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a b s t r a c t

Omelka [Omelka, M., 2007. Second-order linearity of Wilcoxon rank statistics. Ann. Inst.
Statist. Math. 59, 385–402] proposed an alternative way of constructing a confidence
interval based on R-estimators for single parameters in linearmodels.Wewill compare this
confidence interval with a traditional (Wald type) confidence interval theoretically as well
as by means of a Monte Carlo experiment. As a by-product we will show the asymptotic
normality of the estimator of

∫
f 2 proposed in [Koul, H.L., Sievers, G.L., McKean, J., 1987.

An estimator of the scale parameter for the rank analysis of linear models under general
score functions. Scand. J. Statist. 14, 131–141] under somewhat different assumptions from
those in [Thewarepperuma, P.S., 1987. On estimation of some density functionals under
regression and one sample models. Ph.D. Thesis. Michigan State University, Department of
Statistics and Probability].

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Consider the linear regression model

Yi = α + β1 xi1 + · · · + βp xip + ei = α + βTxi + ei, i = 1, . . . , n, (1.1)

where α and β = (β1, . . . , βp)
T are unknown parameters, xi = (xi1, . . . , xip)T, for i = 1, . . . , n are known constants,

and e1, . . . , en are independent, identically distributed random variables with a cumulative distribution function F with a
density f . Let Ri(b) be the rank of Yi − bTxi among Y1 − bTx1, . . . , Yn − bTxn and x̄n = (x̄n1, . . . , x̄np)T be the vector of
the means of the columns of the design matrix Xn. In the following we will suppose that the columns of the matrix Xn are
centered, that is x̄n = 0. The R-estimator β̂n (based on the Wilcoxon scores) of β can be defined as the solution of the
following minimization of ‘Jaeckel’ dispersion function (see Jaeckel (1972))

β̂n = argminb∈Rp
Dn(b), where Dn(b) =

n∑
i=1

(Yi − bTxi)
(
Ri(b)
n+ 1

−
1
2

)
. (1.2)

As this estimator is relatively easy to compute as well as to explain to non-statisticians, it belongs to the most popular
R-estimators in particular in applications, see e.g. Hettmansperger and McKean (1977), Sievers and McKean (1986), Abebe
et al. (2001), and McKean (2004).
A standard (Wald type) approach of constructing a confidence interval (CI) for βl (1 ≤ l ≤ p) is based on the asymptotic

normality of
√
n(β̂n − β). This asymptotic normality follows from the following first order asymptotic representation

E-mail address: omelka@karlin.mff.cuni.cz.

0167-7152/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.spl.2008.07.006



Author's personal copy

M. Omelka / Statistics and Probability Letters 78 (2008) 3366–3372 3367

(e.g. Jurečková and Sen (1996))

√
n(β̂n − β) =

V−1n
γ
√
n

n∑
i=1

xi
[
F(ei)−

1
2

]
+ op(1), (1.3)

where Vn = 1
n

∑n
i=1 xix

T
i and γ = E f (e1) =

∫
f 2(x)dx. Thus the confidence interval for the parameter βl is

DIn =

[
β̂l −

tn−p(α)
√
n

√
ωnll

γ̂n
√
12
, β̂l +

tn−p(α)
√
n

√
ωnll

γ̂n
√
12

]
, (1.4)

where ωnll is the lth element of the diagonal of the matrix V−1n , γ̂n is an appropriate estimate of γ and tn−p(α) is a
(1 − α/2) quantile of t-distribution with n − p degrees of freedom. The advantage of using quantiles of t-distribution
over quantiles of normal distribution was shown in Hettmansperger and McKean (1977). The mostly used estimate of γ
was suggested in Koul et al. (1987).
An alternative confidence interval was originally proposed and studied in Jurečková (1973) for a simple linear model

(one explanatory variable). Omelka (2007) generalized this type of confidence interval to a multiple linear model (more
explanatory variables) in the following way. Let r1, . . . , rn be the residuals, that is ri = Yi − β̂

T

n xi for i = 1, . . . , n.
For l = 1, . . . , p define Snl(t) = 1

n3/2
∑n
i=1 xil Ri(t), where Ri(t) is the rank of the random variable ri − t xil among

r1 − t x1l, . . . , rn − t xnl. Finally put

cn =
T 2nl
√
ωnll

√
12

√
n

n− p− 1
, where T 2nl =

1
n

n∑
i=1

x2il.

Then the (type II) confidence interval for the parameter βl can be constructed as DIIn = [b̂
−

l , b̂
+

l ] = [β̂l + δ
−
n , β̂l + δ

+
n ],

where

δ−n = sup
{
t < 0 : Snl(t) ≥ cn tn−p(α)

}
, δ+n = inf

{
t > 0 : Snl(t) ≤ −cn tn−p(α)

}
. (1.5)

Notice that we do not need to estimate any unknown parameters.
Bymeans of simulationsOmelka (2007) showed thatDIIn is an interesting alternative toD

I
n.Webelieve that the comparison

of these two types of confidence intervals deserves a further study. But to do that we need to decide on the estimator of γ̂n.
The properties of various estimators of γ =

∫
f 2(x) dx have been studied in Aubuchon and Hettmansperger (1984), Sievers

andMcKean (1986), Aubuchon andHettmansperger (1989), and Brown andHettmansperger (2002).We chose the estimator
which is mostly recommended in the textbooks as well as software manuals, and which was suggested in Koul et al. (1987).
The precise definition of this estimator is given in Section 2. As a by-product of comparison of confidence intervals, we will
find the Bahadur–Kiefer representation of this estimator, which further implies asymptotic normality. As pointed out by
H. L. Koul in a personal communication, the asymptotic normality was already proved in Thewarepperuma (1987). As we
were not aware of this result, we made an independent proof based on the recent results for the asymptotic expansion of
Wilcoxon rank statistics (Omelka, 2007). Although our assumption (seeW) is not generally comparable to the boundedness
of the second derivative of density required in Thewarepperuma (1987), it is usually less restrictive, see Remarks 1 and 3.
As the only requirement on the estimator β̂n is its

√
n-consistency, that is

√
n(β̂n−β) = Op(1), our result can be used to

analyze the inference based on high-breakdown point modifications ofWilcoxon-type R-estimators as well, see e.g. Naranjo
and Hettmansperger (1994) and Chang et al. (1999).
The rest of the paper is organized as follows. In Section 2 we formulate the main results concerning the asymptotic

behavior of the confidence intervals DIn and D
II
n . Section 3 illustrates the finite sample properties by means of Monte Carlo

experiments. Finally, the Appendix contains the proof.

2. Main results

To compare the confidence intervals we will work with the estimate of γ proposed in Koul et al. (1987). The estimate is
constructed in the following way:

1. Denote

Hn(t) =
1( n
2

) ∑
i<j

I{|ri − rj| ≤ t}

the distribution function of the pairwise differences of the residuals ri = Yi − β̂
T

n xi.

2. Put τn =
H−1n (0.8)
√
n .
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3. Finally estimate γ by

γ̂n =
Hn(τn)
2 τn

√
n− p− 1
n

.

Before we formulate the main theorem we need to make some assumptions. As it is convenient to have x̄n = 0, it is
necessary to formulate the conditions about the rows of the design matrix in the form of a triangular array {x1n, . . . , xnn}.
X.1.

1
n

n∑
i=1

|xin|42 = O(1), lim
n→∞

max
1≤i≤n
|xin|2
√
n

= 0.

X.2. There exists a limit (p× p) matrix V

V = lim
n→∞

Vn = lim
n→∞

1
n

n∑
i=1

xin xT
in,

which is positive definite.

But for the simplicity of notation we will drop the index n in the following formulas and write shortly xi instead of xin.
We need the distribution of the errors to satisfy:

W. F is absolutely continuous with a derivative f such that

lim
∆→0

1
∆2

∫
+∞

−∞

∫
+∆

−∆

[f (z + y)− f (y)]2dz dy = 0.

Remark 1. According to Antille (1976) the condition W is satisfied in these two important situations:
(i) f is such that |f (x+ t)− f (x)| ≤ |t|αh(x), with α > 1

2 and h(x) ∈ L2(−∞,+∞);
(ii) f is absolutely continuous and f ′(x) ∈ L2(−∞,+∞).

Notice that the second condition is satisfied if there exists a Fisher information for location parameter at the error density f
(see Corollary 3.2.1 of Koul (2002)).

For the simplicity of notation put

anF =
tn−p(α)

√
ωnll

γ
√
12

and aF = lim
n→∞

anF
XX.2
=
zα
√
ωll

γ
√
12
,

where ωll is the lth diagonal element of the inverse of the matrix V, zα is (1 − α/2) quantile of standardized normal
distribution and γ = E f (e1) =

∫
f 2(x)dx. Further let `In and `

II
n be the lengths of the confidence intervals D

I
n and D

II
n and

denote

LIn =
√
n[
√
n `In − 2 a

n
F ]

2 aF
, LIIn =

√
n[
√
n `IIn − 2 a

n
F ]

2 aF
.

Theorem 1. If the conditions X.1–2, W are satisfied, and the representation (1.3) holds, then the confidence intervals DIn, D
II
n

satisfy:
(1)

P(DIn 3 βl) −−−→n→∞
1− α, P(DIIn 3 βl) −−−→n→∞

1− α.

(2)
√
n `In = aF + op(1) =

√
n `IIn.

(3) The random variable LIn, L
II
n are asymptotically normal and admit the first order asymptotic representations

LIn = −
2

γ
√
n

n∑
i=1

[f (ei)− γ ] + op(1), (2.1)

LIIn = −
1

γ
√
n

n∑
i=1

[
x2il
T 2nl
+ 1

]
[f (ei)− γ ] + op(1). (2.2)

Remark 2. Notice, that for p = 1 the conclusions of Theorem 1 about DIIn are in agreement with Jurečková (1973).

Theorem 1 implies that both confidence intervals are asymptotically correct (1) and their lengths are asymptotically
equivalent (2).
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Table 1
The ratio of the asymptotic variances of the lengths of confidence intervals

N (0, 1) U(0, 1) t5 t10 Logistic Exponential

κ 3.00 1.80 9.00 4.00 4.20 9.00
σ 22

σ 21
1.50 1.20 3.00 1.75 1.80 3.00

But the main contribution of Theorem 1 is in the point (3). Let us denote by σ 2n1 and σ
2
n2 the asymptotic variances of the

properly standardized lengths of the confidence intervalsDIn andD
II
n , i.e. asymptotic variances of L

I
n and L

II
n . Then by Theorem1

σ 2n2

σ 2n1
=
κ + 3
4

, where κ =
1
n

n∑
i=1

x4il
(T 2nl)2

. (2.3)

As the Cauchy–Schwarz inequality implies

(T 2nl)
2
≤
1
n

n∑
i=1

x4il,

we see that generally κ ≥ 1 implying σ 2n2 ≥ σ 2n1. Thus we can conclude that Wald-type confidence interval D
I
n is more

stable in the sense, that its length has a smaller asymptotic variance. Further the variances σ 2n1 and σ
2
n2 are equal if and only

if x2il = const for all i = 1, . . . , n, i.e. the values of the lth explanatory variable x·1 differ only in sign. As we suppose the
explanatory variables to be centered, this corresponds to x·l being a dichotomous random variable with the same number
of observations for both values.
Omelka (2006a) considered a similar comparison of confidence intervals based on M-estimators. He found out that the

ratio of the asymptotic variances of (properly standardized) lengths of confidence intervals is directly κ . By (2.3) we see that
for R-estimators the effect of the fourth moment of the explanatory variable x·l is weaker in comparison to an analogous
situation for M-estimators. Table 1 summarizes the ratio of asymptotic variances (2.3) if the explanatory variable x·l is
generated from some of the common distributions.
As by a simple algebra we can find out that

LIn =
1
γ̂n

√
n(γ − γ̂n),

Theorem 1 immediately implies

√
n(γ̂n − γ ) =

2
√
n

n∑
i=1

[f (ei)− γ ] + op(1). (2.4)

Thus the estimator γ̂n is asymptotically normal with the mean γ and the variance σ 2/n, where σ 2 is given by the formula

σ 2 = 4
(∫

f 3(x)dx− γ 2
)
.

By a closer inspection of the proof of Theorem 1 we can notice that to prove only the expansion (2.4), we are allowed to
drop the condition on the fourth moment of xi from the assumption X.1, which is needed to prove (2.2). It is also sufficient
to assume only

√
n(β̂n − β) = Op(1) instead of (1.3). Furthermore, (2.4) holds true even if we replace condition X.2 with a

more general condition that the matrix Vn is regular for all sufficiently large n and it satisfies

max
1≤i≤n

xT
i V
−1
n xi
n

→ 0, and
√
nV1/2n (β̂n − β) = Op(1).

The trick would be to replace xi with x∗i = V−1/2n xi in the proof.

Remark 3. As we have mentioned in the Introduction, the asymptotic normality of estimator γ̂n was already proved
by Thewarepperuma (1987), who required the second derivative of the density of the errors to be bounded. Although this
condition is generally not comparable with our conditionW, our conditionW is usually less restrictive for standard families
of distributions (see Table 2). In fact, it is rather tricky to construct a density whose second derivative exists and is bounded
and which does not meet the condition W.

3. Numerical results

Several numerical experiments have been conducted (for some of them see Omelka (2006b)). From these results we can
conclude that:
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Table 2
Comparisons of regularity conditions for some standard families of distributions

Distribution Is f ′′ bounded? Is W satisfied?

N (0, 1) Yes Yes
Cauchy Yes Yes
Logistic Yes Yes
Lognormal Yes Yes
Laplace No Yes
Exponential No No
U(0, 1) No No
Convolution of two U(0, 1) No Yes
Gamma f (x) = xk−1 exp{−α x} k ≥ 3 k > 1.5
Beta f (x) = xα−1(1− x)β−1 min(α, β) ≥ 3 min(α, β) > 1.5

Table 3
Actual coverage probabilities of the true value of the parameter β1 for the sample sizes n = 34, n = 68, and n = 136

n N(0, 1) Logistic Cauchy Lnorm
R I R II R I R II R I R II R I R II

Coverage 0.953 0.948 0.953 0.947 0.963 0.940 0.961 0.946
34 E (

√
n `n) 4.380 4.159 7.497 7.174 9.750 9.725 4.254 4.350

var(Ln) 20.605 15.969 69.721 57.705 384.939 402.157 40.033 51.569

Coverage 0.929 0.948 0.936 0.948 0.957 0.945 0.945 0.947
68 E (

√
n `n) 3.775 4.061 6.451 6.938 7.830 8.190 3.491 3.766

var(Ln) 15.405 14.510 53.199 51.569 207.571 203.546 28.385 34.459

Coverage 0.935 0.949 0.940 0.949 0.955 0.946 0.946 0.949
136 E (

√
n `n) 3.793 4.035 6.457 6.858 7.356 7.634 3.294 3.484

var(Ln) 14.152 13.724 49.497 49.208 151.988 156.014 23.281 27.202

• both DIn and D
II
n have good coverage properties;

• contrary to our expectations, DIIn works very well for symmetric errors and outperforms D
I
n if the errors are normally

distributed;
• when the errors are not symmetric then DIn is usually shorter and its length is less variable, but the one-sided confidence
intervals may not be appropriate;
• it is usually not recommended to use DIIn unless κ ≤ 3.

These results suggest that to show the possible advantages ofDIIn , we need to consider designswith κ close to 1. As Omelka
(2006b) considered only p = 2, we decided to increase the number of explanatory variables and to consider a linear model

Yi = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + ei.

Forn = 34we took thedesignmatrix from thepotencydata example (see Table 6.6.2 ofHettmansperger andMcKean (1998))
and for n = 68 and n = 136 we took appropriate multiples of this matrix. We were interested in the confidence intervals
for the first variable (named SAE). The constant κ for this explanatory variable is 1.7 implying the ratio of variances (2.3) to
be 1.175. The errors ei were generated from a normal, logistic, Cauchy and lognormal distribution. For each of the situations
the number of random samples was at least 100000. The nominal coverage probability was set to 0.95.
The results can be found in Table 3. For simplicity of notation, the symbols DIn and D

II
n were replaced by R I and R II. For

each sample size n the first row stands for the estimate of the true coverage, the second row for the estimate of the mean
of
√
n `n and the third row the estimate of variance of Ln.
From Table 3 we can conclude that even when the ratio np is small to moderate, D

II
n works better for symmetric errors

unless they are heavy tailed (Cauchy). The main problem of DIIn is possible undercoverage. On the contrary for asymmetric
errors DIn is preferable. Although Table 3 does not include results for one-sided intervals, our numerical experience is that
for such nice symmetric designs there are no problems with DIn-type one-sided intervals as well. We can notice that for
moderate np , the ratio of asymptotic variances (2.3) is not very informative and finite sample properties are dominant. Some
further results suggest that np should be larger than 100 such that the asymptotic ratio (2.3) comes into play.
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Appendix. Proof of Theorem 1

The proofs of the statements concerning confidence interval DIIn can be found for a special case of the orthogonal columns
of the design matrix Xn in Omelka (2007). In Omelka (2006b) it is indicated how to treat the general case. Thus we can focus
on the confidence interval DIn.
To prove the Bahadur–Kiefer representation (1.3), we can argue similarly as in Jurečková and Sen (1996), pp. 272–273.

The only difference is that to avoid the assumption of finite Fisher information for the density of the errors, we can use
Corollary 4.4. of Omelka (2006b) to deduce the asymptotic linearity result (6.6.29). Once expansion (1.3) is proved, the
statements (1) and (2) follow immediately from the consistency of γ̂n, which was proved in Koul et al. (1987). Thus it only
remains to show (3).
As LIn =

1
γ̂n

√
n(γ − γ̂n), it is sufficient to find the asymptotic expansion for the difference

√
n(γ̂n − γ ).

Let us define the process

Mn(t, s) =
2
n

n∑
i<j

I
{∣∣∣∣ei − ej − tT(xi − xj)

√
n

∣∣∣∣ ≤ s
√
n

}
where the index set is given by T = {(t, s) : max{|t|2, s} ≤ C & s ≥ 0} and C is arbitrarily large but fixed. Notice that

γ̂n =

√
nMn(

√
n(β̂n − β), H

−1
n (0.8))

2 (n− 1)H−1n (0.8)

√
n− p− 1
n

=
Mn(
√
n(β̂n − β), H

−1
n (0.8))

2
√
nH−1n (0.8)

(
1+ O

(
1
n

))
. (A.1)

andMn(0, 0) = 0 almost surely.
It will be more convenient to rewrite the processMn(t, s) as

Mn(t, s) =
1
n

n∑
i=1

n∑
j=1

I
{∣∣∣∣ei − ej − tT(xi − xj)

√
n

∣∣∣∣ ≤ s
√
n

}
−
1
n
= M ′n1(t, s)−M

′

n1(t,−s)−
1
n
, (A.2)

where

M ′n1(t, s) =
1
n

n∑
i=1

n∑
j=1

I
{
ei − ej ≤

s
√
n
+

tT(xi − xj)
√
n

}
.

The technique of how to deal with such processes was presented in Omelka (2007) and it can be found as well in Omelka
(2006b), where a similar process

S̃n(t, s) =
1
n

n∑
i=1

n∑
j=1

cin I
{
ei − ej ≤

tT(xi − xj)
√
n

}
,

with {cin} being a triangular array of constants, was considered. The crucial step is to decompose the process

Tn(t, s) = M ′n1(t, s)−M
′

n1(0, 0) = Pn(t, s)+ Rn(t, s)

by means of ‘Hájek projection’ (see Hájek (1968) or Serfling (1980)), where

Pn =
n∑
i=1

E [Tn| ei]− (n− 1)E Tn =
n∑
i=1

E [Tn| ei] .

Then by a minor modification of the proof of Corollary 3.3 of Omelka (2006b) we can find that the asymptotic distribution
of the process Tn is given by the leading term Pn and the remainder term Rn is negligible in probability. As the assumptionW
implies W.1–3 of Omelka (2006b), we arrive at

sup
(t,s)∈T

∣∣∣∣∣M ′n1(t, s)−M ′n1(0, 0)−√n γ s− 2 s√n
n∑
i=1

(f (ei)− γ )

∣∣∣∣∣ = op(1), (A.3)

which together with (A.2) gives us

sup
(t,s)∈T

∣∣∣∣∣Mn(t, s)−Mn(0, 0)− 2√n γ s− 4 s√n
n∑
i=1

(f (ei)− γ )

∣∣∣∣∣ = op(1). (A.4)

By Lemma 6 of Koul et al. (1987) we know that H−1n (0.8) = H(0.8) + op(1) as n → ∞. Thus if we restrict the set T to
T ′ = {(t, s) : |t|2 ≤ C, | s−H

−1(0.8)
H−1(0.8)

| ≤
1
2 }, then (A.4) implies

sup
(t,s)∈T ′

∣∣∣∣∣Mn(t, s)s
− 2
√
n γ −

4
√
n

n∑
i=1

(f (ei)− γ )

∣∣∣∣∣ = op(1). (A.5)
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Now we can substitute
√
n(β̂n − β) for t and H−1n (0.8) for s into (A.5) and with the help of (A.1) and some algebra get

√
n(γ̂n − γ ) =

2
√
n

n∑
i=1

(f (ei)− γ )+ op(1),

which completes the proof. �
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