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Recapitulation

By Fagin’s theorem, a class of finite structures is definable in existential

second-order logic if, and only if, it is in NP.

It is an open question whether there is similarly a logic for P.

A precise formulation asks for a recursive enumeration of polynomially-clocked

Turing machines that are isomorphism-invariant.

This is equivalent to the question of whether there is a problem in P that is

complete under first-order reductions.

A logic for P would be intermediate, in expressive power, between

first-order logic and second-order logic.
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P-complete Problems

If there is any problem that is complete for P with respect to first-order reductions,

then there is a logic for P.

If Q is such a problem, we form, for each k, a quantifier Qk .

The sentence

Qk(πU , π1, . . . , πs)

for a k-ary interpretation π = (πU , π1, . . . , πs) is defined to be true on a

structure A just in case

π(A) ∈ Q.

The collection of such sentences is then a logic for P.
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Conversely,

Theorem

If the polynomial time properties of graphs are recursively indexable, there is a

problem complete for P under first-order reductions.

(D. 1995)

Proof Idea:

Given a recursive indexing ((Mi, pi)|i ∈ ω) of P

Encode the following problem into a class of finite structures:

{(i, x)|Mi accepts x in time bounded by pi(|x|)}

To ensure that this problem is still in P, we need to pad the input to have length

pi(|x|).

Anuj Dawar September 2011



5

Constructing the Complete Problem

Suppose M is a machine which on input i ∈ ω gives a pair (Mi, pi) as in the

definition of recursive indexing. Let g a recursive bound on the running time of M .

Q is a class of structures over the signature (V, E,�, I).

A = (A, V, E,�, I) is in Q if, and only if,

1. � is a linear pre-order on A;

2. if a, b ∈ I , a � b and b � a, i.e. I picks out one equivalence class from the

pre-order (say the ith);

3. |A| ≥ pi(|V |);

4. the graph (V, E) is accepted by Mi; and

5. g(i) ≤ |A|.
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Summary

The following are equivalent:

• P is recursively indexable.

• There is a logic capturing P of the form FO(Q), where Q is the collection of

vectorisations of a single quantifier.

• There is a complete problem in P under first-order reductions.

Another way of viewing this result is as a dichotomy.

Either there is a single problem in P such that all problems in P are easy

variations of it

or, there is no reasonable classification of the problems in P.
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Inductive Definitions

Let ϕ(R, x1, . . . , xk) be a first-order formula in the vocabulary σ ∪ {R}

Associate an operator Φ on a given σ-structure A:

Φ(RA) = {a | (A, RA, a) |= ϕ(R,x)}

We define the non-dereasing sequence of relations on A:

Φ0 = ∅

Φm+1 = Φm ∪ Φ(Φm)

The inflationary fixed point of Φ is the limit of this sequence.

On a structure with n elements, the limit is reached after at most nk stages.
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IFP

The logic IFP is formed by closing first-order logic under the rule:

If ϕ is a formula of vocabulary σ ∪ {R} then [ifp R,xϕ](t) is a formula of

vocabulary σ.

The formula is read as:

the tuple t is in the inflationary fixed point of the operator defined by ϕ

LFP is the similar logic obtained using least fixed points of monotone operators

defined by positive formulas.

LFP and IFP have the same expressive power (Gurevich-Shelah 1986; Kreutzer

2004).
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Transitive Closure

The formula

[ifp T,xy(x = y ∨ ∃z(E(x, z) ∧ T (z, y)))](u, v)

defines the transitive closure of the relation E

The expressive power of IFP properly extends that of first-order logic.

On structures which come equipped with a linear order IFP expresses exactly the

properties that are in P.

(Immerman; Vardi 1982)
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Immerman-Vardi Theorem

∃ < ∃State1 · · ·Stateq∃Head ∃Tape

< is a linear order ∧

State1(t + 1) → Statei(t) ∨ . . .

∧State2(t + 1) → . . .

∧Tape(t + 1, p) ↔ Head(t, p) . . .

∧Head(t + 1, h + 1) ↔ . . .

∧Head(t + 1, h − 1) ↔ . . .







































encoding

transitions

of M

∧at time 0 the tape contains a description of A

∧State(max, s) for some accepting s

With a deterministic machine, the relations State, Tape and Head can be define

inductively.

Anuj Dawar September 2011



11

IFP vs. Ptime

The order cannot be built up inductively.

It is an open question whether a canonical string representation of a structure can

be constructed in polynomial-time.

If it can, there is a logic for P.

If not, then P 6= NP.

All P classes of structures can be expressed by a sentence of IFP with <, which

is invariant under the choice of order. The set of all such sentences is not r.e.

IFP by itself is too weak to express all properties in P.

Evenness is not definable in IFP.
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Recursive Indexability

Say that a formula ϕ of IFP in the vocabulary σ ∪ {<} is order-invariant if, for

any σ-structure A and any two linear orders <1 and <2 of its universe,

(A, <1) |= ϕ if, and only if, (A, <2) |= ϕ

Then, the following are equivalent:

• P is recursively indexable.

• There is an r.e. set S of sentences of IFP so that

– every sentence in S is order-invariant; and

– every order-invariant sentence of IFP has an equivalent sentence in S .

Taking S to be the collection of sentences that do not mention < is insufficient.
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Finite Variable Logic

We write Lk for the first order formulas using only the variables x1, . . . , xk.

(A, a) ≡k (B,b)

denotes that there is no formula ϕ of Lk such that A |= ϕ[a] and B 6|= ϕ[b]

If ϕ(R,x) has k variables all together, then each of the relations in the

sequence:

Φ0 = ∅; Φm+1 = Φm ∪ Φ(Φm)

is definable in L2k.

Proof by induction, using substitution and renaming of bound variables.
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Pebble Game

The k-pebble game is played on two structures A and B, by two players—Spoiler

and Duplicator—using k pairs of pebbles {(a1, b1), . . . , (ak, bk)}.

Spoiler moves by picking a pebble and placing it on an element (ai on

anelement of A or bi on an element of B).

Duplicator responds by picking the matching pebble and placing it on an

element of the other structure

Spoiler wins at any stage if the partial map from A to B definedby the

pebble pairs is not a partial isomorphism

If Duplicator has a winning strategy for q moves, then A and B agree on

all sentences of Lk of quantifier rank at most q. (Barwise)

A ≡k
B if, for every q, Duplicator wins the q round, k pebble game on A and B.

Equivalently (on finite structures) Duplicator has a strategy to play forever.
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Evenness

To show that Evenness is not definable in IFP, it suffices to show that:

for every k, there are structures Ak and Bk such that Ak has an even

number of elements, Bk has an odd number of elements and

A ≡k
B.

It is easily seen that Duplicator has a strategy to play forever when one structure

is a set containing k elements (and no other relations) and the other structure has

k + 1 elements.
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P-Complete Problems

It is easily seen that IFP can express some P-complete problems such as

Alternating Transitive Closure (ATC).

[ifp R,x(x = t∨(D(x) ∧ ∃y(E(x, y) ∧ R(y)))∨

(C(x) ∧ ∀y(E(x, y) → R(y))))](s)

We can conclude that IFP is not closed under AC0-reductions.

We can also conclude that ATC is not P-complete under FO-reductions.

It can be shown that ATC is complete for IFP under FO-reductions.

There is a P-complete problem under FO-reductions if, and only if, there is one

under IFP-reductions.
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Fixed-point Logic with Counting

Immerman proposed IFP + C—the extension of IFP with a mechanism for

counting

Two sorts of variables:

• x1, x2, . . . range over |A|—the domain of the structure;

• ν1, ν2, . . . which range over non-negative integers.

If ϕ(x) is a formula with free variable x, then #xϕ is a term denoting the

number of elements of A that satisfy ϕ.

We have arithmetic operations (+,×) on number terms.

Quantification over number variables is bounded: (∃x < t) ϕ
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Counting Quantifiers

Ck is the logic obtained from first-order logic by allowing:

• allowing counting quantifiers: ∃ixϕ; and

• only the variables x1, . . . .xk .

Every formula of Ck is equivalent to a formula of first-order logic, albeit one with

more variables.

For every sentence ϕ of IFP + C, there is a k such that if A ≡Ck

B, then

A |= ϕ if, and only if, B |= ϕ.
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Counting Game

Immerman and Lander (1990) defined a pebble game for Ck .

This is again played by Spoiler and Duplicator using k pairs of pebbles

{(a1, b1), . . . , (ak, bk)}.

At each move, Spoiler picks a subset of the universe (say X ⊆ B)

Duplicator responds with a subset of the other structure (say Y ⊆ A) of

the same size.

Spoiler then places a bi pebble on an element of Y and Duplicator must

place ai on an element of X .

Spoiler wins at any stage if the partial map from A to B defined by the

pebble pairs is not a partial isomorphism

If Duplicator has a winning strategy for q moves, then A and B agree on

all sentences of Ck of quantifier rank at most q.
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Cai-Fürer-Immerman Graphs

There are polynomial-time decidable properties of graphs that are not definable in

IFP + C. (Cai, Fürer, Immerman, 1992)

More precisely, we can construct a sequence of pairs of graphs Gk, Hk(k ∈ ω)

such that:

• Gk ≡Ck

Hk for all k.

• There is a polynomial time decidable class of graphs that includes all Gk and

excludes all Hk .

Still, IFP + C is a natural level of expressiveness within P.

Anuj Dawar September 2011



21

Summary

IFP + C is a logic that extends first-order logic with inflationary fixed-points and

counting.

It forms a natural expressivity class properly contained in P.

It captures all of P on many natural classes of graphs.

There are P properties that are not in IFP + C.

Note: If there is a P-complete problem under IFP + C-reductions, then there is a

logic for P.
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