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LUBOŠ PICK

1. Introduction

If not stated otherwise, (R,µ) and (S, ν) will throughout denote σ-finite measure spaces.
By M(R,µ) (or just M(R) for short in cases when it is clear which measure is considered) we
denote the set of all µ-measurable real-valued functions on R, and by M+(R,µ) the set of all
nonnegative functions in M(R,µ). For p ∈ [1,∞], we define p′ by

p′ =


∞ if p = 1,
p
p−1 if p ∈ (1,∞),

1 if p =∞.
If X and Y are (quasi)-normed spaces, we say that X is embedded into Y if there exists a
constant C such that for every x ∈ X one has ‖x‖Y ≤ C‖x‖X . By X + Y we denote the set
of all elements z for which there exists a decomposition z = x + y with x ∈ X and y ∈ Y . We
define the functional ‖ · ‖X+Y : (X + Y )→ [0,∞] by ‖z‖X+Y = infz=x+y(‖x‖X + ‖y‖Y ).

Theorem 1 (embeddings of Lebesgue spaces). Let 0 < p, q ≤ ∞. Then the embedding

Lq(R,µ) ↪→ Lp(R,µ)

holds if and only if one of the following conditions hold:

• p = q,
• p < q and µ(R) <∞,
• p > q and there is an ε > 0 such that for every measurable E ⊂ R of positive measure

one has µ(E) ≥ ε.

Definition. The Laplace transform is defined by the formula

Lf(t) =

∫ ∞
0

f(s)e−st ds for t ∈ (0,∞)

and every f ∈M(0,∞) for which the integral makes sense.

Remark. One has
‖Lf‖L∞(0,∞) ≤ ‖f‖L1(0,∞).

Theorem 2 (Laplace transform on L2). For every f ∈ L2(0,∞) one has

‖Lf‖L2(0,∞) ≤
√
π‖f‖L2(0,∞).

The constant is optimal.

Theorem 3 (interpolation principle for Lebesgue spaces). Let 0 < p < r < q ≤ ∞. Assume
that f ∈ Lp(R,µ) ∩ Lq(R,µ). Let θ ∈ [0, 1] and let r be defined by

1

r
=

1− θ
p

+
θ

q
.
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Then f ∈ Lr(R,µ) and

‖f‖r ≤ ‖f‖1−θp ‖f‖θq.

2. Classical interpolation theorems

2.1. Interpolation of positive operators.

Definition. Let T be an operator defined on simple functions on (R,µ) with values in M(S, ν).
Let p, q ∈ (0,∞]. We say that T is of strong type (p, q) if there exists a constant M such that

‖Tf‖Lq(S,ν) ≤M‖f‖Lp(R,µ) for every µ-simple function f.

The smallest such M is called the norm of T and it is denoted by ‖T‖Lp→Lq .

Theorem 4 (Riesz’s theorem for positive operators). Let 1 ≤ p0, p1, q0, q1 ≤ ∞ and θ ∈ [0, 1].
Let

1

p
=

1− θ
p0

+
θ

p1
and

1

q
=

1− θ
q0

+
θ

q1
.

Let T be a positive linear operator of the form

Tf(y) =

∫
R
f(x)A(x, y)dµ(x) for y ∈ S,

where A is a nonnegative measurable function on R×S. Assume that T is of strong type (p0, q0)
and, at the same time, of strong type (p1, q1) with norms M0 and M1, respectively. Then T is
of strong type (p, q) with norm Mθ satisfying

Mθ ≤M1−θ
0 M θ

1 .

2.2. Riesz’s-Thorin’s interpolation theorem.

Theorem 5 (Hadamard’s three-line theorem). Let F be a bounded continuous function on Ω
and analytic in Ω, where

Ω = {z ∈ C : Re z ∈ (0, 1)}.
Then the function Mθ, defined by

Mθ = sup{|F (θ + iy)| : y ∈ R} for θ ∈ [0, 1],

satisfies

Mθ ≤M1−θ
0 M θ

1 for θ ∈ [0, 1].

Theorem 6 (Riesz’s-Thorin’s interpolation theorem). Let 1 ≤ p0, p1, q0, q1 ≤ ∞ and let θ ∈
[0, 1]. Let T be a linear operator which is of strong type (p0, q0) with norm M0 and, at the same
time, of strong type (p1, q1) with norm M1. Suppose that

1

p
=

1− θ
p0

+
θ

p1
and

1

q
=

1− θ
q0

+
θ

q1
.

Then T is of strong type (p, q) with norm Mθ satisfying

Mθ ≤ 2M1−θ
0 M θ

1 .

The constant 2 can be dropped if the function spaces are complex.

Definition. The Fourier transform is defined by the formula

Ff(x) =

∫
Rn
f(y)e2πixy dy for x ∈ Rn

and every f ∈M(Rn) for which the integral makes sense.
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Theorem 7 (Hausdorff’s-Young’s theorem). Assume that 1 ≤ p ≤ 2. Then there exists a
constant C such that

‖Ff‖Lp′ (Rn) ≤ C‖f‖Lp(Rn). (2.1)

Theorem 8 (Young’s convolution theorem). Let p, q, r ∈ [1,∞] and assume that

1

r
=

1

p
+

1

q
− 1.

Then
‖f ∗ g‖Lr(Rn) ≤ ‖f‖Lp(Rn)‖g‖Lq(Rn).

2.3. Interpolation of compact operators.

Theorem 9 (interpolation of compact operators). Let 1 ≤ p0, p1, q0, q1 ≤ ∞ and let T be a linear
operator which is of strong type (p0, q0) and, at the same time, it is compact from Lp1(R,µ) to
Lq1(S, ν). Let θ ∈ (0, 1], ν(S) <∞, and suppose that

1

p
=

1− θ
p0

+
θ

p1
and

1

q
=

1− θ
q0

+
θ

q1
.

Then T is compact from Lp(R,µ) to Lq(S, ν).

Corollary. The Hardy operator T , defined by

Tf(t) =

∫ t

0
f(s) ds for t ∈ (0, 1)

for every f ∈ M(0, 1) for which the integral makes sense, is compact from Lq(0, 1) to L∞(0, 1)
for every q ∈ (1,∞].

2.4. Interpolation of weak-type operators.

Definition. Let n ∈ N and γ ∈ (0, n). The Riesz potential Iγ is defined by the formula

Iγf(x) =

∫
Rn

f(y)

|x− y|n−γ
for x ∈ Rn

and every function f ∈M(Rn) for which the integral makes sense.

Definition. Let δ > 0. The dilation operator τδ is defined by the formula

τδf(x) = f(δx) for x ∈ Rn

and every function f ∈M(Rn).

Theorem 10 (weak type estimate for the Riesz potential). Let n ∈ N and γ ∈ (0, n). Then
there exists a constant C such that

sup
λ∈(0,∞)

λ|{x ∈ Rn : |Iγf(x)| > λ}|1−
γ
n ≤ C‖f‖L1(Rn)

for every f ∈ L1(Rn).

Definition. The Hardy averaging operator A is defined by the formula

Af(t) =
1

t

∫ t

0
f(s) ds for s ∈ (0,∞)

and every function f ∈M(0,∞) for which the integral makes sense.

Remark. We have

sup
λ∈(0,∞)

λ|{x ∈ (0,∞) : |Af(x)| > λ}| ≤ ‖f‖L1(0,∞)

for every f ∈ L1(0,∞).
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Theorem 11 (interpolation of weak-type operators in the diagonal case). Let T be a quasilinear
operator, that is, T is positively homogeneous and, moreover,

|T (f + g)| ≤ K(|Tf |+ |Tg|)
for some positive K and every f, g for which the right-hand side makes sense. Assume that there
exists a constant C∞ such that

‖Tf‖L∞(S,ν) ≤ C∞‖f‖L∞(R,µ)

for all f ∈ L∞(R,µ), and, at the same time, there exists a constant C1 such that

sup
λ∈(0,∞)

λν({y ∈ S : |Tf(y)| > λ}) ≤ C1‖f‖L1(R,µ)

for all f ∈ L1(R,µ). Then for every p ∈ (1,∞] there exists a constant Cp such that

‖Tf‖Lp(S,ν) ≤ Cp‖f‖Lp(R,µ)

for every f ∈ Lp(R,µ) and

Cp ≤ 2KC
1
p

1 C
1− 1

p
∞

(
p

p− 1

) 1
p

.

Definition. Let n ∈ N and γ ∈ [0, n). The fractional maximal operator Mγ is defined by the
formula

Mγf(x) = sup
Q3x

1

|Q|1−
γ
n

∫
Q
|f(y)| dy for x ∈ Rn

and every function f ∈ L1
loc(Rn), where the supremum is extended over all cubes with sides

parallel to coordinate axes. In particular, M0 is the Hardy–Littlewood maximal operator.

Definition. Let f : (R,µ) → R be a measurable function. Then the function f∗ : [0,∞) →
[0,∞], defined by

f∗(λ) = µ ({x ∈ R : |f(x)| > λ}) for λ ∈ [0,∞), (2.2)

is called the distribution function of f .

Proposition. Let f : (R,µ) → R be a measurable function. Then f∗ is nonnegative, nonin-
creasing and right continuous on [0,∞).

Proposition. Let f, g ∈ M(R,µ), and let {fn}∞n=1 be a sequence of functions from M(R,µ).
Let a ∈ R, a 6= 0. Then

|g| ≤ |f | µ-a.e. ⇒ g∗ ≤ f∗, (2.3)

(af)∗(λ) = f∗

(
λ

|a|

)
for λ ∈ [0,∞), (2.4)

(f + g)∗(λ1 + λ2) ≤ f∗(λ1) + g∗(λ2) for λ1, λ2 ≥ 0, (2.5)

|f | ≤ lim inf
n→∞

|fn| µ-a.e. ⇒ f∗ ≤ lim inf
n→∞

(fn)∗, (2.6)

in particular,

|fn| ↑ |f |µ-a.e. ⇒ (fn)∗ ↑ f∗. (2.7)

Definition. Let f ∈M(R,µ) and g ∈M(S, ν). We say that f and g are equimeasurable if they
have the same distribution function, that is, if f∗(λ) = g∗(λ) for all λ ∈ [0,∞). We write f ∼ g.

Definition. Let f ∈M(R,µ). Then the function f∗ : [0,∞)→ [0,∞] defined by

f∗(t) = inf{λ > 0 : f∗(λ) ≤ t} for t ∈ [0,∞),

is called the nonincreasing rearrangement of f .
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Definition. Assume that p, q ∈ (0,∞]. We define the functional ‖ · ‖p,q : M(R,µ)→ [0,∞] by

‖f‖p,q = ‖t
1
p
− 1
q f∗(t)‖Lq(0,∞).

In other words, we have

‖f‖Lp,q =


(∫ ∞

0

[
t
1
p f∗(t)

]q dt
t

) 1
q

if 0 < q <∞,

sup
0<t<∞

t
1
p f∗(t) if q =∞.

The collection of all functions f ∈M(R,µ) such that ‖f‖p,q <∞ is called the Lorentz space and
is denoted by Lp,q(R,µ).

Proposition. Let f ∈M(R,µ). Then

f∗(f∗(λ)) ≤ λ for λ ∈ [0,∞) and f∗(f
∗(t)) ≤ t for t ∈ [0,∞).

Proposition. Let f, g ∈M(R,µ). Then

(f + g)∗(s+ t) ≤ f∗(s) + g∗(t) for every s, t ∈ [0,∞).

Proposition. Let f ∈M(R,µ) and p ∈ (0,∞). Then∫
R
|f(x)|p dµ =

∫ ∞
0

f∗(t)p dt.

Proposition. Let f ∈M(R,µ) and let E ⊂ R be µ-measurable. Then∫
E
|f(x)| dµ ≤

∫ µ(E)

0
f∗(t) dt.

Theorem 12 (the inequality of Hardy and Littlewood). For every f, g ∈M(R,µ), one has∫
R
f(x)g(x) dµ ≤

∫ ∞
0

f∗(t)g∗(t) dt.

Definition. Let f ∈M0(R,µ). Then the function f∗∗ : (0,∞)→ [0,∞] defined by

f∗∗(t) =
1

t

∫ t

0
f∗(s) ds for t ∈ [0,∞),

is called the maximal nonincreasing rearrangement of f .

Remark. For every f ∈ M0(R,µ), the function f∗∗ is nonincreasing on (0,∞) and one has
f∗(t) ≤ f∗∗(t) for every t ∈ (0,∞).

Theorem 13 (subadditivity of f∗∗). For every f, g ∈M(R,µ) and every t ∈ (0,∞), one has

(f + g)∗∗(t) ≤ f∗∗(t) + g∗∗(t).

Theorem 14 (Hardy’s lemma). Assume that f, g are nonnegative measurable functions on
(0,∞) such that ∫ t

0
f(s) ds ≤

∫ t

0
g(s) ds for every t ∈ (0,∞).

Then, for every nonnegative nonincreasing function h on (0,∞) we have∫ ∞
0

f(t)h(t) dt ≤
∫ ∞

0
g(t)h(t) dt.

Theorem 15 (on Lorentz norms). If 1 ≤ q ≤ p ≤ ∞, then ‖ · ‖p,q is a norm.

Theorem 16 (embeddings of Lorentz spaces). Let p, q, r ∈ [0,∞] be such that q ≤ r. Then
Lp,q ↪→ Lp,r.
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Definition. Assume that p, q ∈ (0,∞]. We define the functional ‖ · ‖(p,q) : M(R,µ)→ [0,∞] by

‖f‖(p,q) = ‖t
1
p
− 1
q f∗∗(t)‖Lq(0,∞).

Theorem 17 (alternative norm in a Lorentz space). Assume that p ∈ (1,∞] and q ∈ [1,∞].
Then ‖ · ‖(p,q) is a norm. Moreover, the functionals ‖ · ‖(p,q) and ‖ · ‖p,q are equivalent in the
sense that there exists a constant C such that

‖f‖p,q ≤ ‖f‖(p,q) ≤ C‖f‖p,q for every f ∈M(R,µ).

Theorem 18 (weighted Hardy’s inequality). Let 1 < p <∞ and f ∈M+(0,∞).
(a) If α < p− 1, then∫ ∞

0

(
1

t

∫ t

0
f(s) ds

)p
tα dt ≤

(
p

p− α− 1

)p ∫ ∞
0

f(t)ptα dt.

(b) If α > p− 1, then∫ ∞
0

(
1

t

∫ ∞
t

f(s) ds

)p
tα dt ≤

(
p

α+ 1− p

)p ∫ ∞
0

f(t)ptα dt.

Theorem 19 (Minkowski’s integral inequality). Let (R,µ) and (S, ν) be σ-finite measure spaces.
Let p ∈ [1,∞) and let F : (R× S)→ R be measurable with respect to µ× ν. Assume that∫

S

(∫
R
|F (x, y)|p dµ(x)

) 1
p

dν(y).

Then
∫
S F (x, y)dν(y) converges for µ-a.e. x ∈ R and(∫

R

∣∣∣∣∫
S
F (x, y)dν(y)

∣∣∣∣p dµ(x)

) 1
p

≤
∫
S

(∫
R
|F (x, y)|p dµ(x)

) 1
p

dν(y).

Definition. Let p ∈ [1,∞), q ∈ [1,∞] and let T be an operator defined on Lp,1(R,µ) and
taking values in M(S, ν). Then T is said to be of weak type (p, q) if it is a bounded operator
from Lp,1(R,µ) into Lq,∞(S, ν), that is, if there exists a constant M such that

‖Tf‖q,∞ ≤M‖f‖p,q for every f ∈ Lp,1(R,µ).

The lease such constant M is called the weak-type (p, q) norm of T . We say that T is of weak
type (∞, q) if it is a bounded operator from L∞(R,µ) into Lq,∞(S, ν).

Theorem 20 (Marcinkiewicz’s interpolation theorem). Let 1 ≤ p0 < p1 < ∞, 1 ≤ q0, q1 ≤ ∞,
q0 6= q1, 0 < θ < 1 and 1 ≤ r ≤ ∞. Let p, q be defined by the formulas

1

p
=

1− θ
p0

+
θ

p1
,

1

q
=

1− θ
q0

+
θ

q1
.

Let T be a quasilinear operator defined on (Lp0,1 + Lp1,1)(R,µ) and taking values in M(S, ν).
Let T be of weak types (p0, q0) and (p1, q1) with respective weak-type norms M0 and M1. Then
T : Lp,r → Lq,r. More precisely, there exists a constant C such that

‖Tf‖q,r ≤
C max{M0,M1}

θ(1− θ)
‖f‖p,r.

Remarks. (a) Theorem 20 holds also in the case p1 =∞ provided that the hypothesis “of weak
type (p1, q1)” is replaced by “of strong type (p1, q1)”.

(b) If pi ≤ qi, i = 0, 1, then it follows under the hypotheses of Theorem 20 that T is of strong
type (p, q).
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(c) The assumption q0 6= q1 cannot be omitted. For instance, let α be a bounded linear
functional on L1(0, 1) and let the operator T be defined on L1(0, 1) by

Tf(t) = α(f)
1√
t

for t ∈ (0, 1).

Then T is of weak type (1, 2) and of weak type (∞, 2), but it is not of strong type (2, 2).

Example. Assume that 1 ≤ p ≤ 2. Then there exists a constant C depending on n and p such
that

‖Ff‖Lp′,p(Rn) ≤ C‖f‖Lp(Rn) for every f ∈ Lp(Rn),

where F denotes the Fourier transform. Note that, thanks to Theorem 15, this is a better
estimate than (2.1).

Example. Let n ∈ N, γ ∈ (0, n) and p ∈ (1, n
n−γ ). Then there exists a constant C depending

on n, p and γ such that

‖Iγf‖
L

np
n−p ,p(Rn)

≤ C‖f‖Lp(Rn) for every f ∈ Lp(Rn),

where Iγ denotes the Riesz potential.

Example. Let p ∈ (1,∞]. Then there exists a constant C depending on p such that

‖Af‖Lp(0,∞) ≤ C‖f‖Lp(0,∞) for every f ∈ Lp(0,∞),

where A denotes the Hardy averaging operator.

Example. Let p ∈ (1,∞]. Then there exists a constant C depending on p such that

‖Lf‖Lp′,p(0,∞) ≤ C‖f‖Lp(0,∞) for every f ∈ Lp(0,∞),

where L denotes the Laplace transform.

Definition. The Hilbert transform H is defined by the formula

Hf(x) = p.v.

∫ ∞
−∞

f(y)

x− y
for x ∈ R

and every function f ∈M(R) for which the integral makes sense.

Example. Let p ∈ (1,∞). Then there exists a constant C depending on p such that

‖Hf‖Lp(0,∞) ≤ C‖f‖Lp(0,∞) for every f ∈ Lp(0,∞),

where H denotes the Hilbert transform.

2.5. Extrapolation and Yano’s theorem.

Theorem 21 (Young’s inequality). Let a : [0,∞) → [0,∞] be a nondecreasing left-continuous
function such that a(0) = 0 and a is not identically equal to zero. Let a−1 be the left-continuous
inverse of a defined by

a−1(t) = inf{s : a(s) ≥ t} for t ∈ [0,∞).

Let A and Ã be defined by the formulas

A(t) =

∫ t

0
a(s) ds, Ã(t) =

∫ t

0
a−1(s) ds for t ∈ [0,∞).

Then

st ≤ A(s)Ã(t) for every s, t ∈ [0,∞).
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Theorem 22 (Yano’s extrapolation theorem). Let µ(R) < ∞ and ν(S) < ∞. Let T be an
operator defined on L1(R,µ) such that for every sequence of functions {fn}∞n=0 in M(R,µ) one
has ∣∣∣∣∣T

( ∞∑
n=0

fn

)∣∣∣∣∣ ≤
∞∑
n=0

|Tfn|,

and for every function f ∈M(R,µ) and every λ ∈ R we have

|T (λf)| = |λ||Tf |.

Assume that for some C > 0 and α > 0, every f ∈M(R,µ) and every p ∈ (1, 2] one has

‖Tf‖Lp(S,ν) ≤
C

(p− 1)α
‖f‖Lp(R,µ).

Then there exist positive constants C1, C2 such that for every f ∈M(R,µ) we have∫
S
|Tf(y)| dν ≤ C1

∫
R
|f(x)| logα(1 + |f(x)|) dµ+ C2.

Theorem 23 (exponential extrapolation). Let µ(R) <∞ and ν(S) <∞. Let T be a sublinear
operator defined on (L1 +L∞)(R,µ) and taking values in M(S, ν). Assume that for some C > 0
and α > 0, every f ∈M(R,µ) and every p ∈ [2,∞) one has

‖Tf‖Lp(S,ν) ≤ Cpα‖f‖Lp(R,µ).

Then there exist positive constants C1, C2 such that for every f ∈ L∞(R,µ) we have∫
S

exp

([
|Tf(y)|
C1‖f‖∞

] 1
α

)
dν ≤ C2.

2.6. Orlicz spaces.

Definition. We say that a function A : [0,∞)→ [0,∞] is a Young function if it is left continuous,
convex and non-decreasing on [0,∞), satisfying A(0) = 0, and such that A is not identically
equal to zero on [0,∞).

Remark. A function A : [0,∞) → [0,∞] is a Young function if and only if there exists a left-
continuous nondecreasing function a : [0,∞) → [0,∞] such that a(0) = 0, a is not identically
equal to zero on [0,∞) and

A(t) =

∫ t

0
a(s) ds for t ∈ (0,∞). (2.8)

Proposition. Let A be a Young function. If λ ∈ [0, 1], then

A(λt) ≤ λA(t) for every t ∈ [0,∞). (2.9)

If λ ∈ [1,∞), then

A(λt) ≥ λA(t) for every t ∈ [0,∞). (2.10)

Definition. Let A be a Young function. We define the functional %A on M(R,µ) by

%A(f) =

∫
R
A(|f |) dµ. (2.11)

We define the Orlicz class LA = LA(R,µ) as the collection

LA = {f ∈M(R,µ) : %A(f) <∞}.
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Definition. Given a Young function A, the Orlicz space LA = LA(R,µ) is the collection of all
functions f ∈M(R,µ) such that ∫

R
A

(
|f |
λ

)
dµ <∞

for some λ ∈ (0,∞). The Luxemburg norm ‖ · ‖A : M(R,µ)→ [0,∞] is defined by

‖f‖LA = inf

{
λ > 0 :

∫
R
A

(
|f |
λ

)
dµ ≤ 1

}
.

Proposition. Let A be a Young function.
(a) If ‖f‖A ≤ 1, then %A(f) ≤ ‖f‖A,
(b) if ‖f‖A ≥ 1, then %A(f) ≥ ‖f‖A,
(c) ‖f‖A ≤ %A(f) + 1.

Theorem 24 (relation between norm and modular estimates). Suppose that A1, A2 are Young
functions, T is a sublinear operator and there exist positive constants C1, C2 such that

%A1(Tf) ≤ C1 + C2%A2(f) for every f ∈M(R,µ).

Then there exists a constant C3 such that

‖Tf‖LA1 (R,µ) ≤ C3‖f‖LA2 (S,ν) for every f ∈M(R,µ).

3. Real interpolation

3.1. K-method.

Definition. Let X0 and X1 be Banach spaces. We say that (X0, X1) is a compatible couple if
there exists a Hausdorff topological linear space M such that X0 ↪→M and X1 ↪→M (here ↪→
denotes a continuous embedding).

Definition. Let (X0, X1) be a compatible couple with the corresponding space M. We define
the sum of spaces X0 + X1 as the collection of all elements x ∈ M which are representable as
x = x0 + x1 with x0 ∈ X0 and x1 ∈ X1. For each x ∈ X0 +X1, set

‖x‖X0+X1 = inf{‖x0‖X0 + ‖x1‖X1 : x = x0 + x1},

where the infimum is extended over all possible representations x = x0 + x1, x0 ∈ X0, x1 ∈ X1.
For each x ∈ X0 ∩X1, set

‖x‖X0∩X1 = max{‖x‖X0 ; ‖x‖X1}.

Theorem 25 (sums and intersections of Banach spaces). Let (X0, X1) be a compatible couple.
Then X0 +X1 and X0 ∩X1 are Banach spaces.

Definition. Let (X0, X1) be a compatible couple. The K-functional is defined for each f ∈
X0 +X1 and each t ∈ (0,∞) by

K(f, t;X0, X1) = inf{‖g‖X0 + t‖h‖X1 : f = g + h},

where the infimum is extended over all possible representations f = g + h, g ∈ X0, h ∈ X1.

Observation. Obviously,

min{1, t}‖f‖X0+X1 ≤ K(f, t;X0, X1) ≤ max{1, t}‖f‖X0+X1 .

Consequently, the functionals f 7→ K(f, t;X0, X1) define a family of mutually equivalent norms
on X0 = X1.
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Observation. Every x ∈ X0 has a trivial representation f = f + 0, hence

K(f, t;X0, X1) ≤ ‖f‖X0 for every t ∈ (0,∞).

Similarly, every x ∈ X1 has a trivial representation f = 0 + f , hence

K(f, t;X0, X1) ≤ t‖f‖X1 for every t ∈ (0,∞).

Thus, for every f ∈ X0 ∩X1 one has

K(f, t;X0, X1) ≤ min{‖f‖X0 ; t‖f‖X1} for every t ∈ (0,∞).

Notation. Sometimes we write K(f, t) is place of K(f, t;X0, X1) when no confusion can arise.

Proposition. For each f ∈ X0 + X1, t 7→ K(f, t;X0, X1) is a nonnegative nondecreasing
concave function such that t−1K(f, t;X0, X1) is nonincreasing and

t−1K(f, t;X0, X1) = K(f, t−1;X1, X0).

Example. If X0 and X1 are either Lebesgue or Lorentz or Orlicz spaces, then one can take

M = {µ-measurable a.e. finite functions on R},
endowed with metric

%(f, g) =
∞∑
n=0

1

2n
1

µ(Rn)

∫
Rn

|f(x)− g(x)|
1 + |f(x)− g(x)|

dµ(x),

where R =
⋃
Rn, 0 < µ(Rn) <∞ for each n ∈ N. Then (M, %) is a complete metric space such

that the convergence in % coincides with the convergence in measure on sets of finite measure.
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