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Abstract

We consider a single observation of randomly placed random compact sets (called grains) in
a bounded, convex subset Wn of the d-dimensional Euclidean space (sampling window) which expands
unboundedly in all directions as n → ∞ . We assume that the grains are independent copies of a so-
called typical grain Ξ0 which are shifted by the atoms of a homogeneous point process Ψ in such a way
that each individual grain lying within Wn can be observed. We define an appropriate estimator
F̂n(t) for the distribution function F (t) of some m-dimensional vector f(Ξ0) = (f1(Ξ0), . . . , fm(Ξ0))
(describing shape and size of Ξ0) based on the corresponding data vectors of those grains which
are completely observable in Wn. As main results we prove a Glivenko-Cantelli type theorem for
F̂n(t) and the weak convergence of the multivariate empirical processes

√

Ψ(Wn) (F̂n(t) − F (t)) to
an m-dimensional Brownian bridge process as n → ∞ . It is possible for the particular case where
m = 1, to examine the the goodness-of-fit of observed data to a hypothesized continuous distribution
function F , analogous to the Kolmogorov-Smirnov test.

Keywords: germ-grain model, marked point process, typical grain, Glivenko-Cantelli theorem, weak con-
vergence, Skorohod space D(Rm), Horvitz-Thompson type estimator, multivariate empirical distribution,
Kolmogorov-Smirnov test
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1 Introduction and Preliminaries

We consider a stationary d-dimensional germ-grain model

Ξ =
⋃

i≥1

(Ξi + Xi) , (1.1)

which consists of two independent random components defined on a common probability space [Ω, A, P]
— a (weakly) stationary point process Ψ =

∑

i≥1 δXi
on R

d with intensity λ = EΨ([0, 1)d) and a sequence
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Figure 1: Realization of a fibre process as particular germ-grain model.

{Ξi, i ≥ 1} of independent copies of a random compact set Ξ0 (called typical grain). To identify the points
Xi in (1.1) we require additionally that P(c(Ξ0) = o) = 1, where c(K) ∈ K is a canonical point assigned
to each K ∈ K′ ( = family of non-empty compact sets in R

d ). For more details and further background
of point process theory and germ-grain models we refer the reader to [3], [19], [7].

Throughout we assume that only a single observation of Ξ in a sampling window Wn ⊆ R
d is

given, where the sequence of convex compact sets (Wn) expands unboundedly in all directions such
that Hd−1(∂Wn)/|Wn| → 0 as n → ∞ . Here and below Hk(·) designates the k-dimensional Hausdorff
measure and | · | = Hd(·) the Lebesgue measure on R

d.
Let f(Ξ0) = (f1(Ξ0), . . . , fm(Ξ0)) be an m-dimensional random vector describing various shape and

size parameters of Ξ0 , e.g. geometric functionals, direction of normal unit vectors at fixed points on the
surface ∂Ξ0 etc. For example, if Ξ0 is a random segment or more generally a random rectifiable curve
in R

2, then nonparametric testing of the (joint) distribution function (df) of length H1(Ξ0) and angle
between the tangent in c(Ξ0) and the x-axis turns out to be a non-trivial statistical issue.

In order to estimate the m-variate df

F (t) := P(f(Ξ0) ≤ t) = P(f1(Ξ0) ≤ t1, . . . , fm(Ξ0) ≤ tm), t = (t1, . . . , tm) ∈ R
m , (1.2)

we suppose that the m-dimensional data vectors f(Ξi) of those (shifted) grains Ξi + Xi lying completely
within Wn are available. In other words, the random set (1.1) is a union of non-overlapping grains
or the set of points in Wn covered by more than one grain is neglegible and does not prevent the
exact measurement of the data vectors f(Ξi) , see Fig. 1. Fibre, surface and manifold processes (see
[19], Chapt. 9) are typical examples of such germ-grain models. In these examples Ξ0 is a random k-
dimensional compact manifold with P(0 < Hk(Ξ0) < ∞) = 1 for some k ∈ {1, . . . , d − 1}. In case of
P(|Ξ0| > 0) > 0 the above restriction means that the grains Ξi + Xi in (1.1) are pairwise disjoint, e.g. if
Ψ is a hard-core point process with hard-core distance h > 0 and ‖Ξ0‖ := sup{‖x‖ : x ∈ Ξ0} is bounded
and less than h/2 , see Fig. 2.

The key question we address in this paper is : How to define a suitable empirical df F̂n(t) for (1.2)
by using only data vectors f(Ξi) of those grains Ξi + Xi lying completely within Wn such that the limit
distribution of the maximum discrepancy supt∈Rm |F̂n(t) − F (t)| after blowing up with

√

Ψ(Wn) can be
shown to exist quite similar to the classical situation of i.i.d. random vectors in R

m, see [1], [4] (and [2]
for m = 1 ).

Our sampling procedure (called minus-sampling) leads necessarily to weighted estimators of the form

M̂n(g) :=
∑

i≥1

1{Ξi+Xi⊆Wn}
g(Ξi)

|Wn 	 Ξ̌i |
(1.3)
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Wn

Figure 2: Realization of a germ-grain model with non-overlapping grains in the window Wn.

being unbiased for the mean value λ Eg(Ξ0) for any Q-integrable functional g : K′ 7→ R
1, see Chapt. 6 in

[19]. Here Q denotes the distribution induced by Ξ0 on K′, 1B stands for the indicator function of a set or
event B and we have used the set operations B̌ = {−x : x ∈ B} (reflection) and A	B = ∩y∈B(A + y) =
{x : x + B̌ ⊆ A} (Minkowski-subtraction). Further, let A⊕B := ∪y∈B(A + y) (Minkowski-addition) and
b(x, r) denotes the ball with radius r centred at x ∈ R

d.
Note that the proof of the unbiasedness of (1.3) is a straightforward application of Campbell’s theorem

for a stationary marked point process

Ψmark =
∑

i≥1

δ[Xi,Ξi] (1.4)

(which defines (1.1)) with intensity λ and mark distribution Q, see Chapt. 10.5 in [3] or [19]:

EM̂n(g) = λ

∫

K

∫

Rd

1Wn	Ǩ(x)
g(K)

|Wn 	 Ǩ | dx Q(dK) = λ

∫

K

g(K) Q(dK) .

In Section 2 we will define an empirical df F̂n(t) , t ∈ R
m , and state an analogue to Glivenko’s theorem

(Theorem 1) even for the more general case of germ-grain models (1.1) governed by a stationary ergodic
marked point process Ψmark.

Our principal asymptotic result formulated (Theorem 2) and proved in Section 3 states the weak
convergence of the m-parameter empirical processes

Yn(t) :=
√

Ψ(Wn)
(

F̂n(t) − F (t)
)

, t ∈ R
m, n ≥ 1. (1.5)

It turns out that the weak limit of (1.5) (as n → ∞) in the Skorohod space D(Rm) can be identified with
a mean zero Gaussian process Y (t) , t ∈ R

m , having the covariance function EY (s)Y (t) = F (s ∧ t) −
F (s)F (t), where s∧ t =

(

min(s1, t1), . . . , min(sm, tm)
)

. Consequently, for m = 1 a Kolmogorov-Smirnov
test can be established just as for i.i.d. samples provided the df F (·) is continuous.

2 Empirical Distribution Functions and Glivenko’s Theorem

A quite natural empirical counterpart of the df (1.2) is given by
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F̃n(t) =
1

Nn

∑

i≥1

1{Ξi+Xi⊆Wn} 1(−∞,t](f(Ξi)), t = (t1, . . . , tm) ∈ R
m , (2.1)

where (−∞, t] =
∏m

j=1(−∞, tj ] and Nn =
∑

i≥1 1{Ξi+Xi⊆Wn} equals the number of grains which are

completely observable in Wn. Obviously, F̃n(t) is a discrete m-variate df which can be shown to converge
P-a.s. (as n → ∞) to F (t) uniformly in t ∈ R

m provided the stationary marked point process Ψmark is
ergodic. However, the relation

1
√

|Wn|
ENn

(

F̃n(t) − F (t)
)

=
λ

√

|Wn|

∫

K′

|Wn 	 Ǩ|
(

1(−∞,t](f(K)) − F (t)
)

Q(dK)

reveals that, for d ≥ 2 , a zero mean weak limit of
√

|Wn|
(

F̃n(t)−F (t)
)

cannot exist. In other words, the

empirical value F̃n(t) is not close enough to F (t). To remove this shortcoming we suggest the following
empirical df which is based on the weighted estimator (1.3):

F̂n(t) =
1

λ̂n

∑

i≥1

1{Xi+Ξi⊆Wn}

|Wn 	 Ξ̌i|
1(−∞,t](f(Ξi)), (2.2)

where

λ̂n =
∑

i≥1

1{Xi+Ξi⊆Wn}

|Wn 	 Ξ̌i|
(2.3)

is an unbiased estimator for the intensity λ implying that E

(

λ̂n

(

F̂n(t) − F (t)
)

)

= 0 for any t ∈ R
m and

n ≥ 1 . Here, F̂n(·) is again a discrete m-variate df with random jumps depending on the size of the

grains Ξi . In the next section we will see under which circumstances λ̂n can be substituted by the more
convenient unbiased estimator λ∗

n := Ψ(Wn)/|Wn| for λ which considers all points Xi belonging to Wn .
Next, we formulate Glivenko’s theorem for F̂n(t) even in the more general situation of stationary

ergodic germ-grain models with not necessarily independent grains. To avoid too large weights |Wn	Ξ̌i|−1

in the (2.2) and (2.3) we put an additional moment condition on the diameter ‖Ξ0‖ .

Theorem 1: Let the germ-grain model (1.1) be defined by a stationary ergodic marked point process (1.4)
with positive and finite intensity λ and mark distribution Q satisfying

∫

K′
‖K‖q Q(dK) < ∞ for some

q ≥ d. Further, let (Wn) be an increasing sequence (i.e. Wn ⊆ Wn+1 for n ≥ 1) of convex, bounded sets
in R

d such that, for n ≥ 1 ,

Hd−1(∂Wn)

|Wn|1−1/q
≤ c0 < ∞ and ρ(Wn) := sup{r > 0 : b(x, r) ⊆ Wn , x ∈ Wn} −→

n→∞
∞ . (2.4)

Then

sup
t∈Rm

|F̂n(t) − F (t)| −→
n→∞

0 P-a.s. , where F (t) = Q({K ∈ K′ : f(K) ≤ t}) . (2.5)

Proof: For notational ease, let Ξ0 denote a K′-valued random element on [Ω, A, P] having the mark
distribution Q . The conditions put on the sequence (Wn) are sufficient to hold the spatial individual
ergodic theorem, see [3], p. 333 or [15], which, applied to the stationary ergodic marked point process
Ψmark , implies that

1

|Wn|
∑

i≥1

1Wn
(Xi)1(−∞,t](f(Ξi)) −→

n→∞
λ F (t) P-a.s. (2.6)

for any t ∈ R
m . Since the function ρ 7→ V (ρ) := |Wn 	 b(o, ρ)| is differentiable for 0 ≤ ρ < ρ(Wn) with

continuous derivative V ′(ρ) = Hd−1(∂(Wn 	 b(o, ρ)) , see [6] (p. 207), we get the identity

V (0) − V (r) = |Wn \ (Wn 	 b(o, r))| =

∫ r

0

Hd−1
(

∂(Wn 	 b(o, ρ))
)

dρ
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for 0 ≤ r ≤ ρ(Wn) , which leads to the inequality

|Wn \ (Wn 	 b(o, r))| = |{x ∈ Wn : b(x, r) ∩ W c
n 6= ∅}| ≤ r Hd−1(∂Wn) (2.7)

for any r > 0 . Thus, setting rδ
n := δ|Wn|/Hd−1(∂Wn) ( −→

n→∞
∞ ) and W δ

n := Wn 	 b(o, rδ
n) , we immedi-

ately deduce that
|Wn|
|W δ

n |
≤ 1

1 − δ
resp.

|W δ
n |

|Wn|
≥ 1 − δ for 0 ≤ δ < 1 . (2.8)

Further, it is easily seen that, for any n ≥ 1 and δ ∈ [0, 1) , W δ
n is a non-empty, convex subset of Wn with

ρ(W δ
n) −→

n→∞
∞. Hence, according to the definition given in [15], (W δ

n) is a regular generalized sequence of

convex sets in R
d to which the spatial individual ergodic theorem, see [15], p. 143, can be extended. This

means that in (2.6) the sequence (Wn) can be replaced by (W δ
n) for any 0 ≤ δ < 1 .

In order to prove (2.5) we first show that, for all fixed t ∈ R
m ,

λ̂n F̂n(t) =
∑

i≥1

1{Xi+Ξi⊆Wn}

|Wn 	 Ξ̌i|
1(−∞,t](f(Ξi)) −→

n→∞
λ F (t) P-a.s. (2.9)

or equivalently, by using the sequence of events An(ε) := { |λ̂n F̂n(t) − λ F (t)| ≥ ε } ,

P

(

⋃

k≥n

Ak(ε)
)

−→
n→∞

0 for any ε > 0 .

Define a further sequence of events Bn(δ) :=
⋂

i:Xi∈Wn
{‖Ξi‖ ≤ rδ

n} with δ ∈ [0, 1). Then

P

(

⋃

k≥n

Ak(ε)
)

≤ P

(

⋃

k≥n

Ak(ε) ∩ Bk(δ)
)

+ P

(

⋃

k≥n

Bc
k(δ)

)

.

The first part of (2.4) yields the estimate rδ
k ≥ δ |Wk|

1
q /c0 =: ρδ

k for k ≥ 1 . By exploiting the monotonicity
of the sequence (ρδ

k) and applying Campbell’s theorem we obtain that

P

(

⋃

k≥n

Bc
k(δ)

)

≤ P

(

⋃

k≥n

⋃

i:Xi∈Wk

{‖Ξi‖ ≥ ρδ
k}
)

= P

(

⋃

i:Xi∈Wn

{‖Ξi‖ ≥ ρδ
n} ∪

⋃

k≥n

⋃

i:Xi∈Wk+1\Wk

{‖Ξi‖ ≥ ρδ
k+1}

)

≤ E

∑

i≥1

1Wn
(Xi)1[ρδ

n,∞)(‖Ξi‖) +
∑

k≥n

E

∑

i≥1

1Wk+1\Wk
(Xi)1[ρδ

k+1,∞)(‖Ξi‖)

= λ
∑

k≥n

|Wk| P(ρδ
k ≤ ‖Ξ0‖ < ρδ

k+1)

≤ λ cq
0

δq
E‖Ξ0‖q 1[ρδ

n,∞)(‖Ξ0‖) ↓ 0 as n → ∞ . (2.10)

Obviously, if ‖Ξi‖ ≤ rδ
n then W δ

n ⊆ Wn 	 Ξ̌i ⊆ Wn . Hence, using the abbreviation X(G, t) :=
|G|−1

∑

i≥1 1G(Xi)1(−∞,t](f(Ξi)) for G ⊆ R
d and choosing δ := ε/(2ε + 2λ) in (2.8) we find that, for

any k ≥ 1 ,

Ak(ε) ∩ Bk(δ) =
{

| λ̂k F̂k(t) − λ F (t) | ≥ ε
}

∩
⋂

i:Xi∈Wk

{‖Ξi‖ ≤ rδ
k}

⊆
{ |Wk |
|W δ

k |
X(Wk, t) ≥ λ F (t) + ε

}

∪
{ |W δ

k |
|Wk|

X(W δ
k , t) ≤ λ F (t) − ε

}

⊆
{

X(Wk, t) − λ F (t) ≥ λ
( |W δ

k |
|Wk|

− 1
)

+ ε
|W δ

k |
|Wk|

}

∪
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{

X(W δ
k , t) − λ F (t) ≤ λ

( |Wk|
|W δ

k |
− 1
)

− ε
|Wk|
|W δ

k |
}

⊆
{

X(Wk, t) − λ F (t) ≥ ε

2

}

∪
{

X(W δ
k , t) − λ F (t) ≤ −ε

2

}

.

As stated above we have X(W δ
n , t) −→

n→∞
λ F (t) P-a.s. for any δ ∈ [0, 1). Thus, from the previous

relation it follows that P

(

⋃

k≥n Ak(ε) ∩ Bk(δ)
)

−→
n→∞

0 for δ := ε/(2ε + 2λ) and this together with

P

(

⋃

k≥n Bc
k(δ)

)

−→
n→∞

0 proves (2.9) . In the same way we get λ̂n −→
n→∞

λ P-a.s. which in turn implies

that F̂n(t) −→
n→∞

F (t) P-a.s. for any fixed t ∈ R
m .

The proof of the uniform P-a.s. convergence in (2.5) consists in applying a standard technique relying
on the boundedness and monotonicity of F̂n(t) (in each component of t = (t1, . . . , tm)). For details the
reader is referred to [8], where a similar case is treated. This completes the proof of Theorem 1. �

Remark 1: If Ψmark is independently marked with an i.i.d. sequence of random compact sets (Ξi)i≥1

then it suffices to assume that the unmarked point process Ψ =
∑

i≥1 δXi
is stationary and ergodic, see

[7].

Remark 2: If ‖Ξ0‖ ≤ c1 < ∞ P−a.s. then the first part of (2.4) can be dropped. Note that
ρ(Wn) −→

n→∞
∞ is equivalent to |Wn|/Hd−1(∂Wn) −→

n→∞
∞, since for any convex compact set Wn ⊂ R

d

with |Wn| > 0 the inclusion

ρ(Wn)/d ≤ |Wn|/Hd−1(∂Wn) ≤ ρ(Wn)

holds. (The first inequality is a direct consequence of a result proved by J. M. Wills [20] and the second
one follows from (2.7) with r = ρ(Wn) and the obvious fact that |Wn 	 b(o, ρ(Wn))| = 0 ).

3 Weak Convergence of Empirical Distribution Functions

In this section we will prove the announced weak convergence of the centered and normalized sequence
Yn(t) (see (1.5)) of random processes on R

m , where the empirical df F̂n(t) is defined by (2.2). This
result can be formulated for the germ-grain model (1.1) with all the independence assumptions made
at the beginning of Section 1. On the other hand, in contrast to Theorem 1 the assumptions of strict
stationarity and ergodicity can be considerably weakened in proving the weak convergence results stated
subsequently.

A point process Ψ =
∑

i≥1 δXi
on R

d is called weakly or (second-order) stationary with intensity

λ > 0 , if EΨ2([0, 1]d) < ∞ , EΨ(·) = λ | · | and the second-order factorial moment measure α(2)(A×B) =
E
∑∗

i,j≥1 1A(Xi)1B(Xj) (where A, B ⊆ R
d are bounded Borel sets and the sum

∑∗ runs over pairwise

distinct indices) is invariant against diagonal shifts, i.e. α(2)((A + x) × (B + x)) = α(2)(A × B) for any
x ∈ R

d.
Obviously, the (factorial) covariance measure γ(2)(A × B) := α(2)(A × B) − λ2|A||B| has the same

invariance property which, by desintegration (see [3], Chapt. 10.4), provides the existence of a unique

signed measure γ
(2)
red(·) on R

d – called reduced covariance measure of Ψ – such that

γ(2)(A × B) = λ

∫

A

γ
(2)
red(B − x) dx .

Further, let |γ(2)
red|(B) be the total variation of γ

(2)
red(·) over the Borel set B ⊆ R

d , see [3], A1.3.
In order to prepare the proof of the Theorem 2 below we first study the weak consistency of the

estimators λ̂n , see (2.3), and λ∗
n = Ψ(Wn)/|Wn| to the intensity λ . In what follows, let

P−→
n→∞

indicate

convergence in probability.
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Weak stationarity of Ψ implies immediately the unbiasedness of λ∗
n and that the variance of Ψ(Wn)

can be expressed by γ
(2)
red(·) in the following way:

Var
(

Ψ(Wn)
)

= λ |Wn| + λ

∫

Rd

|Wn ∩ (Wn − x)| γ(2)
red(dx).

Hence, by Wn ⊕ W̌n = {x ∈ R
d : Wn ∩ (Wn − x) 6= ∅} , we obtain that

E
(

λ∗
n − λ

)2
=

Var
(

Ψ(Wn)
)

|Wn|2
≤ λ

|Wn|
(

1 + |γ(2)
red|(Wn ⊕ W̌n)

)

−→
n→∞

0 (3.1)

if the additional assumption

|γ(2)
red|(Wn ⊕ W̌n)

|Wn|
−→

n→∞
0 as |Wn| −→

n→∞
∞ (in particular, if |γ(2)

red|(Rd) < ∞ ) . (3.2)

is satisfied. Thus, λ∗
n is mean-square consistent for λ and this in turn gives λ∗

n
P−→

n→∞
λ as |Wn| −→

n→∞
∞ .

The corresponding result for λ̂n is formulated in the following lemma.

Lemma 1: Let the conditions of Theorem 1 be fulfilled, where ergodicity of Ψmark can be replaced by
the assumption that the (strictly) stationary unmarked point process Ψ(·) = Ψmark((·) ×K′) has second

moments and its reduced covariance measure γ
(2)
red(·) satisfies (3.2). Then λ̂n is an unbiased, weakly

consistent estimator for λ, i.e.

λ̂n
P−→

n→∞
λ. (3.3)

Proof: To verify (3.3) we again apply the truncation technique used in the proof of Theorem 1. With
the notation used there we may write for any ε, δ ∈ (0, 1), that

P(|λ̂n − λ| ≥ ε) = P({|λ̂n − λ| ≥ ε} ∩ Bn(δ)) + P({|λ̂n − λ| ≥ ε} ∩ Bc
n(δ))

≤ P(|λ∗
n − λ| ≥ ε/2) + P({|λ̂n − λ∗

n| ≥ ε/2} ∩ Bn(δ)) + P(Bc
n(δ)) .

In view of the decomposition

λ̂n − λ∗
n =

1

|Wn|
∑

i≥1

1Wn
(Xi)

|Wn \ (Wn 	 Ξ̌i)|
|Wn 	 Ξ̌i|

−
∑

i≥1

1Wn\(Wn	Ξ̌i)
(Xi)

|Wn 	 Ξ̌i|

and since ‖Ξi‖ ≤ rδ
n implies the inclusion W δ

n := Wn 	 b(o, rδ
n) ⊆ Wn 	 Ξ̌i we arrive at

{|λ̂n − λ∗
n| ≥ ε/2} ∩ Bn(δ) ⊆

{Ψ(Wn) |Wn \ W δ
n |

|Wn| |W δ
n |

≥ ε

4

}

∪
{Ψ(Wn \ W δ

n)

|W δ
n |

≥ ε

4

}

.

By Markov’s inequality and (2.8) ,

P({|λ̂n − λ∗
n| ≥ ε/2} ∩ Bn(δ)) ≤ 8 λ |Wn \ W δ

n |
ε |W δ

n |
≤ 8 λ δ

ε (1 − δ)
.

Finally, (3.1) and Chebyshev’s inequality yield P(|λ∗
n − λ| ≥ ε/2) −→

n→∞
0 so that (3.4) and (2.10) with

δ = ε2/2 imply that

lim
n→∞

P(|λ̂n − λ| ≥ ε) ≤ 8 λ ε for any 0 < ε < 1 .

This proves the assertion (3.3) of Lemma 1. �
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The previous proof reveals the following observation.

Remark 3: If in Lemma 1 Ψmark is independently marked, then it suffices to require weak stationarity
of Ψ(·) = Ψmark((·) ×K′) .

Next we summarize the essential facts concerning weak convergence of sequences of m-parameter
random processes Xn(t) , t ∈ R

m , living in D(Rm) , the set of real functions on R
m which are right

continuous with finite left limits existing everywhere (for a precise definitions of the limits, see [14] or
[11]) — briefly the cádlág-functions on R

m. We first recall that, following [1] and [14], the set D[s, t] of
cádlág-functions defined on the closed hyper-rectangle [s, t] :=

∏m
j=1[sj , tj ] (for s = (s1, . . . , sm) ∈ R

m

and t = (t1, .., tm) ∈ R
m with s < t, i.e. sj < tj for j = 1, . . . , m) can be equipped with a metric %s,t

making D[s, t] to a Polish space which generalizes in a natural way the one-dimensional Skorohod-space
D[a, b] for −∞ < a < b < ∞, see [2], Chapt. 3, for details. Weak convergence Xn(·) =⇒

n→∞
X(·) of random

elements Xn(·) in D[s, t] is then defined in the usual way and criteria for the convergence in terms of
mixed moments of increments of Xn(·) over neighbouring hyper-rectangles in [s, t] are given in [1].

For m = 1, the extension of weak convergence to random processes defined on an infinite interval
goes back to papers of C. Stone, T. Lindvall and W. Whitt, see [17], Chapt. 4.4.1 or [21], Chapt. 12.9
and references therein. In the Billingsley’s monograph [2] (Chapt. 16 and p. 191) the reader can find
a criterion for the weak convergence in D[0,∞) and D(R1), respectively, which applies almost verbatim to
the higher-dimensional case. A detailed study of weak convergence in the space D([0,∞)m, E) of cádlág-
functions taking values in a Polish space E can be found in [11]. In our context we need the extension
of Skorohod-space D[s, t] to the corresponding space D(Rm). The crucial point is the introduction of
a metric % in D(Rm), see [2] (pp. 168–179, 191) for m = 1 and [11] (pp. 182–184) for m ≥ 2 , which is
defined in such way that, for x(·) , xn(·) ∈ D(Rm) , n = 1, 2, . . . ,

%(xn(·), x(·)) −→
n→∞

0 iff %s,t(rs,txn(·), rs,tx(·)) −→
n→∞

0

for all continuity points s, t ∈ R
m of x(·) satisfying s < t . Here rs,t : D(Rm) 7→ D[s, t] is defined

by rs,tx(u) = x(u) for u ∈ [s, t] and [s, t] ⊂ R
m will be called continuity hyper-rectangle of x(·) if the

cádlág-function x : R
m 7→ R

1 is continuous at both its ‘lower-left’ vertex s and its ‘upper-right’ vertex t.
In this way weak convergence in D(Rm) can be reduced to weak convergence in the more familiar

space D[s, t] , see [14], [1]. A criterion for weak convergence in D(Rm) generalizing Proposition 4.18 in
[17] for m = 1 is stated in the following proposition.

Proposition 1: If {Xn(·), n ≥ 1} and X(·) are random elements of D(Rm) then

Xn(·) =⇒
n→∞

X(·) in D(Rm)

if and only if for any continuity hyper-rectangle [s, t] of X(·) (i.e. P(X(·) is continuous at s and t) = 1 )
we have

rs,tXn(·) =⇒
n→∞

rs,tX(·) in D[s, t] .

Note that the latter limiting relations are needed only for two sequences s(k) = (s
(k)
1 , . . . , s

(k)
m ) and

t(k) = (t
(k)
1 , . . . , t

(k)
m ) of continuity points of X(·) satisfying the conditions max{s(k)

1 , . . . , s
(k)
m } −→

k→∞
−∞

and min{t(k)
1 , . . . , t

(k)
m } −→

k→∞
∞ , which do always exist.

By the very definition of an m-variate df F (t) and its empirical counterpart F̂n(t) , see (2.2) , we
immediately get the following proposition.

Proposition 2: The random processes {Yn(·), n ≥ 1} defined by (1.5) as well as the mean zero Gaussian
process Y (·) with covariance function EY (s)Y (t) = F (s ∧ t) − F (s)F (t) belong P-a.s. to the subspace
D0(R

m) containing those x ∈ D(Rm) which have finite one-sided limits lim
t→t∗

x(t) for any t∗ = (t∗1, . . . , t
∗
m)

with t∗i ∈ {−∞, +∞} for some i ∈ {1, . . . , m} , see [11].
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Our next step towards the proof of Yn(·) =⇒
n→∞

Y (·) in D(Rm) consists in showing that Y (·) is the weak

limit of the following sequence of m-parameter empirical processes

Zn(t) =
1

√

λ |Wn|
∑

i≥1

1Wn
(Xi)

(

1(−∞,t](f(Ξi)) − F (t)
)

, t ∈ R
m .

Lemma 2: Let the germ-grain model (1.1) be defined by a weakly stationary point process Ψ =
∑

i≥1 δXi

with intensity λ > 0 and an independent sequence {Ξi, i ≥ 1} of i.i.d. copies of the typical grain Ξ0 . If

in addition the reduced covariance measure γ
(2)
red(·) of Ψ satisfies condition (3.2) , then

Zn(·) =⇒
n→∞

Y (·) in D(Rm) (3.4)

provided that |Wn| −→
n→∞

∞ , where Y (t) , t ∈ R
m , denotes the Gaussian process of Proposition 2.

Proof: A straightforward application of the classical CLT for i.i.d. random variables shows that

UN (t) :=
1√
N

N
∑

i=1

(

1(−∞,t](f(Ξi)) − F (t)
)

=⇒
N→∞

N
(

0, F (t)(1 − F (t))
)

for any t ∈ R
m ,

where N
(

µ, σ2
)

denotes a Gaussian random variable with mean µ and variance σ2 . Since, after a short
calculation, EUN(s)UN (t) = F (s ∧ t) − F (s)F (t) for any N ≥ 1, we get in the same way

p
∑

k=1

ckUN(t(k)) =
1√
N

N
∑

i=1

p
∑

k=1

ck

(

1(−∞,t(k)](f(Ξi)) − F (t(k))
)

=⇒
N→∞

N
(

0, σ2(t(1), . . . , t(p))
)

for any t(1), . . . , t(p) ∈ R
m and c1, . . . , cp ∈ R

1 , where

σ2(t(1), . . . , t(p)) =

p
∑

k,l=1

ck cl

(

F (t(k) ∧ t(l)) − F (t(k))F (t(l))
)

.

A well-known so-called “transfer theorem” see [5] (Chapt. 4) or [16] (Chapt. 8.7), tells us that the
previous CLT remains valid if the number of summands N is replaced by the random number Ψ(Wn)
( −→
n→∞

∞) . Here we have used that the random integers Ψ(Wn) are independent of the i.i.d. sequence

f(Ξi), i ≥ 1 . Further, by using Lemma 1 and Slutsky’s theorem, we find that

p
∑

k=1

ckZn(t(k)) =

√

Ψ(Wn)

λ |Wn|

p
∑

k=1

ckUΨ(Wn)(t
(k)) =⇒

n→∞
N
(

0, σ2(t(1), . . . , t(p))
)

.

Hence, by applying the Cramér-Wold device,

(

(Zn(t(1)), . . . , Zn(t(p))
)

=⇒
n→∞

(

Y (t(1)), . . . , Y (t(p))
)

for any t(1), . . . , t(p) ∈ R
m . It remains to verify the tightness of the sequence Zn(·), n ≥ 1 , by estimat-

ing the mixed fourth moment EZ2
n((u, v])Z2

n((ū, v̄]) for each pair of neighbouring half-open rectangles
(u, v], (ū, v̄] having a common (m−1)-dimensional face and lying in some continuity hyper-rectangle [s, t]
of Y (·) . Note that the “increment” of Zn(·) around (u, v] , u < v , is defined by

Zn((u, v]) =
∑

ε1,...,εm∈{0,1}

(−1)m−ε1−···−εmZn(u1 + ε1(v1 − u1), . . . , um + εm(vm − um)) .

For brevity put g(u,v](K) = 1(u,v](f(K)) − νF ((u, v]) for K ∈ K and u < v, where νF (·) designates
the probability measure on the Borel sets of R

m generated by the df F (·) .
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In view of the independence assumptions made in Lemma 2 and Eg(u,v](Ξ0) = 0 we obtain

EZ2
n((u, v]) Z2

n((ū, v̄])

=
1

λ2 |Wn|2
∑

p≥1

P(Ψ(Wn) = p)

p
∑

i,j=1

p
∑

k,l=1

Eg(u,v](Ξi)g(u,v](Ξj)g(ū,v̄](Ξk)g(ū,v̄](Ξl)

=
E(Ψ(Wn))

λ2 |Wn|2
Eg2

(u,v](Ξ0) g2
(ū,v̄](Ξ0) +

α(2)(Wn × Wn)

λ2 |Wn|2

×
(

Eg2
(u,v](Ξ0) Eg2

(ū,v̄](Ξ0) + 2
(

Eg(u,v](Ξ0) g(ū,v̄](Ξ0)
)2
)

≤ νF ((u, v]) νF ((ū, v̄])

λ |Wn|

(

1 + 3 |γ(2)
red|(Wn ⊕ W̌n) + 3 λ |Wn|

)

≤ c(λ) νF ((u, v]) νF ((ū, v̄])

for large enough n , which proves the desired tightness condition, see [1].
Here we have used (3.1) and the relations Eg2

(u,v](Ξ0) = νF ((u, v])
(

1 − νF ((u, v]
)

),

Eg(u,v](Ξ0)g(ū,v̄](Ξ0) = −νF ((u, v]) νF ((ū, v̄])

and

Eg2
(u,v](Ξ0) g2

(ū,v̄](Ξ0) = νF ((u, v]) νF ((ū, v̄])

(

νF ((u, v]) + νF ((ū, v̄]) − 3νF ((u, v]) νF ((ū, v̄])

)

.

Thus, by Theorem 4 in [1] and some additional comments given there, we have shown that

Zn(·) =⇒
n→∞

Y (·) in D[s, t]

for any continuity hyper-rectangle [s, t] of Y (·) . This together with Proposition 1 completes the proof of
(3.4) . �

Remark 4: Note that the weak convergence of empirical df’s for i.i.d. samples taking values in the unit
cube [0, 1]m and having a not necessarily continuous df F (·) has been already proven by G. Neuhaus [14].
Further refinements of this result can be found in [4]. Lemma 2 extends this result to a random number
of i.i.d. observations in R

m driven by a stationary point process.

Remark 5: By applying a large deviations inequality for empirical df’s due to Kiefer and Wolfowitz [13]

we obtain the estimate P(supt∈Rm

∣

∣UN (t)
∣

∣ ≥ r
√

N) ≤ A e−a r2 N for all N ≥ 1 and all r > 0 , where a
and A are positive constants. This result and the independence assumption of Lemma 2 yield

P

(

sup
t∈Rm

∣

∣Zn(t)
∣

∣ ≥ r λ∗
n

√

|Wn|
)

≤ A Ee−a λ r2 Ψ(Wn)

(

= A exp
{

− λ
(

1 − e−a λ r2) |Wn|
}

)

,

where the equality included in parenthesis holds if the point process Ψ(·) is Poisson.

Now we are in a position to prove our main result.

Theorem 2: Let the germ-grain model (1.1) be defined by a weakly stationary point process Ψ =
∑

i≥1 δXi

with intensity λ > 0 and an independent sequence {Ξi, i ≥ 1} of i.i.d. copies of the typical grain Ξ0 .

Assume that |γ(2)
red|(Rd) < ∞ and E‖Ξ0‖q < ∞ for some q ≥ d and let (Wn) be an increasing sequence

of convex, bounded sets in R
d satisfying (2.4) . Then the sequence of empirical processes {Yn(·) , n ≥ 1}

defined by (1.5) and (2.2) converges weakly (as n → ∞) in D(Rm) to a mean zero Gaussian process Y (·)
with covariance function EY (s)Y (t) = F (s ∧ t) − F (s)F (t) .
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Proof: First note that by applying Lemma 1 and Slutsky-type arguments, see e.g. Theorem 3.1 in [2],
the weak limit (if it exists) of Yn(t) , t ∈ R

m , coincides with that of

Ẑn(t) =
λ̂n

√

λ λ∗
n

Yn(t) =

√

|Wn|
λ

∑

i≥1

1Wn	Ξ̌i
(Xi)

|Wn 	 Ξ̌i|
(

1(−∞,t](f(Ξi)) − F (t)
)

.

This means that Lemma 2 and Theorem 3.1 in [2] imply Yn(·) =⇒
n→∞

Y (·) in D(Rm) whenever we can

verify that %s,t(Zn(·), Ẑn(·)) P−→
n→∞

0 or slightly stronger that

sup
u∈[s,t]

|Zn(u) − Ẑn(u)| P−→
n→∞

0 for any continuity hyper-rectangle [s, t] ⊆ R
m . (3.5)

For this we consider the difference process ∆n(·) :=
√

λ
(

Zn(·) − Ẑn(·)
)

on the event Bn(δ) =
⋂

i:Xi∈Wn
{‖Ξi‖ ≤ rδ

n} with rδ
n = δ |Wn|/Hd−1(∂Wn) and δ ∈ (0, 1) (as in the proof of Theorem 1)

which allows to replace the grains Ξi (with germs Xi ∈ Wn) by the truncated grains Ξδ
i = Ξi ∩ b(o, rδ

n)
such that

∆n(t)1Bn(δ) =

(

∆δ
n(t) − ∆δ

n,0 F (t)

)

1Bn(δ) for all t ∈ R
m ,

where

∆δ
n(t) :=

√

|Wn|
∑

i≥1

(

1Wn
(Xi)

|Wn|
−

1Wn	Ξ̌δ
i
(Xi)

|Wn 	 Ξ̌δ
i |

)

1(−∞,t](f(Ξi))

and

∆δ
n,0 :=

√

|Wn|
∑

i≥1

(

1Wn
(Xi)

|Wn|
−

1Wn	Ξ̌δ
i
(Xi)

|Wn 	 Ξ̌δ
i |

)

.

For any ε > 0 and δ ∈ (0, 1) we have

P( sup
u∈[s,t]

|∆n(u)| ≥ ε) = P( sup
u∈[s,t]

|∆n(u)| ≥ ε, Bn(δ)) + P( sup
u∈[s,t]

|∆n(u)| ≥ ε, Bc
n(δ))

≤ P( sup
u∈[s,t]

|∆δ
n(u)| ≥ ε/2) + P

(

|∆δ
n,0| ≥ ε/2

)

+ P(Bc
n(δ)) .

The moment assumption imposed on ‖Ξ0‖ combined with (2.4) implies (as an immediate consequence
of (2.10)) that P(Bc

n(δn)) −→
n→∞

0 for certain sequence δn > 0 with δn ↓ 0 as n → ∞ . The second term in

the latter line will be estimated using Chebyshev’s inequality. Having in mind E∆δ
n,0 = 0 , we can express

and estimate the second moment E(∆δ
n,0)

2 by means of the reduced second cumulant measure γ
(2)
red(·) as

follows:

λ |Wn|
∫

Rd

E

(

1Wn
(x)

|Wn|
−

1Wn	Ξ̌δ
0
(x)

|Wn 	 Ξ̌δ
0|

)2

dx

+λ |Wn|
∫

Rd

∫

Rd

E

(

1Wn
(x)

|Wn|
−

1Wn	Ξ̌δ
0
(x)

|Wn 	 Ξ̌δ
0|

)

E

(

1Wn
(y + x)

|Wn|
−

1Wn	Ξ̌δ
0
(y + x)

|Wn 	 Ξ̌δ
0|

)

γ
(2)
red(dy) dx

≤ λ (1 + |γ(2)
red|(Rd))

|Wn|

∫

Rd

E

(

1Wn
(x) − 1Wn	Ξ̌δ

i
(x)

|Wn|
|Wn 	 Ξ̌δ

0|

)2

dx

= λ

(

1 + |γ(2)
red|(Rd)

)

E
|Wn \ (Wn 	 Ξ̌δ

0)|
|Wn 	 Ξ̌δ

0|
≤ λ

(

1 + |γ(2)
red|(Rd)

)

δ

1 − δ
.
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The last inequality follows from (2.8) . Hence,

P

(

|∆δn

n,0| ≥
ε

2

)

−→
n→∞

0 for any ε > 0 .

In the same way as before we get

E(∆δ
n(t))2 ≤ λ

(

1 + |γ(2)
red|(Rd)

)

δ

1 − δ

which implies ∆δn
n (t)

P−→
n→∞

0 for all t ∈ R
m .

In order to verify the uniform convergence supu∈[s,t] |∆δn
n (u)| P−→

n→∞
0 for any continuity hyper-rectangle

[s, t] we rewrite ∆δ
n(t) as sum ∆δ

n,1(t) + ∆δ
n,2(t) , with

∆δ
n,1(t) =

1
√

|Wn|
∑

i≥1

Aδ
n(Xi, Ξi, (−∞, t]) and ∆δ

n,2(t) =
1

√

|Wn|
∑

i≥1

aδ
n(Xi, (−∞, t]) ,

where the functions Aδ
n(x, K, B) and aδ

n(x, B) are defined for any x ∈ R
d , B ⊆ R

m and K ∈ K′ with
c(K) = o as follows:

Aδ
n(x, K, B) = aδ

n(x, K, B) − aδ
n(x, B) with aδ

n(x, B) =

∫

K′

aδ
n(x, K, B) Q(dK)

and

aδ
n(x, K, B) =

(

1Wn
(x) − |Wn|

|Wn 	 (Ǩ ∩ b(o, rδ
n))| 1Wn	(Ǩ∩b(o,rδ

n))(x)

)

1B(f(K)) .

From (2.8) we get

|aδ
n(x, K, B)| ≤ max

{

1,
δ

1 − δ

}

1Wn
(x) 1B(f(K))

and hence, for 0 < δ ≤ 1/2 ,

|aδ
n(x, B)| ≤ 1Wn

(x) νF (B) and |Aδ
n(x, K, B)| ≤ 1Wn

(x)
(

1B(f(K)) + νF (B)
)

. (3.6)

It is obvious that both random processes ∆δ
n,1(·) and ∆δ

n,2(·) belong to D(Rm) for any δ ∈ (0, 1).

Further, calculating the second moment of ∆δ
n,i(t) along the above lines and using Chebyshev’s inequality

yield ∆δn

n,i(t)
P−→

n→∞
0 for any fixed t ∈ R

m and i = 1, 2 .

The proof of the weak convergence ∆δn

n,i(·) =⇒
n→∞

0 in D[s, t] for some continuity hyper-rectangle (im-

plying supu∈[s,t] |∆δn

n,i(u)| P−→
n→∞

0) relies on the tightness of the sequences {∆δn

n,i(·) , n ≥ 1} in D[s, t] which

will be verified now.
By virtue of the independence between Ψ =

∑

i≥1 δXi
and the i.i.d. sequence of grains {Ξi , i ≥ 1}

together with EAδ
n(x, Ξ0, B) = 0 and (3.6) we obtain for any two disjoint (neighbouring) hyper-rectangles

(u, v] and [ū, v̄] and 0 < δ ≤ 1/2 that

E
(

∆δ
n,1((u, v])

)2(
∆δ

n,1((ū, v̄])
)2

=
λ

|Wn|2
∫

Rd

E

(

Aδ
n(x, Ξ0, (u, v])

)2 (

Aδ
n(x, Ξ0, (ū, v̄])

)2

dx

+
1

|Wn|2
∫

Rd

∫

Rd

E

(

Aδ
n(x, Ξ0, (u, v])

)2

E

(

Aδ
n(y, Ξ0, (ū, v̄])

)2

α(2)(dx, dy)
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+
2

|Wn|2
∫

Rd

∫

Rd

(

EAδ
n(x, Ξ0, (u, v]) Aδ

n(y, Ξ0, (ū, v̄])
)2

α(2)(dx, dy)

≤ 4 λ νF ((u, v])νF (ū, v̄])

|Wn|
+

48 α(2)(Wn × Wn) νF ((u, v])νF (ū, v̄])

|Wn|2
.

Similarly, by making use of
∫

Rd

aδ
n(x, (u, v]) dx = 0, we find that

E
(

∆δ
n,2((u, v])

)2
=

λ

|Wn|

∫

Rd

(

(

aδ
n(x, (u, v])

)2
+

∫

Rd

aδ
n(x, (u, v])aδ

n(y + x, (u, v]) γ
(2)
red(dy)

)

dx

≤ λ

(

1 + |γ(2)
red|(Rd)

)

(νF ((u, v]))2 .

This and the previous estimate together with α(2)(Wn ×Wn) ≤ λ |Wn|(λ |Wn|+ |γ(2)
red|(Rd)), see (3.1),

yield

E
(

∆δn

n,i((u, v])
)2(

∆δn

n,i((ū, v̄])
)2 ≤ C νF ((u, v])νF (ū, v̄]) for i = 1, 2

proving the tightness of ∆δn

n,1(·) and ∆δn

n,2(·) in D[s, t]. Summarizing the above steps and (3.5) completes
the proof of Theorem 2. �

In view of Proposition 2 and using the fact that the mapping x(·) 7→ supu∈Rm |x(u)| is continuous on
the subspace D0(R

m) (which results essentially from its continuity on the spaces D[s, t] for s, t ∈ R
m, see

[2], [14], [4], [11]), Theorem 2 and the continuous mapping theorem yield

sup
t∈Rm

|Yn(t)| =⇒
n→∞

sup
t∈Rm

|Y (t)|,

where the df of the limit depends on F (·) for m ≥ 2 , see e.g. [13].

4 Kolmogorov-Smirnov test

The case m = 1 is of special interest for testing the goodness-of-fit of some hypothetical distribution
function F (t) = P(f(Ξ0) ≤ t) for t ∈ R

1. We know that in this case the Gaussian limit process Y (·)
is stochastically equivalent to W o(F (·)) , where W o(·) is the Brownian bridge — a zero mean Gaussian
process on [0, 1] with EW o(s)W o(t) = s ∧ t − s t , see e.g. [2].

Corollary: Under the assumptions of Theorem 2 (for m = 1) we have

sup
t∈R1

|Yn(t)| =⇒
n→∞

sup
t∈R1

|W o(F (t))|.

Furthermore, if F (·) is continuous then the limit df P(sup0≤t≤1 |W o(t)| ≤ x) coincides with well-known
Kolmogorov df

K(x) = 1 + 2

∞
∑

k=1

(−1)ke−2k2x2

for x > 0.

This corollary enables us to perform a Kolmogorov-Smirnov test in analogy to the classical case of
i.i.d. samples drawn from an unknown source with one or several hypothetical distribution functions. The
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Figure 3: The point process Ψ observed in the rectangular block Wn.

Kolmogorov-Smirnov test requires the continuity of the hypothesized distribution of the data implying
that the critical values of the test statistic do not depend on this distribution.

In what follows we present a practical application to the microstructure of ceramic plasma-sprayed
coatings. A specimen has been prepared in the Institute of Plasma Physics, Academy of Sciences of
the Czech Republic, Prague. The data analysed here (kindly provided by Dr. Pavel Ctibor) consist of
approximately convex pores in a three-dimensional sampling window Wn. For further details about the
data set, see [12], where the spatial distribution of particles has been investigated.

The specimen is a rectangular block with dimensions 450 × 350 × 240 µm (see Fig. 3). The number
of shifted grains Xi + Ξi lying completely in Wn is Nn = 1976 and the number of reference points Xi in
Wn is Ψ(Wn) = 2085. Note that the shape of Wn entails that each of the eroded windows Wn 	 Ξ̌i is
a rectangular block with dimension depending on the widths of Ξi measured parallel to the edges of Wn.
This fact facilitates considerably the computation of the weighted estimator (2.2).

At first we consider the distribution of volume of the typical grain, i.e. we put f(Ξ0) = |Ξ0|. Since
very small particles could not be detected and so are omitted in the study, there exists a lower threshold
a > 0 such that F (a) = 0 and F (t) > 0 for t > a. Similarly, the absence of large pores indicates the
existence of an upper bound b > 0. At the first glance and supported by the experience of the material
scientists, the empirical df F̂n(t) seems to be approximately Pareto distributed. Thus, we will examine
the null hypothesis that the df P(f(Ξ0) ≤ t) coincides with a truncated Pareto df F0(·) given by

F0(t) = 1 −
(a

t

)c

· bc − tc

bc − ac
, a ≤ t ≤ b.

Correcting sampling bias effects by the weights |Wn 	 Ξ̌i| we modify the maximum likelihood method
leading to the following estimates of the location parameters a > 0, b > 0 and the shape parameter c > 0,
respectively:

â = 31.462 µm3,

b̂ = 6152.056 µm3,

ĉ = 1.012.

Here, it should be noted that the weak convergence of the empirical process (1.5) stated in Theorem
1 does not hold in general when parameters in F (·) are replaced by corresponding (maximum likelihood)

estimators. For this reason we are not allowed to plug in the parameter estimates â, b̂ and ĉ in the
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Figure 4: The empirical df of volume (dashed line) and fitted truncated Pareto df (solid line).

hypothesized df F0(·). This fact is is already well-known from the classical i.i.d. case and can be interpreted
as higher sensitivity of the Kolmogorov-Smirnov test against the null hypothesis.

However, the above estimates give us at least a hint about where the true parameters could be located.
We perform the test for the values a = 30.9, b = 6500 and c = 1.005.

In Fig. 4 the plot of the empirical df F̂n(·) defined by (2.2) is compared with the hypothesized df
F0(·), where the curves are plotted in log-scale.

The maximal deviation of F̂n(·) from F0(·) is supt∈R
|F̂n(t) − F0(t)| = 0.025. This means that

supt∈R
|Yn(t)| = 1.141 is not greater than 1.358 (= 95%-quantile of the Kolmogorov df) and so the

null hypothesis is not rejected at the 5%-level.
We have also computed the maximal deviation of F̃n(·) (see (2.1)) from F0(·) which is slightly higher

than the value for F̂n(·): supt∈R
|F̃n(t) − F0(t)| = 0.030.

As a second example we choose the shape parameter f(Ξ0) being equal to the natural logarithm of
the ratio of the maximal diameter and the minimal diameter of the typical grain. Suggested by material
scientists we check the null hypothesis whether the corresponding shape parameter of the pores in our
specimen is Weibull distributed with parameters α = 1.04 and β = 0.31

F0(t) = 1 − e−(t/β)α

, t ≥ 0.

The functions F̂n(t) and F0(t) are compared in Fig. 5, where again the log-scale is used. The maximal
deviation is supt∈R

|F̂n(t)−F0(t)| = 0.020 implying that supt∈R
|Yn(t)| = 0.934. Hence, the null hypothesis

is again not rejected at the 5%-level.

5 Concluding Remarks and Examples

The independence assumptions put on the germ-grain model (1.1) in Theorem 2 are crucial in proving
the existence of a weak limit and guarantee that the covariance function of the Gaussian limit process
Y (·) depends only on the df F (·) . The above Theorem 2 suggests generalizations in various directions.
One of them is to consider empirical marginal df’s in germ-grain models with dependent grains and
dependences between the sequence of grains and the point process of germs. Random tessellations seem
to be tractable structures of this kind which give rise to future investigations. In any case these models
have to satisfy certain (strong) mixing-type conditions as they have been shown and applied e.g. in [9] or
[10], respectively. On the other hand, the covariance function of the expected Gaussian limit process will
reflect the dependence structure of the model under consideration. There is an obvious similarity with
the asymptotic behaviour of empirical processes related with strictly stationary sequences, see e.g. [18].
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Figure 5: The empirical df of a shape parameter (dashed line) and the hypothesized df (solid line).

We have demonstrated the applicability of the results with the practical example. Our tests confirm
the conjectures of the material scientists on the distributions of volume and shape of the pores. On
the other hand, we should be aware that Theorem 1 and our goodness-of-fit test rely essentially on the
independence assumption. There are grounds for the assumption that more or less weak dependencies
between neighbouring pores exist. Mathematically spoken, the system of pores modelled by (1.1) is
driven by a stationary marked point process (1.4) involving dependencies between different grains as well
as between grains and germs. Under certain mixing and regularity conditions an analogue to Theorem 2
seems provable but the covariance structure of the corresponding limit process would be more complicated
than that of Y (·). A detailed study of such weakly dependent structures with applications to testing the
goodness-of-fit of certain marginal distributions of the typical grain should be a meaningful subject of
future research.
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