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On Bounded ¥} Polynomial Induction

JAN KRrRAIGEK! AND GAIlst TAKEUTI

Abstract. We characterize the bounded first order consequences of theory
U} in terms of a limited use of exponentiation, we construct a simulation
of U ! by the quantified propositional calculus, and we prove that Uz is

not conservative over JAg and that it is stronger than a conservative Al
extension of S3. As corollaries we obtain that Uz is not conservative over

TNC and that E;.’—consequences of U} are finitely axiomatizable (j > 2).
ol

We also show that U plus a version of Hi'b—SEP is conservative over

U}(BD) w.r.t. bounded formulas.

§0. INTRODUCTION

Bounded arithmetic Sy(= T3) and its second order version Uy (= V;) were
introduced in Buss [1]. S; is conservative over IAg + &, cf. Paris-Wilkie
[12). These theories and their fragments S§, T4, Uj and Vj are closely
related to various complexity classes and the separation problems for them
are relevant to separation problems in complexity theory. For example, the
collapse of S, implies the collapse of the polynomial hierarchy, cf. Krajicek—
Pudldk-Takeuti [10], and U} = V3! implies PSPACFE = EXPTIME, cf.
Buss [1]. ‘

In Clote-Takeuti [3] theory TNC (=“theory for NC”) was defined, as a
subtheory of $3. Again, TNC = S} implies P = NC.

The problems whether U; or V3! are conservative over S; were posed in
Buss [1]. In [8] it was shown that V3 (in fact, V§ + “f is total” for any
reasonable f eventually majorizing all S,-terms) is not Hl—conservatlve
over Sy. Here we investigate the problem whether U} is conservative over

Ss.

First we show a connection of quantified propositional calculus G to U}
in the sense of Cook [4], Dowd [5] and Krajicek-Pudisk [9]. That is, we
show that U} proves the reflection principles for G and that G simulates
Ul-proofs of bounded first order formulas.

The connection of G and U} is not surprising as by Buss [1] U} is closely
related to PSPACE and by Dowd [5] G (or better, a calculus equivalent
to G) is related to PSA (PSPAC E-arithmetic), an equational theory with
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260 Jan Kraji¢ek and Gaisi Takeuti

PS PAC E-functions analogical to PV of Cook [4]. However, from this 011
simulation and results do not follow. This is because we want a propes!

tional translation of a L!—formula to have i blocks of the like quantific!

(i.e. to be Ti-propositional formula of [9]), but the quantifier complexity
of a translation of equations in Dowd [5] grows with the length of the inpu
and with the space bound.

The translation we use is the same as in Kraji¢ek-Pudlék [9].

This gives the characterization of VZ!—consequences of U} as S} +i-
RFN(G), and hence entails finite axiomatizability of vz(U3). (It also
allows to reduce the original question to a polynomial simulation problems
of G; versus G, similarly as in [9].)

We also characterize the bounded first order consequences of U}, denoted
£ (UD), as TNC + 1 — Ezp, in the manner of Kraji¢ek (7, 8]. That is,
we show that for ¢ € T8, : U} F ¢(a) <= TNC - “249) exists” — ¢(a),
t(a) some term. This gives that U is not conservative over TN C, as
TNC + 1 — exp is stronger than TNC.

Then we construct a A}”’—extension of S, by adding Al*-CAand A*-
IND to Sa{a). This Al*—extension is conservative over §;. We show that
U} is stronger than the A}'b-—extension; in particular, U} can define the
parity of the set {z € a|z| = |a|} while the later theory cannot—for this are
used results of Hastad [6] and Yao [16] about the complexity of the parity
function.

Finally we show that U} is not conservative over IAg. This is proved by
showing that U} proves a form of consistency of IAg unprovable in IA,.
The consistency notion is that one studied in Takeuti [14] and Krajicek(7].

The paper is organized as follows. In §1 we recall the definitions of
1

o
G, TNC and TNC + 1-exp. In §2 we show that U, is conservative over
U}(BD) w.r.t. X5 ~formulas and in §§3, 4 we prove the reflection principles
for G in U} and construct the simulation of U} by G; the corollaries are
then derived in §5. In §6 we show the relation of TNC + 1 — Ezp and U}
and finally in §§7, 8 we prove the non—conservativeness results of U} versus
the A}'b—extension of S; and IA, respectively.

We assume knowledge of Buss [1] and Kraji¢ek-Pudlik [9]; knowledge of
Takeuti [14] or Kraji¢ek [7, 8] is useful.
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§1. PRELIMINARIES

In this section we recall some notions and facts around the quantified
H'opositional calculus and the definition of TNC to make the paper more

“f contained. The details and proofs can be found in Clote-Takeuti 3]
and Kraji¢ek-Pudlak [9] respectively.

Quantified propositional formulas are formed from atoms (called free
atoms) p, ¢,..., constants 0, 1, by usual connectives =, A, V, D, and
by quantification: if A(p) is a formula then JzV(z) and VzA(z) are too
(with the semantical meaning A(0) V A(1) and A(0) A A(1) respectively).
They are classified by their quantifier complexity to a hierarchy £ — []7,
analogically with the arithmetic hierarchy.

Quantified propositional calculus G is a Gentzen—style propositional cal-
culus allowing quantification of propositional variables and is formulated
completely analogically with predicate calculus LK, cf. Takeuti [13].

Thus beside the usual structural rules (including the cut-rule) and the
propositional rules there are the following right quantifier rules:

I'—4, Ap)

Y 1 POt A © 1
neht A Vav(s)’

provided p does not occur in the lower sequent,

. - A, A(B)
q )
oght TR Tawe)
where B is any propositional formula, and the corresponding left rules.
Atoms z, y,... are called bounded and have never a free occurence in a
formula.

Initial sequents of G has the form:

pP—p,s
0—

- 1.

Proofs in calculus G are sequences of sequents, not necessarily trees.

To any bounded arithmetic formulas A(a) (in the language of S;) and
any m < w is assigned a propositional translation [A]™(7) with free atoms
(p1s--+sPm) = P. The crucial property of the translation is that it rep-
resents A(a) for a’s of length < m. That is: if n has length < m and
€15+« €y are its digits then A(n) is true if [A]™(p;/¢;) is true.
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A translation of equations was considered in Cook [4]. The idea is that
any term defines a PTTM E—function and thus its value can be computed by
boolean circuits of polynomial size; these can be easily turned into propo
sitional formulas. The translation of bounded quantifiers used in Kraji¢ek-
Pudlék [9] is based on the observation that in A(n) the quantifiers range
only over numbers of the length polynomial in the length of n and thus a
single bounded quantifier can be translated by a polynomialy long block of
the like propositional quantifiers. Sharply bounded quantifiers are trans-
lated by conjunctions resp. disjunctions of polynomial size.

There is certain ambiguity in this definition: as terms can denote numbers
of length larger than m we should specify for each subformula B of A
number mp with respect to which the subformula is translated, cf. [9,
the notion of bounding polynomial]. However, these numbers mp can be
chosen polynomial in m and sufficiently large such that the translation is
correct, i.e. it reflects the truth of A. Their exact choice is not important.

The details of the definition can be found in [9]. We only mention four
basic facts.

(a) If A is B§ then [A]™ can be written both as X and []{ (and the
equivalence is provable in G—in its fragment, in fact).

(b) If A € =? then [A]™is B¢, i > 1.

(c) The length of [A]™ (A fixed) is polynomial in m. In fact, the function
constructing from 0™ the formula [A]™is PTIME and definable—with its
properties—in §3.

The main property is the following simulation:

(d) ¥T; F A(e) then [A]™s have G—proofs of polynomial size (in fact,
definable in 53).

A much more precise statement can be given relating fragments of G with
fragments T3, cf. Krajicek-Pudldk [9].

For > 1 we have a VE;-sentence formalizing:
“f A€eZ] and G F A then A isa tautology”.

This sentence is denoted j—RFN(G). For the formalization see [9]. We shall
show that j~RFN(G) is the strongest (over §}) VI!-sentence provable
in U}. From (d) it follows that j~RFN(G) implies (over §}) all YZ!%-
consequences of T5.

Theory TNC was defined in Clote-Takeuti [3]. The language of the
theory is the language of S, augmented by the function symbol truncate
(=,4) := “the first ¢ bits of =”. Using this function symbol we can define
function bit(z,7) := “truncate (z,7) modulo 2”,i.e.“the i’th bit of z”.

Theory TNC is axiomatized by a finite number of basic axioms stressing
the elementary propertis of the symbols in the language and by axioms:
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Extensionality:

(lzl = ly| AVi < |z|, Dbit(z,i)= bit(y,i))Dz=1y.

%=L, IND:

(A(0) AVz, A(z) D A(z + 1)) D Vz A(||z|]).
Formula A must be Z}. (This axiom was in 8] denoted £}~LLIN D).
[I3-SEP:

(Vt, A(t) v B(t)) D VzIy < 2(14z)
Vt < |z|, (A(2) V bit(y,t) = 0) A (B() V bit(y,t) = 1).

Here again formulas A, B have to be Z8.
The principal use of H:—SEP in [3] is to derive a form of A} — CA :

(Vt, A(t) = B(t)) D Vz3y < 2(1#z)Ve < |z|; A(t) = (bit(y,t) = 1),

where A is X2 and B is H: The extensionality axiom implies that the y
above is unique.

A crucial fact about TNC is that it $2—defines precisely NC—computable
functions. For the details of the definition of TNC see Clote-Takeuti [3].

For R any system of bounded arithmetic we define the set of bounded first
order formulas R+1— Ezp, a particular case of the construction considered
in Krajicek (7, 8].

A (bounded first order) formula A(a) belongs to R+1~ Ezp <= there
is a term t(a) s.t.

R F “2t(a) <" A(a),

where c is a free variable not occurring in A. The antecedent clearly stands
for “24®) exists”.

Alternatively we can characterize R + 1 — Ezp model-theoretically as a
[1;-theory of initial segments of models of R with elements bounded by
some |c|, ¢ an element of the model. That is, A(a) isin R+1— Ezp <=
for any model M |= R and any I C. M a substructure s.t. for each m € I,
M |= “2™ exists”, it holds:

I'=VzA(z).
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Pairs (I, M) are called in [8] 1-fold models of R and we shall use fhis
terminology below.

1
§2. U, AND U}(BD)

Although we talk in the whole paper about U} or U}(BD) we consider
only second order variables for sets but not for functions (such subsys-
tems are in Buss [1] named U} and }(BD)). The systems with function
variables are (fully) conservative over the systems without them and the
arguments are easier.

LEMMA 2.0. Forany 4 a Ei'b—fotmbula, U}(BD) proves:
IoVz < [t]; A(z) = o(z).
Proor: By £]*~PIND prove that there is the maximal & < [t +1 s.t.

there is ¢!l of cardinality & satisfying Vz < [t], o(z) D A(z).
For details see Takeuti [15]. j

Now let us consider a form of bounded [I*~SEP axiom:

(V2,2 A() V ~B(2)) — Va3p®Vt < =, (A(t) D ¢*(1)) A (B(t) D % (1)),
where A and B are [[}**~formulas.
THEOREM 2.1. U}(BD) proves the bounded [[*~SEP axioms.
Proor: Take formula C(a, b): :
Vs <b3pVE<b, (s<t<s+ad((A®)D P* (1) A (B(2) D ~0*(2)))).
Obviously U}(BD) proves the sequent
(Vt,-A(2) v ~B(1)), C([g 1,8) = C(a, b).
By E}*~PIND it follows then:
(Yt~ A(t) V2 B(2)), C(0,8) — C(b, ).

As C(0,b) is trivially provable (or instance of Lemma 2.0 for ¢ = 0-a.s,
parameters are allowed), the axiom of bounded H}'b—S E P follows. §
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ol :
[lEOREM 2.2. U, is conservative over U} (BD) w.r.t. first order bounded
firmulas.

I'iiooF: We give a simple model-theoretic argument; an effective procedure
1

o
constructing a U3 (BD)-proof from a U,-proof of a first order bounded
formulas can be given following the similar argument about V3! in [15].

Assume U} (BD) F A(a), where A is a first order bounded formula. Thus
there is a model M = (M, X) of U}(BD) and m € M such that:

(M, X) [~ A(m).
Moreover, by compactness we may assume that for some c € M,
MEtm)<e
is true for all terms t.
Then define M' = (M', X") by:

M'={n€ M| forsometerm t:M |[=n<t(m)},
X'={a°nM'laf € X}.

ol
We claim that M' as a model of U,. It is obvious that
M = 8y(e) + AV - CA.

Observe that for any bounded formula B(a) there is a term ¢ s.t. B(a) =
B!(a) where B'(a) arises from B(a) replacing all set variables a, ¢ by o
resp. by ¢*.

By Theorem 2.1, M |= bounded H}’b —SEP. Applying bounded

1® _SEP to formulas B(a), C(a) € [I}* st. M |= Vz, B(z) == C(2)
gives an instance of bounded A}® — CA:

M |= 3oz < ¢; z € ¢° = B(z).
By the observation above for ¥ = N M":
M' =Vz; z € ¢ = B(z).
Finally M’ |= Z}b —PIND follows (again using the above observation)

from
1,b

MY -PIND.
1



266 Jan Krajicek and Gaisi Takeuti

The theorem then follows, as obviously
M'E _A(m)
holds too. §

ol
In the next sections we shall freely pass from I 2 to U3(BD) when talking
about first order bounded consequences.

§3. REFLECTION PRINCIPLES FOR G IN Ul.

Here we show that all reflection principles i~ RFN(G) are provable in Ul.
This is because U} can I} *~define true quantified propositional formulas.

THEOREM 3.0. For all i < w,

U} +i— RFN(G).

PROOF: The set of true quantified propositional formulas is in PSPACE
and so it is Ei'b—deﬁna.ble. A particular Ei"’—deﬁnition is constructed as
follows.

Let f(A) be a polynomial time function which assigns to a quantified
propositional formula A one of its prenex forms; such function is Zi’—
definable in S by induction on the logical complexity of A using few prenex
operations. Then define;

Tr(A,r) = “3 Skolem functions for f(A) witnessing the existential quan-
tifiers for any truth evaluation of the universally quantified atoms, where
free atoms of f(A) are evaluated by r.”

Skolem functions are coded by a set, the details of the definition are obvious.

Tr satisfies Tarski’s conditions, this is easily verifed by induction on the
logical complexity of 4 (i.e. by T1** ~ PIND).

As Tr(A,7) = -Tr(~4,7) is U3-provable formula T'r is, in fact, A}®
w.r.t. U}.

Assume now that d is a G-proof, i.e. a sequence of sequents d =
S1,...,8,. Then by induction on i we prove:

STr(Se,n) - [(3j<r-ddre {0,1}*, ~Tr(S;, 7))V
V(3i<r, S isinitial A 3r, “Tr(S;,7))].

As §; must be initial, taking ¢ := r — 1 gives:

~Tr(S;,n) - 35; initial 3r, Tr(S,7).
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Since all initial sequents are tautological, S, must be true for all evaluations

7.
Finally, if S, € £{ then Tr(S,,n) — SSati(Sr,7n), where §Sat;(Sr,7) is
A%, ,—truth definition for £{-sequents used in [9]. I

(Observe that the above proof works also if D is a G-proof coded by a
set instead by a number. That is, D is a set {< 1, §1 >,...,< 7, §r >}
coding “proof” §y,...,S5,. Not every proof coded by a set can be coded by
a number,as exponentiation is not total in U} (cf. §6).)

§4. THE SIMULATION OF U} BY G.

The aim of this section is to prove the following simulation theorem, a
result in the line of simulation of PV by EF in Cook [4] and of T} by G;
in Kraji¢ek-Pudlik [9].

THEOREM 4.0. Let A(a) be first order bounded formula and assume that
Ui + A(a).

Then for each m < w there is a G-proof d,,, of [A]™ whose length is poly-
nomial in m. Moreover, this is provable in S3:

Sikvy, G F[AJM &

We shall prove a stronger statement (Theorem 4.1) whose immediate
corollary Theorem 4.0 is. In Buss [1] a witnessing theorem for U}-proofs
of Ei’b—formulas is proved where the second order existential quantifiers
are witnessed by PSPAC E-functionals. Theorem 4.1 is a propositional
version of this theorem.

We shall work with U3(BD) rather than U} itself (allowed by Theorem
2.2) and to simplify the argument we shall assume that all E}’b(BD)—

formulas are of the form:

3t A(a,a", ¢"),

where A is Ztl)'b(BD). This can be achieved by introducing to the language
a functional coding finite sequences of sets:

n € (i,a) <= (i,n) € a,

and relevant axioms to BASIC implying (with PIN D) E}'b—replacement.
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We shall also use a propositional translation of Z},'b(BD)—formul‘
which we make the following convention: a translation [A(a, @)]™ of A
is constructed as in the first order case, just atomic formulas a(z) are |
lated [a](q1,...,9s). Here {a] is a new metavariable for quantified p
sitional formulas. Such metavariables shall never occur in a G~proof; |
are introduced only as a convenient notation. For example, [A(a, a//

[A(e, )}([1/[B]).

There is certain ambiguity in this definition as n (the number of atoms)
in the metavariable [a] is not explicitly specified. This is treated as in
§1: n is larger than the length of any value of a term occurring in a when
evaluating the formula on inputs of length < m.

Now we can state the theorem.

THEOREM 4.1. Let 3¢'A(a,a’,¢!) and Ip"B(a,c?,¢") be 31*(BD)-
formulas, A and B E(l)'b(BD)—formulas, and assume:

U; (BD) +- 3¢*A(a,a®,¢!) — 3" B(a,a®,¢").
Then for each m there is a quantified propositional formula with metavari-

ables
W ([T, [4])
such that for any quantified propositional formulas C, D it holds:

G+ [Al™(p,[°]/C, 4]/ D)
= [BI™(5,[«*)/C, [/ Wm([2°1/C, [¢'])/ D))

Moreover, this is provable in S} :

S% + Vy3W|y|VC, D;

G F [AIM(5, [}/ C,[4)/ D)
= [B1¥(5, [o"1/C, [¢")/ Wiy ([]/C, [4']/ D).

Here C and D are assumed to have the appropriate number of atoms and
Wy, may contain atoms p too.

Proor: Fix m. To simplify the reading of formulas we shall write [1
instead of [ ]™ and we shall not explicitly write superscript bounds in
predicate variables.
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Let d be a U}(BD) proof of:
364(a, a,8)  FpB(a, 2 9).

By cut—elimination {cf. [1]) and the discussion above we may assume that
all sequents in d have the form:

3¢iAi(aa E, a, B, ¢i)’ e 7r - A’ vy gijj(aa (.71 «, ﬁy ‘pjjy

where T', A are cedents of 3 3"*(BD)~formulas and 4;,...,Bj,... ate
Z(l,'b(BD) too (b and § will be omitted further).

By induction on the number of inferences above the sequent we construct
propositional formulas with metavariables

wi([el, 6T, -- -, [#d,- .

and show that for any C,..., D;,... G proves:
oo [AJA/C, .., 18/ Diy .}y, [T]
[AL,. ... [Bil([e]/C,.. .. leil/Wi([e]/C,.. ., 18]/ Ds, - . .))-

(Here [I'} resp. [A] denotes the cedent of translations of formulas in T resp.
in A.) Formulas W7 will be called witnessing formulas.

Moreover, to be able to formalize the construction in S} we have to
show that the length of W7 is polynomial in m and that the length of the
G-proofs is polynomial in m, |C] and |Dy)’s.

We proceed by considering several cases according to the type of the last
inference.

(a) A : right. The principal formula

E(a,a) A F(a,a)

must be Y0*(BD) and belongs to A. Let W resp. W be the witness-
ing formulas already constructed for the upper sequents of the inference
containing F resp. F. Then define:

Wi = [EAF]V(ILEAFIAT) Vv ([LFIATW

It is obvious that the sequent is correctly witnessed but we have to show
that all its instances have actually polynomial G-proofs, as it is required.
The G-vproof considers three cases
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(i) [E A F]([«]/C) is true,
(i) (I-E A F]([]/C) is true,
(iii) ([-F]([e]/C) is true.

The formulain (i) is itself in the succedent and so there is nothing to prove.
In the second case first show:

Q) wilel/c, ,[$1/Di, =W(lal/C, ,I1/Di,
and then:
[B;1([e]/C, . .Le/Wi(lad/C, ..., [d/D;,..))

= [B([d/C;- ... [e) /W ([ed/C, .., [#:1/ Dy . .)-

(1) is proved from the definition of W4 and (2) is proved by induction on
the logical complexity of B; using proofs of the same for subformulas of B;
and (1).

The third case is handled similarly. Then by cuts these three cases are
joined into a proof of the required instance.

©)

(b) contraction : right. The non-trivial case is only when two occurrences
of a proper 3°1"°(BD)—formula are contracted:

= ,3¢B(a,a,9),IpB(a,a,¢),

-

Let W resp. W be the two witnessing formulas corresponding to the two
occurrences of the formula in the upper sequent. Then define:

W = ([BI([el, [¢]/W) > W) A (-[BI(e], [¢)/W) > W).

A G-proof of an instance is constructed as above considering two cases
whether [B]([a]/C,[¢]/W([a]/C,...,[$:]/D;,...)) is resp. is not true.
Then W([a]/C,...,[#:il/Di,...) is either equivalent to

W(lel/C,...,[4:]/D;,...) or to W([a]/C,...,[#:]/D;,...) and the proof
is completed as before.

¢) 3: right, >°2*(BD) — CR. This inference has the form:
4.: nght, ) o

vee— L, I?_[_ﬂ;_,_r.r, pliF{a,al),...

where E is Z;'b(BD). Simply put:
W = [E]([e]).
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(dy E}’b—PIND. Consider two cases when the induction formula is resp. is

1t 3o*(BD).

The first case is an instance of the translation of first order induction and
by [9] is provable in G, cf. property (d) of [ ]in §1.
In the second case assume the induction is:

..., 39E(|2],a,¢) = I0E(b,a,¢),...
.oy 3PE(0, 0, ¢) — JE(t, , ), . ..

and let W(a,b,a,...,d;,...,¢) be the witnessing formula constructed for
the upper sequent.

Define terms tx, k = n, n — 1,...,0 by: t, := ¢, i := [t—"zﬂj Observe
to = 0. Here again n is the maximal length of value of ¢ when parameters
have length < m. Then put:

W) = W(a,b/t1,a, ¢i, $)

and
W(k+1) = W(ay b/tk+1, «, ¢i1 ¢/W(k))1

for k < m, and
W=wm,

It is easily seen that W(*) witnesses implication:

3¢E(01 a, ¢) hd B‘PE(tk’ Q, ‘P),

and hence W has the required properties. A G-proof verifying this is
constructed by joining by cuts n G-proofs verifying correctness of instances
for the upper sequent with b and ¢ being respectively #; and ¢, t; and
w, ... t, and WD, Asnis polynomial in m we have only to verify
that W is polynomial in m. However, we must be careful here: if ¢ has at
least two occurrences in W then the length of W(¥) grows exponentially in
k and so W would not have the length polynomial in m. Hence before the
construction we have to put first W into G—equivalent form with only one
occurrence of ¢, following some standard trick, cf. [11].

The remaining rules are analogical or dual (or trivial) to the rules treated
above and we skip the details.
The construction of the witnessing formulas as well as of the required

G-proofs is effective with polynomial bounds and so is readily formalized
in S%.
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Finally, let us note that the witnessing formulas can be chosen i
uniformly as quantified boolean formulas coding computations of
PSPACE machines, cf. [11]. This would, however, require more de' i
construction. |

$5. COROLLARIES TO THE SIMULATION

THEOREM 5.0. Fori > 2, the set of Tt~consequences of U} is axiomatized
by S} + i-RFN(G). Thus the set of first order bounded consequences of
Ul is axiomatized by §} 4+ {¢ — RFN(G)|i < w}.

ProoF: The second part of the statement follows from the first part.
Formula i — RFN(G) is !, cf. §1, and by Theorem 3.0 provable in U}.
Let A(a) be a £t consequences of U}; then by Theorem 4.0:

S} FVy; G F[A]W.
By the reflection principle then
S3F i— RFN(G)D “Vy;[A]¥ € TAUT”.
But by Kraji¢ek-Pudlék [9],
S3 F “[AI¥ € TAUT” - Vz,|z| < |y] D A(z).
Putting this together we get:

S1+i— RFN(G)} A(a).
This proves the theorem.

CoroLLARY 5.1. For each ¢ > 2, the set of L}-consequences of U} is
finitely axiomatizable. 1

§6. U} AND TNC

In Krajitek [8] it was shown that the set of bounded first order con-
sequences of V4, denoted Y (V4), is exactly S§§ + 1 — Ezp. Also it was
1

observed that Ego(;] 2) proves
2‘1’ ~LyIND +1 - Ezp,

(and analogically for ¢ > 1. Rule L,JN D is in [8] denoted LLIND.) Here
we show that £8 (U3}) is precisely TNC + 1 — Ezp and, in general,
£ (U)) is

TNC+ 3%t~ L,IND 41— Ezp.
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I'HEOREM 6.0. For i > 1 it holds: the set of bounded first order conse-
‘iuencs of U§ is precisely

TNC + X% — L,IND + 1 - Ezp.

Proor: The proof is analogical to the proof of Thm 2.5 in [8]. We recall
the idea of the proof and then discuss only steps needed for the extension
of the proof from [8] to our case. The idea is the following.

1

Having (M, X) a model of l}z we define a model M’ of TNC: the el-
ements of M’ are pairs (a,a), @ € X, a € M. We think about (o, a) as
coding number £{2{|i < a,(i)}. With this interpretation in mind it is
easy to define in the obvious way operations on M’ (for these definitions
one needs bounded A]” — CA). As an element @ € M can be identified
with the pair (aq, |a|), where a, is the set {i|bit(a, i) = 1}, M is naturally
identified with an initial segment of M'. Pair (M, M’) then forms a 1-fold
model of TNC.

On the other side, having a 1-fold model (I, M) of TNC we define X as
the class of all bounded subsets of I coded in M. That is:

X ={aCIla bounded, a = {ilbit(a,i)=1}, forsome a€ M}.
) : 1
Then (I, X) |=l'3' 3 (BD). An easy compactness argument, together with
Theorem 2.2, then establishes the result.

In [8] it was shown that model M’ satisfies £ — L,IND. As extension-
ality is obvious it remains to observe that

b
M E]]-SEP.

This follows — via the construction of M’ in [8] — from:

1,b
(M,X)}= bounded []-SEP,
: 1

which is true by Theorem 2.1.
ol
On the other side, (I, X) |=l°f 2 (BD) follows immediately: for example
A}® — CA follows from TNC proving a weak form of A} — C A:
(Y2, A(t) =~ B(t)) — 3Vt < |z|(A(2) = (bit(y,t) = 1)),

where A, B are X}-formulas, cf. Clote-Takeuti [3].
Cases for ¢ > 1 are completely analogical. §
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COROLLARY 6.1. Ul is not T} -conservative over TNC.
PrROOF: As TNC + 1 — Ezpis £ (U}), in particular:
TNC+1~Ezp + Sa.

Thus:
TNC + Ezp= S3 + Ezp.

It is well-known that S5 + Ezp is not H;’—conservative over S, cf. Paris-
Wilkie [12], and hence TNC + Ezpis not H'l’—conservative overTNC C §,.
AsTNC+(k+1)-Ezp=(TNC+k—Ezp)+1-Ezpand TNC+ Ezp =
UxrTNC + k — Ezp, this immediately implies that TNC 4+ 1 — Ezp is not
Hi—conservative over TNC and hence neither is U}. I

§7. U} AND A Al'* EXTENSION OF T;.

We are not able to show that U} is not conservative over S;. In this
section we at least show that it is stronger than a A}’b—extension of Sy;
The formula we constructed to separate U} from the Al*-extension is of
second order.

The class of the formulas without any second order quantifiers is denoted
A‘l,'b. The A(l,’b extension of Sy is obtained from S; by introducing the
following initial sequents and inferences.

(1) s1=t1,...,8n =tn, a81,...,8,) = a(ts,..., 1)

2) F({z1,...,z.}A(21,...,24)),[ = A
VéF(¢),T — A
I' > A, F({1,...,2,}A(21,...,Zp))
T'— A,3¢F(¢) |

where A(ay,...,a,) is a A}*~formula.

' = A, F(a) F(a),T — A
T'— A,Y¢f(4) 34F(¢),T - A

where « satisfies the eigenvariable condition i.e. o does not occur in the
lower sequent.

(3) Ay* - PIND

A(l3a]),T > A, A(c)
A(0),T — A(t)
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where a satisfies the eigenvariable condition and A(a) is a A}*~formula.

The A}’-extension of T; is obtained from 75 by introducing (1), (2) and
the following inference:

(4) A~ IND
A(a),
A(0),T = A, A(t)

where a satisfies the eigenvariable condition and A(a) is a A(I,’b—formula.
The A}l”®-extension of §; is obtained from S; by introducing (1), (2°),
and (3), where (2’) and (3’) are obtained from (2) and (3) respectively by
replacing Ag® by Al'® with respect to S3. (3’) is called the A}*-PIND.
Analogically, the A}'b—extension of T; is obtained from T3 by introducing
(1), (2’), and (4°), where (4’) is obtained from (4) by replacing A}*® by A}*®
with respect to T3. (4’) is called the A}*~IND.

LEMMA 7.1. Let F(¢) € A}’ and — I$F(4) be provable in the A}’
extension of S3 (or T;). Then there exists a sequent of the form

-1 — — —+n —
3%°<T F{z}Ai(z, 3 Vv3EZ"<T F 2)}Aa(z,37)).
here Ay A, are in A}®, which is also provable in S, (or Ts,

ProoOF: If — 3¢F(¢) is provable, there exists a free cut free proof P of

3¢ F(¢). Without loss of generality, we assume that P satisfies the following
conditions.

(1) P is in a free variable normal form.

(2) Let ¢ be a sequence of all parameter variables in P and b be an
enumeration of all other variables in P satisfying the condition that if the
elimination inference for b; is below the elimination inference for b; then

i < j. There exists an assignment t;(¢) for b; satisfying the following
conditions.

(i) (<) is a term in the language of S,.

(if) If the elimination inference of b; is

A([b:/2]),T — A, A(b:)
A(0), - A, A(t(b1,

or -
b < t(bl,...,b;_l, c),A(b;),] A

3z < t(by,...,b;, ¢)A(z),T A
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b < i(bly- . "bi—ly?)1r - A1A(bt)
T'— A Vz <t(by,.. .,b;_l,?)A(z)

then a1 < #(¢),...,ai—1 € t;i-1(C) = Hay,...,ai_1, ¢) < (<) is prov
able without using logical inferences, induction, or any free variables g'lier
than a1,...,ai—1 and ¢.

Let T — A be a sequent in P. Let by,...,b,, ¢ be all free variables
inT — A and below I' — A. Then we transform P to P’ by replacing
T - Abyb <(¢)...,bn < ta(<), T — A’, where A’ is obtained by
transforming:

T'— AO,F({I}A(z’bI’ .. '7bﬂ))
I — Ao, 3¢F(¢)

to:
b £ 11(C),...,bn < t,(€),T — A, F({z}A(z,by,...,bs))
b1 < t1(T)y. v, bn < 1a(T), T — AL, 3T (C)F({2}A(2, 7))

The provable sequent we are looking for is easily obtained from this proof
P'. (See also Proposition 16.7 and Proposition 16.9 in [13]). §

LEMMA T7.2. Let A be a A}*~formula with respect to the A}’~extension
of §y (or Ty). Then there exists a AY*—formula B such that A «— B is
provable in A}’ -extension of §; (or Ty).

Proor: We treat only the case that A is VOF(¢), VOF($) — PG () is
provable in the system, and F(¢) and G(¥) are A(I,"’—formula.s. Then by
Lemma 7.1, there exist A(l,"’—formula.s Aiz,..., Ay, By,..., B, such that

VST Pz} (e, B) A AV ST F({z}An(z,n 57)
—3%'<3 G{z}Bi(z, 7)) V---vIT <™ G{2} Bu(z, T ™).
Since 3YPG(1) — V@ F(¢) is provable in the system,
33'<3 G{2}Bi(z, 3 )V -+ VI T"<T" G{z)} Bu(z, 7)),
WG(¥),
VoF(4),
and
VE'<T F({e} (s, B A AV B"<T" F({z}An(z, 7))

are equivalent. Obviously the first formula and the last formula are A(l)'b-
formulas. i
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COROLLARY 7.3. The systems: the A(I,"’—extension of Sy, the Alb—
extension of Ty, the A}"’—extension of S5, and the Ai"’~extension of T, are
equivalent.

Proor: This immediately follows from Lemma 7.2 since S3() and T3(c)
are the same systems.

COROLLARY 7.4. The A}*~extension of S, is a conservative extension of
Sa.

Proor: This immediately follows from Corollary 7.3 since the A},'b
—extension of 53 is conservative over S;. (See also Corollary 16.3 in 13). i

Now we shall work in U}. We include sequents (1) above among initial
sequents of U}. Define formulas F(a,a, 8) and G(a, k, a, B) as follows.

F(a,@,0) <= Vz < 2a((|z] = |a] D (B(z) < a(2)))
Alle] < la] 3 (B(z) < (B(22) A ~B(2 + 1)) V (=B(22) A B(22 + 1))).
Gla,k,,f) <= Yz < 2a{la] - k < |z D ((Jz] = |a] D (B(z) < a(z)))

Allz| < la| D (B(z) & (B(22) A ~B(22 + 1)) V (~8(22) A B(2z + 1))))).

.Observe that if F(a, a,8) is true then B(1) resp. ~f(1) is equivalent to the
fact that the parity of the set {z||z| = |a] & a(z)} is odd resp. is even.

LEMMA 7.5. U} + 38F(a,c, ).
Proor: This is easily shown by LIND on k applied to 33G(a, k, a, 8). I

LeMMA 7.6. U3 + F(a,,B), F(a,a,7), |b] < |al, B(b) — (b).

Proor: This is easily shown by LIND on k applied to ¥z < 2a(|a] ~k<
21 3 (B(z) «— 7(2)))- N

LEMMA 7.7. U} F 35(F(a, @, 8) A B(1)) —> YB(F(a,a, ) > H(1)). I



278 Jan Kraji¢ek and Gaisi Takeuti

THEOREM 7.8. Va(38(F(a,a,) A (1)) — VB(F(a,a,B8) D BQ1)) is
provable in U} but not provable in the A}®-extension of S5.

PRrOOF: Suppose Va(IB(F(a,a,B) A B(1)) «— VB(F(a,a,p) D B(1)!! |1
provable in the A{"’—extension of §;. Then 35(F(a,a,B) A B(1)) -
VB(F(a,a,B) D B(1)) is provable in the A}*~extenesion of S. So
38(F(a, @, B)AB(1)) is equivalent to a A}*~formula. This is a contradicuion
since

3B(F(a,a,B) A B(1)) expresses the parity of a and the parity cannot be
expressed by a Al®*—formula as follows from A. Yao [16], cf. J. Histad [6]
for a proof. B

REMARK: In the proof of the theorem # is not used. Therefore

Va(3B(F(a,a, B) A B(1)) «— VB(F(a,,B) D B(1)))

is also provable in U}.
§8. U3 versus IA,.

We shall separate U} and IAg by showing that a consistency statement
unprovable in IAq is provable in U}. We assume that IAg is formulated
in a sequential formalism with IN D-rule instead of I N D-axioms, cf. [1,
Theory Ti] or [7].

We shall use a notion of normal consistency from in [14], for its variants
see [7, 8,15]. For details of the definition see the references, we only sketch
the idea here.

Normal Proofs in JAg are proofs containing only bounded formulas and
which are in a free variable normal form. If 4y, ...,b, are all non—
parametrical free variables then if the elimination rule of b; occurs below
the elimination rule of b;, then j < i, The normal proof is augmented by a
list of terms t;(a),...,tx(@) where @ are the parametrical free variables.

The elimination rule of b; is either IN D, 3 < left or V < right. Moreover,
if the elimination inference of b; is

A(b:),T = A, A(b; + 1)
A(O), I'—- A, A(S(t_l, bl, cee ,b,‘-l))

or
b < 3(&,b1, .. .,b,-_l),A(b,-),I‘ — A

Jdz < 8((—1, b], . ..,b.-_l)A(:z:),I‘ — A

or

b,' S s(&,bl,. . .,b.~_1),I‘ — A, A(b.)
I'— A,Vx S 8(&, bl,. ..,b.‘_l)A(Z) ?
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then 21 < t1(@),...,Ti-1 < t;_1(@) implies s(@, z1,...,%i-1) < t;(a@) and
this implication is provable without induction or quantifier rules. These
supplementary proofs are also required.

Thus the normal proof is a bounded proof augmented by a list of terms
and supplementary proofs with the above properties.

Normal consistency of IAg asserts that the empty sequent is not normally
provable.

THEOREM 8.1. U} F N Con(IAo)

Proor: The proof is rather sketchy as the material is elaborated in

[14, 7,8,15] and the details can be found there. The idea is that one can
find in U} a A}*®~partial truth definition for formulas occurring in a normal
IAp—proof and thus prove its soundness.

For any #—free term t, the value of ¢ on &, val( t ,&), satisfies the in-
equality: val( ¢t ,&) < max(i,2)!* |, and can be defined in 5.

Let D be a normal IAg—proof with @ parametrical variables. To check
the truth value of the end-sequent for given @ following the derivation D,
one has to know the truth-values of the sequents in D only for b; < t;(a),
where t; are the terms guaranteed by D. If D is a proof of a contradiction
its end-sequent does not contain any variables and so t; are closed. Hence
it is sufficient to construct a partial truth definition for bounded formulas
A(b) occurring in D s.t.: A <m, max(b) € n and quantifier complexity
of A < k. Obviously: m < D, n < max; (val(t;)) < 2PV < D and k < |D|.

Let Tr(y,m,n,k) be formula

VYA <mvb<n, [“¢q-complexityof A<K"]D
D [(Ag-free D(y(A,b)=T(A,BD)))HA

A(A =(Qz<sB(z) D

> (7( A ,b) = (Q= < val(S,B)y( B(z) ,b* z)))A

A -+ - and clauses for Tarski conditions for A,Vv,-and D---],

where T is a truth definition for quantifier free formulas.

Thus we only need to prove that there is a unique 7 satisfying
Tr(y,m,n,k) for m, n £ D and k < |D|. This is easily proved by E}'b—
LIND on k.

Having such 7 the soundness of D is easily verified. I

IA, does not prove its own normal consistency, this is proved by a tech-
nique based on length—of-proof considerations completely analogical to [7,
8], cf. also [14, 15]. Thus we have the following statement.
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THEOREM 8.2. U} is not conservative over IAq. B

Let us mention another possible argument giving Thm. 8.1. In [15], a
transformation of I Ag—proofs to S9—proofs is described. In particular, in S}

ol
we can from N Con(59) derive N Con(IAo). As (by [14]) U, N Con(S9),
U} + N Con(IAy) follows using also Theorem 2.2.

In Kraji¢ek [8] it was shown that V3! (and weaker theories of the form
Vi + “f is total”, cf. [8]) is not conservative over ;. Using the results of

§§2,

(.
(2].
(3].
(4].
5].
6.

[71.
(8].

9].
[10].

[11].

[12].

(13].
[14).

11s).
[16).

6 here it is possible to obtain the same result for U} too.
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