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Outline

– stabilization for incompressible flow problems

– local projection stabilization for the Oseen problem

– generalized formulation with overlapping projection domains

– stability and error analysis with respect to an improved norm

– optimal convergence results for correctly scaled stabilization
parameters



Oseen problem

−ν ∆u+(b ·∇)u+σ u+∇p = f , divu = 0 in Ω ,

u = 0 on ∂Ω

Ω⊂ Rd , d = 2,3 . . . bounded domain with a polyhedral
Lipschitz–continuous boundary ∂Ω

ν > 0 and σ ≥ 0 constants, b ∈W 1,∞(Ω)d , f ∈ L2(Ω)d ,
divb = 0
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Weak formulation

Find u ∈ H1
0 (Ω)d and p ∈ L2

0(Ω) such that

a(u,v)− (p,divv)+(q,divu) = (f,v) ∀ v ∈ H1
0 (Ω)d , q ∈ L2

0(Ω) ,

where

a(u,v) = ν (∇u,∇v)+((b ·∇)u,v)+σ (u,v) .



Galerkin discretization

Find uh ∈V d
h and ph ∈ Qh such that

a(uh,vh)− (ph,divvh)+(qh,divuh) = (f,vh) ∀ vh ∈V d
h , qh ∈ Qh .

Vh ⊂ H1
0 (Ω), Qh ⊂ L2

0(Ω) . . . finite–dimensional spaces
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Two sources of instabilities:
– dominant convection
– violation of the inf–sup condition

sup
vh∈V d

h
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Residual-based stabilization (SUPG/PSPG/div-div)

Find uh ∈V d
h and ph ∈ Qh such that

a(uh,vh)− (ph,divvh)+(qh,divuh)
+(−ν ∆huh +(b ·∇)uh +σ uh +∇ph− f,δ ((b ·∇)vh +∇qh))
+(divuh,γ divvh) = (f,vh) ∀ vh ∈V d

h , qh ∈ Qh .

Brooks, Hughes (1982)
Hughes, Franca, Balestra (1986)
Hansbo, Szepessy (1990)

Franca, Frey (1992)
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Drawbacks: non–symmetric, second–order derivatives,
difficulties for non–steady problems,
strong coupling between velocity and pressure



Residual-based stabilization (SUPG/PSPG/div-div)

Find uh ∈V d
h and ph ∈ Qh such that

a(uh,vh)− (ph,divvh)+(qh,divuh)
+(−ν ∆huh +(b ·∇)uh +σ uh +∇ph− f,δ ((b ·∇)vh +∇qh))
+(divuh,γ divvh) = (f,vh) ∀ vh ∈V d

h , qh ∈ Qh .

Projection-based stabilization κh = id−πh

Find uh ∈V d
h and ph ∈ Qh such that

a(uh,vh)− (ph,divvh)+(qh,divuh)
+(κh((b ·∇)uh),δ u κh((b ·∇)vh))+(κh∇ph,δ

p κh∇qh)
+(κhdivuh,γ κhdivvh) = (f,vh) ∀ vh ∈V d

h , qh ∈ Qh .

Codina (2000)
Kaya, Layton (2003)

Braack, Burman (2006)



Local projection stabilizations

Becker, Braack (2001) Stokes
Becker, Braack (2004) transport, Navier–Stokes
Braack, Burman (2006) Oseen
Braack, Richter (2006, 2007) Stokes; Navier–Stokes; react. flows
Becker, Vexler (2007) conv.–diff.–react., optimal control
Lube, Rapin, Löwe (2007) Oseen
Ganesan, Tobiska (2007) conv.–diff.–react., Stokes, Oseen
Matthies, Skrzypacz, Tobiska (2007) Oseen, enrichment
Matthies, Skrzypacz, Tobiska (2008) conv.–diff.–react.
Knobloch, Lube (2009) conv.–diff.–react.
Knobloch, Tobiska (2009) conv.–diff.–react.
Braack (2008, 2009) Navier–Stokes; Oseen, optimal control
Braack, Lube (2009) review on LPS for incompressible flows



Local projection stabilizations

Advantages: preserve the stability properties of RBS
no second order derivatives
no couplings between various unknowns
easy to apply to non–steady problems
symmetric
operations discretization and optimization
commute Becker, Vexler (2007), Braack (2009)



Local projection stabilizations

Advantages: preserve the stability properties of RBS
no second order derivatives
no couplings between various unknowns
easy to apply to non–steady problems
symmetric
operations discretization and optimization
commute Becker, Vexler (2007), Braack (2009)

Drawbacks: more DOFs than RBS
in some cases less accurate
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One–level approach Matthies, Skrzypacz, Tobiska (2007)

Mh = Th

examples of spaces: DM = Pl−1(M) ∀M ∈Mh ,

Vh = Pl,Th +
⊕

M∈Mh

bM ·Pl−1(M)

or Vh = Ql,Th +
⊕

M∈Mh

bM ·Ql−1(M)
(mapped)
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Two–level approach Becker, Braack (2001)

Th is obtained by a refinement of Mh

examples of spaces:

DM = Pl−1(M)
∀M ∈Mh ,

Vh = Pl,Th

can be viewed as one–level approach for simplicial meshes



Overlapping sets M ∈Mh K. (2009)

Let any element of Th have a vertex in Ω.
Let x1, . . . ,xNh be the vertices of Th lying in Ω.

Set Mi = int
⋃

T∈Th,xi∈T

T , i = 1, . . . ,Nh ,

Mh = {Mi}Nh
i=1.
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Overlapping sets M ∈Mh K. (2009)

Let any element of Th have a vertex in Ω.
Let x1, . . . ,xNh be the vertices of Th lying in Ω.

Set Mi = int
⋃

T∈Th,xi∈T

T , i = 1, . . . ,Nh ,

Mh = {Mi}Nh
i=1.

Then we can use

DM = Pl−1(M) ∀M ∈Mh,

Vh = Pl,Th or Vh = Ql,Th .

cheaper and more robust than the previous approaches
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Assumptions

Vh ⊂ H1
0 (Ω) . . . FE space on Th

Mh . . . set of a finite number of open subsets M of Ω such that
Ω =

⋃
M∈Mh

M,

For any M ∈Mh:

πM . . . orthogonal L2 projection of L2(M) onto DM

κM := id−πM . . . fluctuation operator

bM ∈ Rd such that
|bM| ≤ ‖b‖0,∞,M , ‖b−bM‖0,∞,M ≤C hM |b|1,∞,M

Qh ⊂ H1,h(Ω)∩L2
0(Ω) . . . FE space on Th

H1,h(Ω) = {q ∈ L2(Ω) ; q|T ∈ H1(T ) ∀ T ∈Th}



A local projection discretization

Find uh ∈V d
h and ph ∈ Qh such that

Ah([uh, ph], [vh,qh]) = (f,vh) ∀ vh ∈V d
h , qh ∈ Qh ,

where

Ah([u, p], [v,q]) = a(u,v)− (p,divv)+(q,divu)

+ sb
h(u,v)+ su

h(u,v)+ sp
h(p,q)+ s j

h(p,q) .



A local projection discretization

sb
h(u,v) = ∑

M∈Mh

τM (κM[(bM ·∇)u],κM[(bM ·∇)v])M ,

su
h(u,v) = ∑

M∈Mh

µM (κM(divu),κM(divv))M ,

sp
h(p,q) = ∑

M∈Mh

αM (κM(∇h p),κM(∇hq))M ,

s j
h(p,q) = ∑

E∈Eh

βE ([p]E , [q]E)E

Stabilization parameters:

τM ≈ γM :=
h2

M

ν +hM ‖b‖0,∞,M +h2
M σ

,

µM ≈ ν +h2
M σ , αM ≈

h2
M

ν +h2
M σ

, βE ≈
hE

ν +h2
E σ(or µM = 0)



Stability of the local projection discretization

Local projection norm:

|||[v,q]|||LP =
(

ν |v|21,Ω +σ ‖v‖2
0,Ω + sb

h(v,v)+ su
h(v,v)

+ sp
h(q,q)+ s j

h(q,q)
)1/2



Stability of the local projection discretization

Local projection norm:

|||[v,q]|||LP =
(

ν |v|21,Ω +σ ‖v‖2
0,Ω + sb

h(v,v)+ su
h(v,v)

+ sp
h(q,q)+ s j

h(q,q)
)1/2

Stronger norm:

|||[v,q]|||=

(
|||[v,q]|||2LP +

1
1+ω1

h
∑

M∈Mh

γM ‖(b ·∇)v+∇hq‖2
0,M

)1/2

with

ω
1
h = max

M∈Mh

h2
M |b|1,∞,M

ν +h2
M σ



Stability of the local projection discretization

Theorem ∃β > 0 such that, for any uh ∈V d
h and ph ∈ Qh,

sup
[vh,qh]∈V d
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Stability of the local projection discretization

Theorem ∃β > 0 such that, for any uh ∈V d
h and ph ∈ Qh,

sup
[vh,qh]∈V d

h ×Qh

Ah([uh, ph], [vh,qh])
|||[vh,qh]|||

≥ β |||[uh, ph]||| .

General error estimate for any wh ∈V d
h and rh ∈ Qh

β |||[u−uh, p− ph]|||≤ β |||[u−wh, p− rh]|||

+ sup
[vh,qh]∈V d

h ×Qh

Ah([u−wh, p− rh], [vh,qh])
|||[vh,qh]|||

+ sup
[vh,qh]∈V d

h ×Qh

sb
h(u,vh)+ sp

h(p,qh)
|||[vh,qh]|||

For an optimal estimate of the consistency error, it is essential
that we use bM instead of b in sb

h.



Approximation properties of the spaces Vh, Qh and DM

∃ ih ∈L (H2(Ω)∩H1
0 (Ω),Vh) and jh ∈L (H1(Ω)∩L2

0(Ω),Qh)
such that, for some constants lV ∈ N, lQ ∈ N0 and C and for any
M ∈Mh,

|v− ihv|1,M +h−1
M ‖v− ihv‖0,M ≤C hr

M |v|r+1,M

∀ v ∈ Hr+1(Ω), r = 1, . . . , lV ,

‖∇h(v− jhv)‖0,M +h−1
M ‖v− jhv‖0,M ≤C hr

M |v|r+1,M

∀ v ∈ Hr+1(Ω)∩L2
0(Ω), r = 0, . . . , lQ .

∃ constants lD ∈ N and C such that

inf
v∈DM
‖q−v‖0,M ≤C hr

M |q|r,M ∀ q∈Hr(M), M ∈Mh, r = 1, . . . , lD .



A priori error estimates

Theorem Let u ∈ Hr+1(Ω)d and p ∈ Hs+1(Ω) with
1≤ r ≤min{lV , lD} and 0≤ s≤min{lQ, lD}. Then

|||[u−uh, p− ph]||| ≤C hr (1+ω
1
h )1/2

(
∑

M∈Mh

δM |u|2r+1,M

)1/2

+C hs

(
∑

M∈Mh

αM |p|2s+1,M

)1/2

,

where

δM = ν +hM ‖b‖0,∞,M +h2
M σ , αM ≈

h2
M

ν +h2
M σ

and C is independent of h and the data.



Estimate of ‖p− ph‖0,Ω

Lemma There is a constant γ > 0 independent of h such that,
for any q ∈ H1,h(Ω)∩L2

0(Ω),

sup
vh∈V d

h

(q,divvh)
|vh|1,Ω

+

(
∑

M∈Mh

h2
M ‖κM∇hq‖2

0,M

)1/2

+

(
∑

E∈Eh

hE ‖[q]E‖2
0,E

)1/2

≥ γ ‖q‖0,Ω .



Estimate of ‖p− ph‖0,Ω

Theorem Let u ∈ Hr+1(Ω)d with r ∈ {0, . . . , lD} and p ∈ H1(Ω).
Then

‖p− ph‖0,Ω

≤C (ν +C2
F σ)1/2

(
1+

CF ‖b‖0,∞,Ω

ν +C2
F σ

)
|||[u−uh, p− ph]|||LP

+C (ν +h‖b‖0,∞,Ω +C2
F σ)1/2 hr+1/2 ‖b‖1/2

0,∞,Ω |u|r+1,Ω ,

where C is independent of h and the data.
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Stokes problem

≡ Oseen problem with ν = 1, b = 0, σ = 0

Stabilization parameters:

µM ≈ 1 , αM ≈ h2
M , βE ≈ hE

(or µM = 0)

Theorem Let u ∈ Hr+1(Ω)d and p ∈ Hs+1(Ω) with 1≤ r ≤ lV
and 0≤ s≤min{lQ, lD}. Then

|||[u−uh, p− ph]|||+‖p− ph‖0,Ω ≤C hr |u|r+1,Ω +C hs+1 |p|s+1,Ω .
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Conclusions

– generalization of LPS to projection spaces defined on
overlapping sets

– overlapping LPS is cheaper and more robust

– stability and optimal error estimates with respect to an
improved norm for the Oseen problem

– modification of the convective stabilization term

– correctly scaled stabilization parameters

– discontinuous pressures


