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IMPROVED KERNEL ESTIMATION OF COPULAS: WEAK
CONVERGENCE AND GOODNESS-OF-FIT TESTING1
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We reconsider the existing kernel estimators for a copula function, as
proposed in Gijbels and Mielniczuk [Comm. Statist. Theory Methods 19
(1990) 445–464], Fermanian, Radulovič and Wegkamp [Bernoulli 10 (2004)
847–860] and Chen and Huang [Canad. J. Statist. 35 (2007) 265–282]. All
of these estimators have as a drawback that they can suffer from a corner
bias problem. A way to deal with this is to impose rather stringent condi-
tions on the copula, outruling as such many classical families of copulas. In
this paper, we propose improved estimators that take care of the typical cor-
ner bias problem. For Gijbels and Mielniczuk [Comm. Statist. Theory Meth-
ods 19 (1990) 445–464] and Chen and Huang [Canad. J. Statist. 35 (2007)
265–282], the improvement involves shrinking the bandwidth with an appro-
priate functional factor; for Fermanian, Radulovič and Wegkamp [Bernoulli
10 (2004) 847–860], this is done by using a transformation. The theoretical
contribution of the paper is a weak convergence result for the three improved
estimators under conditions that are met for most copula families. We also
discuss the choice of bandwidth parameters, theoretically and practically, and
illustrate the finite-sample behaviour of the estimators in a simulation study.
The improved estimators are applied to goodness-of-fit testing for copulas.

1. Introduction. Consider a random vector X = (X1, . . . ,Xd)T with joint cu-
mulative distribution function H and marginal distribution functions F1, . . . ,Fd .
According to Sklar’s theorem [see, e.g., Nelsen (2006)], there exists a d-variate
function C such that

H(x1, . . . , xd) = C(F1(x1), . . . ,Fd(xd)).(1)

The function C is called a copula, and it is, in itself, a joint cumulative distribution
function on [0,1]d with uniform marginals. If the marginal distribution functions
F1, . . . ,Fd are continuous, then the function C is unique and C(u1, . . . , ud) =

Received July 2008; revised October 2008.
1Supported by the IAP Research Network P6/03 of the Belgian State (Belgian Science Policy).

This work was done while the first author was a postdoctoral researcher at the Katholieke Universiteit
Leuven and the Universiteit Hasselt within the IAP Research Network. Support of the Research
Project LC06024 is also highly appreciated.

AMS 2000 subject classifications. Primary 62G07; secondary 62G20.
Key words and phrases. Copula, Cramér–von Mises statistics, Gaussian process, goodness-of-

fit, Kendall’s tau, Kolmogorov–Smirnov statistics, parametric bootstrap, pseudo-observations, weak
convergence.

3023

http://www.imstat.org/aos/
http://dx.doi.org/10.1214/08-AOS666
http://www.imstat.org
http://www.ams.org/msc/


3024 M. OMELKA, I. GIJBELS AND N. VERAVERBEKE

H(F−1
1 (u1), . . . ,F

−1
d (ud)), where, for j = 1, . . . , d , F−1

j (u) = inf{x :Fj (x) ≥ u},
with u ∈ [0,1], is the quantile function of Fj . The copula C “couples” the joint dis-
tribution function H to its univariate marginals, capturing as such the dependence
structure between the components of X = (X1, . . . ,Xd)T.

Methods for estimation of copulas usually depend on how much we are willing
to assume about the joint distribution function H . In fully parametric approaches
with parametric models for both the copula and the marginals, maximum likeli-
hood estimation may be used. Nowadays semiparametric estimation is quite pop-
ular, in which one specifies a parametric copula and estimates the marginals non-
parametrically. In this paper, we focus on nonparametric estimation of the copula
making as such no restrictive distributional assumptions on the copula nor on the
marginals.

For simplicity of the presentation, we will restrict to the case d = 2, and consider
an independent and identically distributed sample (X1, Y1)

T, . . . , (Xn,Yn)
T of a

bivariate random vector (X,Y )T with joint distribution function H and marginal
distribution functions F and G.

Nonparametric estimation of copulas goes back to Deheuvels (1979) who pro-
posed, in order to test for independence, the following empirical copula estimator:

Cn(u, v) = 1

n

n∑
i=1

I{Ûi ≤ u, V̂i ≤ v} with Ûi = Fn(Xi), V̂i = Gn(Yi),

where Fn and Gn are the empirical cumulative distribution functions of the mar-
ginals, and where I{A} denotes the indicator of a set A. This estimator is asymp-
totically equivalent [up to a term O(n−1)] with the estimator based directly on
Sklar’s theorem given by

Cn(u, v) = Hn(F
−1
n (u),G−1

n (v))(2)

with Hn the empirical joint distribution function. Weak convergence studies of this
estimator can be found in Gänssler and Stute (1987), Fermanian, Radulovič and
Wegkamp (2004) and Tsukuhara (2005). Our Monte Carlo experiments showed
that it is better to use the following (asymptotically equivalent) modification of the
empirical copula:

C(E)
n (u, v) = 1

n

n∑
i=1

I
{
Û

(E)
i ≤ u, V̂

(E)
i ≤ v

}
(3)

with Û
(E)
i = n

n + 1
Fn(Xi), V̂

(E)
i = n

n + 1
Gn(Yi),

which shifts the pseudo-observations Fn(Xi) and Gn(Yi) a bit closer to the left
corner of the unit interval [0,1] [see, e.g., Genest, Ghoudi and Rivest (1995)].

Fermanian, Radulovič and Wegkamp (2004) also proposed a smoothed version
of the empirical copula. Their proposal is a straightforward modification of (3) and
the estimator is defined as

Ĉ(SE)
n (u, v) = Ĥn(F̂

−1
n (u), Ĝ−1

n (v)),(4)
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where the quantities Ĥn, F̂n and Ĝn are given by

Ĥn(x, y) = 1

n

n∑
i=1

Kn(x − Xi, y − Yi), F̂n(x) = Ĥn(x,+∞),

(5)
Ĝn(x) = Ĥn(+∞, y)

with

Kn(x, y) = K

(
x

bn

,
y

bn

)
, K(x, y) =

∫ x

−∞

∫ y

−∞
k(s, t) ds dt,

where k(s, t) is a given bivariate kernel density function, and bn is a bandwidth se-
quence tending to zero with n. Fermanian, Radulovič and Wegkamp (2004) proved
weak convergence of this estimator.

There are two kernel type estimators in the literature that pay special attention
to the correction of the boundary bias. This typical bias associated with kernel
estimation is present since a copula has its support on the bounded set [0,1]2. The
first reference is the mirror-reflection type estimator originating from the work
of Gijbels and Mielniczuk (1990) on copula density estimation. They take care
of boundary bias correction through data-augmentation obtained by reflecting the
original data with respect to the edges and the corners of the unit square. The
second reference is the estimator of Chen and Huang (2007), who proposed to use
a local linear kernel in order to deal with the bias near the boundaries of the unit
square.

A first goal of the present paper is to prove the weak convergence of the esti-
mators of Gijbels and Mielniczuk (1990) and Chen and Huang (2007) under the
assumption that C has bounded second order partial derivatives on [0,1]2 (see
Theorem 1 in Section 2). It turns out, however, that for many commonly-used
families of copulas (e.g., Clayton, Gumbel, normal, Student), the latter condi-
tion is not satisfied and the bias behavior at the corners of the unit square pre-
cludes the weak convergence on the whole [0,1]2. We therefore propose improved
“shrinked” versions of the estimators of Gijbels and Mielniczuk (1990) and Chen
and Huang (2007). This shrinking is done by including a weight function which re-
moves the corner bias. In the same spirit, we also suggest a modification of the cop-
ula estimator (4) of Fermanian, Radulovič and Wegkamp (2004). In Theorem 2 we
establish weak convergence for all newly proposed estimators. The finite-sample
performance of the estimators is demonstrated via a simulation study. We discuss
optimal bandwidth selection and compare the performances of the estimators using
various well-known distance measures.

The second goal of the paper is to discuss the use of the various estimators of
copulas in goodness-of-fit testing problems.

The paper is organized as follows. In Section 2, we introduce the improved
kernel estimators and state the main theoretical results on weak convergence. In
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Section 3, we investigate the finite-sample performance of the newly-proposed es-
timators and compare these with performances of existing estimators. In Section 4,
simulation results are reported for goodness-of-fit testing. The proofs of the weak
convergence results are given in the Appendix.

2. Nonparametric kernel estimators of a copula. In this section, we briefly
discuss existing kernel estimators and propose important modifications. We also
state the weak convergence results.

2.1. Local linear kernel estimator. Chen and Huang (2007) constructed their
estimator in the following way. In the first stage, they estimate marginals by

F̂n(x) = 1

n

n∑
i=1

K

(
x − Xi

bn1

)
, Ĝn(y) = 1

n

n∑
i=1

K

(
y − Yi

bn2

)
(6)

with K the integral of a symmetric bounded kernel function k supported on
[−1,1]. In the second stage, the pseudo-observations Ûi = F̂n(Xi) and V̂i =
Ĝn(Yi) are used to estimate the joint distribution function of the unobserved F(Xi)

and G(Yi), which gives the estimate of the unknown copula C. To prevent bound-
ary bias, Chen and Huang (2007) suggested using a local linear version of the
kernel k given by

ku,h(x) = k(x){a2(u,h) − a1(u,h)x}
a0(u,h)a2(u,h) − a2

1(u,h)
I

{
u − 1

h
< x <

u

h

}
,(7)

where

al(u,h) =
∫ u/h

(u−1)/h
t lk(t) dt for l = 0,1,2.

Finally, the local linear type estimator of the copula is given by

Ĉ(LL)
n (u, v) = 1

n

n∑
i=1

Ku,hn

(
u − Ûi

hn

)
Kv,hn

(
v − V̂i

hn

)
,(8)

where Ku,h(x) = ∫ x
−∞ ku,h(s) ds. Chen and Huang (2007) derived expressions for

asymptotic bias, variance and mean squared error for this estimator and showed
that a proper choice of the second stage smoothing constants h = hn may consider-
ably decrease variance and mean squared error of the copula estimate. Moreover,
their Monte Carlo experiments showed that the estimator Ĉ

(LL)
n is quite insen-

sitive to the choice of the constants b1n and b2n used for smoothing the mar-
ginals in the first stage. Variance considerations provided by the authors even
showed that it is reasonable to take b1n and b2n as small as possible. Note that
strong undersmoothing in the first stage, recommended in Chen and Huang (2007),
results in using the pseudo-observations (Ûi, V̂i)

T = (2nFn(Xi)−1
2n

, 2nGn(Yi)−1
2n

)T,
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which is asymptotically equivalent to the mostly-used pseudo-observations defined
in (3).

As already mentioned in the Introduction, the theoretical inconvenience of the
estimator (8) is that for many common families of copulas (e.g., Clayton, Gum-
bel, normal, Student) the bias of the estimator at some of the corners of the unit
square is only of order O(hn). As the optimal bandwidth for distribution function
estimation is of order O(n−1/3), this violates the n1/2-order weak convergence on
the whole [0,1]2.

The problem is caused by unboundedness of second order partial derivatives
of many copula families. Although parametric models with unbounded densities
are rather rare in “standard” parametric models, copula families with unbounded
densities are quite common. As a benchmark, we can take the normal bivariate
density, which is usually supposed to be a well-behaved model. But the resulting
normal copula density is unbounded.

To overcome this difficulty, we propose a method of shrinking the bandwidth
when coming close to the borders of the unit square. The proposed method is
based on the observation that, when calculating the bias of the estimator (8), we
have to deal with terms of the form h2Cuu(u, v), h2Cuv(u, v) and h2Cvv(u, v),
where Cuu(u, v), Cuv(u, v) and Cvv(u, v) are the second order partial derivatives
of C; that is, Cuu(u, v) = ∂2C(u, v)/∂u2 and, similarly, for Cuv(u, v), Cvv(u, v).
The problem is that, for many common families of copulas, these second order
partial derivatives are not bounded, and, in fact, a closer inspection of them shows
that

Cuu(u, v) = O

(
1

u(1 − u)

)
, Cvv(u, v) = O

(
1

v(1 − v)

)
,

(9)

Cuv(u, v) = O

(
1√

uv(1 − u)(1 − v)

)
.

This is shown in Appendix D for Clayton, Gumbel, normal and Student copulas. In
order to keep the bias bounded, we suggest an improved “shrinked” version of (8),
which is given by

Ĉ(LLS)
n (u, v) = 1

n

n∑
i=1

Ku,hn

(
u − Ûi

b(u)hn

)
Kv,hn

(
v − V̂i

b(v)hn

)
(10)

with b(w) = min
(√

w,
√

1 − w
)
,

where the constant bandwidth hn is replaced by a bandwidth function b(u)hn that
“shrinks” the value of the bandwidth close to zero at the corners of the unit square.
A straightforward adaptation of the result of Chen and Huang (2007) gives that,
for (u/b(u), v/b(v)) ∈ [hn,1 − hn]2 (and no smoothing of the marginals in the
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first stage),

Bias
{
Ĉ(LLS)

n (u, v)
}

(11)

= σ 2
K

2
h2

n{b2(u)Cuu(u, v) + b2(v)Cvv(u, v)} + o(h2
n),

Var
{
Ĉ(LLS)

n (u, v)
}

= 1

n
Var[I{U ≤ u,V ≤ v} − Cu(u, v)I{U ≤ u} − Cv(u, v)I{V ≤ v}]

(12)

− hnbK

n

[
b(u)Cu(u, v)

(
1 − Cu(u, v)

)

+ b(v)Cv(u, v)
(
1 − Cv(u, v)

)] + o

(
hn

n

)

with σ 2
K = ∫ 1

−1 t2k(t) dt , bK = 2
∫ 1
−1 tk(t)K(t) dt and b(·) as defined in (10). Tak-

ing b(w) = 1 gives back the bias and variance expressions for Ĉ
(LL)
n in Chen and

Huang (2007) (in case of no smoothing at the first stage).
The improvements are obtained by shrinking the bandwidth through the func-

tion b(α,w) = min{wα, (1 − w)α}. Different choices of α or different choices
of shrinking factors are possible, but our extensive investigations showed that
b(w) = min{√w,

√
1 − w} is overall a very good choice. The choice of a possible

optimal shrinking factor is an open question.

2.2. Mirror-reflection kernel estimator. Another version of a kernel estimator
for the copula might be obtained by integration of the estimator of the density of
the copula introduced and studied in Gijbels and Mielniczuk (1990). This estima-
tor deals with the boundary problem by the technique known as mirror-reflection.
If a multiplicative kernel k(x, y) = k(x)k(y) is used, then the mirror-reflection
estimate of the copula has a simple form

Ĉ(MR)
n (u, v) = 1

n

n∑
i=1

9∑
�=1

[
K

(
u − Û

(�)
i

hn

)
− K

(−Û
(�)
i

hn

)]
(13)

×
[
K

(
v − V̂

(�)
i

hn

)
− K

(−V̂
(�)
i

hn

)]
,

where {(Û (�)
i , V̂

(�)
i ), i = 1, . . . , n, � = 1, . . . ,9} = {(±Ûi,±V̂i), (±Ûi,2 − V̂i),

(2 − Ûi,±V̂i), (2 − Ûi,2 − V̂i), i = 1, . . . , n}.
The mirror-type estimator (13) faces the same “corner bias” problem as the

local linear estimator (8). To prevent this problem, we can “shrink” the bandwidth
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similarly as in (10) and propose

Ĉ(MRS)
n (u, v) = 1

n

n∑
i=1

9∑
�=1

[
K

(
u − Û

(�)
i

b(u)hn

)
− K

( −Û
(�)
i

b(u)hn

)]
(14)

×
[
K

(
v − V̂

(�)
i

b(v)hn

)
− K

( −V̂
(�)
i

b(v)hn

)]
.

2.3. Transformation estimator. The unboundedness of the densities of many
copula families brings us back to Sklar’s theorem in (1) and to the estimator (4)
proposed in Fermanian, Radulovič and Wegkamp (2004).

To control the bias of this estimator in order to achieve weak convergence, we
need the boundedness of the second order partial derivatives of the original joint
distribution H . As the bivariate normal benchmark example shows, this condition
may be considerably weaker than the requirement of the bounded second order
derivatives of the underlying copula C.

A possible methodological objection to the estimator Ĉ
(SE)
n , defined in (4), may

be its dependence on the marginal distributions. This is confirmed by Monte Carlo
simulations which show that, for a given copula, the success of this estimator de-
pends on the marginals crucially.

As the copula function is invariant to increasing transformations of the mar-
gins, it is possible to transform the original data to X′

i = T1(Xi) and Y ′
i = T2(Yi),

where T1 and T2 are increasing functions, and then use (X′
i , Y

′
i ) instead of the

original observations (Xi, Yi) in the estimator Ĉ
(SE)
n . The aim of the transfor-

mation is to simplify the kernel estimation of the joint distribution. As the di-
rect choice of functions T1, T2 is difficult, we propose the following procedure.
Let us first construct the uniform pseudo-observations Û

(E)
i = n

n+1Fn(Xi) and

V̂
(E)
i = n

n+1Gn(Yi). Then, for a given distribution function �, put Ŝi = �−1(Û
(E)
i )

and T̂i = �−1(V̂
(E)
i ). Finally, use these transformed pseudo-observations (Ŝi, T̂i)

instead of the original observations (Xi, Yi) in the estimator (5) of the joint dis-
tribution function. As we know, the marginals to be given by the function �, the
suggested estimator has, in the case of multiplicative kernel, the following simple
formula:

Ĉ(T)
n (u, v) = 1

n

n∑
i=1

K

(
�−1(u) − �−1(Û

(E)
i )

hn

)
(15)

× K

(
�−1(v) − �−1(V̂

(E)
i )

hn

)
.

The advantage of this estimator is that it is not affected by the marginal distri-

butions. Further bias calculations show that, if we choose �, such that �′(x)2

�(x)
is
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bounded, we take care of the “corner bias problem” that is present if we try to es-
timate the joint distribution of pseudo-observations directly. The above condition
is satisfied, for example, for � the normal cumulative distribution function.

2.4. Main results. The main theoretical contribution of this paper is the weak
convergence of the kernel estimators Ĉ

(LL)
n , Ĉ

(LLS)
n , Ĉ

(MR)
n , Ĉ

(MRS)
n and Ĉ

(T)
n .

For notational convenience, let us denote F̂n and Ĝn the estimates of the mar-
ginals that are used to construct pseudo-observations; that is, in the following we
will write Ûi = F̂n(Xi) and V̂i = Ĝn(Yi). For the weak convergence results we
need these functions to be asymptotically equivalent to the empirical cumulative
distribution functions Fn, Gn; that is,

sup
x

|F̂n(x) − Fn(x)| = op

(
1√
n

)
,

(16)

sup
y

|Ĝn(y) − Gn(y)| = op

(
1√
n

)
,

which further implies the standard weak convergence of the processes
√

n(F̂n −
F) and

√
n(Ĝn − G) to particular Brownian bridges. For technical reasons, we

will also suppose that the functions F̂n and Ĝn are nondecreasing, which excludes
higher order kernels (taking negative values) for the estimation of the marginals.

It is easy to see that (16) is satisfied if we define pseudo-observations as Ûi =
2nFn(Xi)−1

2n
, V̂i = 2nGn(Yi)−1

2n
, or in a way given in (3).

If we decide for kernel smoothing of the marginals given in (6), then it is well
known [see, e.g., Lemma 7 of Fermanian, Radulovič and Wegkamp (2004)] that
assumption (16) is met if there exists α > 0 such that, uniformly in x,

F(x + b1n) = F(x) + b1nf (x) + o(b1+α
1n ) with

√
nb1+α

1n → 0,

where f denotes the derivative of F and, similarly, for G involving b2n.
Let C

(LL)
n , C

(LLS)
n , C

(MR)
n , C

(MRS)
n , C

(T)
n be suitably normalized empirical copula

processes; that is, for (u, v) ∈ [0,1]2,

C
(·)
n = √

n
{
C(·)

n − C(u, v)
}
.

The proof of the following theorem is given in Appendix A. The termini-
nology on stochastic processes (e.g., pinned C-Brownian sheet) is taken from
Tsukuhara (2005). We refer the reader to this reference for details on the concepts
used.

THEOREM 1. Suppose that H has continuous marginal distribution functions
and that the underlying copula function C has bounded second order partial
derivatives on [0,1]2. If hn = O(n−1/3) and (16) is satisfied, then the (kernel)



IMPROVED KERNEL ESTIMATION OF COPULAS 3031

copula processes C
(LL)
n , C

(MR)
n converge weakly to the Gaussian process GC in

�∞([0,1]2), having representation

GC(u, v) = BC(u, v) − Cu(u, v)BC(u,1) − Cv(u, v)BC(1, v),(17)

where Cu and Cv denote the first order partial derivatives of C, and BC is a two-
dimensional pinned C-Brownian sheet on [0,1]2; that is, it is a centered Gaussian
process with covariance function

E[BC(u, v)BC(u′, v′)] = C(u ∧ u′, v ∧ v′) − C(u, v)C(u′, v′).(18)

While Theorem 1 requires boundedness of the second order partial deriva-
tives of the copula C, the weak convergence result of Fermanian, Radulovič and

Wegkamp (2004) for the estimator C
(SE)
n given by (4) requires boundedness of the

second order derivatives of the original joint distribution function H . This may or
may not be more stringent, depending on the marginals. Unfortunately, Theorem 1
excludes many commonly-used families of copulas. The next theorem and Appen-
dix D guarantee that the weak convergence of the proposed improved estimators
C

(LLS)
n , C

(MRS)
n , C

(T)
n holds for commonly-used copulas such as Clayton, Gumbel,

normal and Student copulas.

REMARK. A careful reader may find out that all the published weak conver-
gence results for the empirical estimator (2) or the smoothed empirical estima-
tor (4) require smoothness of the first order partial derivatives Cu and Cv of the
copulas C on [0,1]2. But this smoothness assumption usually is not true for the
families which do not have bounded second order partial derivatives (e.g., Clayton,
Gumbel, normal and Student). For instance, the first order partial derivatives of the
Clayton copula are not continuous in the corner point (0,0). The second step of
our proof given in Appendix B shows that it is sufficient to assume that

Cu,Cv are continuous in [0,1]2 \ {(0,0), (0,1), (1,0), (1,1)}.(19)

THEOREM 2. Suppose that H has continuous marginal distribution functions
and that the copula C has bounded second order partial derivatives on (0,1)2

and satisfies (9) and (19). If hn = O(n−1/3) and (16) is satisfied, then the (kernel)
copula processes C

(LLS)
n and C

(MRS)
n converge weakly to the Gaussian process GC

in �∞([0,1]2) given in Theorem 1.

Moreover, if the functions �′ and �′(x)2

�(x)
are bounded, then the above statement

holds also for the process C
(T)
n .

3. Finite sample comparisons.

3.1. Set up and performed comparisons. In our simulation study, we always
use the Epanechnikov kernel k(x) = 3

4(1 − x2)I{|x| ≤ 1} and the bivariate mul-
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tiplicative kernel k(x, y) = k(x)k(y). The optimality of the Epanechnikov kernel
in kernel density estimation was proven in Epanechnikov (1969). For background
information on multivariate kernels see, for example, Wand and Jones (1995) and
Fan and Gijbels (1996).

We investigate the performances of the estimators C
(E)
n , Ĉ

(T)
n , Ĉ

(LL)
n , Ĉ

(MR)
n and

Ĉ
(LLS)
n . We do not include the estimator Ĉ

(SE)
n , defined in (4), because this esti-

mator is too strongly influenced by the marginals, which makes the comparison
difficult. For example, for a normal copula with normal marginals, the estimator
Ĉ

(SE)
n usually does slightly better than its competitors. But, for a normal copula

with, for example, exponential marginals, the performance of Ĉ
(SE)
n is consider-

ably worse than its competitors. We do not present results for the modification of
the mirror-type estimator Ĉ

(MRS)
n either, since its performance was found to be

close to that of the estimator Ĉ
(LLS)
n .

The performances of the various estimators were evaluated using two criteria: a
Kolmogorov–Smirnov distance KSn and a Cramér–von Mises distance CMn; that
is,

KSn = sup
u,v

|Ĉn(u, v) − C(u, v)|,

CMn =
n∑

i=1

[Ĉn(Ûi, V̂i) − C(Ûi, V̂i)]2,

where Ĉn stands for any of the investigated estimators, for example, Ĉ
(E)
n .

The corresponding statistics are denoted accordingly, for example, KS(E)
n and

CM(E)
n . Originally, we included the mean integrated asymptotic error Qn =

n
∫∫ [Ĉn(u, v) − C(u, v)]2 dudv as well. Not surprisingly, this measure behaves

similarly to the Cramér–von Mises distance, since CMn ≈ n
∫∫

(Ĉn − C)2 dC, but
it is not so sensitive to the bias of the underlying copula estimator. See also Sec-
tion 4.

For computational reasons, the supremum in the Kolmogorov–Smirnov distance
KSn was replaced by a maximum over a grid of 101 × 101 points.

3.2. Bandwidth choice. The estimator Ĉ
(LL)
n involves bandwidths bn1 and bn2

(for estimation of the marginals) as well as a bandwidth hn when using local linear
fitting to estimate the copula. Preliminary simulation results confirmed the results
of Chen and Huang (2007), that the estimator Ĉ

(LL)
n [as well as its modification

Ĉ
(LLS)
n ] cannot be improved by smoothing the marginals. Therefore, we simply

work with the pseudo-observations Û
(E)
i = n

n+1Fn(Xi) and V̂
(E)
i = n

n+1Gn(Yi),
with Fn and Gn the empirical cumulative distribution functions. This slightly
differs from the strategy of strong undersmoothing recommended in Chen and
Huang (2007), which more or less results in taking Ûi = 2nFn(Xi)−1

2n
and V̂i =
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2nGn(Yi)−1
2n

. Nevertheless, the behavior of the resulting estimators is very simi-
lar.

For choosing the bandwidth hn for Ĉ
(LL)
n and Ĉ

(LLS)
n , we rely on the expressions

for asymptotic bias, variance and MISE derived in Chen and Huang (2007). From
the main (Asymptotic) terms in (11) and (12), we derive the asymptotic mean
squared error of the copula estimator in a given point (u, v)

AMSE{Ĉn(u, v)} = AVar{Ĉn(u, v)} + [ABias{Ĉn(u, v)}]2.(20)

An optimal bandwidth is obtained by minimization of
∫∫

AMSE{Cn(u, v)}dC(u,

v). As the true copula is unknown, this minimization cannot be carried out.
A possible approach is then to consider a so-called reference copula. Chen and
Huang (2007) proposed using a t-copula as a reference copula. But, as the second
derivatives of the t-copula are not bounded, we experienced numerical difficul-
ties and instabilities trying to apply this reference rule. We therefore decided to
use Frank’s copula, which has bounded second derivatives. The unknown para-
meter in Frank’s copula family is estimated by inversion of Kendall’s tau. The
computational simplicity of this approach also makes the goodness-of-fit testing
procedures, presented in Section 4, much more feasible.

Since the shrinkage of the bandwidth in the estimator Ĉ
(LLS)
n removes the prob-

lem of possible unboundedness of the second order partial derivatives, there are
plenty of families of copulas to use as a reference copula for this estimator. For
simplicity and for more appropriate comparisons, we also use Frank’s copula as a
reference for Ĉ

(LLS)
n .

The asymptotic expansions (11) and (12) hold for the mirror-type kernel esti-
mators Ĉ

(MR)
n and Ĉ

(MRS)
n as well; hence we also rely here on the same choice

for hn.
For the two improved estimators, a Frank copula based reference selection rule

seems to give quite good performance (see Sections 3 and 4). A normal copula
based reference rule tends to result in a too large bandwidth, whereas a Clayton
copula based reference rule tends to give, on average, too small bandwidths. Thus
Frank’s reference rule seems to be a good compromise.

More problematic is the bandwidth choice for Ĉ
(T)
n , as we do not have asymp-

totic expressions for bias and variance here. We tried to minimize the expected
mean squared integrated error∫ +∞

−∞

∫ +∞
−∞

[Ĥn(x, y) − H(x,y)]2h(x, y) dx dy(21)

taking a bivariate normal distribution H , with corresponding density h, as a ref-
erence distribution [see Jin and Shao (1999)]. However, the resulting bandwidth
selector turned out to be too big. A possible explanation is that such a selection
rule does not take into account that we rely on pseudo-observations (Ûi, V̂i) in-
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TABLE 1
Average ratios of bandwidths for Ĉ

(T)
n selected from minimizing (21) and from criteria KSn(h) and

CMn(h), respectively, for different Kendall’s τ and sample sizes n

Clayton Frank Normal

τ = 0.25 τ = 0.75 τ = 0.25 τ = 0.75 τ = 0.25 τ = 0.75

KSn CMn KSn CMn KSn CMn KSn CMn KSn CMn KSn CMn

n = 50 1.20 1.28 1.53 2.00 1.23 1.38 1.53 2.04 1.28 1.37 1.26 1.62
n = 150 1.13 1.27 1.38 2.08 1.21 1.47 1.55 2.07 1.20 1.36 1.24 1.60

stead of on the unobservable (Ui,Vi). In our simulation study, we then used the
above mentioned bandwidth divided by a factor two. This seems to be a reasonable
ad-hoc solution. To further investigate the bandwidth selection problem, for Ĉ

(T)
n ,

we calculated the ratio of the bandwidth selected via (21) to the one selected via
searching for a bandwidth that minimizes the criterion KSn(h) [resp., CMn(h)]
over a grid of h-values. Table 1 summarizes the obtained average ratios, for var-
ious values of Kendall’s tau from 2000 simulated samples. Note that the ratios
stay quite stable across different families of copulas as well as for different sample
sizes. This suggests that it may be possible to find a reliable reference-based rule
for Ĉ

(T)
n as well.

The simulation studies reported below showed a promising performance for the
transformation estimator Ĉ

(T)
n . A good bandwidth selection rule is missing, for the

moment, and is subject of further research.

3.3. Simulation results. An extensive simulation study was carried out to com-
pare the performances of all estimators using the performance measures KSn (the
Kolmogorov–Smirnov distance) and CMn (the Cramér–von Mises distance). To
illustrate our main findings, we only report on results obtained for the following
two simulation models:

Model 1. Frank copula with Kendall’s τ = 0.25;

Model 2. Clayton copula with Kendall’s τ = 0.75.

Models 1 and 2 represent very different copula functions. The copula in model 1
has bounded second order partial derivatives and presents a case of mild depen-
dence, whereas the copula in model 2 has unbounded second order partial deriv-
atives and shows a strong dependence between X and Y . From each model, we
simulated 10,000 samples of sample size n = 150.

Figure 1 shows the boxplots of the performance measures KSn and CMn for
model 1 (top panels) and model 2 (bottom panels). Note that, for model 1, the es-
timators Ĉ

(LL)
n , Ĉ

(MR)
n , Ĉ

(LLS)
n and Ĉ

(T)
n perform very comparable for the Cramér–



IMPROVED KERNEL ESTIMATION OF COPULAS 3035

FIG. 1. Boxplots of quantities KSn and CMn for different copula estimators. Top panels: model 1;
Bottom panels: model 2.

von Mises distance measure. For the Kolmogorov–Smirnov performance measure,
the estimator Ĉ

(T)
n performs slightly but significantly worse than the three other

estimators. The latter is likely caused by the usage of a too small bandwidth, as
can be anticipated by looking at the different results for the two performance
measures and Table 1. For model 2 (bottom panels), one clearly sees a better
performance of the improved estimators Ĉ

(LLS)
n and Ĉ

(T)
n , especially when look-

ing at the performance measure CMn. This is as to be expected, since the cop-
ula in model 2 has unbounded second order partial derivatives and the measure
CMn ≈ n

∫∫
(Ĉn − C)2 dC is most affected by points with higher values of the

copula density c(u, v) (which usually correspond with points with higher values
of the second order partial derivatives Cuu and Cvv). In other words, the perfor-
mance measure CMn is more sensitive to the corner bias problem than the mea-
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sure KSn. For model 1, there was no need for “shrinking” the bandwidth since the
copula function has bounded second order partial derivatives. Nevertheless, the
“shrinked-bandwidth” (improved) local linear estimator also performs very well
for this model. The very promising performance of the transformation estimator
Ĉ

(T)
n in view of the Cramér–von Mises distance CMn may be partially understood

by the fact that, in view of Table 1, our ad-hoc rule of bandwidth choice for the
estimator Ĉ

(T)
n is almost optimal in that situation.

From the more extensive simulation study, we further report the following
observations. All kernel copula estimators usually improve upon the empirical
estimate Ĉ

(E)
n . For copulas with bounded second order partial derivatives, the

performances of the estimators Ĉ
(LL)
n , Ĉ

(MR)
n and C

(E)
n become very compara-

ble, especially with increasing sample size. Overall, Ĉ
(MR)
n works slightly better

for copulas with bounded second order partial derivatives [e.g., Frank, Farlie–
Gumbel–Morgenstern, Ali–Mikhail–Haq; see Nelson (2006)] and mild depen-
dence, with a significant improvement for copulas very close to independence
copulas. On the other hand, the local linear kernel estimator Ĉ

(LL)
n is preferable

[compared to Ĉ
(MR)
n ] in the remaining cases.

To gain further insights in the kernel estimators, we examined the dependence
of these estimators on the bandwidth. We again use models 1 and 2 to illustrate our
findings. For brevity, we present results only for the estimator Ĉ

(LL)
n , since similar

findings can be reported on for the other kernel estimators.
Figure 2 illustrates the performance of the copula Ĉ

(LL)
n with a fixed band-

width h, in view of the performance measures KSn and CMn, for models 1 and 2
(top and bottom panels, resp.). For comparison purposes, we also include (at the
far left of the horizontal axis) the boxplot summarizing the results for the empir-
ical copula Ĉ

(E)
n . In addition, we provide in each picture a (vertical) boxplot that

indicates the bandwidths selected for Ĉ
(LL)
n via (20).

Note that the effect of bandwidth choice is most noticeable from the Kolmogo-
rov–Smirnov quantity KSn. This is particularly true for the Clayton copula,
model 2. For model 1, the estimator Ĉ

(LL)
n improves upon the empirical copula

Ĉ
(E)
n for almost all h-values in the considered range of values. For model 2, how-

ever, which presents a case of stronger dependence, a kernel estimator comes with
a gain, but only for a carefully selected bandwidth.

From the vertically displayed boxplots of bandwidths selected, we can further
remark that a bandwidth selected via (20) works in fact quite satisfactory. This is
particularly true in case of mild dependence and for copulas with bounded second
derivatives (such as model 1). It may lead to a slight oversmoothing in a situa-
tion of strong dependence and for copulas with unbounded second derivatives (cf.
model 2). It is worth mentioning though, that the presented results for model 2 are
almost among the “worst-case” scenarios here.
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FIG. 2. Boxplots of the quantities KSn and CMn for different values of fixed bandwidths for the

estimator Ĉ
(LL)
n , and boxplot (far left) for the estimator Ĉ

(E)
n . Top panels: model 1; Bottom panels:

model 2.

4. Goodness-of-fit tests for copulas. When modelling multivariate data us-
ing copulas, a popular method is to estimate marginals nonparametrically and the
copula in a parametric way. This requires choosing a suitable family of copulas for
the data at hand, which is not an easy task. In this section, we focus on testing the
null hypothesis

H0 :C ∈ C0,

where C0 = {Cθ, θ ∈ 	} is a given parametric family of copulas.
Many testing methods have been proposed. See, for example, Chen and

Huang (2007) and the review paper of Genest, Rémillard and Beaudoin (2008).
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The latter paper included a simulation study on classical goodness-of-fit measures
such as the Kolmogorov–Smirnov and the Cramér–von Mises statistics, which we
denote by (allowing a small abuse of previous notation)

KS(E)
n = sup

u,v

∣∣C(E)
n (u, v) − C

θ̂n
(u, v)

∣∣,
(22)

CM(E)
n =

n∑
i=1

[
C(E)

n (Ûi, V̂i) − C
θ̂n

(Ûi, V̂i)
]2

,

where θ̂n is an estimate of the unknown parameter θ0 based on the inversion of the
observed Kendall’s tau.

The aim of this section is to investigate the size and power properties for testing
procedures based on the test statistics KS(LL)

n , KS(LLS)
n , CM(LL)

n CM(LLS)
n com-

puted by replacing C
(E)
n in (22) with Ĉ

(LL)
n or Ĉ

(LLS)
n . In addition, we consider

here the test statistic

Q(E)
n =

∫ ∫ [
C(E)

n (u, v) − C
θ̂n

(u, v)
]2

dudv

and its Ĉ
(LL)
n and Ĉ

(LLS)
n versions. The double integral in the definition of Q

(·)
n was

approximated by a double sum over a grid of 101 × 101 points.
Since the asymptotic distributions of these test statistics are too complex, a para-

metric bootstrap is used. This procedure runs as follows:

(1) By inversion of the empirical Kendall’s τ , estimate the unknown parameter θ

of the null hypothesis family by θ̂n and compute the test statistic KS(·)
n [where

the superscript (·) refers to any of the considered estimators of the copula];
(2) Generate {(U∗

i , V ∗
i )}ni=1 from the copula C

θ̂n
and use them as original obser-

vations to compute θ̂∗
n and KS∗(·)

n ;
(3) Repeat step (2) B-times;
(4) Estimate the p-values as

p
KS(·)

n
= 1 + #{KS∗(·)

n ≥ KS(·)
n }

B + 1
.

See Davison and Hinkley (1997).

For any of the other test statistics, we proceed similarly, replacing KS(·)
n by CM(·)

n

or Q
(·)
n .

According to Genest and Rémillard (2008), the validity of this bootstrap proce-

dure requires the weak convergence of the copula processes C
(LL)
n and C

(LLS)
n . For

the latter process, the weak convergence is justified for all copula families consid-
ered in our simulation study, by Theorem 2. In contrast, only for Frank’s copula the
condition of Theorem 1 is satisfied when dealing with the weak convergence of the
process C

(LL)
n . Lemma C.1 of Appendix C shows that the test based on Ĉ

(LL)
n holds
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asymptotically the level even for the other families C0 appearing in the simulation
study.

The setup of our simulation study closely follows that of Genest, Rémillard and
Beaudoin (2008). The sample size is n = 150, and we take 999 number of bootstrap
samples. Three values of Kendal’s tau are considered, namely τ = 0.25,0.50,0.75,
for the following copula families: Clayton, Gumbel, Frank, normal and Student
with four degrees of freedom (df). We use the R-computing environment, ver-
sion 2.5.0 [see R Development Core Team (2007)], with copula package [see
Yan (2007)]. For approximating the level of the test (i.e., under the null hypothe-
sis) we use 6000 repetitions. The estimated powers of the test statistics are based
on 1500 repetitions.

The results of the simulations are presented in Tables 2, 3 and 4. For ease of
the reader, the estimated values for the size of the test statistics are presented in
italics. Furthermore, for each testing problem, we highlighted the “best” power
performances using bold characters. Readers should be aware of the fact that these
estimated powers and sizes (using, resp., 1500 and 6000 repetitions) are of course
subject to Monte Carlo approximation errors. A conservative upper bound (rely-
ing on a binomial distribution with parameters B and p) for these approxima-
tions errors (in terms of standard deviation) is for the size estimates 0.28% (using
B = 6000 and p = 0.05) and for the power estimates 1.29% (using B = 1500 and
p = 0.5, for getting to an upper bound).

A summary of conclusions from the simulations results is as follows:

• The use of a kernel estimator [e.g., Ĉ(LLS)
n ] in goodness-of-fit testing seems to be

promising in case true copulas are in the Clayton, Gumbel and Frank families,
and we consistently improve upon the power for the Kolmogorov–Smirnov test;

• If a kernel estimator improves upon the power, it is most noticeable when the
dependence is weaker, and is greatest for the Kolmogorov–Smirnov test;

• The power of the test statistics Qn is usually somewhere between the power of
Kolmogorov–Smirnov and the Cramér–von Mises test statistics;

• The power of the test statistics based on the improved estimator Ĉ
(LLS)
n is usually

higher than this for test statistics based on Ĉ
(LL)
n for alternatives with unbounded

second order partial derivatives;
• For a true Frank copula and a Cramér–von Mises test statistic, the estimator

Ĉ
(LLS)
n is usually the best choice;

• The use of kernel estimators seems to be promising for Archimedean families
of copulas (Clayton, Frank, Gumbel) but is somewhat questionable for ellipti-
cal families of copulas (normal, Student). Although kernel estimators may im-
prove the power against Clayton and Gumbel alternatives, a loss in power is
noticed for Frank alternatives. This holds in particular for Ĉ

(LLS)
n -based statis-

tics.
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TABLE 2
Percentage of rejection of H0 by various tests for samples of size n = 150 arising from different

copula models with τ = 0.25

Copula
under H0

True
copula

Cramér–von Mises Kolmogorov–Smirnov MISE

CM(E)
n CM(LL)

n CM(LLS)
n KS(E)

n KS(LL)
n KS(LLS)

n Q
(E)
n Q

(LL)
n Q

(LLS)
n

Clayton Clayton 4.9 4.3 4.9 5.1 3.8 4.5 5.0 4.9 5.6
Gumbel 86.7 91.3 93.3 61.1 81.8 84.6 84.1 91.7 93.6
Frank 54.4 63.5 61.4 33.5 64.1 61.2 51.6 62.2 59.7

Plackett 56.3 61.0 63.5 34.2 57.5 57.2 53.0 61.8 62.7
Normal 49.9 59.0 61.6 28.2 54.8 52.8 46.6 59.6 62.5

Student, 4 df 55.9 65.5 67.0 34.6 40.8 40.7 52.1 68.0 69.5

Gumbel Clayton 72.2 85.2 86.7 48.3 77.5 78.1 74.0 83.3 85.6
Gumbel 4.9 5.1 5.6 5.0 4.9 4.7 4.5 4.9 5.4
Frank 14.7 18.2 20.1 11.0 18.2 22.8 18.4 15.7 17.3

Plackett 13.7 16.7 17.4 9.5 17.7 17.9 16.2 15.7 16.3
Normal 10.0 15.6 15.5 8.2 16.8 16.1 12.6 15.5 14.1

Student, 4 df 12.8 21.5 22.6 7.3 11.3 13.3 14.3 23.3 24.5

Frank Clayton 41.3 49.9 52.1 25.5 37.6 39.1 42.1 48.2 50.8
Gumbel 31.8 47.5 50.1 18.1 28.5 28.3 25.4 45.7 47.5
Frank 4.7 4.9 4.9 5.1 4.9 4.5 4.6 4.6 5.1

Plackett 5.7 6.9 6.2 4.7 5.0 5.8 5.4 6.7 7.0
Normal 8.5 13.4 12.6 9.7 12.1 11.5 7.6 14.4 12.8

Student, 4 df 18.1 34.5 33.9 10.1 18.1 17.1 15.4 36.6 35.2

Normal Clayton 34.3 36.9 40.1 18.3 25.6 28.7 36.2 36.0 38.9
Gumbel 26.1 35.1 33.7 12.0 20.0 18.7 21.0 34.0 32.6
Frank 7.6 3.7 3.9 7.1 3.4 4.3 7.9 4.2 4.3

Plackett 8.1 4.5 5.4 8.0 3.6 5.1 8.6 5.7 6.1
Normal 4.8 5.2 5.5 5.0 5.2 4.5 5.8 4.9 5.1

Student, 4 df 11.7 14.8 14.5 6.5 9.2 9.0 9.5 17.9 19.1

Student Clayton 29.0 29.5 34.1 22.1 33.2 36.3 32.8 26.2 30.2
Gumbel 20.7 26.1 26.6 12.1 22.7 25.5 17.9 17.9 22.7
Frank 9.0 7.1 6.1 9.1 8.0 9.2 9.7 3.6 3.4

Plackett 7.6 6.4 4.5 8.6 6.6 7.7 7.6 3.9 2.9
Normal 4.7 4.3 3.5 6.4 6.9 6.7 4.9 3.9 2.9

Student, 4 df 4.7 4.7 4.9 5.3 4.8 4.7 4.4 4.7 5.4

APPENDIX A: PROOF OF THEOREM 1

For simplicity, we will suppress the dependence on n in the notation of pseudo-
observations (Ûi, V̂i)

T and write, simply, Ûi = F̂n(Xi) = F̂n(F
−1(Ui)) and V̂i =

Ĝn(Yi) = Ĝn(G
−1(Vi)), where (Ui,Vi) have a joint distribution function given by

the copula C.
As our proof is a straightforward adaptation of the ideas used in van der Vaart

and Wellner (2007), we would like to clarify one point. In the following, we will
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TABLE 3
Percentage of rejection of H0 by various tests for samples of size n = 150 arising from different

copula models with τ = 0.50

Copula
under H0

True
copula

Cramér–von Mises Kolmogorov–Smirnov MISE

CM(E)
n CM(LL)

n CM(LLS)
n KS(E)

n KS(LL)
n KS(LLS)

n Q
(E)
n Q

(LL)
n Q

(LLS)
n

Clayton Clayton 5.3 5.2 5.4 5.5 5.3 5.7 4.8 5.6 5.8
Gumbel 99.9 100.0 99.9 98.9 99.5 99.9 100.0 100.0 99.9
Frank 95.9 96.4 96.2 82.5 98.3 95.6 91.1 93.3 92.3

Plackett 95.6 96.7 96.0 75.3 94.7 89.7 92.3 95.7 94.5
Normal 94.4 96.3 96.9 75.0 91.9 91.1 89.9 94.5 94.9

Student, 4 df 94.9 96.7 97.2 77.9 86.4 88.2 92.7 96.2 96.3

Gumbel Clayton 99.6 99.7 99.7 94.3 98.7 98.8 98.9 99.3 99.1
Gumbel 4.5 4.7 4.9 5.0 4.9 5.4 4.8 3.9 4.6
Frank 40.5 48.2 39.7 29.6 48.1 40.4 41.1 35.3 30.6

Plackett 29.4 33.3 30.7 18.9 26.5 22.8 31.0 30.0 27.6
Normal 18.8 26.4 25.1 14.6 25.3 23.8 22.3 22.1 21.8

Student, 4 df 22.3 27.8 29.2 11.7 19.1 16.5 23.6 28.5 29.0

Frank Clayton 89.6 88.9 91.9 68.1 72.7 75.5 85.1 86.3 85.5
Gumbel 63.8 71.0 74.1 39.3 44.6 47.3 50.5 68.9 65.7
Frank 5.3 4.9 5.2 5.1 5.2 5.0 5.1 4.9 5.0

Plackett 8.4 10.4 12.1 5.4 6.9 6.7 8.3 15.2 8.5
Normal 19.6 26.0 29.5 17.6 26.9 25.5 16.5 25.7 17.5

Student, 4 df 35.0 44.9 52.8 17.9 27.8 29.4 29.0 51.0 46.2

Normal Clayton 83.0 78.3 82.9 55.8 66.6 66.1 79.6 76.1 79.4
Gumbel 41.7 39.5 44.3 18.3 22.7 26.6 32.4 39.6 41.2
Frank 21.2 20.1 14.9 15.1 11.8 11.0 19.3 14.4 10.5

Plackett 12.0 7.4 7.8 7.7 5.8 4.5 13.4 11.9 9.9
Normal 4.8 5.1 5.5 4.7 5.0 5.4 5.8 4.5 4.6

Student, 4 df 8.1 6.4 8.3 4.0 4.5 4.8 7.6 11.5 12.5

Student Clayton 80.6 78.4 83.7 62.1 74.9 76.5 79.0 72.3 75.0
Gumbel 36.5 39.1 39.6 20.5 31.3 32.4 25.7 25.7 31.0
Frank 28.5 30.5 23.1 18.8 18.0 20.8 25.0 15.0 11.3

Plackett 13.5 13.5 8.9 10.0 6.9 7.3 11.0 6.8 6.6
Normal 5.1 6.4 5.5 7.6 7.8 7.5 5.1 3.4 4.0

Student, 4 df 4.7 4.9 5.1 4.9 5.0 4.9 5.2 4.1 4.7

encounter the expectations of the form Eg(Û, V̂ ), where g is a measurable func-
tion on [0,1]2 and Û = F̂n(F

−1(U)), V̂ = Ĝn(G
−1(V )). In these types of expec-

tations, the estimators of the marginal distribution functions F̂n, Ĝn are considered
to be fixed (nonrandom) functions, and the expectation is taken only with respect
to (U,V ) with joint distribution given by the copula C. Formally,

Eg(Û , V̂ ) = EU,V [g(Û, V̂ )|(X1, Y1), . . . , (Xn,Yn)],
whenever the integral on the right-hand side exists.
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TABLE 4
Percentage of rejection of H0 by various tests for samples of size n = 150 arising from different

copula models with τ = 0.75

Copula
under H0

True
copula

Cramér–von Mises Kolmogorov–Smirnov MISE

CM(E)
n CM(LL)

n CM(LLS)
n KS(E)

n KS(LL)
n KS(LLS)

n Q
(E)
n Q

(LL)
n Q

(LLS)
n

Clayton Clayton 5.3 5.6 5.3 5.1 4.9 4.6 3.3 4.6 4.0
Gumbel 100.0 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0
Frank 98.8 98.3 98.5 83.7 98.1 97.2 94.0 95.4 95.1

Plackett 99.5 99.2 99.9 85.1 90.6 93.9 97.0 98.3 99.1
Normal 99.8 99.5 99.9 90.5 93.6 96.8 98.0 98.4 99.2

Student, 4 df 99.9 99.7 100.0 92.7 91.4 97.7 98.5 99.5 99.5

Gumbel Clayton 99.9 99.5 99.9 95.8 98.5 98.5 99.6 99.1 99.0
Gumbel 4.5 4.6 4.8 4.7 4.6 4.9 5.0 3.2 3.7
Frank 53.3 54.5 47.0 25.6 38.1 38.3 40.7 26.6 23.7

Plackett 24.3 23.5 19.1 6.6 9.3 9.3 29.5 24.9 25.1
Normal 12.4 13.1 13.9 11.3 13.6 13.3 12.3 8.3 7.7

Student, 4 df 15.6 15.7 20.1 8.5 10.4 10.8 16.2 15.1 14.9

Frank Clayton 96.7 91.3 96.9 57.6 63.7 64.9 90.8 86.2 89.0
Gumbel 81.6 80.5 87.8 36.9 41.7 39.7 61.1 73.7 75.3
Frank 4.4 4.6 4.4 4.7 4.5 4.8 4.7 3.0 3.7

Plackett 19.6 20.7 27.5 5.9 8.7 7.5 34.5 45.7 48.3
Normal 40.7 41.1 52.7 28.5 33.3 30.2 31.9 38.7 42.9

Student, 4 df 58.4 57.9 72.6 26.7 33.6 30.3 50.6 63.1 64.6

Normal Clayton 93.4 88.9 90.5 66.7 77.9 79.7 88.4 83.3 82.6
Gumbel 41.1 38.3 43.4 13.0 19.6 20.9 24.3 33.5 35.0
Frank 46.1 46.7 37.7 17.5 18.2 22.9 31.0 24.1 18.4

Plackett 15.2 11.6 9.2 3.1 3.1 4.0 24.4 27.7 23.7
Normal 4.7 4.8 4.4 4.4 4.6 4.7 5.2 3.5 3.5

Student, 4 df 6.9 6.3 6.8 4.7 3.9 4.2 7.0 10.1 9.6

Student Clayton 92.8 89.4 89.9 73.7 84.4 86.7 85.8 75.6 74.8
Gumbel 37.3 34.5 37.0 17.3 26.3 26.9 18.4 18.4 21.6
Frank 52.2 51.8 45.5 24.5 28.1 33.6 30.4 20.7 14.5

Plackett 16.4 15.7 10.3 4.3 3.9 5.8 5.8 12.7 11.6
Normal 4.5 4.7 3.5 6.3 6.9 7.8 2.5 2.1 1.9

Student, 4 df 4.3 4.9 4.4 4.7 5.1 4.9 4.8 3.6 3.1

A.1. Weak convergence of the process C
(LL)
n . In view of the previous re-

mark, we decompose
√

n
(
Ĉ(LL)

n (u, v) − C(u, v)
)

= 1√
n

[
n∑

i=1

Ku,hn

(
u − Ûi

hn

)
Kv,hn

(
v − V̂i

hn

)
− C(u, v)

]
(23)

= Ahn
n (u, v) + Bn(u, v) + Chn

n (u, v),
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where

Ahn
n (u, v) = 1√

n

[
n∑

i=1

Ku,hn

(
u − Ûi

hn

)
Kv,hn

(
v − V̂i

hn

)

− I{Ui ≤ u,Vi ≤ v}(24)

− E
(
Ku,hn

(
u − Û

hn

)
Kv,hn

(
v − V̂

hn

)
− C(u, v)

)]

and

Bn(u, v) = 1√
n

n∑
i=1

[I{Ui ≤ u,Vi ≤ v} − C(u, v)],(25)

Chn
n (u, v) = √

nE
[
Ku,hn

(
u − Û

hn

)
Kv,hn

(
v − V̂

hn

)
− C(u, v)

]
.(26)

Our proof will be divided into two steps. First, we will show, in Step 1, that
supu,v |Ahn

n | = op(1). Then, we will prove, in Step 2, that

sup
u,v

∣∣Chn
n (u, v) − ∂1C(u, v)

√
n[F ∗

n (u) − u] − ∂2C(u, v)
√

n[G∗
n(v) − v]∣∣ = oP (1),

where F ∗
n (u) = 1

n

∑n
i=1 I{Ui ≤ u} and G∗

n(v) = 1
n

∑n
i=1 I{Vi ≤ v}. The conver-

gence of the smoothed copula process C
(LL)
n = √

n(Ĉ
(LL)
n − C) to a Gaussian

process given by (17) will now follow by the results of Fermanian, Radulovič and
Wegkamp (2004).

STEP 1. We consider the following class of functions from [0,1]2 to [0,1]:
F =

{
(w1,w2) �→ Ku,h

(
u − ζ1(w1)

h

)
Kv,h

(
v − ζ2(w2)

h

)
,

(27)

(u, v) ∈ [0,1]2, h ∈
[
0,

1

4

]
, ζ1, ζ2 : [0,1] → [0,1] nondecreasing

}
.

As each function f from F is characterized by a quintuple (u, v,h, ζ1, ζ2), the
empirical process indexed by F can be written as

Zn(f ) = Zn(u, v,h, ζ1, ζ2)

= 1√
n

n∑
i=1

Ku,h

(
u − ζ1(Ui)

h

)
Kv,h

(
v − ζ2(Vi)

h

)
.

Put Z̄n = Zn − EZn and note that

Ahn
n (u, v) = Z̄n(f

n
1 ) − Z̄n(f2),

(28)
where f n

1 = (u, v,hn,Fn(F
−1),Gn(F

−1)), f2 = (u, v,0, I, I)
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with I being the identity function on the interval [0,1].
Lemma A.1, which is given below, states that the set of functions F is Donsker.

Indeed, F is a subset of F ∗ in Lemma A.1, taking b(·) = 1 and u0 = u and v0 = v.
This implies the weak convergence of the process Z̄n(f ), f ∈ F , which further
implies that the process Z̄n is asymptotically uniformly ρ-equicontinuous in prob-
ability [see pages 37–41 of van der Vaart and Wellner (1996)] with semimetric ρ

given by

ρ(f,f ′) = E
[
Ku,h

(
u − ζ1(U)

h

)
Kv,h

(
v − ζ2(V )

h

)

− Ku′,h′
(

u′ − ζ ′
1(U)

h′
)
Kv′,h′

(
v′ − ζ ′

2(V )

h′
)]2

.

Using this asymptotic uniform ρ-equicontinuity and (28), we get that
supu,v |Ahn

n | = op(1), provided that supu,v ρ(f n
1 , f2) converges to zero in prob-

ability, where f n
1 and f2 are given in (28) [for details consult the proof in van der

Vaart (1994)].
Put M = supu,h,x |ku,h(x)|, where ku,h is defined in (7), and denote

Aε = {|Û − U | > ε or |V̂ − V | > ε}.
The consistency of F̂n and Ĝn yields that, for every ε > 0, for all sufficiently
large n,

P
[
max

{
sup
x∈R

|F̂n(x) − F(x)|, sup
y∈R

|Ĝn(y) − G(y)|
}

> ε
]
< ε,

which further implies that, for all sufficiently large n,

P(Aε) = P [max{|F̂n(X) − F(X)|, |Ĝn(Y ) − G(Y)|} > ε] < ε.(29)

Now, we can bound

ρ(f n
1 , f2) = E

[
Ku,hn

(
u − Û

hn

)
Kv,hn

(
v − V̂

hn

)
− I{U ≤ u,V ≤ v}

]2

≤ E
[
Ku,h

(
u − Û

h

)
Kv,h

(
v − V̂

h

)
− I{U ≤ u,V ≤ v}

]2

IAc
ε
+ IAε

≤ M4E[|I{Û ≤ u − hn} − I{U ≤ u}|
+ |I{Û ≤ u + hn} − I{U ≤ u}|
+ |I{V̂ ≤ v − hn} − I{V ≤ v}|
+ |I{V̂ ≤ v + hn} − I{V ≤ v}|]IAc

ε
+ IAε

≤ 4M4(ε + hn) + IAε .
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As the above bound holds uniformly in (u, v) and by (29), for all sufficiently
large n, we have P(Aε) < ε. Since ε can be arbitrarily small, this implies
supu,v ρ(f n

1 , f2) = op(1).

LEMMA A.1. Suppose that the function k is of bounded variation and∫
k(x) dx = 1. Then, the set of functions from [0,1]2 to [0,1]

F ∗ =
{
(w1,w2) �→ Ku0,h

(
u − ζ1(w1)

b(u0)h

)
Kv0,h

(
v − ζ2(w2)

b(v0)h

)
,

(u0, v0), (u, v) ∈ [0,1]2,

h ∈
[
0,

1

4

]
, ζ1, ζ2 : [0,1] → [0,1] nondecreasing

}
,

where b(w) = 1 or b(w) = min{√w,
√

1 − w}, is Donsker.
Consequently, the family F in (27) is Donsker.

PROOF. Note that the class of functions

G1 = {
(w1,w2) �→ I{ζ1(w1) ≤ a, ζ2(w2) ≤ b},
a, b ∈ R, ζ1, ζ2 : [0,1] → [0,1] nondecreasing

}
is a subset of the class of indicators

G2 = {
(w1,w2) �→ I{w1 < (≤)a,w2 < (≤)b}, a, b ∈ R

}
.

But this implies that G1 is a Donsker class [see Example 2.5.4 of van der Vaart and
Wellner (1996)].

As the set G1 is closed under translation, we know by the beginning of the proof
of van der Vaart (1994) that the set of functions

H =
{∫

f (x + y)dμ(y), f ∈ G1,μ ∈ MB

}
(30)

is a Donsker class, where MB is a family of all signed measures (on R
2) of total

mass bounded by a fixed constant B .
Let us introduce the set of signed measures

M0 =
{
(−∞,w1] × (−∞,w2] �→ Ku0,h

(
w1

b(u0)h

)
Kv0,h

(
w2

b(v0)h

)
,

(u0, v0) ∈ [0,1]2, h ∈
[
0,

1

4

]}
.

If k is of bounded variation, then, by taking sufficiently large B , we ensure that
M0 ⊂ MB . Further, if x stands for (w1,w2) and y for (y1, y2), then, for f ∈ G1



3046 M. OMELKA, I. GIJBELS AND N. VERAVERBEKE

and μ ∈ M0, we get∫
f (x + y)dμ(y)

=
∫ ∫

I{ζ1(w1) + y1 ≤ u,

ζ2(w2) + y2 ≤ v}d

(
Ku0,h

(
y1

b(u0)h

)
Kv0,h

(
y2

b(v0)h

))

= Ku0,h

(
u − ζ1(w1)

b(u0)h

)
Kv0,h

(
v − ζ2(w2)

b(v0)h

)
,

which is a Donsker class. As F ∗ includes F of (27) (consider u0 = u and v0 = v),
the family F is a Donsker class as well. �

STEP 2. Now, we can turn our attention to the process C
hn
n given by (26). For

(u, v) ∈ R
2, define

C∗
F̃ ,G̃

(u, v) = C(F(F̃−1(u∗)),G(G̃−1(v∗))),

where w∗ = max{min{w,1},0}. Note that

EI{Û ≤ u, V̂ ≤ v} = EI{U ≤ F(F̂−1
n (u)), V̂ ≤ G(Ĝ−1

n (u))} + O(n−1)

= C∗
F̂n,Ĝn

(u, v) + O(n−1),

where the remainder term O(n−1) disappears if we do some smoothing on the first
stage; that is, if b1n, b2n > 0. As

EKu,h

(
u − Û

h

)
Kv,h

(
v − V̂

h

)

= E
∫ 1

−1

∫ 1

−1
I{Ûi ≤ u − thn, V̂i ≤ u − shn}ku,h(s)kv,h(t) dt ds

=
∫ 1

−1

∫ 1

−1
C∗

F̂n,Ĝn
(u − thn, v − shn)ku,h(s)kv,h(t) dt ds + O(n−1),

it will be useful to have a closer look at the process {C∗
F̂n,Ĝn

(u, v) ∈ [0,1]2}. In the

following, we will prove that, uniformly in (u, v),
√

n
(
C∗

F̂n,Ĝn
(u, v) − C(u, v)

)

= −Cu(u, v)
1√
n

n∑
i=1

[I{Ui ≤ u} − u](31)

− Cv(u, v)
1√
n

n∑
i=1

[I{Vi ≤ v} − v] + op(1).
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Let D[a, b] be the Banach space of all cadlag functions on an interval [a, b]
equipped with the uniform norm.

LEMMA A.2. Let F be a continuous distribution function. Then, the map
F̃ �→ F ◦ F̃−1 as a map D[0,1] �→ �∞[0,1] is Hadamard-differentiable at F̃ = F

tangentially to the set of functions

α ∈ EF = {α(x) = β(F (x)), x ∈ R, β ∈ C[0,1], β(0) = β(1) = 0}.
The derivative is given by −α ◦ F−1.

PROOF. Let αt converge uniformly to α ∈ EF . Put Ft = F + tαt . As

sup
u∈[0,1]

|Ft(F
−1
t (u)) − u| = sup

u∈[0,1]
|Ft(u+) − Ft(u−)|,

the function F is continuous and the function αt converges uniformly to a bounded
and continuous function, we get that Ft(F

−1
t (u)) − u = o(t) uniformly in u.

Thus, we can calculate

1

t
[F(F−1

t )(u) − F(F−1(u)) + tα(F−1(u))]
= α(F−1(u)) − αt(F

−1
t (u)) + o(1)

= [α(F−1(u)) − α(F−1
t (u))] + [α(F−1

t (u)) − αt(F
−1
t (u))] + o(1).

As αt → α uniformly, the second term converges to zero uniformly in u. By using
the representation α(x) = β(F (x)), we see that, to ensure a uniform convergence
of the first term to zero, we need to show that F(F−1

t (u)) → u uniformly. But this
follows by a simple calculation, which yields

|F(F−1
t (u)) − F(F−1(u))|
= |tαt (F

−1
t (u))| + o(t)

≤ |t ||αt(F
−1
t (u)) − α(F−1

t (u))| + |t ||α(F−1
t (u))| + o(t) = O(t),

uniformly in u. �

REMARK. As (16) implies that
√

n(F̂n − F) converges in distribution to a
Gaussian process B ◦ F , where B is a standard Brownian motion on the inter-
val [0,1], the Hadamard-differentiability tangentially to EF given in Lemma A.2
is exactly what is needed to derive asymptotic distribution of the process√

n(F (F−1
n (u)) − u).

Similarly, we can prove that the mapping G̃ �→ G ◦ G̃−1 is Hadamard-
differentiable at G̃ = G tangentially to the set of functions

EG = {α(x) = β(G(x)), x ∈ R, β ∈ C[0,1], β(0) = β(1) = 0}.
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The proof of the following lemma follows easily by applying Lemma A.2 and
the chain rule.

LEMMA A.3. Let the copula C have continuous partial derivatives on [a, b]×
[c, d] ⊂ [0,1]2, and F,G are continuous; then, the map (F̃ , G̃) �→ C∗

F̃ ,G̃
as a

map D[a, b] × D[a, b] �→ �∞([a, b] × [c, d]) is Hadamard-differentiable at the
point (F̃ , G̃) = (F,G) tangentially to the set of functions (α1, α2) ∈ EF ×EG. The
derivative is given by

φ′(α1, α2) = −Cu ◦ α1 ◦ F−1 − Cv ◦ α2 ◦ G−1 = −Cu ◦ β1 − Cv ◦ β2,(32)

where β1 = α1 ◦ F−1 and β2 = α2 ◦ G−1.

Lemma A.3, together with Theorem 3.9.4 of van der Vaart and Wellner (1996),
imply that representation (31) holds uniformly for (u, v) ∈ [a, b]×[c, d]. Unfortu-
nately, many of the most popular families (e.g., Clayton, Gumbel, normal) do not
have continuous Cu and Cv at some of the points {(0,0), (0,1), (1,0), (1,1)}. The
following lemma takes care of this situation.

LEMMA A.4. Let the distribution H have continuous margins F,G and a
copula function whose first derivatives are continuous on [0,1]2 \ {(0,0), (0,1),

(1,0), (1,1)}. Then, representation (31) holds uniformly in (u, v) ∈ [0,1]2.

PROOF. Suppose, for simplicity, that the point of discontinuity is only at (0,0)

[other points (0,1), (1,0), (1,1) might be handled in a similar way]. Let us denote

Zn(u, v) = √
n
(
C∗

F̂n,Ĝn
(u, v) − C(u, v)

)

+ Cu(u, v)
1√
n

n∑
i=1

[I{Ui ≤ u} − u](33)

+ Cv(u, v)
1√
n

n∑
i=1

[I{Vi ≤ v} − v].

Let ε > 0 be given. As all the process

X1
n(u) = √

n[F(F̂−1
n (u)) − u], X3

n(u) = 1√
n

n∑
i=1

[I{Ui ≤ u} − u],

X2
n(u) = √

n[G(Ĝ−1
n (u)) − u], X4

n(u) = 1√
n

n∑
i=1

[I{Vi ≤ u} − u]

converge to a Brownian motion, we can find δε and nε such that, for all n > nε ,

P

(
sup
u≤δε

|Xj
n(u)| ≥ ε

4

)
<

ε

4
, j = 1, . . . ,4.



IMPROVED KERNEL ESTIMATION OF COPULAS 3049

As Cu,Cv are bounded by 1, the triangular inequality implies that, for all n > nε ,

P
(

sup
u,v≤δε

|Zn(u, v)| ≥ ε
)

≤
4∑

j=1

P

(
sup
u≤δε

|Xj
n(u)| ≥ ε

4

)
< ε.

Next, the existence of n′
ε such that, for all n > n′

ε ,

P
(

sup
u,v∈Aε

|Zn(u, v)| ≥ ε
)

< ε with Aε = [0,1]2 \ [0, δε]2,

follows by Lemma A.3 applied to rectangles [0, δε] × [δε,1] and [δε,1] ×
[0,1]. Thus, for n > max{nε, n

′
ε} :P(supu,v |Zn(u, v)| ≥ ε) < ε, which proves the

lemma. �

Combining (31), Lemma A.4, the fact that hn → 0 and asymptotic equicontinu-
ity of the processes Un(u) = 1√

n

∑n
i=1[I{Ui ≤ u} − u], Vn(v) = 1√

n

∑n
i=1[I{Vi ≤

v} − v] yields

Chn
n (u, v) = √

nE
[
Ku,hn

(
u − Û

hn

)
Kv,hn

(
v − V̂

hn

)
− C(u, v)

]
(34)

= −Cu(u, v)Un(u) − Cv(u, v)Vn(v) + √
nDn(u, v) + oP (1),

where the bias term Dn is given by

Dn(u, v) =
∫ 1

−1

∫ 1

−1

√
n[C(u − thn, v − shn) − C(u, v)]

(35)
× ku,h(s)kv,h(t) dt ds.

If copula C has bounded second order partial derivatives on [0,1]2, then
√

n sup
u,v

|Dn(u, v)| = O(n1/2h2
n) = o(1).(36)

Finally, combining (23), (25), (26), (34) and (36) yields
√

n
(
Ĉ(LL)

n (u, v) − C(u, v)
)

= 1√
n

n∑
i=1

[I{Ui ≤ u,Vi ≤ v} − C(u, v)]
(37)

− Cu(u, v)
1√
n

n∑
i=1

[I{Ui ≤ u} − u]

− Cv(u, v)
1√
n

n∑
i=1

[I{Vi ≤ v} − v] + oP (1).
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A.2. Weak convergence of the process C
(MR)
n . Here, we adapt the foregoing

proof for the mirrored-type kernel estimator Ĉ
(MR)
n given in (13).

STEP 1. At first, we rewrite

Ĉ(MR)
n =

9∑
�=1

[Zn(�,u, v) − Zn(�,u,0) − Zn(�,0, v) + Zn(�,0,0)],(38)

where

Zn(�,u, v) = 1

n

n∑
i=1

K

(
u − Û

(�)
i

hn

)
K

(
v − V̂

(�)
i

hn

)
.

Let us define

Z0n(�, u, v) = 1

n

n∑
i=1

I
{
U

(�)
i ≤ u,V

(�)
i ≤ v

}
.

Similarly as in Step 1 of the proof of Appendix A.1 [weak convergence of C
(LL)
n ],

we can show that, for each � = 1, . . . ,9,

sup
u,v

∣∣√n
(
Zn(�,u, v) − EZn(�,u, v)

)
(39)

− √
n
(
Z0n(�, u, v) − EZ0n(�, u, v)

)∣∣ = op(1).

Further, note that

9∑
�=1

Z0n(�, u, v) = 1

n

n∑
i=1

I{Ui ≤ u,Vi ≤ v} + F ∗
n (u) + G∗

n(v) + 1.(40)

Combining (38), (39) and (40), implies that, uniformly in (u, v),
√

n
(
Ĉ(MR)

n (u, v) − C(u, v)
) = Bn(u, v) + Chn

n (u, v) + op(1),

where Bn is given by (25) and

Chn
n (u, v) = √

n

{ 9∑
�=1

E
[
K

(
u − Û (�)

hn

)
− K

(−Û (�)

hn

)]

×
[
K

(
v − V̂ (�)

hn

)
− K

(−V̂ (�)

hn

)]
− C(u, v)

}
.

STEP 2. Now, similarly as in Step 2 of the proof in Appendix A.1, we derive
that, uniformly in (u, v),

Chn
n (u, v) = −Cu(u, v)Un(u) − Cv(u, v)Vn(v) + √

nDn(u, v) + oP (1),(41)
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with the bias term Dn(u, v) given by

Dn(u, v) =
9∑

�=1

E
[
K

(
u − U

(�)
1

hn

)
− K

(−U
(�)
1

hn

)]
(42)

×
[
K

(
v − V

(�)
1

hn

)
− K

(−V
(�)
1

hn

)]
− C(u, v).

To show that this bias term is uniformly O(h2
n) is straightforward but tedious. The

most simple case is if (u, v) ∈ [hn,1 − hn]2. Then, (42) boils down to

Dn(u, v) = EK

(
u − U1

hn

)
K

(
v − V1

hn

)
− C(u, v)

=
∫ 1

−1

∫ 1

−1
C(u − thn, v − shn)k(t)k(s) dt ds − C(u, v)

and the assertion follows simply by Taylor expansion.
Regarding the remaining cases, we will be dealing explicitly only with (u, v) ∈

[1 − hn,1]2. The other cases may be handled in a similar way.
Note that Taylor expansion together with the assumptions of the theorem imply

C(u, v) = u + v − 1 + O(h2
n) uniformly in (u, v) ∈ [1 − 2hn,1]2. Further, routine

algebra shows that (42) simplifies to

Dn(u, v) = EK

(
u − U1

hn

)
K

(
v − V1

hn

)

+ EK

(
u + U1 − 2

hn

)
K

(
v − V1

hn

)
(43)

+ EK

(
u − U1

hn

)
K

(
v + V1 − 2

hn

)

+ EK

(
u + U1 − 2

hn

)
K

(
v + V1 − 2

hn

)
− C(u, v).

Let us compute

EK

(
u − U1

hn

)
K

(
v − V1

hn

)

=
∫ 1

(u−1)/hn

∫ 1

(v−1)/hn

C(u − thn, v − shn)k(t)k(s) dt ds

+
∫ 1

(u−1)/hn

∫ (v−1)/hn

−1
(u − thn)k(t)k(s) dt ds

+
∫ (u−1)/hn

−1

∫ 1

(v−1)/hn

(v − shn)k(t)k(s) dt ds(44)
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+
∫ (u−1)/hn

−1

∫ (v−1)/hn

−1
1k(t)k(s) dt ds

=
∫ 1

(u−1)/hn

∫ 1

(v−1)/hn

(u − thn + v − shn − 1)k(t)k(s) dt ds

+
∫ 1

(u−1)/hn

(u − thn)k(t) dt K

(
u − 1

hn

)

+
∫ 1

(v−1)/hn

(v − shn)k(s) ds K

(
v − 1

hn

)

+ K

(
u − 1

hn

)
K

(
v − 1

hn

)
+ O(h2

n)

= · · ·
= (u + v − 1) + K

(
u − 1

hn

)
(1 − u) + K

(
v − 1

hn

)
(1 − v)

− hn

∫ 1

(u−1)/hn

tk(t) dt − hn

∫ 1

(v−1)/hn

tk(t) dt + O(h2
n).

Similarly,

EK

(
u + U1 − 2

hn

)
K

(
v − V1

hn

)

=
∫ (u−1)/hn

−1

∫ 1

(v−1)/hn

P (U1 > 2 + thn − u,

V1 ≤ v − shn)k(t)k(s) dt ds(45)

+
∫ (u−1)/hn

−1

∫ (v−1)/hn

−1
(1 − 2 − thn + u)k(t)k(s) dt ds

= · · · = (u − 1)K

(
u − 1

hn

)
− hn

∫ (u−1)/hn

−1
tk(t) dt + O(h2

n),

EK

(
v + V1 − 2

hn

)
K

(
u − U1

hn

)
(46)

= (v − 1)K

(
v − 1

hn

)
− hn

∫ (v−1)/hn

−1
tk(t) dt + O(h2

n),

EK

(
u + U1 − 2

hn

)
K

(
v + V1 − 2

hn

)
(47)

= O(h2
n).

Combining (43) with (44), (45), (46) and (47) gives us

Dn(u, v) = u + v − 1 + O(h2
n) − C(u, v) = O(h2

n),
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which was to be proved.

APPENDIX B: PROOF OF THEOREM 2

B.1. Weak convergence of the processes C
(LLS)
n and C

(MRS)
n . The proof of

Theorem 2 for these estimators goes completely along the lines of the proof of
Theorem 1, apart from a small difference in Step 2.

This difference is in calculating the bias term Dn given by (35) for Ĉ
(LL)
n

and by (42) for Ĉ
(MR)
n . The shrinking of the bandwidths by the function b(w) =

min{√w,
√

1 − w}, together with condition (9), guarantees that the Taylor expan-
sion

C
(
u − shnb(u), v − thnb(v)

)
= C(u, v) − shnb(u)Cu(u, v) − thnb(v)Cv(u, v) + O(h2

n)

holds uniformly in (u, v) ∈ [0,1]2 and (s, t) ∈ [−1,1]2. Applying the above ex-
pansion in the bias calculations completes the proof.

B.2. Weak convergence of the process C
(T)
n . The proof is completely analo-

gous to (and simpler than) the proof of Theorem 1 for Ĉ
(LL)
n . The only difference

is in calculating the bias Dn, which is for the estimator Ĉ
(T)
n given by

Dn(u, v) =
∫ 1

−1

∫ 1

−1
C

(
�

(
�−1(u) − shn

)
,�

(
�−1(v) − thn

))
k(s)k(t) ds dt.

As all the second order partial derivatives of C(�(�−1(u) − shn),�(�−1(v) −
thn)) taken as a function of (s, t) are bounded by the assumptions of the theorem,
Taylor expansion gives us Dn(u, v) = O(h2

n) uniformly in (u, v) which proves the
statement.

APPENDIX C: JUSTIFICATION OF BOOTSTRAP TESTS BASED ON Ĉ
(LL)
n

Denote the process underlying the goodness-of-fit statistics as Gn = √
n ×

(Ĉ
(LL)
n −C

θ̂n
) and G∗

n = √
n(Ĉ

(LL)∗
n −C

θ̂∗
n
) for its bootstrap version. In the follow-

ing lemma, we will suppose that the true copula C belongs to a known parametric
family of copulas C0 = {Cθ, θ ∈ 	}.

LEMMA C.1. Assume that the parametric family of copulas C0 satisfies the
assumptions of Theorem 1 of Genest and Rémillard (2008) and, moreover, the
derivative of the true copula Cθ0 with respect to θ is continuous as a function
of (u, v) in [0,1]2. Then, there exists a “nonstochastic” sequence of functions an

from [0,1]2 to [0,1], such that (Gn −an,G
∗
n −an) converges in distribution to two

independent copies of the same process.
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PROOF. From the proof of Theorem 1 of this paper, it follows that
√

nĈ(LL)
n = √

nC(E)
n + √

nDθ0
n + op(1),

where

Dθ
n(u, v) =

∫ 1

−1

∫ 1

−1
[Cθ(u− thn, v−shn)−Cθ(u, v)]ku,h(s)kv,h(t) dt ds.(48)

Thus, the processes Gn and G∗
n might be rewritten as

Gn = √
n
(
C(E)

n − C
θ̂n

) + √
nDθ0

n + op(1),(49)

G∗
n = √

n
(
C(E)∗

n − C
θ̂∗
n

) + √
nDθ̂n

n + op(1).(50)

As the empirical copula process
√

n(C
(E)
n − Cθ0) converges weakly, Theorem 1 of

Genest and Rémillard (2008) implies that the first terms on the right-hand sides
of (49) and (50) converge jointly in distribution to independent copies of the same
process. Thus, defining an(u, v) as

√
nD

θ0
n (u, v), it remains to show that

sup
u,v

|Dθ0
n (u, v) − Dθ̂n

n (u, v)| = op

(
1√
n

)
.

But this follows directly from (48), the first order Taylor expansion of C
θ̂n

around
the true value of the parameter θ0 and the assumptions of the lemma. �

APPENDIX D: VERIFICATION OF (9) FOR SOME FAMILIES OF COPULAS

We will verify assumption (9) only for Cuu. The assumptions about Cuv , Cvv

may be checked analogously.

Clayton and Gumbel copulas. Clayton and Gumbel copulas belong to an
Archimedean family of copulas given by

C(u, v) = φ−1(
φ(u) + φ(v)

)
,(51)

where the function φ is called a generator of the copula. The generator of a Clayton
copula is given by φ(t) = 1

θ
(t−θ − 1) with θ ≥ 0 and that of a Gumbel copula by

φ(t) = (− log t)θ with θ ≥ 1.
Direct differentiaton of (51) yields

Cu(u, v) = φ′(u)

φ′(C(u, v))
,

(52)

Cuu(u, v) = φ′′(u)

φ′(C(u, v))
− [φ′(u)]2φ′′(C(u, v))

[φ′(C(u, v))]3 .
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For a Clayton and a Gumbel copula, it is easy to verify that φ′′(u)
φ′(u)

= O( 1
u(1−u)

).
Hence, we can bound the first term on the right-hand side of the expression for
Cuu(u, v) in (52) uniformly in v by∣∣∣∣ φ′′(u)

φ′(C(u, v))

∣∣∣∣ ≤
∣∣∣∣φ

′′(u)

φ′(u)

∣∣∣∣
∣∣∣∣ φ′(u)

φ′(C(u, v))

∣∣∣∣ ≤
∣∣∣∣φ

′′(u)

φ′(u)

∣∣∣∣|Cu(u, v)|
(53)

= O

(
1

u(1 − u)

)
.

The second term on the right-hand side of the expression for Cuu(u, v) in (52) is
a more delicate one. For a Clayton copula, we have φ′(t) = −t−θ−1 and φ′′(t) =
(θ + 1)t−θ−2, which implies∣∣∣∣ [φ

′(u)]2φ′′(C(u, v))

[φ′(C(u, v))]3

∣∣∣∣ =
∣∣∣∣(θ + 1)[C(u, v)]3θ+3

u2θ+2[C(u, v)]θ+2

∣∣∣∣
=

∣∣∣∣(θ + 1)[C(u, v)]2θ+1

u2θ+2

∣∣∣∣(54)

≤ θ + 1

u
= O

(
1

u

)
,

using the Fréchet–Hoeffding upper bound for a copula [see Nelsen (2006)]. Com-
bining (53) and (54) verifies (9) for Cuu of a Clayton copula.

For a Gumbel copula we have

φ′(u) = θ(− logu)θ−1
(−1

u

)
,

φ′′(u) = θ(θ − 1)(− logu)θ−2
(

1

u2

)
+ θ(− logu)θ−1

(
1

u2

)
,

which implies

[φ′(u)]2φ′′(C(u, v))

[φ′(C(u, v))]3

=
(
θ2(− logu)2θ−2

[
θ(θ − 1)(− logC(u, v))θ−2 1

[C(u, v)]2

+ θ(− logC(u, v))θ−1 1

[C(u, v)]2

])
(55)

×
(
u2

[
θ(− logC(u, v))θ−1 −1

C(u, v)

]3)−1

= −(− logu)2θ−2C(u, v)

u2

× [(θ − 1)(− logC(u, v))1−2θ + (− logC(u, v))2−2θ ].
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When u → 0+, the key fact is that

C(u, v)

u2

(− logu)2θ−2

(− logC(u, v))2θ−2 ≤ u

u2

(− logu)2θ−2

(− logu)2θ−2 = 1

u
,(56)

and, when u → 1−,

(− logu)2θ−2

(− logC(u, v))2θ−1 ≤ (− logu)2θ−2

(− logu)2θ−1 = 1

− logu
= O

(
1

1 − u

)
.(57)

Combining (53), (55), (56) and (56) verifies (9) for Cuu of a Gumbel copula.

Normal copula. The normal copula is given by

C(u, v) =
∫ �−1(u)

−∞

∫ �−1(v)

−∞
1

2π

√
1 − ρ2

exp
{
s2 − 2ρst + t2

2(1 − ρ2)

}
ds dt,

ρ ∈ (−1,1),

where � is the cumulative distribution function of a standard normal variable.
By a direct computation (or with the help of properties of a conditional normal

distribution), we get

Cu(u, v) = �

(
�−1(v) − ρ�−1(u)√

1 − ρ2

)
,

whose derivative with respect to u is given by

Cuu(u, v) = −ρ√
1 − ρ2

φ

(
�−1(v) − ρ�−1(u)√

1 − ρ2

)
1

φ(�−1(u))
,(58)

where φ = �′. As φ is bounded, it is sufficient to deal with [φ(�−1(u))]−1.
L’Hôpital’s rule yields

u(1 − u)

φ(�−1(u))
∼ 1 − 2u

�−1(u)
= o(1), for u → 0+ (u → 1−),

which, together with (58), verifies (9) for Cuu of a normal copula.

Student copula. The Student copula (with m degrees of freedom) is given by

C(u, v) =
∫ t−1

m (u)

−∞

∫ t−1
m (v)

−∞
1

2π

√
1 − ρ2

(
1 + s2 − 2ρst + t2

m(1 − ρ2)

)−(m+2)/2

ds dt,

ρ ∈ (−1,1),

where t−1
m (·) is the quantile function of the Student distribution with m degrees of

freedom.
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Direct calculation shows that

Cu(u, v) = d(m+2)/2

fm(t−1
m (u))

1

(c + d)(m+1)/2

(59)

×
∫ (t−1

m (v)−ρt−1
m (u))/

√
d+c

−∞
(1 + x2)−(m+2)/2 dx,

where c = [t−1
m (u)]2, d = m(1 − ρ2) and fm is the density of the Student distribu-

tion with m degrees of freedom. Assumption (9) for Cuu of a Student copula can
be verified by differentiating (59) with respect to u. The useful facts (which follow
by l’Hôpital’s rule or properties of the density fm) are

t−1
m (u)

u
∼ 1

fm(t−1
m (u))

,

f ′
m(t−1

m (u))

fm(t−1
m (u))

= O

(
1

t−1
m (u)

)
for u → 0+ (u → 1−),

where f ′
m is the derivative of fm.
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