Descriptive Polynomial Time Complexity

Tutorial Part 2: Fixed Point Logics and Counting.

Anuj Dawar University of Cambridge

Prague Fall School, 21 September 2011

1

Recapitulation

By Fagin's theorem, a class of finite structures is definable in *existential second-order logic* if, and only if, it is in NP.

It is an open question whether there is similarly a logic for P.

A precise formulation asks for a recursive enumeration of polynomially-clocked Turing machines that are *isomorphism-invariant*.

This is equivalent to the question of whether there is a problem in P that is complete under *first-order reductions*.

A logic for P would be intermediate, in expressive power, between first-order logic and second-order logic.

P-complete Problems

If there is any problem that is complete for P with respect to first-order reductions, then there is a logic for P.

If Q is such a problem, we form, for each k, a quantifier Q^k .

The sentence

$$Q^k(\pi_U,\pi_1,\ldots,\pi_s)$$

for a *k*-ary interpretation $\pi = (\pi_U, \pi_1, \dots, \pi_s)$ is defined to be true on a structure A just in case

 $\pi(\mathbb{A}) \in Q.$

The collection of such sentences is then a logic for P.

Conversely,

Theorem

If the polynomial time properties of graphs are recursively indexable, there is a problem complete for P under first-order reductions.

(D. 1995)

Proof Idea:

Given a recursive indexing $((M_i, p_i) | i \in \omega)$ of P

Encode the following problem into a class of finite structures:

 $\{(i, x) | M_i \text{ accepts } x \text{ in time bounded by } p_i(|x|) \}$

To ensure that this problem is still in P, we need to pad the input to have length $p_i(|x|)$.

Constructing the Complete Problem

Suppose M is a machine which on input $i \in \omega$ gives a pair (M_i, p_i) as in the definition of recursive indexing. Let g a recursive bound on the running time of M.

Q is a class of structures over the signature (V, E, \preceq, I) .

 $\mathbb{A} = (A,V,E,\preceq,I)$ is in Q if, and only if,

- 1. \leq is a linear pre-order on A;
- 2. if $a, b \in I$, $a \leq b$ and $b \leq a$, i.e. I picks out one equivalence class from the pre-order (say the i^{th});
- 3. $|A| \ge p_i(|V|);$
- 4. the graph (V, E) is accepted by M_i ; and
- 5. $g(i) \le |A|$.

Summary

The following are equivalent:

- P is recursively indexable.
- There is a logic capturing P of the form FO(Q), where Q is the collection of vectorisations of a single quantifier.
- There is a complete problem in P under first-order reductions.

Another way of viewing this result is as a dichotomy.

Either there is a single problem in P such that all problems in P are easy variations of it

or, there is no reasonable classification of the problems in P.

Inductive Definitions

Let $\varphi(R, x_1, \ldots, x_k)$ be a first-order formula in the vocabulary $\sigma \cup \{R\}$ Associate an operator Φ on a given σ -structure \mathbb{A} :

 $\Phi(R^{\mathbb{A}}) = \{ \mathbf{a} \mid (\mathbb{A}, R^{\mathbb{A}}, \mathbf{a}) \models \varphi(R, \mathbf{x}) \}$

We define the *non-dereasing* sequence of relations on \mathbb{A} :

 $\Phi^0 = \emptyset$ $\Phi^{m+1} = \Phi^m \cup \Phi(\Phi^m)$

The *inflationary fixed point* of Φ is the limit of this sequence.

On a structure with n elements, the limit is reached after at most n^k stages.

IFP

The logic IFP is formed by closing first-order logic under the rule:

If φ is a formula of vocabulary $\sigma \cup \{R\}$ then $[\mathbf{ifp}_{R,\mathbf{x}}\varphi](\mathbf{t})$ is a formula of vocabulary σ .

The formula is read as:

the tuple t is in the inflationary fixed point of the operator defined by φ

LFP is the similar logic obtained using *least fixed points* of *monotone* operators defined by *positive* formulas.

LFP and IFP have the same expressive power (Gurevich-Shelah 1986; Kreutzer 2004).

Transitive Closure

The formula

$$[\mathrm{ifp}_{T,xy}(x=y \lor \exists z (E(x,z) \land T(z,y)))](u,v)$$

defines the *transitive closure* of the relation E

The expressive power of IFP properly extends that of first-order logic.

On structures which come equipped with a linear order IFP expresses exactly the properties that are in P.

(Immerman; Vardi 1982)

Immerman-Vardi Theorem

```
 \begin{array}{l} \exists < \hspace{0.1cm} \exists \mathsf{State}_{1} \cdots \mathsf{State}_{q} \exists \mathsf{Head} \hspace{0.1cm} \exists \mathsf{Tape} \\ \\ < \hspace{0.1cm} \mathsf{is \ a \ linear \ order \ } \wedge \\ \hspace{0.1cm} \mathsf{State}_{1}(t+1) \rightarrow \mathsf{State}_{i}(t) \lor \ldots \\ \\ \wedge \mathsf{State}_{2}(t+1) \rightarrow \ldots \\ \\ \wedge \mathsf{Tape}(t+1,p) \leftrightarrow \mathsf{Head}(t,p) \ldots \\ \\ \wedge \mathsf{Head}(t+1,h+1) \leftrightarrow \ldots \\ \\ \wedge \mathsf{Head}(t+1,h-1) \leftrightarrow \ldots \end{array} \right\} \begin{array}{l} \mathsf{encoding} \\ \mathsf{transitions} \\ \mathsf{of} \hspace{0.1cm} M \\ \\ \mathsf{of} \hspace{0.1cm} M \end{array}
```

 \wedge at time 0 the tape contains a description of $\mathbb A$

 \wedge State(max, s) for some accepting s

With a deterministic machine, the relations State, Tape and Head can be define *inductively*.

IFP vs. Ptime

The order cannot be built up inductively.

It is an open question whether a *canonical* string representation of a structure can be constructed in polynomial-time.

```
If it can, there is a logic for P.
If not, then P \neq NP.
```

All P classes of structures can be expressed by a sentence of IFP with <, which is invariant under the choice of order. The set of all such sentences is not *r.e.*

IFP by itself is too weak to express all properties in P.

Evenness is not definable in IFP.

Recursive Indexability

Say that a formula φ of IFP in the vocabulary $\sigma \cup \{<\}$ is *order-invariant* if, for any σ -structure \mathbb{A} and any two linear orders $<_1$ and $<_2$ of its universe,

$$(\mathbb{A},<_1)\models arphi$$
 if, and only if, $(\mathbb{A},<_2)\models arphi$

Then, the following are equivalent:

- P is recursively indexable.
- There is an *r.e.* set S of sentences of IFP so that
 - every sentence in S is order-invariant; and
 - every order-invariant sentence of IFP has an equivalent sentence in S.

Taking S to be the collection of sentences that do not mention < is insufficient.

Finite Variable Logic

We write L^k for the first order formulas using only the variables x_1, \ldots, x_k .

$$(\mathbb{A},\mathbf{a})\equiv^k (\mathbb{B},\mathbf{b})$$

denotes that there is no formula φ of L^k such that $\mathbb{A} \models \varphi[\mathbf{a}]$ and $\mathbb{B} \not\models \varphi[\mathbf{b}]$

If $\varphi(R, \mathbf{x})$ has k variables all together, then each of the relations in the sequence:

 $\Phi^0 = \emptyset; \Phi^{m+1} = \Phi^m \cup \Phi(\Phi^m)$

is definable in L^{2k} .

Proof by induction, using *substitution* and *renaming* of bound variables.

Pebble Game

The *k*-pebble game is played on two structures A and B, by two players—*Spoiler* and *Duplicator*—using *k* pairs of pebbles $\{(a_1, b_1), \ldots, (a_k, b_k)\}$.

Spoiler moves by picking a pebble and placing it on an element (a_i on an element of A or b_i on an element of B).

Duplicator responds by picking the matching pebble and placing it on an element of the other structure

Spoiler wins at any stage if the partial map from \mathbb{A} to \mathbb{B} defined by the pebble pairs is not a partial isomorphism

If *Duplicator* has a winning strategy for q moves, then \mathbb{A} and \mathbb{B} agree on all sentences of L^k of quantifier rank at most q. (Barwise)

 $\mathbb{A} \equiv^k \mathbb{B}$ if, for every q, *Duplicator* wins the q round, k pebble game on \mathbb{A} and \mathbb{B} . Equivalently (on finite structures) *Duplicator* has a strategy to play forever.

Evenness

To show that *Evenness* is not definable in IFP, it suffices to show that:

for every k, there are structures \mathbb{A}_k and \mathbb{B}_k such that \mathbb{A}_k has an even number of elements, \mathbb{B}_k has an odd number of elements and

 $\mathbb{A} \equiv^k \mathbb{B}.$

It is easily seen that *Duplicator* has a strategy to play forever when one structure is a set containing k elements (and no other relations) and the other structure has k + 1 elements.

P-Complete Problems

It is easily seen that IFP can express some P-complete problems such as *Alternating Transitive Closure* (ATC).

$$\begin{split} [\mathrm{ifp}_{R,x}(x = t \lor (D(x) \land \exists y (E(x,y) \land R(y))) \lor \\ (C(x) \land \forall y (E(x,y) \to R(y))))](s) \end{split}$$

We can conclude that IFP is *not* closed under AC_0 -reductions.

We can also conclude that ATC is not P-complete under FO-reductions.

It can be shown that ATC is complete for IFP under FO-reductions.

There is a P-complete problem under FO-reductions *if, and only if,* there is one under IFP-reductions.

Fixed-point Logic with Counting

Immerman proposed IFP + C—the extension of IFP with a mechanism for counting

Two sorts of variables:

- x_1, x_2, \ldots range over |A|—the domain of the structure;
- ν_1, ν_2, \ldots which range over *non-negative integers*.

If $\varphi(x)$ is a formula with free variable x, then $\#x\varphi$ is a *term* denoting the *number* of elements of \mathbb{A} that satisfy φ .

We have arithmetic operations $(+, \times)$ on *number terms*.

Quantification over number variables is *bounded*: $(\exists x < t) \varphi$

Counting Quantifiers

 C^k is the logic obtained from *first-order logic* by allowing:

- allowing *counting quantifiers*: $\exists^i x \varphi$; and
- only the variables x_1, \ldots, x_k .

Every formula of C^k is equivalent to a formula of first-order logic, albeit one with more variables.

For every sentence φ of IFP + C, there is a k such that if $\mathbb{A} \equiv^{C^k} \mathbb{B}$, then

 $\mathbb{A} \models \varphi$ if, and only if, $\mathbb{B} \models \varphi$.

Counting Game

Immerman and Lander (1990) defined a *pebble game* for C^k .

This is again played by *Spoiler* and *Duplicator* using k pairs of pebbles $\{(a_1, b_1), \ldots, (a_k, b_k)\}.$

At each move, Spoiler picks a subset of the universe (say $X \subseteq B$)

Duplicator responds with a subset of the other structure (say $Y \subseteq A$) of the same *size*.

Spoiler then places a b_i pebble on an element of Y and Duplicator must place a_i on an element of X.

Spoiler wins at any stage if the partial map from A to B defined by the pebble pairs is not a partial isomorphism

If *Duplicator* has a winning strategy for q moves, then \mathbb{A} and \mathbb{B} agree on all sentences of C^k of quantifier rank at most q.

Cai-Fürer-Immerman Graphs

There are polynomial-time decidable properties of graphs that are not definable in IFP + C. (Cai, Fürer, Immerman, 1992)

More precisely, we can construct a sequence of pairs of graphs $G_k, H_k (k \in \omega)$ such that:

- $G_k \equiv^{C^k} H_k$ for all k.
- There is a polynomial time decidable class of graphs that includes all G_k and excludes all H_k .

Still, IFP + C is a *natural* level of expressiveness within P.

Summary

IFP + C is a logic that extends first-order logic with *inflationary fixed-points* and *counting*.

It forms a natural expressivity class properly contained in P.

It captures all of P on many natural classes of graphs.

There are P properties that are not in IFP + C.

Note: If there is a P-complete problem under IFP + C-reductions, then there is a logic for P.