 in Ω±(t) (50)

div v = 0 in Ω±(t) (51)

∆µ = 0 in Ω±(t) (52)

−
[
nΓ(t) · T (v, q)

]
= σHnΓ(t) on Γ(t), (53)

V = nΓ(t) · v|Γ(t) −m[nΓ(t) · ∇µ] on Γ(t), (54)

µ|Γ(t) = σH on Γ(t). (55)

Theorem (A. & Wilke ’11)

Let v0 ∈ H1
0 (Ω)d ∩ L2

σ(Ω), Γ0 = θh0 with h0 ∈W
4− 4

p
p (Σ), p ∈ (3, 2(d+2)

d ],
d = 2, 3. Then there is some T > 0 such that (50)-(55) has a unique
solution (v(t), Γ(t)) for t ∈ (0,T ), where Γ(t) = θh(t)Σ

v ∈ L2(0,T ; H2(Ω \ Γ(t))) ∩ H1(0,T ; L2(Ω))

h ∈ Lp(0,T ; W
4− 1

p
p (Σ)) ∩W 1

p (0,T ; W
1− 1

p
p (Σ))

Remark: It can also be shown that spheres, i.e., Γ(t) ≡ ∂BR(x0), v ≡ 0
are stable.
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Solving the Navier-Stokes-Part

∂tv + v · ∇v − div T (v, q) = 0 in Ω±(t), t ∈ (0,T ), (56)

div v = 0 in Ω±(t), t ∈ (0,T ), (57)

[v] = 0 on Γ(t), t ∈ (0,T ), (58)

−
[
nΓ(t) · T (v, q)

]
= σHnΓ(t) on Γ(t), t ∈ (0,T ), (59)

v|∂Ω = 0 on ∂Ω× (0,T ), (60)

v|t=0 = v0 in Ω (61)

where T (v, p) = µ±Dv − pI . Here Γ(t) = θh(t)Σ is given!

Theorem (A. & Wilke ’11)

Let h ∈ Lp(0,T0; W
4− 1

p
p ) ∩W 1

p (0,T0; W
1− 1

p
p ), v0 ∈ H1

0 (Ω)d ∩ L2
σ(Ω).Then

there is some 0 < T ≤ T0 such that (56)-(61) has a unique solution

v ∈ L2(0,T ; H2(Ω \ Γ(t))) ∩ H1(0,T ; L2(Ω))

Moreover, the mapping h 7→ v is C 1 w.r.t. to the corresponding norms.
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Solving the Navier-Stokes-Part – Sketch of Proof

Let Fh(t) = Θh(t) ◦Θ−1
h0

: Ω→ Ω. Then Fh(t)(Γ0) = Γ(t) for all
t ∈ (0,T ) and Fh(0) = Id. Defining u(x , t) = v(Fh(t)(x), t) (56)-(59) can
be transformed to

∂tu + u · ∇h,tu− divh,t Th,t(u, q̃) = ∂tFh · ∇h,tu in (Ω \ Γ0)× (0,T )

divh,t u = 0 in (Ω \ Γ0)× (0,T )

[u] = 0 on Γ0

− [Ah,tnΓ0 · Th,t(u, q̃)] = σH̃h,tAh,tnΓ0 on Γ0 × (0,T )

u|∂Ω = 0 on ∂Ω× (0,T )

Here

Ah,t ≈ I, ∇h,t ≈ ∇, Th,t(u, q̃) ≈ T(u, q̃), . . . if t ∈ (0,T ), 0 < T � 1

Moreover, since p > 3,

H̃h,t ∈ Lp(0,T ; W
2− 1

p
p (Γ0)) ∩W

1
3

p (0,T ; W
1− 1

p
p (Γ0))

↪→↪→ L2(0,T ; H
1
2 (Γ0)) ∩ H

1
4 (0,T ; L2(Γ0))
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Sketch of Proof: Local Well-Posedness

Again we write Γ(t) as a graph over a smooth reference manifold Σ:

Γ(t) =
{

x ∈ Ω : x = s + nΣh(t, s) =: θh(t)s for s ∈ Σ
}

= θh(t)(Σ)

where h(t) ∈ C 2(Σ) and use the Hansawa transformation Θh(t) : Ω→ Ω.
Then (46)-(48) is equivalent to

∂th(t) + G (h(t)) + FT (h)(t) = 0, t ∈ (0,T ), (62)

h(0) = h0, (63)

where G (h) = D(h)H(h) and

H(h) is the transformed mean curvature of Γ(t).

D(h) is a transformed Dirichlet-to-Neumann-Operator.

FT (h)(t) = (nΓ(t) · v(t)) ◦Θh(t)|Σ is the transformed convection term.

Here FT (h) is a non-local Volterra-type operator and a lower order
perturbation. Therefore local existence can be proved similarly as for the
Mullins-Sekerka system.
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Stability of Spheres

Theorem (A. & Wilke ’11)

Let Σ = ∂BR(x) ⊂ Ω. Then there is some δ > 0 such that for any
v0 ∈ H1(Ω)d ∩ L2

σ(Ω) and Γ0 = θh0 with

‖v0‖H1 + ‖h0‖
W

4− 4
p

p (Σ)
≤ δ,

such that the unique solution (v(t), Γ(t)) of (50)-(55) exists for all
t ∈ (0,∞), where

v ∈ L2(0,T ; H2(Ω \ Γ(t))d ) ∩ H1(0,T ; L2(Ω)d )

h ∈ Lp(0,T ; W
4− 1

p
p (Σ)) ∩W 1

p (0,T ; W
1− 1

p
p (Σ))

for every T <∞ and there is some h∞ such that θh∞Σ is a sphere and

(v(t), h(t))→t→∞ (0, h∞) exponentially in H1(Ω)d ×W
4− 4

p
p (Σ).

Proof: Based on the “Generalized Principle of Linearized Stability”
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Generalized Principle of Linearized Stability
Alternative approach to stability: We consider

d

dt
u(t) + A(u(t))u(t) = F (u(t)), t > 0 u(0) = u0

such that (A,F ) ∈ C 1(V ,L(X1,X0)× X0), where X1 ↪→ X0 densely,
V ⊂ Xγ := (X0,X1)1− 1

p
,p open 1 < p <∞, A(0) has maximal

Lp-regularity, and F (0) = 0. Let

E = {u ∈ V ∩ X1 : A(u)u = F (u)} .

Theorem (Prüß, Simonett, Zacher ’09)

Assume that

E is a C 1-manifold of dimension m ∈ N0, T0E = N (A(0))

0 is a semi-simple eigenvalue, i.e., N (A(0))⊕R(A(0)) = X0

σ(A(0)) \ {0} ⊂ {z ∈ C : Re z < 0}.
Then 0 is stable in Xγ and there is some δ > 0 such that for every
‖u0‖Xγ < δ there is some u∞ ∈ E such that u(t)→t→∞ u∞ exponentially.

Helmut Abels (U Regensburg) Sharp and Diffuse Interface Models EVEQ 2012 – July 9-13, 2012 69 / 78



Remarks on the Proof

Here Σ = ∂BR0(x0) ⊂ Ω the set of equilibria

E =
{

(0, h) : h ∈ C 2(Σ), θh(Σ) = ∂BR(x) ⊂ Ω, x ∈ Ω,R > 0
}

is an (d + 1)-dimensional manifold and T0E = N (A(0)) ∼= N (AΣ),
AΣ = ∆Σ + d−1

R2
0

. Proofs: Similar to Escher & Simonett ‘98.

Since the linearized operators are defined on

L2(0,∞; L2
σ(Ω))× Lq(0,∞; W

1− 1
q

q (Σ))

we do not apply the theorem directly, but modify its proof.

The phase manifold for the evolution is given by

PM =

{
(u, h) ∈ H1

0 (Ω)d ×W
4− 4

p
p (Σ): div u = Fd (u, h)

}
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Weak Solutions – Definition

(v , χ, µ) ∈ L2(0,T ; H1(Ω)d )× L∞w∗(0,T ; BV (Ω))× L2(0,T ; H1(Ω))

is a weak solution of the Navier-Stokes/Mullins-Sekerka system if

∂tv + v · ∇v − div(ν(χ)Dv) +∇p = µ∇χ in D′(Ω× (0,∞)),

div v = 0 in D′(Ω× (0,∞)),

∂tχ+ v · ∇χ = m0∆µ, in D′(Ω× (0,∞)),

and 1
σµ|∂∗{χ=1} is the generalized mean curvature of ∂∗{χ = 1}, which is

defined with the aid of inner variations.

Theorem (A. & Röger ’09)

Let v0 ∈ L2
σ(Td ), χ0 ∈ BV (Td ; {0, 1}), d = 2, 3, T > 0. Then there exists

a weak solutions (v , χ, µ) of the Navier-Stokes/Mullins-Sekerka system
with Ω = Td . Moreover, µ|∂∗{χ(t,.)=1} ∈ L4(Td , d |∇χ(t)|) and

∂∗{χ(t, .) = 1} has generalized mean curvature 1
σµ.

Note: If m = 0, existence of weak solution is open, cf. A. ’07.
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Proof: Semi-Implicit Time Discretization

Let χk+1 = χEk+1
be the minimizer of F h : BV (Td ; {0, 1})→ R

F h(χE ) = σHd−1(∂∗E ) +
1

2h
‖χ− χk + hvk · ∇χk‖2

H−1(Td )

under the constraint
∫

Ω χE dx = |Ω0|.
Moreover, let vk+1 ∈ H1

σ(Td ) solve

1

h
(v − vk , ϕ)Td + (vk · ∇v , ϕ)Td + (ν(χk )Dv ,Dϕ)Td = −(χk∇µk , ϕ)Td

Consequences:

1 Curvature equation:

σHk+1 = µ0
k+1 + λk+1 on ∂∗Ek+1, (64)

where µ0
k+1 := ∆−1

(
1
h (χk+1 − χk) + vk · ∇χk

)
.

2 Discrete (perturbed) energy estimate

Main problem: Passing to the limit in mean curvature equation (64).
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Proof: Passing to the Limit in Mean Curvature

Fundamental problem:

∇χEh(t) ⇀h→∞ ∇χE(t) in D′(Td )

|∇χEh(t)|⇀∗h→∞ θ(t) in M(Td )

Then |∇χE(t)| ≤ θ(t).
But in general |∇χE(t)| 6= θ(t)!

Schätzle ’01 ⇒ Since µh(t) ⇀h→0 µ(t) in H1(Ω), θ(t) is an integral
varifold with weak mean curvature Hθ(t) ∈ L4(dθ(t)) and Hθ(t) = µ(t)ν(t)
holds θ(t)-almost everywhere, with

ν(t, ·) =

{ ∇χE(t)

|∇χE(t)|
on ∂∗E (t),

0 elsewhere.
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Overview of Analytic Results (Case of Same Densities)

Existence of local strong/global weak solutions:

m = 0 m > 0

ε = 0 Classical Sharp Interface Model Navier-Stokes/Mullins-Sekerka

local strong solutions local strong & global weak sol.

ε > 0 Diffuse Interface Model Diffuse Interface Model

local strong solutions local strong & global weak sol.

NB: If m = 0, then existence of global weak solutions is open independent
of ε = 0 or ε > 0! – So far only solutions in sense of general varifolds if
ε = 0, cf. Plotnikov ’93, A. ’07 (Interfaces Free Bound.).
References:
ε = m = 0: Denisova & Solonnikov ’91, Tanaka ’93

ε > 0,m > 0: Starovoitov ’93, Boyer ’03, Feng ’06, A. ’07/’09

ε = 0,m > 0: A. & Röger ’09, A. & Wilke ’11

ε > 0,m = 0: A. & Terasawa ’09
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