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Abstract. The rank statistics Sn(t) = 1
n

∑n
i=1 ciRi(t) (t ∈ Rp), with Ri(t) be-

ing the rank of ei−tTxi, i = 1, . . . , n and e1, . . . , en being the random sample from

the basic distribution with the cdf F , are considered as a random process with t

in the role of parameter. Under some assumptions on ci, xi and on the underlying

distribution, it is proved that the process {Sn( t√
n
)− Sn(0)− ESn(t), |t|2 ≤M}

converges weakly to the Gaussian process. This generalizes the existing results

where the one-dimensional case t ∈ R was considered. We believe our method of

the proof can be easily modified for the signed-rank statistics of Wilcoxon type.

Finally, we use our results to find the second order asymptotic distribution of

the R-estimator based on the Wilcoxon scores and also to investigate the length

of the confidence interval for a single parameter βl.
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1. Introduction

Consider the linear regression model

Yi = α+ β1 xi1 + . . .+ βp xip + ei = α+ βTxi + ei, i = 1, . . . , n, (1.1)

where α and β = (β1, . . . , βp)
T are unknown parameters, xi = (xi1, . . . , xip)

T, for i =

1, . . . , n are known constants, and e1, . . . , en are independent, identically distributed ran-

dom variables with a cumulative distribution function F . Let Ri(b) be the rank of

Yi−bTxi among Y1−bTx1, . . . , Yn−bTxn and x̄n = (x̄n1, . . . , x̄np)
T be the vector of the

means of the columns of the design matrix X. Then the R-estimator β̂R (based on the

Wilcoxon scores) of β can be defined as the solution of the following minimization

p∑
j=1

|Snj(b)| := min, where Snj(b) =
1

n3/2

n∑
i=1

(xij − x̄nj)Ri(b).

Or more informally we can say that β̂R ‘almost’ solves the system of equations

Sn(b) = (Sn1(b), . . . , Snp(b))T =
1

n3/2

n∑
i=1

(xi − x̄n)Ri(b) = 0.

The keystone for the inference about R-estimators is the uniform asymptotic linearity of

the statistic Sn(b). This means that the difference Tn(b) = Sn( b√
n

+ β) − Sn(β) differs

from a linear function by an amount which tends to zero in probability as the number of

observations increases (Jurečková (1971)). For the case of a one-dimensional parameter β

and Wilcoxon scores Jurečková (1973) showed that if the difference between the statistic

Tn(b) and the linear form is multiplied by a suitable constant (usually
√
n), one obtains

stochastic process which converges weakly to a linear process. This result was further

generalized for the Wilcoxon signed-rank statistics by Antille (1976) and for some other

types of score functions by Hušková (1980), Puri and Wu (1985) and Kersting (1987).

We will generalize the results of Jurečková (1973) for the case of a multi-dimensional
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parameter β = (β1, . . . , βp)
T. Our approach can be also easily modified for the Wilcoxon-

signed rank statistics.

The rest of this paper is organized as follows. In Section 2 we state the general

assumptions and the main theorems. Section 3 contains the proof of the asymptotic

representation of the leading term of the process, while the asymptotic negligibility of

the remainder term is considered in Section 4. Section 4 also contains the proof of

Theorem 2.2. Section 5 uses the results of the preceding sections. In the first part we

present the second order asymptotic representation for the R-estimator β̂R and in the

second part we find the asymptotic distribution of the properly standardized length of

the confidence interval for a single parameter.

2. Notations, assumptions, theorems

2.1 Notations

Let t = (t1, . . . , tp) and write R′
i(t) for the rank of ei− tTxi√

n
among e1− tTx1√

n
, . . . , en−

tTxn√
n

. In the following we will be interested in the processes

S̃n(t) =
1

n

n∑
i=1

ciR
′
i(t) =

1

n

n∑
i=1

ci

n∑
j=1

I{ei − tTxi√
n
≥ ej − tTxj√

n
} (2.1)

Tn(t) = S̃n(t)− S̃n(0) (2.2)

Yn(t) = Tn(t)− ETn(t), (2.3)

with t ∈ T = {s ∈ Rp : |s|2 ≤ M}, where | · |2 stands for the Euclidian norm, and M is

an arbitrary large but fixed constant.

2.2 Assumptions

We will need the following assumptions on the distribution function F , the design

x1, . . . ,xn and the constants c1, . . . , cn.
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F.1 F has a bounded and uniformly continuous derivative f = F ′.

F.2

lim
∆→0

1

∆2

∫ +∞

−∞

∫ +∆

−∆

[f(z + y)− f(y)]2dz dy = 0.

We note that the condition F.1 is for our convenience to make the proofs simple and it

could be weakened. A slightly weaker assumption is used in Omelka (2006). On the other

hand the densities f which satisfy condition F.2. but do not satisfy the condition F.1

are rather curious.

According to Antille (1976) the condition F.2 is satisfied in these two important cases

(i) f is such that |f(x+ t)− f(x)| ≤ |t|αh(x), with α > 1
2

and h(x) ∈ L2(−∞,+∞)

(ii) f is absolutely continuous and f ′(x) ∈ L2(−∞,+∞).

We note that the second condition is satisfied if there exists a finite Fisher information

of the density f .

Let | · |2 stands for the Euclidian norm.

X.1
n∑

i=1

ci = 0,
1

n

n∑
i=1

c2i = 1, lim
n→∞

max1≤i≤n c
2
i∑n

i=1 c
2
i

= 0,

X.2
n∑

i=1

xi = 0,
1

n

n∑
i=1

|xi|22 = O(1), lim
n→∞

max1≤i≤n |xi|2√
n

= 0

X.3

lim
n→∞

max
1≤i≤n

|ci| |xi|2√
n

= 0

X.4

B2
n =

1

n

n∑
i=1

c2i |xi|22 = O(1)
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The conditions X.1-3 are analogous to the conditions in Jurečková (1973). The last

condition X.4 is again only for convenience. If B2
n = O(1) was not satisfied, we would

work with the process S̃n(t) = 1
nBn

∑n
i=1 xiR

′
i(t) and derive analogous results.

2.3 Theorems

Put γ =
∫
f 2(x)dx.

Theorem 2.1. Under conditions X.1-4 and F.1-2 the process {Yn(t), t ∈ T}

satisfies uniformly in t ∈ T

Yn(t) = − tT

√
n

n∑
i=1

(
ci xi + 1

n

n∑
j=1

cj xj

)
(f(ei)− γ) + op(1). (2.4)

Specially, if we put

A2
n =

1

n

n∑
i=1

c2i xix
T
i + 3

(
1

n

n∑
i=1

ci xi

)(
1

n

n∑
i=1

ci x
T
i

)
,

then the process Y ′
n(t) = Yn(A−1

n t) converges in distribution to the centered gaussian

process {Y (t), t ∈ T} with the covariance function cov {Y (t), Y (s)} = σ2 tTs, where

σ2 =
∫
f 3(x)dx− γ2.

Theorem 2.2. Suppose that f satisfies the assumption F.2. Then uniformly in

t ∈ T

ETn(t) = −γ tT

√
n

n∑
i=1

ci xi + o(1).

Corollary 2.1. Under conditions X.1-4 and F.1-2 it holds uniformly in t ∈ T

S̃n(t)− S̃n(0)+
γ tT

√
n

n∑
i=1

ci xi = − tT

√
n

n∑
i=1

(
ci xi + 1

n

n∑
j=1

cj xj

)
(f(ei)−γ)+ op(1). (2.5)
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2.4 Preliminaries.

In order to prove Theorem 2.1 we approximate the process Yn(t) by its projection

(see e.g. Serfling (1980))

Y (1)
n = Ŷn =

n∑
i=1

E [Yn|Xi]− (n− 1)EYn.

We will show that the projection Y
(1)
n has the asymptotic representation (2.4) and that

the remainder term Y
(2)
n = Yn − Y

(1)
n is asymptotically negligible.

3. The convergence of the process Y
(1)
n

Calculating the projection of the process Yn we find out that Y
(1)
n (t) = Zn(t)−EZn(t),

where

Zn(t) =
1

n

n∑
i=1

n∑
j=1

(ci − cj)
[
F (ei − tT(xi−xj)√

n
)− F (ei)

]
=

n∑
i=1

Zni(t) (3.1)

In the following we will check the conditions of the Jain-Marcus Theorem (originally in

Jain and Marcus (1975), restated in van der Vaart and Wellner (1996), p. 213). Sup-

pose we have an index set F equipped with the pseudometric ρ. Then the covering

number N(ε,F , ρ) is the minimal number of balls of radius ε needed to cover the set F .

Theorem 3.1. Let Zn1, . . . , Znkn be independent stochastic processes indexed by an

arbitrary index set F such that

|Zni(f)− Zni(g)| ≤Mni ρ(f, g), for every f, g ∈ F , (3.2)

where Mn1, . . . ,Mnkn are independent random variables and ρ is a pseudometric on F

such that ∫ ∞

0

√
logN(ε,F , ρ) dε <∞ (3.3)
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where N(ε,F , ρ) is the covering number for the index class F , and

kn∑
i=1

EM2
ni = O(1). (3.4)

If the triangular array also satisfies the Lindeberg condition

kn∑
i=1

E ‖Zni‖2
FI{‖Zni‖F>ε} → 0, for all ε > 0, (3.5)

where ‖Zni‖F = supf∈F |Zni(f)|, then the sequence
∑kn

i=1(Zni − EZni) converges in dis-

tribution in `∞(F) (the space of bounded functions) to a tight Gaussian process provided

the sequence of covariance functions converges pointwise on F × F

In our situation the index set is quite simple F = T = {t : |t|2 ≤ M} with

the Euclidian metric ρ(t, s) = |t − s|2 =
√∑n

i=1(ti − si)2. This implies N(ε,F , ρ) ≤

max
{(

6M
ε

)p
, 1
}

(see e.g. Lemma 4.1 in Pollard (1990)) and so the condition (3.3) is

satisfied.

By F.1 K = supx{f(x)} <∞. Now calculate

|Zni(t)− Zni(s)| ≤
1

n

n∑
j=1

|ci − cj|
∣∣∣F (ei − tTxi√

n
)− F (ei − sTxi√

n
)
∣∣∣

≤ K

n3/2

n∑
j=1

|ci − cj| |(t− s)
T

(xi − xj)| ≤
K

n3/2

n∑
j=1

(|ci|+ |cj|) (|xi|2 + |xj|2) ρ(t, s)

≤ Kρ(t, s)

n3/2

[
n|ci| |xi|2 +

n∑
j=1

|cj| |xi|2 + |ci|
n∑

j=1

|xj|2 +
n∑

j=1

|cj| |xj|2

]

≤ Kρ(t, s)

n1/2
[(|ci|+ 1) |xi|2 + |ci|O(1) +O(1)] = Mni ρ(t, s), (3.6)

which implies that the conditions (3.2) and (3.4) are met. Moreover, as

‖Zni‖T = sup
t∈M

|Zni(t)| ≤
KM√
n

[(|ci|+ 1) |xi|2 +O(1)] −−−→
n→∞

0,

the Lindeberg condition (3.5) is satisfied as well. Now Theorem 3.1 implies that the

process Z̄n = Zn − EZn is asymptotically tight. We can repeat the previous steps with
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the process

Z ′
ni(t) =

1

n

n∑
j=1

(ci−cj)
[
F (ei − tT(xi−xj)√

n
− F (ei)

]
+

tT

√
n

n∑
i=1

(
ci xi + 1

n

n∑
j=1

cjxj

)
(f(ei)−γ),

to find out that the process Z̄ ′
n = Z ′

n − EZ ′
n is asymptotically tight as well.

Moreover from the expansion

Zni(t) =
1

n

n∑
j=1

(ci − cj)
(
F (ei − tTxi√

n
)− F (ei)

)
= −

n∑
j=1

ci − cj
n

[
f(ei)t

T(xi − xj) +
|xi|2+|xj |2√

n
o(1)

]
= −f(ei)t

T

n3/2

n∑
j=1

(ci xi − cixj − cjxi + cjxj) + o( 1√
n
)

= −f(ei)t
T

√
n

(
ci xi + 1

n

n∑
j=1

cjxj

)
+ o( 1√

n
), (3.7)

it follows that for every fixed t ∈ T

var{Z̄ ′
n(t)} =

n∑
i=1

var{Z ′
ni(t)} −−−→

n→∞
0, (3.8)

which implies that the process Z̄ ′
n converges to zero marginally. This marginal conver-

gence and the just proved asymptotic tightness give us supt∈T |Z̄ ′
n(t)| = op(1), which

proves the statement of the theorem.

4. Asymptotic negligibility of Y
(2)
n

In the following we will show that

‖Y (2)
n ‖T = sup

t∈T
|Y (2)

n (t)| = oP (1). (4.1)

To prove (4.1) we will adapt the theory of U-processes introduced in Nolan and Pollard

(1987). For convenience we will denote this reference as NP. Let us recall that Y
(2)
n =
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Yn − Y
(1)
n . At first using (3.1) we notice that Y

(2)
n (t) = Un(t)− EUn(t), where

Un(t) =
1

n

n∑
i=1

ci

n∑
j=1

[
I{ei − tTxi√

n
≥ ej − tTxj√

n
} − I{ei ≥ ej}

]
− 1

n

n∑
i=1

n∑
j=1

[
(ci − cj) (F (ei − tT(xi−xj)√

n
)− F (ei))

]
=

n∑
i=1

n∑
j=1

gij(ei, ej,
t√
n
),

with

gij(u, v,w) = ci

n

[
I{u−wTxi ≥ v −wTxj} − I{u ≥ v}

]
− ci−cj

n

[
F (u−wT(xi − xj))− F (u)

]
.

In the following, it will be more convenient to index the process Y
(2)
n with the class of

functions G = {gt, t ∈ T}. Let us define Rn(gt) := Y
(2)
n (t) = Un(gt) − EUn(gt). The

proof will be divided into several steps.

4.1 Symmetrization

The first step is the symmetrization of the process Rn(gt). Let e′1, . . . , e
′
n be indepen-

dent copies of e1, . . . , en. Denote

U
′

n(gt) =
n∑

i=1

n∑
j=1

gij(e
′
i, ej,

t√
n
), R

′

n(gt) = U
′

n(gt)− EU
′

n(gt)

U
′

n (gt) =
n∑

i=1

n∑
j=1

gij(ei, e
′
j,

t√
n
), R

′

n (gt) = U
′

n (gt)− EU
′

n (gt)

U
′ ′

n (gt) =
n∑

i=1

n∑
j=1

gij(e
′
i, e

′
j,

t√
n
), R

′ ′

n (gt) = U
′ ′

n (gt)− EU
′ ′

n (gt).

With the help of these processes we define the symmetrized process

Rsym
n (gt) = Rn(gt)−R

′

n (gt)−R
′

n (gt) +R
′ ′

n (gt)

=
n∑

i=1

n∑
j=1

gij(ei, ej,
t√
n
)− gij(e

′
i, ej,

t√
n
)− gij(ei, e

′
j,

t√
n
) + gij(e

′
i, e

′
j,

t√
n
)

=
n∑

i=1

n∑
j=1

gsym
ij (ei, ej, e

′
i, e

′
j,

t√
n
) = Rn(gsym

t ). (4.2)
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This process has the same distribution as the process

Rσ
n(gsym

t ) =
n∑

i=1

n∑
j=1

σiσj g
sym
ij (ei, ej, e

′
i, e

′
j,

t√
n
),

where σ1, . . . , σn are Rademacher random variables. Let us introduce

R◦
n(gt) =

1

n

n∑
i=1

n∑
j=1

σiσj gij(ei, ej,
t√
n
).

Then it holds

E ‖Rn(gt)‖G ≤ E ‖Rn(gsym
t )‖G = E ‖Rσ

n(gsym
t )‖G ≤ 4 E ‖R◦

n(gt)‖G,

where the first inequality is a complete analogy of Lemma 1 in NP (the important thing

is that the process Rn(gt) is degenerated in the sense that its projection is a zero process)

and the second inequality is a simple triangular inequality. Next put

g
(1)
ij = ci

n

[
I{ei − tTxi√

n
≥ ej − tTxj√

n
} − I{ei ≥ ej}

]
(4.3)

g
(2)
ij =

ci−cj

n

[
F (ei − tT(xi−xj)√

n
)− F (ei)

]
. (4.4)

One more application of the triangular inequality yields

E ‖R◦
n(gt)‖G ≤ E ‖R◦

n(g
(1)
t )‖G + E ‖R◦

n(g
(2)
t )‖G.

In the sequel we will show that E ‖R◦
n(g

(1)
t )‖G = oP (1). The proof for the process R◦

n(g
(2)
t )

is completely analogous. For the simmplicity of notation gt will henceforward stand

for g
(1)
t .

4.2 Exponential inequality

The second step is an exponential inequality. Denote E σ the operator of the expected

value induced by the random variables σ1, . . . , σn (we condition on e1, . . . , en).

As Lemma 3 in NP it is shown:
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Lemma 4.1. Let σ1, . . . , σn be independent sign variables for which P [σ = +1] =

P [σ = −1] = 1
2
. Then for each real symmetric matrix A = [aij] with

∑n
i=1

∑n
j 6=i a

2
ij ≤ 1

4π2

E σ exp

(
n∑

i=1

n∑
j 6=i

σiσj aij

)
≤ exp

(
π2

2

n∑
i=1

n∑
j 6=i

a2
ij

)
.

But the following simple calculation shows this Lemma is actually true for arbitrary

real square matrix A (with
∑n

i=1

∑n
j 6=i a

2
ij ≤ 1

4π2 ), as

E σ exp

(
n∑

i=1

n∑
j 6=i

σiσj aij

)
= E σ exp

(
n∑

i=1

n∑
j 6=i

σiσj
aij + aji

2

)
≤

Lemma 4.1

≤ exp

(
n∑

i=1

n∑
j 6=i

π2

2

(aij + aji)
2

4

)
≤ exp

(
π2

2

n∑
i=1

n∑
j 6=i

a2
ij

)
. (4.5)

4.3 Chaining and the maximal inequality

In the third step we will make use of the technique known as chaining. Let (S, d) be

an index class equipped with the pseudometric d(·, ·). Write N(ε, S, d) for the covering

number of the class S. We will make use of the following Lemma 5 in NP.

Lemma 4.2. Let Ψ be a convex, strictly increasing function on [0,∞) with 0 ≤

Ψ(0) ≤ 1. Suppose that the stochastic process Z indexed by the class (S, d) satisfies:

(i) if d(s, t) = 0, then Z(s) = Z(t) almost surely;

(ii) if d(s, t) > 0, then E Ψ
(

Z(s)−Z(t)
d(s,t)

)
≤ 1;

(iii) there exists a point s0 ∈ S for which sups∈S d(s, s0) <∞

(iv) the sample paths of Z are continuous on (S, d).

Then

E sup
s∈S

|Z(s)− Z(s0)| ≤ 8

∫ θ

0

Ψ−1(N(x, S, d)) dx,

where θ equals one quarter of the supremum in (iii).
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Define the (random) semimetric dω on the space T as

dω(t, s) =

(
n∑

i=1

n∑
j=1

[
gij(ei(ω), ej(ω), t√

n
)− gij(ei(ω), ej(ω), s√

n
)
]2)1/2

.

To make use of Lemma 4.2 we need to find an upper bound for the (random) covering

numbers N(x, T, dω). For this reason we will use the technique of pseudodimension

introduced in Pollard (1990) - EP. Put

hij(ω, s) = I{ei(ω)− ej(ω) ≥ sT(xi − xj)} − I{ei(ω)− ej(ω) ≥ 0}.

Using f.g. Lemma 4.4 of EP we can deduce that the subset of the space Rn(n−1)

Hnω = {(hij(ω, s), 1 ≤ i 6= j ≤ n), s ∈ Rp}

has for all ω ∈ Ω uniformly bounded pseudodimension. Now set

α = (αij, 1 ≤ i 6= j ≤ n) = ( |ci|
n
, 1 ≤ i 6= j ≤ n)

and let α�h stand for the pointwise product in Rn(n−1) with kth coordinate αkhk. Then

N(ε, T, dω) ≤ N(ε,α�Hnω, | · |2) (4.6)

As |hij(ω, s)| ≤ 1 we will take the vector H = (1, 1, . . . , 1) as the envelope forHnω. Notice

that uniformly for all n

|α�H|22 =
n∑

i=1

n∑
j 6=i

c2i
n2
≤ 1

n

n∑
i=1

c2i = 1.

Now Corollary 4.10 of EP guarantees the existence of universal constants A and W such

that for all ω and for all ε (0 < ε ≤ 1) and also for all n ∈ N

N(ε,α�Hnω, | · |2) ≤ A

(
1

ε

)W

.

Combining this inequality with the inequality (4.6) yields N(ε, T, dω) ≤ A(1
ε
)W . But this

further implies that the covering integral

Jnω(s) =

∫ s

0

log(N(x, T, dω))dx
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is uniformly bounded for all ω and Jn(s, ω) → 0 for s→ 0 uniformly in ω ∈ Ω.

For simplicity of notation write Tn for the measure that places mass one at each of

the n(n − 1) pairs (ei, ej)(i 6= j) measure 1. Using the notation common in empirical

processes we will write

Tn(f 2) =
n∑

i=1

n∑
j 6=i

f 2
ij(ei, ej).

Now we are ready to formulate the analogy of Theorem 6 of NP.

Lemma 4.3. There exists a universal constant C such that for all n ∈ N

E ‖R◦
n(gt)‖G ≤ C E (θn + Jn(θn)), (4.7)

where θ2
n = 1

16
‖Tn(g2

t )‖G.

Proof. Set Ψ(x) = 1
2
exp( x

2π
− 1

8
). For a fixed ω we verify that the process R◦

n(gt)

meets the conditions of Lemma 4.2. The only nonobvious condition is (ii). Put f = gt−gs

and with the help of Lemma 4.1 calculate

E σ exp

(
|R◦

n(gt)−R◦
n(gs)|

2πd(t, s)

)
= E σ exp

(
|R◦

n(f)|
2π
√
Tn(f 2)

)
≤

≤ E σ exp

(
R◦

n(f)

2π
√
Tn(f 2)

)
+ E σ exp

(
−R◦

n(f)

2π
√
Tn(f 2)

)
Lemma 4.1

≤ 2 exp

(
π2

2

∑n
i=1

∑
j 6=i(gij(

t√
n
)− gij(

s√
n
))2

4π2Tn(f 2)

)
= 4 exp(1

8
).

This gives the desired exponential inequality E σΨ
(
|R◦

n(gt)−R◦
n(gs)|

d(t,s)

)
≤ 1. The choice s0 = 0

in Lemma 4.2 yields

E σ ‖R◦
n‖ ≤ 8

∫ θn

0

ψ−1(N(x, T, dω))dx

≤ 8

∫ θn

0

π

4
+ 2π log(2N(x, T, dω)) dx ≤ C (θn + Jnω(θn)) .

Averaging out over the ω gives inequality (4.7).
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By virtue of Markov’s inequality and inequality (4.7) to prove ‖R◦
n(gt)||G = op(1) it

suffices to verify that θn
P−−−→

n→∞
0.

Let us denote εn = 2M√
n

max1≤i≤n |xi|2. The condition X.2 implies εn = o(1). Observe

that [
gij(ei, ej,

t√
n
)
]2
≤ c2i
n2

I{|ei − ej| ≤ εn}.

This further yields

E θ2
n ≤

n∑
i=1

c2i
n

E I{|e1 − e2| ≤ εn} −−−→
n→∞

0,

which implies θn
P−−−→

n→∞
0.

The proof of E ‖R◦
n(gt)‖G = o(1) for gt = g

(2)
t would be completely analogous.

Proof of Theorem 2.2

From the proof of Theorem 2.1 we can see that

ETn(t) =
1

n

n∑
i=1

ci

n∑
j=1

∫ +∞

−∞
[F (y − tT

√
n
(xi − xj))− F (y)] dF (y) + o(1)

Analogously as in Antille (1976) we can calculate

Dn(t) =
1

n

n∑
i=1

ci

n∑
j=1

∫ +∞

−∞
[F (y − tT

√
n
(xi − xj))− F (y)] dF (y) + γ

tT

√
n

n∑
i=1

cixi

=
1

n

n∑
i=1

ci

n∑
j=1

∫ +∞

−∞

∫ tT(xi−xj)√
n

0

f(y − v)f(y)− f(y)2dv dy

=
1

2n

n∑
i=1

ci

n∑
j=1

∫ +∞

−∞

∫ tT(xi−xj)√
n

0

[f(y − v)− f(y)]2dv dy. (4.8)

With the help of the conditions F.2 and X.1-4 we can see that for arbitrary ε > 0 for

all sufficiently large n it holds

|Dn(t)| ≤ ε

2n

∣∣∣∣∣
n∑

i=1

|ci|
n∑

j=1

|t|22|xi − xj|22
n

∣∣∣∣∣ =
εM2

2n

∣∣∣∣∣
n∑

i=1

|ci|

[
|xi|22 +

1

n

n∑
j=1

|xj|22

]∣∣∣∣∣ = εO(1).
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5. Applications

5.1 Second order asymptotic representation of β̂R

We will use the asymptotic expansion (2.5) to find the second order asymptotic

representation for the estimator β̂R. Assume that there exists a positive definite matrix V

such that

V = lim
n→∞

Vn = lim
n→∞

1

n

n∑
i=1

xix
T
i .

Then (according to Ren (1994)) when the conditions F.1 and X.2 are satisfied, the

estimator β̂R admits the following first order representation

√
n(β̂R − β) =

V−1
n

γ
√
n

n∑
i=1

xi F (ei) + op(1). (5.1)

Let c = (x1l, . . . , xnl)
T be the lth column of the matrix Xn and suppose for a moment that

this column is orthogonal to the other columns of the matrix Xn, that is
∑n

i=1 xilxij = 0

for l 6= j. Then tT
√

n

∑n
i=1 ci xi = tl√

n

∑n
i=1 x

2
il. Further put T 2

nl = 1
n

∑n
i=1 x

2
il. Now insert

t →
√
n(β̂R − β) into the equation (2.5). After some reorganization and using the fact

Sn(β̂R) = oP ( 1√
n
) (see Jaeckel (1972)) we get

√
n(β̂l − βl)−

1

γ T 2
nl

√
n

n∑
i=1

xil
Ri(β)

n

= −(β̂R − β)T 1

γ T 2
nl

√
n

n∑
i=1

(
xi xil + el

n∑
j=1

x2
jl

n

)
(f(ei)− γ) + oP ( 1√

n
)

(5.1)
= − 1√

n

{
V−1

n

γ
√
n

n∑
i=1

xiF (ei)

}T{
1

γ T 2
nl

√
n

n∑
i=1

(
xi xil + elT

2
nl

)
(f(ei)− γ)

}
+ oP ( 1√

n
),

(5.2)

where el = (0, . . . , 0, 1, 0, . . . , 0)T is a vector of zeroes with the only one nonzero element

in the lth coordinate. Both terms in the last equations are asymptotically multivariate

normal and in the case 1
n

∑n
i=1 xT

i xi xil → 0 also asymptotically independent.
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With the help of the Cramér-Wold device there seems to be no problem to generalize

the asymptotic representation (2.5) to the vector form. Put S̃n(t) = 1
n

∑n
i=1 xiR

′
i(t).

Then it holds

S̃n(t)− S̃n(0) + γ
√
nVnt = − 1√

n

n∑
i=1

(
xi x

T
i + Vn

)
(f(ei)− γ) t + op(1). (5.3)

Inserting t →
√
n(β̂R − β) and after some reorganization we get

√
n(β̂R − β)− V−1

n

γ
√
n

n∑
i=1

xi
Ri(β)

n

= −V−1
n

γ
√
n

n∑
i=1

(
xi x

T
i + Vn

)
(f(ei)− γ) (β̂R − β) + oP ( 1√

n
)

(5.1)
= − 1√

n

{
V−1

n

γ
√
n

n∑
i=1

(
xi x

T
i + Vn

)
(f(ei)− γ)

}{
V−1

n

γ
√
n

n∑
i=1

xiF (ei)

}
+ oP ( 1√

n
). (5.4)

The expansions (5.2) and (5.4) can be used as one of the theoretical insights to com-

pare different estimators, especially those which are first order asymptotic equivalent.

In Omelka (2005) in a simple linear regression model an R-estimator β̂R (based on the

Wilcoxon scores) was compared with a M -estimator β̂M . It is well known that if a M -

estimator is generated by the function ψ(x) = c (F (x)− 1
2
), then

√
n(β̂R − β̂M) = op(1).

In Omelka (2005) the (nontrivial) asymptotic distribution of n (β̂R − β̂M) was found,

which implies that the R-estimator and M -estimator are not second order equivalent.

Some numerical experiments show that the remainder term (op(
1√
n
)) in represen-

tations (5.2) and (5.4) multiplied by
√
n converges to zero rather slowly. Analogous

experiments for M -estimators (work is in progress) show that the second order rep-

resentations can be much more accurate (provided the ψ-function and the underlying

distribution of errors are smooth enough). We guess that this is caused by the fact that a

M -estimator can be a much smoother functional than an R-estimator. Nevertheless the

work of Lachout and Paulauskas (2000) indicates that even in the case of very smooth
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M -estimators we can expect only a very slow rate of convergence in the second order

asymptotic distributional representations.

5.2 Length of the confidence interval for a single parameter βl

For b ∈ Rp denote b(t) the vector b with the l-th coordinate replaced by t, that is

b(t) = (b1, . . . , bl−1, t, bl+1, . . . , bp). Next put S◦nl(t) = Snl(β̂R(t)) = 1
n3/2

∑n
i=1 xilRi(β̂R(t))

and so S◦nl(β̂l) = 1
n3/2

∑n
i=1 xilRi(β̂R). Let wll be the l-th diagonal element of the ma-

trix V−1
n and zα = Φ−1(1 − α

2
), with Φ−1 being the inverse cdf of a standard normal

distribution. Then the confidence interval for the parameter βl can be constructed as

Dl
n = [b−l , b

+
l ] with

b−l = sup{t : S◦nl(t) >
T 2

nl

√
wll zα√
12

}, b+l = inf{t : S◦nl(t) <
−T 2

nl

√
wll zα√

12
}, (5.5)

For simplicity we will suppose again that the lth column of the matrix Xn is orthogonal to

the other columns of this matrix and T 2
nl = 1

n

∑n
i=1 x

2
il = 1, which further implies wll = 1

(the general case can be found in Omelka (2006)).

The following theorem only restates the results of Section 5 of Jurečková (1973).

Theorem 5.1. If the conditions of Theorem 2.1 are satisfied, the l-th column of

the matrix Xn is orthogonal to the other columns, T 2
nl = 1 and

√
n(β̂R−β) = Op(1) then

the confidence interval Dl
n defined by (5.5) satisfies :

(i)

P (Dl
n 3 βl) −−−→

n→∞
1− α

(ii)

Ln =
√
n(b+l − b−l )(

√
3γ

zα
)− 1

P−−−→
n→∞

0

17



(iii) put A2
nl = 1

n1

∑n
i=1 x

4
nl + 3, then the standardized length of the confidence interval

√
n Ln

Anl
is asymptotically normally distributed with the parameters (0,

∫
f3(x)dx−γ2

γ2 ).

Proof. From the uniform asymptotic linearity and with the help of our assump-

tions about the matrix Xn it follows that uniformly for |b|2 ≤M

∣∣∣Snl(
b√
n

+ β)− Snl(β) + γ bl

∣∣∣ = op(1). (5.6)

As b =
√
n(β̂R(βl) − β) = Op(1) and the l-th coordinate of the vector b is zero, this

yields Snl(β̂R(βl)) = Snl(β) + op(1), which further implies

P (b−l > βl) = P
(
S◦nl(βl) >

zα√
12

)
= P

(
Snl(β̂R(βl)) >

zα√
12

)
= P

(
Snl(β) + op(1) > zα√

12

)
= P

(
1

n3/2

n∑
i=1

xilRi(β) + op(1) >
zα√
12

)
−−−→
n→∞

α
2
.

Analogously, we could show that P (b+l < βl) −−−→
n→∞

α
2
, which yields the statement (i) of

the theorem.

To prove (ii), at first we need to show that

√
n(b−l − βl) = Op(1) and

√
n(b+l − βl) = Op(1). (5.7)

For this reason let us calculate

P (
√
n(b−l − βl) > t) = P

(
S◦nl(βl + t√

n
) > zα√

12

)
= P

(
Snl(β̂R(βl + t√

n
)) > zα√

12

)
= P

(
Snl(β) + γt+ op(1) >

zα√
12

)
−−−→
n→∞

1− Φ(zα + γt).

Thus
√
n(b−l −βl) is asymptotically normal. Analogously, we can prove that

√
n(b+l −βl)

is asymptotical normal as well, which verifies (5.7). This enables us to insert b →
√
n(β̂R(b+l )−β) as well as b →

√
n(β̂R(b−l )−β) in the asymptotic linearity result (5.6).
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We get

Snl(β̂R(b+l ))− Snl(β) + γ
√
n(b+l − βl) = op(1)

Snl(β̂R(b−l ))− Snl(β) + γ
√
n(b−l − βl) = op(1).

Combining these two equations gives

γ
√
n(b+l − b−l ) = Snl(β̂R(b−l ))− Snl(β̂R(b+l )) + oP (1) = 2zα√

12
+ oP (1),

which proves the statement (ii).

To show the last statement we insert successively b →
√
n(β̂R(b+l )−β) and then b →

√
n(β̂R(b−l )−β) in the equation (2.5). Analogously as in the proof of the statement (ii)

we combine the resulting equations to get

γn(b+l − b−l )− 2zα√
12

√
n = −

√
n(b+l − b−l )

1√
n

n∑
i=1

(
x2

il + 1
n

n∑
j=1

x2
jl

)
(f(ei)− γ) + op(1),

which using the statement (ii) yields after some reorganizations

√
n
[√

n(b+l − b−l )
√

3γ
zα

− 1
]

= − 1√
n

n∑
i=1

(
x2

il + 1
n

n∑
j=1

x2
jl

)
(f(ei)− γ) + op(1).

And so the statement (iii) is proved as well.

5.3 Numerical Example

We illustrate the results of Theorem 5.1 on the simulated regression model. As the

design matrix we used the Meyer matrix of order 27× 2 (see Stigler (1986), pp. 16–25).

Further we normalize this matrix such that
∑n

i=1 xij = 0 and 1
n

∑n
i=1 x

2
ij = 1 for j = 1, 2.

We were interested in 95% confidence intervals for the parameter β1 constructed by the

following three methods :

1 (LS) the traditional least squares estimate
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Table 1. Results on confidence intervals for β1, 10 000 random samples

N(0, 1) t5 LN(0, 1)

LS R I R II LS R I R II LS R I R II

Coverage 0.952 0.954 0.944 0.947 0.950 0.940 0.956 0.959 0.937

mean(length) 0.787 0.852 0.784 1.005 0.983 0.915 1.537 0.832 0.835

var(length) 0.013 0.025 0.019 0.053 0.042 0.036 0.762 0.054 0.073

2 (R I) the conf. interval based on the first order asymptotic representation (5.1)

D
′

n =
[
b̂1 − zα√

n

√
w11

γ̂
√

12
, b̂1 + zα√

n

√
w11

γ̂
√

12

]
,

where w11 is the first element of the diagonal of the matrix V−1
n and γ̂ is an appro-

priate estimate of γ (to estimate γ we have used the R-function wilcoxontau, see

Terpstra and McKean J. (2004)).

3 (R II) the confidence interval given by (5.5)

At first we were interested in small sample coverages and mean lengths of these

intervals. Some of the results, for the errors generated from standard normal distribu-

tion (N(0, 1)), t-distribution with five degrees of freedom (t5) and lognormal distribu-

tion (LN(0, 1)), are to be found in Table 1. The first row of this table gives us the

estimated coverage probability, the second row presents mean length of conf. intervals

and the third row the variance of the lengths. We see that for symmetric errors the

method R II gives considerably smaller conf. intervals, but at the cost of a slightly

smaller than nominal coverage probability. We were surprised that for asymmetric er-

rors, R I method performs better than R II in all aspects. Table 1 also confirms the very

well known fact, that LS method is tied down to normal errors.

Secondly, we wanted to assess the statements (ii) and (iii) of Theorem 5.1. We chose

the sample sizes n = 27, 54, 108 and 216 (as the design matrix we use the appropriate
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Table 2. Results on confidence intervals for β1, 10 000 random samples

n = 27 n = 54 n = 108 n = 216 n = ∞

R I R II R I R II R I R II R I R II

Coverage 0.950 0.935 0.958 0.947 0.953 0.946 0.956 0.951 0.950
√

n mean(length) 4.002 3.089 2.765 2.813 2.587 2.646 2.484 2.534 2.277

n2 var(length) 14.07 16.29 11.12 13.98 9.540 12.51 8.556 11.18 8.068

multiples of Meyer matrix) and estimate the mean length of conf. interval (multiplied

by
√
n) and variance of this length (multiplied by n2). The results for errors following

exponential distribution (with density f(x) = e−xI{x > 0}) can be found in Table 2.

Comparing the finite sample results with their asymptotic values (the last column of

the table) we see that to approximate the mean and especially variance of length of

conf. intervals with their asymptotic values is too optimistic, even in the situations with

more than one hundred observations and only two explanatory variables. But to be fair

we chose one of the worst cases (exponential errors). For normal errors the asymptotic

approximations work for n > 100 quite satisfactory.
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