THEORY OF INTERPOLATION 1

LUBOŠ PICK

1. Introduction

If not stated otherwise, (R, μ) and (S, ν) will throughout denote σ -finite measure spaces. By $\mathcal{M}(R, \mu)$ (or just $\mathcal{M}(R)$ for short in cases when it is clear which measure is considered) we denote the set of all μ -measurable real-valued functions on R, and by $\mathcal{M}_+(R, \mu)$ the set of all nonnegative functions in $\mathcal{M}(R, \mu)$. For $p \in [1, \infty]$, we define p' by

$$p' = \begin{cases} \infty & \text{if } p = 1, \\ \frac{p}{p-1} & \text{if } p \in (1, \infty), \\ 1 & \text{if } p = \infty. \end{cases}$$

If X and Y are (quasi)-normed spaces, we say that X is *embedded* into Y if there exists a constant C such that for every $x \in X$ one has $||x||_Y \leq C||x||_X$. By X + Y we denote the set of all elements z for which there exists a decomposition z = x + y with $x \in X$ and $y \in Y$. We define the functional $||\cdot||_{X+Y}: (X+Y) \to [0,\infty]$ by $||z||_{X+Y} = \inf_{z=x+y}(||x||_X + ||y||_Y)$.

Theorem 1 (embeddings of Lebesgue spaces). Let $0 < p, q \le \infty$. Then the embedding

$$L^q(R,\mu) \hookrightarrow L^p(R,\mu)$$

holds if and only if one of the following conditions hold:

- \bullet p=q,
- p < q and $\mu(R) < \infty$,
- p > q and there is an $\varepsilon > 0$ such that for every measurable $E \subset R$ of positive measure one has $\mu(E) \geq \varepsilon$.

Definition. The *Laplace transform* is defined by the formula

$$\mathcal{L}f(t) = \int_0^\infty f(s)e^{-st} ds \quad \text{for } t \in (0, \infty)$$

and every $f \in \mathcal{M}(0,\infty)$ for which the integral makes sense.

Remark. One has

$$\|\mathcal{L}f\|_{L^{\infty}(0,\infty)} \le \|f\|_{L^{1}(0,\infty)}.$$

Theorem 2 (Laplace transform on L^2). For every $f \in L^2(0,\infty)$ one has

$$\|\mathcal{L}f\|_{L^2(0,\infty)} \le \sqrt{\pi} \|f\|_{L^2(0,\infty)}.$$

The constant is optimal.

Theorem 3 (interpolation principle for Lebesgue spaces). Let $0 . Assume that <math>f \in L^p(R,\mu) \cap L^q(R,\mu)$. Let $\theta \in [0,1]$ and let r be defined by

$$\frac{1}{r} = \frac{1-\theta}{p} + \frac{\theta}{q}.$$

Date: March 2, 2019.

2000 Mathematics Subject Classification. 47B38.

Key words and phrases. interpolation, operators, inequalities, function spaces.

Then $f \in L^r(R,\mu)$ and

$$||f||_r \le ||f||_p^{1-\theta} ||f||_q^{\theta}$$

2. Classical interpolation theorems

2.1. Interpolation of positive operators.

Definition. Let T be an operator defined on simple functions on (R, μ) with values in $\mathcal{M}(S, \nu)$. Let $p, q \in (0, \infty]$. We say that T is of strong type (p, q) if there exists a constant M such that

$$||Tf||_{L^q(S,\nu)} \leq M||f||_{L^p(R,\mu)}$$
 for every μ -simple function f .

The smallest such M is called the *norm* of T and it is denoted by $||T||_{L^p \to L^q}$.

Theorem 4 (Riesz's theorem for positive operators). Let $1 \le p_0, p_1, q_0, q_1 \le \infty$ and $\theta \in [0, 1]$. Let

$$\frac{1}{p} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1}$$
 and $\frac{1}{q} = \frac{1-\theta}{q_0} + \frac{\theta}{q_1}$.

Let T be a positive linear operator of the form

$$Tf(y) = \int_{R} f(x)A(x,y)d\mu(x)$$
 for $y \in S$,

where A is a nonnegative measurable function on $R \times S$. Assume that T is of strong type (p_0, q_0) and, at the same time, of strong type (p_1, q_1) with norms M_0 and M_1 , respectively. Then T is of strong type (p, q) with norm M_{θ} satisfying

$$M_{\theta} \le M_0^{1-\theta} M_1^{\theta}.$$

2.2. Riesz's-Thorin's interpolation theorem.

Theorem 5 (Hadamard's three-line theorem). Let F be a bounded continuous function on $\overline{\Omega}$ and analytic in Ω , where

$$\Omega = \{ z \in \mathbb{C} \colon \operatorname{Re} z \in (0,1) \}.$$

Then the function M_{θ} , defined by

$$M_{\theta} = \sup\{|F(\theta + iy)| : y \in \mathbb{R}\} \text{ for } \theta \in [0, 1],$$

satisfies

$$M_{\theta} \leq M_0^{1-\theta} M_1^{\theta} \quad for \ \theta \in [0, 1].$$

Theorem 6 (Riesz's-Thorin's interpolation theorem). Let $1 \leq p_0, p_1, q_0, q_1 \leq \infty$ and let $\theta \in [0, 1]$. Let T be a linear operator which is of strong type (p_0, q_0) with norm M_0 and, at the same time, of strong type (p_1, q_1) with norm M_1 . Suppose that

$$\frac{1}{p} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1}$$
 and $\frac{1}{q} = \frac{1-\theta}{q_0} + \frac{\theta}{q_1}$.

Then T is of strong type (p,q) with norm M_{θ} satisfying

$$M_{\theta} \leq 2M_0^{1-\theta}M_1^{\theta}$$
.

The constant 2 can be dropped if the function spaces are complex.

Definition. The Fourier transform is defined by the formula

$$\mathcal{F}f(x) = \int_{\mathbb{R}^n} f(y)e^{2\pi ixy} \, dy \quad \text{for } x \in \mathbb{R}^n$$

and every $f \in \mathcal{M}(\mathbb{R}^n)$ for which the integral makes sense.

Theorem 7 (Hausdorff's-Young's theorem). Assume that $1 \le p \le 2$. Then there exists a constant C such that

$$\|\mathcal{F}f\|_{L^{p'}(\mathbb{R}^n)} \le C\|f\|_{L^p(\mathbb{R}^n)}.\tag{2.1}$$

Theorem 8 (Young's convolution theorem). Let $p, q, r \in [1, \infty]$ and assume that

$$\frac{1}{r} = \frac{1}{p} + \frac{1}{q} - 1.$$

Then

$$||f * g||_{L^r(\mathbb{R}^n)} \le ||f||_{L^p(\mathbb{R}^n)} ||g||_{L^q(\mathbb{R}^n)}.$$

2.3. Interpolation of compact operators.

Theorem 9 (interpolation of compact operators). Let $1 \le p_0, p_1, q_0, q_1 \le \infty$ and let T be a linear operator which is of strong type (p_0, q_0) and, at the same time, it is compact from $L^{p_1}(R, \mu)$ to $L^{q_1}(S, \nu)$. Let $\theta \in (0, 1], \nu(S) < \infty$, and suppose that

$$\frac{1}{p} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1} \quad and \quad \frac{1}{q} = \frac{1-\theta}{q_0} + \frac{\theta}{q_1}.$$

Then T is compact from $L^p(R,\mu)$ to $L^q(S,\nu)$.

Corollary. The Hardy operator T, defined by

$$Tf(t) = \int_0^t f(s) \, ds \quad \text{for } t \in (0, 1)$$

for every $f \in \mathcal{M}(0,1)$ for which the integral makes sense, is compact from $L^q(0,1)$ to $L^{\infty}(0,1)$ for every $q \in (1,\infty]$.

2.4. Interpolation of weak-type operators.

Definition. Let $n \in \mathbb{N}$ and $\gamma \in (0, n)$. The Riesz potential I_{γ} is defined by the formula

$$I_{\gamma}f(x) = \int_{\mathbb{R}^n} \frac{f(y)}{|x - y|^{n - \gamma}} \quad \text{for } x \in \mathbb{R}^n$$

and every function $f \in \mathcal{M}(\mathbb{R}^n)$ for which the integral makes sense.

Definition. Let $\delta > 0$. The dilation operator τ_{δ} is defined by the formula

$$\tau_{\delta} f(x) = f(\delta x) \quad \text{for } x \in \mathbb{R}^n$$

and every function $f \in \mathcal{M}(\mathbb{R}^n)$.

Theorem 10 (weak type estimate for the Riesz potential). Let $n \in \mathbb{N}$ and $\gamma \in (0, n)$. Then there exists a constant C such that

$$\sup_{\lambda \in (0,\infty)} \lambda |\{x \in \mathbb{R}^n \colon |I_{\gamma}f(x)| > \lambda\}|^{1-\frac{\gamma}{n}} \le C||f||_{L^1(\mathbb{R}^n)}$$

for every $f \in L^1(\mathbb{R}^n)$.

Definition. The Hardy averaging operator A is defined by the formula

$$Af(t) = \frac{1}{t} \int_0^t f(s) \, ds \quad \text{for } s \in (0, \infty)$$

and every function $f \in \mathcal{M}(0, \infty)$ for which the integral makes sense.

Remark. We have

$$\sup_{\lambda \in (0,\infty)} \lambda |\{x \in (0,\infty) \colon |Af(x)| > \lambda\}| \le ||f||_{L^1(0,\infty)}$$

for every $f \in L^1(0,\infty)$.

Theorem 11 (interpolation of weak-type operators in the diagonal case). Let T be a quasilinear operator, that is, T is positively homogeneous and, moreover,

$$|T(f+g)| \le K(|Tf| + |Tg|)$$

for some positive K and every f, g for which the right-hand side makes sense. Assume that there exists a constant C_{∞} such that

$$||Tf||_{L^{\infty}(S,\nu)} \leq C_{\infty}||f||_{L^{\infty}(R,\mu)}$$

for all $f \in L^{\infty}(R,\mu)$, and, at the same time, there exists a constant C_1 such that

$$\sup_{\lambda \in (0,\infty)} \lambda \nu(\{y \in S : |Tf(y)| > \lambda\}) \le C_1 ||f||_{L^1(R,\mu)}$$

for all $f \in L^1(R,\mu)$. Then for every $p \in (1,\infty]$ there exists a constant C_p such that

$$||Tf||_{L^p(S,\nu)} \le C_p ||f||_{L^p(R,\mu)}$$

for every $f \in L^p(R,\mu)$ and

$$C_p \le 2KC_1^{\frac{1}{p}}C_{\infty}^{1-\frac{1}{p}}\left(\frac{p}{p-1}\right)^{\frac{1}{p}}.$$

Definition. Let $n \in \mathbb{N}$ and $\gamma \in [0, n)$. The fractional maximal operator M_{γ} is defined by the formula

$$M_{\gamma}f(x) = \sup_{Q \ni x} \frac{1}{|Q|^{1-\frac{\gamma}{n}}} \int_{Q} |f(y)| dy \quad \text{for } x \in \mathbb{R}^{n}$$

and every function $f \in L^1_{loc}(\mathbb{R}^n)$, where the supremum is extended over all cubes with sides parallel to coordinate axes. In particular, M_0 is the $Hardy-Littlewood\ maximal\ operator$.

Definition. Let $f:(R,\mu)\to\mathbb{R}$ be a measurable function. Then the function $f_*:[0,\infty)\to[0,\infty]$, defined by

$$f_*(\lambda) = \mu\left(\left\{x \in R : |f(x)| > \lambda\right\}\right) \quad \text{for } \lambda \in [0, \infty),\tag{2.2}$$

is called the distribution function of f.

Proposition. Let $f:(R,\mu) \to \mathbb{R}$ be a measurable function. Then f_* is nonnegative, nonincreasing and right continuous on $[0,\infty)$.

Proposition. Let $f, g \in \mathcal{M}(R, \mu)$, and let $\{f_n\}_{n=1}^{\infty}$ be a sequence of functions from $\mathcal{M}(R, \mu)$. Let $a \in \mathbb{R}$, $a \neq 0$. Then

$$|g| \le |f| \mu$$
-a.e. $\Rightarrow g_* \le f_*,$ (2.3)

$$(af)_*(\lambda) = f_*\left(\frac{\lambda}{|a|}\right) \quad \text{for } \lambda \in [0, \infty),$$
 (2.4)

$$(f+g)_*(\lambda_1+\lambda_2) \le f_*(\lambda_1) + g_*(\lambda_2) \quad \text{for } \lambda_1, \lambda_2 \ge 0, \tag{2.5}$$

$$|f| \le \liminf_{n \to \infty} |f_n| \ \mu\text{-a.e.} \quad \Rightarrow \quad f_* \le \liminf_{n \to \infty} (f_n)_*,$$
 (2.6)

in particular,

$$|f_n| \uparrow |f| \mu \text{-}a.e. \Rightarrow (f_n)_* \uparrow f_*.$$
 (2.7)

Definition. Let $f \in \mathcal{M}(R, \mu)$ and $g \in \mathcal{M}(S, \nu)$. We say that f and g are equimeasurable if they have the same distribution function, that is, if $f_*(\lambda) = g_*(\lambda)$ for all $\lambda \in [0, \infty)$. We write $f \sim g$.

Definition. Let $f \in \mathcal{M}(R,\mu)$. Then the function $f^*: [0,\infty) \to [0,\infty]$ defined by

$$f^*(t) = \inf\{\lambda > 0 : f_*(\lambda) \le t\} \quad \text{for } t \in [0, \infty),$$

is called the *nonincreasing rearrangement* of f.

Definition. Assume that $p, q \in (0, \infty]$. We define the functional $\|\cdot\|_{p,q} \colon \mathcal{M}(R, \mu) \to [0, \infty]$ by

$$||f||_{p,q} = ||t^{\frac{1}{p} - \frac{1}{q}} f^*(t)||_{L^q(0,\infty)}.$$

In other words, we have

$$||f||_{L^{p,q}} = \begin{cases} \left(\int_0^\infty \left[t^{\frac{1}{p}} f^*(t) \right]^q \frac{dt}{t} \right)^{\frac{1}{q}} & \text{if } 0 < q < \infty, \\ \sup_{0 < t < \infty} t^{\frac{1}{p}} f^*(t) & \text{if } q = \infty. \end{cases}$$

The collection of all functions $f \in \mathcal{M}(R,\mu)$ such that $||f||_{p,q} < \infty$ is called the *Lorentz space* and is denoted by $L^{p,q}(R,\mu)$.

Proposition. Let $f \in \mathcal{M}(R,\mu)$. Then

$$f^*(f_*(\lambda)) \le \lambda$$
 for $\lambda \in [0, \infty)$ and $f_*(f^*(t)) \le t$ for $t \in [0, \infty)$.

Proposition. Let $f, g \in \mathcal{M}(R, \mu)$. Then

$$(f+g)^*(s+t) \le f^*(s) + g^*(t)$$
 for every $s, t \in [0, \infty)$.

Proposition. Let $f \in \mathcal{M}(R,\mu)$ and $p \in (0,\infty)$. Then

$$\int_{R} |f(x)|^p d\mu = \int_{0}^{\infty} f^*(t)^p dt.$$

Proposition. Let $f \in \mathcal{M}(R,\mu)$ and let $E \subset R$ be μ -measurable. Then

$$\int_{E} |f(x)| \, d\mu \le \int_{0}^{\mu(E)} f^{*}(t) \, dt.$$

Theorem 12 (the inequality of Hardy and Littlewood). For every $f, g \in \mathcal{M}(R, \mu)$, one has

$$\int_{R} f(x)g(x) d\mu \le \int_{0}^{\infty} f^{*}(t)g^{*}(t) dt.$$

Definition. Let $f \in \mathcal{M}_0(R,\mu)$. Then the function $f^{**}: (0,\infty) \to [0,\infty]$ defined by

$$f^{**}(t) = \frac{1}{t} \int_0^t f^*(s) \, ds$$
 for $t \in [0, \infty)$,

is called the maximal nonincreasing rearrangement of f.

Remark. For every $f \in \mathcal{M}_0(R,\mu)$, the function f^{**} is nonincreasing on $(0,\infty)$ and one has $f^*(t) \leq f^{**}(t)$ for every $t \in (0,\infty)$.

Theorem 13 (subadditivity of f^{**}). For every $f, g \in \mathcal{M}(R, \mu)$ and every $t \in (0, \infty)$, one has $(f+q)^{**}(t) \leq f^{**}(t) + q^{**}(t)$.

Theorem 14 (Hardy's lemma). Assume that f, g are nonnegative measurable functions on $(0, \infty)$ such that

$$\int_0^t f(s) \, ds \le \int_0^t g(s) \, ds \quad \text{for every } t \in (0, \infty).$$

Then, for every nonnegative nonincreasing function h on $(0,\infty)$ we have

$$\int_0^\infty f(t)h(t) dt \le \int_0^\infty g(t)h(t) dt.$$

Theorem 15 (on Lorentz norms). If $1 \le q \le p \le \infty$, then $\|\cdot\|_{p,q}$ is a norm.

Theorem 16 (embeddings of Lorentz spaces). Let $p, q, r \in [0, \infty]$ be such that $q \leq r$. Then $L^{p,q} \hookrightarrow L^{p,r}$.

Definition. Assume that $p, q \in (0, \infty]$. We define the functional $\|\cdot\|_{(p,q)} \colon \mathcal{M}(R,\mu) \to [0,\infty]$ by

$$||f||_{(p,q)} = ||t^{\frac{1}{p} - \frac{1}{q}} f^{**}(t)||_{L^q(0,\infty)}.$$

Theorem 17 (alternative norm in a Lorentz space). Assume that $p \in (1, \infty]$ and $q \in [1, \infty]$. Then $\|\cdot\|_{(p,q)}$ is a norm. Moreover, the functionals $\|\cdot\|_{(p,q)}$ and $\|\cdot\|_{p,q}$ are equivalent in the sense that there exists a constant C such that

$$||f||_{p,q} \le ||f||_{(p,q)} \le C||f||_{p,q}$$
 for every $f \in \mathcal{M}(R,\mu)$.

Theorem 18 (weighted Hardy's inequality). Let $1 and <math>f \in \mathcal{M}_{+}(0, \infty)$.

(a) If $\alpha < p-1$, then

$$\int_0^\infty \left(\frac{1}{t} \int_0^t f(s) \, ds\right)^p t^\alpha \, dt \le \left(\frac{p}{p-\alpha-1}\right)^p \int_0^\infty f(t)^p t^\alpha \, dt.$$

(b) If $\alpha > p-1$, then

$$\int_0^\infty \left(\frac{1}{t} \int_t^\infty f(s) \, ds\right)^p t^\alpha \, dt \le \left(\frac{p}{\alpha + 1 - p}\right)^p \int_0^\infty f(t)^p t^\alpha \, dt.$$

Theorem 19 (Minkowski's integral inequality). Let (R, μ) and (S, ν) be σ -finite measure spaces. Let $p \in [1, \infty)$ and let $F: (R \times S) \to \mathbb{R}$ be measurable with respect to $\mu \times \nu$. Assume that

$$\int_{S} \left(\int_{R} |F(x,y)|^{p} d\mu(x) \right)^{\frac{1}{p}} d\nu(y).$$

Then $\int_S F(x,y)d\nu(y)$ converges for μ -a.e. $x \in R$ and

$$\left(\int_{R} \left| \int_{S} F(x,y) d\nu(y) \right|^{p} d\mu(x) \right)^{\frac{1}{p}} \leq \int_{S} \left(\int_{R} \left| F(x,y) \right|^{p} d\mu(x) \right)^{\frac{1}{p}} d\nu(y).$$

Definition. Let $p \in [1, \infty)$, $q \in [1, \infty]$ and let T be an operator defined on $L^{p,1}(R, \mu)$ and taking values in $\mathcal{M}(S, \nu)$. Then T is said to be of weak type (p, q) if it is a bounded operator from $L^{p,1}(R, \mu)$ into $L^{q,\infty}(S, \nu)$, that is, if there exists a constant M such that

$$||Tf||_{q,\infty} \leq M||f||_{p,q}$$
 for every $f \in L^{p,1}(R,\mu)$.

The lease such constant M is called the weak-type (p,q) norm of T. We say that T is of weak type (∞,q) if it is a bounded operator from $L^{\infty}(R,\mu)$ into $L^{q,\infty}(S,\nu)$.

Theorem 20 (Marcinkiewicz's interpolation theorem). Let $1 \le p_0 < p_1 < \infty$, $1 \le q_0, q_1 \le \infty$, $q_0 \ne q_1$, $0 < \theta < 1$ and $1 \le r \le \infty$. Let p, q be defined by the formulas

$$\frac{1}{p} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1}, \quad \frac{1}{q} = \frac{1-\theta}{q_0} + \frac{\theta}{q_1}.$$

Let T be a quasilinear operator defined on $(L^{p_0,1} + L^{p_1,1})(R,\mu)$ and taking values in $\mathcal{M}(S,\nu)$. Let T be of weak types (p_0,q_0) and (p_1,q_1) with respective weak-type norms M_0 and M_1 . Then $T: L^{p,r} \to L^{q,r}$. More precisely, there exists a constant C such that

$$||Tf||_{q,r} \le \frac{C \max\{M_0, M_1\}}{\theta(1-\theta)} ||f||_{p,r}.$$

Remarks. (a) Theorem 20 holds also in the case $p_1 = \infty$ provided that the hypothesis "of weak type (p_1, q_1) " is replaced by "of strong type (p_1, q_1) ".

(b) If $p_i \leq q_i$, i = 0, 1, then it follows under the hypotheses of Theorem 20 that T is of strong type (p, q).

(c) The assumption $q_0 \neq q_1$ cannot be omitted. For instance, let α be a bounded linear functional on $L^1(0,1)$ and let the operator T be defined on $L^1(0,1)$ by

$$Tf(t) = \alpha(f)\frac{1}{\sqrt{t}}$$
 for $t \in (0,1)$.

Then T is of weak type (1,2) and of weak type $(\infty,2)$, but it is not of strong type (2,2).

Example. Assume that $1 \le p \le 2$. Then there exists a constant C depending on n and p such that

$$\|\mathfrak{F}f\|_{L^{p',p}(\mathbb{R}^n)} \le C\|f\|_{L^p(\mathbb{R}^n)}$$
 for every $f \in L^p(\mathbb{R}^n)$,

where \mathcal{F} denotes the Fourier transform. Note that, thanks to Theorem 15, this is a better estimate than (2.1).

Example. Let $n \in \mathbb{N}$, $\gamma \in (0, n)$ and $p \in (1, \frac{n}{n-\gamma})$. Then there exists a constant C depending on n, p and γ such that

$$||I_{\gamma}f||_{L^{\frac{np}{n-p},p}(\mathbb{R}^n)} \le C||f||_{L^p(\mathbb{R}^n)}$$
 for every $f \in L^p(R^n)$,

where I_{γ} denotes the Riesz potential.

Example. Let $p \in (1, \infty]$. Then there exists a constant C depending on p such that

$$||Af||_{L^p(0,\infty)} \le C||f||_{L^p(0,\infty)}$$
 for every $f \in L^p(0,\infty)$,

where A denotes the Hardy averaging operator.

Example. Let $p \in (1, \infty]$. Then there exists a constant C depending on p such that

$$\|\mathcal{L}f\|_{L^{p',p}(0,\infty)} \le C\|f\|_{L^p(0,\infty)}$$
 for every $f \in L^p(0,\infty)$,

where \mathcal{L} denotes the Laplace transform.

Definition. The *Hilbert transform* H is defined by the formula

$$Hf(x) = p.v. \int_{-\infty}^{\infty} \frac{f(y)}{x - y}$$
 for $x \in \mathbb{R}$

and every function $f \in \mathcal{M}(\mathbb{R})$ for which the integral makes sense.

Example. Let $p \in (1, \infty)$. Then there exists a constant C depending on p such that

$$||Hf||_{L^{p}(0,\infty)} \le C||f||_{L^{p}(0,\infty)}$$
 for every $f \in L^{p}(0,\infty)$,

where H denotes the Hilbert transform.

2.5. Extrapolation and Yano's theorem.

Theorem 21 (Young's inequality). Let $a: [0, \infty) \to [0, \infty]$ be a nondecreasing left-continuous function such that a(0) = 0 and a is not identically equal to zero. Let a^{-1} be the left-continuous inverse of a defined by

$$a^{-1}(t) = \inf\{s : a(s) \ge t\} \text{ for } t \in [0, \infty).$$

Let A and \overline{A} be defined by the formulas

$$A(t) = \int_0^t a(s) \, ds, \quad \tilde{A}(t) = \int_0^t a^{-1}(s) \, ds \quad \text{for } t \in [0, \infty).$$

Then

$$st \le A(s)\tilde{A}(t)$$
 for every $s,t \in [0,\infty)$.

Theorem 22 (Yano's extrapolation theorem). Let $\mu(R) < \infty$ and $\nu(S) < \infty$. Let T be an operator defined on $L^1(R,\mu)$ such that for every sequence of functions $\{f_n\}_{n=0}^{\infty}$ in $\mathcal{M}(R,\mu)$ one has

$$\left| T\left(\sum_{n=0}^{\infty} f_n\right) \right| \le \sum_{n=0}^{\infty} |Tf_n|,$$

and for every function $f \in \mathcal{M}(R,\mu)$ and every $\lambda \in \mathbb{R}$ we have

$$|T(\lambda f)| = |\lambda||Tf|.$$

Assume that for some C>0 and $\alpha>0$, every $f\in\mathcal{M}(R,\mu)$ and every $p\in(1,2]$ one has

$$||Tf||_{L^p(S,\nu)} \le \frac{C}{(p-1)^{\alpha}} ||f||_{L^p(R,\mu)}.$$

Then there exist positive constants C_1 , C_2 such that for every $f \in \mathcal{M}(R,\mu)$ we have

$$\int_{S} |Tf(y)| \, d\nu \le C_1 \int_{B} |f(x)| \log^{\alpha} (1 + |f(x)|) \, d\mu + C_2.$$

Theorem 23 (exponential extrapolation). Let $\mu(R) < \infty$ and $\nu(S) < \infty$. Let T be a sublinear operator defined on $(L^1 + L^{\infty})(R, \mu)$ and taking values in $\mathcal{M}(S, \nu)$. Assume that for some C > 0 and $\alpha > 0$, every $f \in \mathcal{M}(R, \mu)$ and every $p \in [2, \infty)$ one has

$$||Tf||_{L^p(S,\nu)} \le Cp^{\alpha}||f||_{L^p(R,\mu)}.$$

Then there exist positive constants C_1 , C_2 such that for every $f \in L^{\infty}(R,\mu)$ we have

$$\int_{S} \exp\left(\left\lceil \frac{|Tf(y)|}{C_{1}||f||_{\infty}}\right\rceil^{\frac{1}{\alpha}}\right) d\nu \le C_{2}.$$

2.6. Orlicz spaces.

Definition. We say that a function $A: [0, \infty) \to [0, \infty]$ is a *Young function* if it is left continuous, convex and non-decreasing on $[0, \infty)$, satisfying A(0) = 0, and such that A is not identically equal to zero on $[0, \infty)$.

Remark. A function $A: [0, \infty) \to [0, \infty]$ is a Young function if and only if there exists a left-continuous nondecreasing function $a: [0, \infty) \to [0, \infty]$ such that a(0) = 0, a is not identically equal to zero on $[0, \infty)$ and

$$A(t) = \int_0^t a(s) ds \quad \text{for } t \in (0, \infty).$$
 (2.8)

Proposition. Let A be a Young function. If $\lambda \in [0,1]$, then

$$A(\lambda t) \le \lambda A(t)$$
 for every $t \in [0, \infty)$. (2.9)

If $\lambda \in [1, \infty)$, then

$$A(\lambda t) \ge \lambda A(t)$$
 for every $t \in [0, \infty)$. (2.10)

Definition. Let A be a Young function. We define the functional ϱ_A on $\mathcal{M}(R,\mu)$ by

$$\varrho_A(f) = \int_R A(|f|) \, d\mu. \tag{2.11}$$

We define the Orlicz class $\mathcal{L}^A = \mathcal{L}^A(R,\mu)$ as the collection

$$\mathcal{L}^A = \{ f \in \mathcal{M}(R, \mu) : \varrho_A(f) < \infty \}.$$

Definition. Given a Young function A, the Orlicz space $L^A = L^A(R, \mu)$ is the collection of all functions $f \in \mathcal{M}(R, \mu)$ such that

$$\int_{R} A\left(\frac{|f|}{\lambda}\right) d\mu < \infty$$

for some $\lambda \in (0, \infty)$. The Luxemburg norm $\|\cdot\|_A \colon \mathcal{M}(R, \mu) \to [0, \infty]$ is defined by

$$||f||_{L^A} = \inf \left\{ \lambda > 0 : \int_R A\left(\frac{|f|}{\lambda}\right) d\mu \le 1 \right\}.$$

Proposition. Let A be a Young function.

- (a) If $||f||_A \le 1$, then $\varrho_A(f) \le ||f||_A$,
- (b) if $||f||_A \ge 1$, then $\varrho_A(f) \ge ||f||_A$,
- (c) $||f||_A \le \varrho_A(f) + 1$.

Theorem 24 (relation between norm and modular estimates). Suppose that A_1 , A_2 are Young functions, T is a sublinear operator and there exist positive constants C_1 , C_2 such that

$$\varrho_{A_1}(Tf) \leq C_1 + C_2 \varrho_{A_2}(f)$$
 for every $f \in \mathcal{M}(R,\mu)$.

Then there exists a constant C_3 such that

$$||Tf||_{L^{A_1}(R,\mu)} \le C_3 ||f||_{L^{A_2}(S,\nu)}$$
 for every $f \in \mathcal{M}(R,\mu)$.

3. Real interpolation

3.1. K-method.

Definition. Let X_0 and X_1 be Banach spaces. We say that (X_0, X_1) is a *compatible couple* if there exists a Hausdorff topological linear space \mathfrak{M} such that $X_0 \hookrightarrow \mathfrak{M}$ and $X_1 \hookrightarrow \mathfrak{M}$ (here \hookrightarrow denotes a continuous embedding).

Definition. Let (X_0, X_1) be a compatible couple with the corresponding space \mathfrak{M} . We define the *sum* of spaces $X_0 + X_1$ as the collection of all elements $x \in \mathfrak{M}$ which are representable as $x = x_0 + x_1$ with $x_0 \in X_0$ and $x_1 \in X_1$. For each $x \in X_0 + X_1$, set

$$||x||_{X_0+X_1} = \inf\{||x_0||_{X_0} + ||x_1||_{X_1} : x = x_0 + x_1\},\$$

where the infimum is extended over all possible representations $x = x_0 + x_1$, $x_0 \in X_0$, $x_1 \in X_1$. For each $x \in X_0 \cap X_1$, set

$$||x||_{X_0 \cap X_1} = \max\{||x||_{X_0}; ||x||_{X_1}\}.$$

Theorem 25 (sums and intersections of Banach spaces). Let (X_0, X_1) be a compatible couple. Then $X_0 + X_1$ and $X_0 \cap X_1$ are Banach spaces.

Definition. Let (X_0, X_1) be a compatible couple. The *K*-functional is defined for each $f \in X_0 + X_1$ and each $t \in (0, \infty)$ by

$$K(f, t; X_0, X_1) = \inf\{\|g\|_{X_0} + t\|h\|_{X_1} : f = g + h\},\$$

where the infimum is extended over all possible representations f = g + h, $g \in X_0$, $h \in X_1$.

Observation. Obviously,

$$\min\{1,t\}\|f\|_{X_0+X_1} \le K(f,t;X_0,X_1) \le \max\{1,t\}\|f\|_{X_0+X_1}.$$

Consequently, the functionals $f \mapsto K(f, t; X_0, X_1)$ define a family of mutually equivalent norms on $X_0 = X_1$.

Observation. Every $x \in X_0$ has a trivial representation f = f + 0, hence

$$K(f, t; X_0, X_1) \le ||f||_{X_0}$$
 for every $t \in (0, \infty)$.

Similarly, every $x \in X_1$ has a trivial representation f = 0 + f, hence

$$K(f, t; X_0, X_1) \le t ||f||_{X_1}$$
 for every $t \in (0, \infty)$.

Thus, for every $f \in X_0 \cap X_1$ one has

$$K(f, t; X_0, X_1) \le \min\{\|f\|_{X_0}; t\|f\|_{X_1}\}$$
 for every $t \in (0, \infty)$.

Notation. Sometimes we write K(f,t) is place of $K(f,t;X_0,X_1)$ when no confusion can arise.

Proposition. For each $f \in X_0 + X_1$, $t \mapsto K(f, t; X_0, X_1)$ is a nonnegative nondecreasing concave function such that $t^{-1}K(f, t; X_0, X_1)$ is nonincreasing and

$$t^{-1}K(f,t;X_0,X_1) = K(f,t^{-1};X_1,X_0).$$

Example. If X_0 and X_1 are either Lebesgue or Lorentz or Orlicz spaces, then one can take $\mathfrak{M} = \{\mu\text{-measurable a.e. finite functions on } R\},$

endowed with metric

$$\varrho(f,g) = \sum_{n=0}^{\infty} \frac{1}{2^n} \frac{1}{\mu(R_n)} \int_{R_n} \frac{|f(x) - g(x)|}{1 + |f(x) - g(x)|} d\mu(x),$$

where $R = \bigcup R_n$, $0 < \mu(R_n) < \infty$ for each $n \in \mathbb{N}$. Then (\mathfrak{M}, ϱ) is a complete metric space such that the convergence in ϱ coincides with the convergence in measure on sets of finite measure.

E-mail address: pick@karlin.mff.cuni.cz ORCiD: 0000-0002-3584-1454

³Department of Mathematical Analysis, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 186 75 Praha 8, Czech Republic