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C ∗-algebras

Definition
A is called a C ∗-algebra if

I A is an associative algebra, i.e.,
I A vector space over C
I multiplication map A× A→ A associative: (ab)c = a(bc),

distributes the additive and scalar structure:
(a + b)c = ac + bc, a(b + c) = ab + ac ,
(ka)b = k(ab) = a(kb)

I ∗ : A→ A an anti-involution, (xy)∗ = y∗x∗ and
∗∗ = (∗2) = IdA

I ν : A→ [0,∞) norm
I ν(x + y) ≤ ν(x) + ν(y), ν(λx) = |λ|ν(x)
I ν(x) ≥ 0 and ν(x) = 0 implies x = 0

I ν(xx∗) = ν(x)2 (star identity)S. Krýsl
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Examples:

Matrices
I V vector space of finite dimension n (over complex numbers)
I A = {L : V → V |L is a linear map} = End(A) = Mn(C )
I addition of linear maps, multiplication is composition of maps

(multiplication of matrices)
I ∗A = A†

I ν(A) = sup{|Av |; v ∈ V , |v | = 1} = max{|Av |; v ∈ V , |v | =
1}

Compact operators
I H a separable Hilbert space, (, )H : H × H → C, | | =

√
(, )H

I K (H) = {T : H → H, dim ImT <∞} - algebra of compact
operators

I |T | = sup{ |Tx |H|x |H ; 0 6= x ∈ H}
I ∗T = T ∗ - operator adjoint (separability)
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The difficulty of axioms for endomorphisms

K (H) is a C ∗-algebra.
I K (H) is associative (composition of maps is assoc.)
I ∗ : K (H)→ K (H) and ∗2 = IdK(H)

I | | : K (H)→ [0,∞) is a norm because | | on H is a norm
I |TT ∗| = |T |2 (quite difficult, spectras) |T ∗T | ≤ |T ||T ∗|

(easy)
I K (H) is complete with respect to | | (it is so defined)

S. Krýsl
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Further examples

Continuous functions
I X locally compact topological vector space =⇒ X has a

one-point compactification (infinity)
I A = Co(X ) vector space of continuous complex valued

functions vanishing in infinity
I (fg)(x) = f (x)g(x), x ∈ X
I f , g ∈ A implies fg ∈ A
I |f | = sup{|f (x)|; x ∈ X}
I f (x) = f (x), x ∈ X
I C ∗-identity: easy consequence of the properties of sup:

sup(|fg |) ≤ sup(|f |)sup(|g |), but
|ff ∗| = sup |ff ∗ | = sup|f |2 = (sup |f |)2 = |f |2

Convolution algebra on a locally compact group is in general
not a C ∗-algebra.
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Topology of the symplectic group

I Sp(2n,R) non-compact, retractible onto
K = Sp(2n,R) ∩ SO(n) ⊆ Sp(2m,R), K is isomorphic to
U(n)

I U(n) is of homotopy type of S1 = {eıφ;φ ∈ [0, 2π)} ⊆ U(n).

I π1(S1) ' Z,i.e., S1 can be entangled only by a spiral with Z
leaves

I Consequently, Sp(2n,R) is also of this type
I 2-folded covering (unbranched) is called the metaplectic group

Mp(2n,R)

I λ : Mp(2n,R)→ Sp(2n,R) the two-fold covering
I A (very nice almost irreducible) faithful unitary representation

of Mp(2n,R) exists σ : Mp(2n,R)→ U(L2(Rn))

S. Krýsl
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Definition on elements

Let g̃ ∈ Mp(2n,R) denotes an element from two-point λ−1(g).
Let A ∈ Mn(R) be symmetric (At = A) and B ∈ GL(n,R).

g1 =

(
1 A
0 1

)
, (σ(g̃1)f )(x) = e−ı(Ax ,x)/2f (x)

g2 =

(
B 0
0 (Bt)−1

)
, (σ(g̃2)f )(x) =

√
det Bf (Btx)

g3 =

(
0 1
−1 0

)
, (σ(g̃3)f )(x) = ±e iπn(F f )(x),

where F : L2(Rn)→ L2(Rn) denotes the Fourier transform,
f ∈ L2(Rn) and x ∈ Rn.

S. Krýsl
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History

I David Shale (when doing Ph.D. on Quantization of
Klein-Gordon fields by Segal, Irving Ezra Segal)

I Irving Ezra Segal: constructive quantum theory (C ∗-algebras,
representations of locally compact groups, a definition of the
state etc.), use of Stone-von Neumann theorem in QP

I André Weil (French number theorist and geometer, member
of the Bourbaki group) - representations of some ”discrete”
Lie groups arising in number theory

I Berezin - infinitesimal level (angeblich, according to S.
Gindikin)

I Bertram Kostant - use in geometric quantization
(rediscovering via polarization structures)

S. Krýsl
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Sketch reason for the existence

I Construction: Schrödinger representation of the Heisenberg
group (Heisenberg CCR, Hn), r : Hn → U(L2(Rn))

I symplectic twist Sp(2n,R)× Hn → Hn gives rise to other
(twisted) Schrödinger representations rg : Hn → U(L2(Rn))

I Stone-von Neumann: All are equivalent (even if twisted) ;-)
I The intertwiners Tg (’realizing’ the equivalences) compose in

the same way as the elements of the symplectic group modulo
signs (elements in e iφ)

I Weil co-cycle computation: it is a true rep of the double-cover
of Sp(2n,R), i.e., of the metaplectic group Mp(2n,R)

S. Krýsl
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Symplectic manifolds - Phase spaces

(M, ω) a symplectic manifold

1) ω ∈ Ω2(M) - exterior (anti-symmetric) differential two-form

2) ωm : TmM × TmM → R non-degenerate for any m ∈ M

3) dω = 0 (crucial for the Jacobi identity for the Poisson
brackets)

1) and 2) imply dim TmM(= dim M) is even
Basic examples:

I (R2n[q1, . . . , qn, p1, . . . , pn],
∑n
i=1 dqi ∧ dpi ) canonical

symplectic space
I (T ∗M, ω = dθL) cotangent spaces

S. Krýsl
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Examples

I (S2(r0), ω = r20 sin θdφ∧ dθ), i.e., sphere with the volume form
I no other sphere (except perhaps S0 = {−1, 1}), Stokes

theorem
I even dimensional tori (T 2n = S1 × . . .× S1,
ω =

∑n
i=1 dφi ∧ dθi )

I Kähler manifolds, many of homogeneous spaces (e.g., G/H
where G ,H are complex Lie groups), connection to Einstein
manifolds (many Einstein manifolds are Kähler or
homogeneous spaces)

S. Krýsl
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Metaplectic structures

I M a symplectic manifold
I P = {e =

(e1, . . . , e2n); e is a symplectic basis of (TmM, ωm),m ∈ M}
I bundle of symplectic reperes
I P is a Sp(2n,R)-principal bundle (Sp acts from the right)
I Q be a two-fold covering of P metaplectic structure
I Q → M defines a bundle over M, a principal

Mp(2n,R)-bundle
I Mild condition on (M, ω) for the existence of Q
I All cotangent bundles of orientable manifolds

S. Krýsl
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Oscillator bundle and symplectic spinors

I Set H = L2(Rn)
I H = Q×σ H associated bundle, induced bundle, fiber change
I H = Q× H/ '
I (e, f ) ' (eg , σ(g−1)f )

I ”From observers to observable quantities”
I metaplectic, symplectic spinor, Kostant’s spinor,

Segal-Shale-Weil, Weil, oscillator bundle
I An analogue of the spinor bundle (at the algebraic and

geometric level)
I one can construct Dirac-type operators on Γ(H) (K.

Habermann)

S. Krýsl
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Definition of Hilbert and pre-Hilbert A-modules

Definition
Let A be a C ∗-algebra and H be a vector space over the complex
numbers. We call (H, (, )) a pre-Hilbert A-module if

H is a right A-module – operation · : H × A→ H

(, ) : H × H → A is a C-bilinear mapping

(f · T + g , h) = T ∗(f , h) + (g , h)

(f , g) = (g , f )∗

(f , f ) ≥ 0 and (f , f ) = 0 implies f = 0

We say T ∈ A is non-negative (T ≥ 0) if T = T ∗ and
Spec(T ) ⊆ [0,∞).
Spec(T ) = {λ ∈ C; T − λ1 is not invertible in A0}, where
1 = (0, 1) is the unit in A0 = A⊕ C (augmentation)

S. Krýsl
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Definition of Hilbert and pre-Hilbert A-modules

Definition
If (H, (, )) is a pre-Hilbert A-module we call it Hilbert A-module if
it is complete with respect to the norm | | : H → [0,∞) defined by
f 3 A 7→ |f | =

√
|(f , f )|A where | |A is the norm in A.

Trivial example: A a C ∗-algebra
Define · : A× A→ A by a · b = ab and (a, b) = a∗b.
Right: a · (b · c) = a · (bc) = a(bc) = (ab)c = (ab) · c
Further: (a · b, c) = (ab, c) = (ab)∗c = (b∗a∗)c = b∗(a, c).
(a, b)∗ = (a∗b)∗ = b∗a = (b, a)

S. Krýsl
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Examples of Hilbert A-modules

I For A = K (H), the C ∗-algebra of compact operators on a
separable Hilbert space (H, (, )H), M = H is a Hilbert
A-module with respect to

I f , g , h ∈ H and T ∈ K (H)
I f · T := T ∗(f ) ∈ H
I (f , g) = f ⊗ g∗ ∈ K (H) where (f ⊗ g∗)(h) = (g , h)H f

I Proof.

S. Krýsl
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Examples of Hilbert A-modules

I An = A⊕ . . .⊕ A is a Hilbert A-module with respect to
a · (a1, . . . , an) = (aa1, . . . , aan) and the product given by
(a1, . . . , an) · (b1, . . . , bn) =

∑n
i=1 a∗i bi

I If M is a Hilbert A-module, then Mn = M ⊕ . . .⊕M is a
Hilbert A-module with respect to
a · (m1, . . . ,mn) = (a ·m1, . . . , a ·mn) and the product given
by (m1, . . . ,mn) · (m′1, . . . ,m

′
n) =

∑n
i=1(mi ,m′i )

I Further generalizes to `2(M) controlled by the convergence in
A. Special case `2(A) (M = A)

S. Krýsl
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Distinguished features of the K (H)-module H

H = L2(Rn)

I H is a Mp(2n,R)-module and it is a K (H)-module
I The K (H)-structure make us able to measure the quantities in

H
I They do not commute or anti-commute.
I The metaplectic structure makes us able to place H on our

manifold (in accordance with the dynamics/geometry)
I On a manifold - on the oscillator bundle - the K (H) and

Mp(2n,R)-structures are compatible

S. Krýsl
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Banach bundles

I p : G → M be a Banach bundle, bundle of Banach spaces
with transitions into the homeomorphisms of a Banach space.

I Gx := p−1({x})
I x 7→ Gx (family of Banach e.g. Hilbert spaces parametrized by

x ∈ M)
I Let s : M → G be a section of G, i.e., p ◦ s = IdM
I Γ(G) = {s : M → G|p ◦ s = IdM}
I Any family is a section. Any section is family.
I Γ = Γ(G) is a vector space
I M compact, one can make a completion of Γ W 0,2(G)
I Defined similarly as the Sobolev spaces but we must know

how to integrate Banach valued functions (on a measure
space or on a manifold)

S. Krýsl
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C ∗-Hilbert bundles

Bundles /Fibrations/Bündeln/Fibré (Champs continus,
Dixmier)/Stohy /Snůšky
Not sheaves (= ne svazky). But bundles give rise to sheaves.

I An A-Hilbert bundle is a Banach bundle the fibers of which
are homeomorphic to a fixed Hilbert A-module H and the
transition functions are into AutA(H)

I If E → M is an A-Hilbert bundle over a compact M, then
Γ(E) is a pre-Hilbert A-module.

I completions of Γ(E) as in the Banach case, W k,2(H)

I These completions form Hilbert A-modules
I W k,2(H) isomorphic to `2(H) via Kasparov stabilization -

quite complicated

S. Krýsl
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Avoiding the symplectic and the compactness assumption

I M contact manifold with a Riemannian structure
I take Finsler manifold (some necessary compatibilities)
I The group of projective canonical transformation act on the

contact repére bundle (projective - can change the time)
I It is the so-called contact parabolic subgroup

P ⊆ Sp(2n + 2,R)
I It has also ”the” Segal-Shale-Weil representation (by inducing)
I Make the association
I You have a Hilbert bundle
I Do the analysis: One define the infinity
I Infinity in the time dimension
I At each time, the universe might be a modeled by a compact

manifold and then the analysis above may apply.

S. Krýsl
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De Rham complex tensored by the oscillatory bundle

I (M2n, ω) symplectic manifold
I admitting metaplectic structure
I H → M
I
⊕2n
k=0

∧k T ∗M → M
I
∧• T ∗M ⊗H → M

I Kuiper (’60): H is globally trivial; trivializing section defines a
flat connection ∇

I d∇k (α⊗ h) = dα⊗ h + (−1)kεi ∧ α⊗∇eih where (ei )i=1,...,2n
(εi )i=1,...,2n frame and dual coframe

I dk+1dk = 0 since d (de Rham is flat) and ∇ is flat

S. Krýsl
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Cohomology groups are Hausdorff if A = K (H)!

Theorem (Krýsl, Ann. Glob.Anal. Geom. 2014): Let M be a
compact manifold, A a C ∗-algebra, (Ek)k∈N0 a sequence of finitely
generated projective A-Hilbert bundles over M and
Dk : Γ(Ek)→ Γ(Ek+1), k ∈ Z, a complex D of differential
operators. Suppose that the Laplace operators 4k of D have
closed image in the norm topology of Γ(Ek). If D is elliptic, then D
is a self-adjoint parametrix possessing complex in K (H∗A).
Moreover, the cohomology groups of D are finitely generated and
projective Hilbert A-modules.
Theorem (Krýsl): If A is a C ∗-subalgebra of the algebra of
compact operators K (H), one may drop the closed image
assumption on the Laplacians.

S. Krýsl
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