Descriptive Polynomial Time Complexity

Tutorial Part 4

Anuj Dawar University of Cambridge

Prague Fall School, 23 September 2011

1

Recapitulation

By Fagin's theorem, a class of finite structures is definable in *existential second-order logic* if, and only if, it is in NP.

It is an open question whether there is similarly a logic for PTime.

This is equivalent to the question of whether there is a problem in PTime that is complete under *first-order reductions*.

Recapitulation II

IFP extends first-order logic with *inflationary fixed-points*.

By the theorem of Immerman and Vardi, it captures PTime on *ordered structures*, but is too weak without order.

IFP + C, the extension of IFP with counting is also too weak. In particular, it can not express the solvability of systems of linear equations.

Still, IFP + C forms a natural expressivity class within PTime. It captures all of PTime on many natural classes of graphs.

Linear Algebra is perhaps a source of new extensions of the logic.

Strategies and Decompositions

Theorem (Seymour and Thomas 93):

There is a winning strategy for the *cop player* with k cops on a graph G if, and only if, the tree-width of G is at most k - 1.

It is not difficult to construct, from a tree decomposition of width k, a winning strategy for k + 1 cops.

Somewhat more involved to show that a winning strategy yields a decomposition.

Computational Complexity

 \oplus L is the complexity class containing languages L for which there is a *nondeterministic, logspace* machine M such that

 $x \in L$ if, and only if, the number of accepting paths of M on input x is odd.

 \oplus L contains L and is (as far as we know) incomparable with NL.

 \oplus GAP is a natural \oplus L-complete problem under logspace reductions.

 \oplus GAP: given an *acyclic, directed* graph G with vertices s, t, is the number of distinct paths from s to t odd?

5

Computational Complexity II

The following are all \bigoplus L-complete under logspace reductions:

- Non-singularity of matrices over \mathbb{Z}_2 ;
- Inverting a matrix over \mathbb{Z}_2 ;
- Determining the rank of a matrix over \mathbb{Z}_2 .

(Buntrock, Damm, Hertrampf, Meinel 92)

Note: \oplus GAP is definable in IFP + C as it amounts to checking $(A_G^n)_{st}$, where A_G is the adjacency matrix of G.

IFP + **C** over Finite Fields

Over \mathbb{F}_q , *matrix multiplication*; *non-singularity* of matrices; the *inverse* of a matrix; are all definable in IFP + C.

determinants and more generally, the coefficients of the *characteristic polynomial* can be expressed IFP + C.

(D., Grohe, Holm, Laubner, 2009)

solvability of systems of equations is undefinable.

the *rank* of a matrix is *undefinable*.

Rank Operators

We introduce an operator for *matrix rank* into the logic.

We have, as with IFP + C, terms of *element sort* and *numeric sort*.

We interpret $\eta(x, y)$ —a *term* of numeric sort—in A as defining a *matrix* with rows and columns indexed by elements of A with entries $\eta[a, b]$. rk_{x,y} η is a *term* denoting the number that is the rank of the matrix defined by $\eta(x, y)$.

To be precise, we have, for each finite field \mathbb{F}_q (*q* prime), an operator rk^q which defines the rank of the matrix with entries $\eta[a, b](\operatorname{mod} q)$.

(D., Grohe, Holm, Laubner, 2009)

IFP + rk vs. IFP + C

Adding rank operators to IFP, we obtain a proper extension of IFP + C.

$$\# x \varphi \quad = \quad \mathsf{rk}_{x,y}[x = y \land \varphi(x)]$$

In IFP + rk we can express the solvability of linear systems of equations, as well as the Cai-Fürer-Immerman graphs and the order on multipedes.

$\mathbf{FO} + \mathbf{rk}$

More generally, for each prime p and each arity m, we have an operator rk_m^p which binds 2m variables and defines the rank of the $n^m \times n^m$ matrix defined by a formula $\varphi(\mathbf{x}, \mathbf{y})$.

FO + rk, the extension of first-order logic with the rank operators is already quite powerful.

- it can express *deterministic transitive closure*;
- it can express symmetric transitive closure;
- it can express solvability of linear equations.

Symmetric Transitive Closure

Let G = (V, E) be an *undirected graph* and let s and t be vertices in V.

Define the system of equations $\mathbb{E}_{G,s,t}$ over \mathbb{F}_2 with variables x_v for each $v \in V$, and equations

- for each edge $e = u, v \in E$: $x_u + x_v = 0$;
- $x_s = 1$ $x_t = 0$.

 $\mathbf{E}_{G,s,t}$ is solvable if, and only if, there is no path from s to t in G.

Capturing Mod_pL

For each number p, the complexity class Mod_pL is defined like $\oplus L$ but with acceptance condition:

 $x \in L$ if, and only if, the number of accepting paths of M on input x is not $0 \pmod{p}$.

For *prime* p, let FO + rk^p, be the logic extending first-order logic with the rk^p operator of all arities.

On ordered structures, $FO + rk^p$ captures Mod_pL .

Arity Hierarchy

In the case of IFP + C, adding counting operators of arities higher than 1 does not increase expressive power. These can all already be defined in IFP + C with *unary* counting.

This is not the case with IFP + rk.

We prove

For each m, there is a property definable in $FO + rk_{m+1}^2$ that is not definable in IFP + rk_m .

The proof is based on a construction due to Hella, and requires vocabularies of increasing arity.

It is conceivable that over graphs, the arity hierarchy collapses.

Games for Logics with Rank

Define the equivalence relation $\mathbb{A} \equiv^{\mathbb{R}_{p,m}^{k}} \mathbb{B}$ to mean that \mathbb{A} and \mathbb{B} are not distinguished by any formula of FO + rk using operators rk_{m}^{p} and with at most k variables.

This equivalence relation has a characterisation in terms of games.

(Holm 2009)

This game can been used to show that for *distinct* primes p, q, solvability of linear equations mod q cannot be defined in IFP with operators rk_1^p .

Games for Logics with Rank

The game is played with k pairs of pebbles. At each move

- Spoiler picks 2m pebbles from A and the corresponding pebbles from B.
- Duplicator reponds with
 - a partition \mathbf{P} of $A^m \times A^m$
 - a partition \mathbf{Q} of $B^m \times B^m$

– a bijection $f:\mathbf{P}
ightarrow\mathbf{Q}$ such that for all labellings $\gamma:\mathbf{P}
ightarrow\mathbb{Z}_p$

 $\mathrm{rank}(M_{\gamma}^{\mathbf{P}}) = \mathrm{rank}(M_{\gamma \circ f^{-1}}^{\mathbf{Q}})$

• Spoiler chooses a part $P \in \mathbf{P}$ and places the chosen pebbles on a tuple in P and the matching pebbles on a tuple in f(P).

Approximations of Isomorphism

For each k, the relation \equiv^{C^k} is decidable in *polynomial time*.

It provides an approximation of graph isomorphism.

This is also known as the *Weisfeiler-Lehmann* method.

The *CFI* construction shows that there is no k for which \equiv^{C^k} coincides with graph isomorphism.

Approximations of Isomorphism

Grohe's capturing result on proper minor-closed classes of graphs shows the following.

For any *proper minor-closed class* C of graphs, there is a k such that \equiv^{C^k} coincides with isomorphism on C.

What can we say about the equivalence relation \equiv^{R^k} ?

Equations over Groups and Rings

We can define systems of equations, not just over *fields* but over *finite rings* or *groups*.

For rings and *Abelian* groups, the problems are solvable in polynomial time.

There is corresponding notion of *rank*, and it is not clear that these problems can be expressed in IFP + rk.

We can show that the solvability problems for rings, fields and Abelian groups can be reduced (in IFP + C) to that for *finite, commutative, local rings*.

(D, Holm, Kopczynski, Pakusa 2011)

18

Choiceless Polynomial Time

Choiceless Polynomial Time ($\tilde{C}PT$) is a class of computational problems defined by **Blass, Gurevich and Shelah**.

It is based on a *machine model (Gurevich Abstract State Machines)* that works directly on a relational structure (rather than on a string representation).

The machine can access the collection of hereditarily finite sets over the universe of the structure.

 $\tilde{C}PT$ is the polynomial time and space restriction of the machines.

 $\tilde{C}PT$ is strictly more expressive than IFP, but still cannot express counting properties.

Consider $\tilde{C}PT(Card)$ —the extension of $\tilde{C}PT$ with counting.

Does it express all properties in PTime?

Choiceless Polynomial Time

ČPT can express the property of Cai, Fürer and Immerman.

Any program of $\tilde{C}PT(Card)$ that expresses the CFI property must use sets of *unbounded rank*.

IFP + C can be translated to programs of $\tilde{C}PT(Card)$ of bounded rank.

(D., Richerby and Rossman 2008)

September 2011

Research Directions

- Is the equivalence relation \equiv^{R^k} decidable in polynomial time? Is it definable in IFP + rk? Could there be a fixed k for which it is the same as isomorphism?
- Is solvability of systems of linear equations over finite rings in IFP + rk?
- Are there any problems in PTime that are not definable in IFP + rk?
- Show for some problem definable in IFP + rk that it is not definable in FO + rk.
- Show for any concrete problem (say an NP-complete one) that it is not definable in IFP + rk.

Research Directions II

- Could IFP + rk be sufficient to capture PTime on bounded-degree graphs?
- How does the expressive power of IFP + rk compare with $\tilde{C}PT(Card)$?
- Is matrix rank definable in $\tilde{C}PT(Card)$?