Local projection stabilization for the numerical simulation of convection dominated flows

Petr Knobloch
Charles University in Prague

joint work with

Lutz Tobiska

Otto von Guericke University, Magdeburg

> ECCOMAS CFD 2010
> Lisbon, June 15, 2010

Outline

- stabilization for incompressible flow problems
- local projection stabilization for the Oseen problem
- generalized formulation with overlapping projection domains
- stability and error analysis with respect to an improved norm
- optimal convergence results for correctly scaled stabilization parameters

Oseen problem

$-v \Delta \mathbf{u}+(\mathbf{b} \cdot \nabla) \mathbf{u}+\sigma \mathbf{u}+\nabla p=\mathbf{f}, \quad \operatorname{div} \mathbf{u}=0 \quad$ in Ω,

$$
\mathbf{u}=\mathbf{0} \quad \text { on } \partial \Omega
$$

$\Omega \subset \mathbb{R}^{d}, d=2,3 \ldots$ bounded domain with a polyhedral Lipschitz-continuous boundary $\partial \Omega$
$v>0$ and $\sigma \geq 0$ constants, $\mathbf{b} \in W^{1, \infty}(\Omega)^{d}, \mathbf{f} \in L^{2}(\Omega)^{d}$, $\operatorname{div} \mathbf{b}=0$

Oseen problem

$-v \Delta \mathbf{u}+(\mathbf{b} \cdot \nabla) \mathbf{u}+\sigma \mathbf{u}+\nabla p=\mathbf{f}, \quad \operatorname{div} \mathbf{u}=0 \quad$ in Ω,

$$
\mathbf{u}=\mathbf{0} \quad \text { on } \partial \Omega
$$

$\Omega \subset \mathbb{R}^{d}, d=2,3 \ldots$ bounded domain with a polyhedral Lipschitz-continuous boundary $\partial \Omega$
$v>0$ and $\sigma \geq 0$ constants, $\mathbf{b} \in W^{1, \infty}(\Omega)^{d}, \mathbf{f} \in L^{2}(\Omega)^{d}$,
$\operatorname{div} \mathbf{b}=0$

Weak formulation

Find $\mathbf{u} \in H_{0}^{1}(\Omega)^{d}$ and $p \in L_{0}^{2}(\Omega)$ such that $a(\mathbf{u}, \mathbf{v})-(p, \operatorname{div} \mathbf{v})+(q, \operatorname{div} \mathbf{u})=(\mathbf{f}, \mathbf{v}) \quad \forall \mathbf{v} \in H_{0}^{1}(\Omega)^{d}, q \in L_{0}^{2}(\Omega)$, where
$a(\mathbf{u}, \mathbf{v})=v(\nabla \mathbf{u}, \nabla \mathbf{v})+((\mathbf{b} \cdot \nabla) \mathbf{u}, \mathbf{v})+\sigma(\mathbf{u}, \mathbf{v})$.

Galerkin discretization

Find $\mathbf{u}_{h} \in V_{h}^{d}$ and $p_{h} \in Q_{h}$ such that
$a\left(\mathbf{u}_{h}, \mathbf{v}_{h}\right)-\left(p_{h}, \operatorname{div} \mathbf{v}_{h}\right)+\left(q_{h}, \operatorname{div} \mathbf{u}_{h}\right)=\left(\mathbf{f}, \mathbf{v}_{h}\right) \quad \forall \mathbf{v}_{h} \in V_{h}^{d}, q_{h} \in Q_{h}$.
$V_{h} \subset H_{0}^{1}(\Omega), Q_{h} \subset L_{0}^{2}(\Omega) \quad \ldots \quad$ finite-dimensional spaces

Galerkin discretization

Find $\mathbf{u}_{h} \in V_{h}^{d}$ and $p_{h} \in Q_{h}$ such that
$a\left(\mathbf{u}_{h}, \mathbf{v}_{h}\right)-\left(p_{h}, \operatorname{div} \mathbf{v}_{h}\right)+\left(q_{h}, \operatorname{div} \mathbf{u}_{h}\right)=\left(\mathbf{f}, \mathbf{v}_{h}\right) \quad \forall \mathbf{v}_{h} \in V_{h}^{d}, q_{h} \in Q_{h}$.
$V_{h} \subset H_{0}^{1}(\Omega), Q_{h} \subset L_{0}^{2}(\Omega) \quad \ldots \quad$ finite-dimensional spaces

Two sources of instabilities:

- dominant convection
- violation of the inf-sup condition

$$
\sup _{\mathbf{v}_{h} \in V_{h}^{d}} \frac{\left(q_{h}, \operatorname{div} \mathbf{v}_{h}\right)}{\left|\mathbf{v}_{h}\right|_{1, \Omega}} \geq \beta\left\|q_{h}\right\|_{0, \Omega} \quad \forall q_{h} \in Q_{h}
$$

Galerkin discretization

Find $\mathbf{u}_{h} \in V_{h}^{d}$ and $p_{h} \in Q_{h}$ such that
$a\left(\mathbf{u}_{h}, \mathbf{v}_{h}\right)-\left(p_{h}, \operatorname{div} \mathbf{v}_{h}\right)+\left(q_{h}, \operatorname{div} \mathbf{u}_{h}\right)=\left(\mathbf{f}, \mathbf{v}_{h}\right) \quad \forall \mathbf{v}_{h} \in V_{h}^{d}, q_{h} \in Q_{h}$.
$V_{h} \subset H_{0}^{1}(\Omega), Q_{h} \subset L_{0}^{2}(\Omega) \quad \ldots$ finite-dimensional spaces

Residual-based stabilization (SUPG/PSPG/div-div)

Find $\mathbf{u}_{h} \in V_{h}^{d}$ and $p_{h} \in Q_{h}$ such that
$a\left(\mathbf{u}_{h}, \mathbf{v}_{h}\right)-\left(p_{h}, \operatorname{div} \mathbf{v}_{h}\right)+\left(q_{h}, \operatorname{div} \mathbf{u}_{h}\right)$
$+\left(-v \Delta_{h} \mathbf{u}_{h}+(\mathbf{b} \cdot \nabla) \mathbf{u}_{h}+\sigma \mathbf{u}_{h}+\nabla p_{h}-\mathbf{f}, \delta\left((\mathbf{b} \cdot \nabla) \mathbf{v}_{h}+\nabla q_{h}\right)\right)$
$+\left(\operatorname{div} \mathbf{u}_{h}, \gamma \operatorname{div} \mathbf{v}_{h}\right)=\left(\mathbf{f}, \mathbf{v}_{h}\right) \quad \forall \mathbf{v}_{h} \in V_{h}^{d}, q_{h} \in Q_{h}$.
Brooks, Hughes (1982)
Hughes, Franca, Balestra (1986)
Hansbo, Szepessy (1990)
Franca, Frey (1992)

Galerkin discretization

Find $\mathbf{u}_{h} \in V_{h}^{d}$ and $p_{h} \in Q_{h}$ such that
$a\left(\mathbf{u}_{h}, \mathbf{v}_{h}\right)-\left(p_{h}, \operatorname{div} \mathbf{v}_{h}\right)+\left(q_{h}, \operatorname{div} \mathbf{u}_{h}\right)=\left(\mathbf{f}, \mathbf{v}_{h}\right) \quad \forall \mathbf{v}_{h} \in V_{h}^{d}, q_{h} \in Q_{h}$.
$V_{h} \subset H_{0}^{1}(\Omega), Q_{h} \subset L_{0}^{2}(\Omega) \quad \ldots \quad$ finite-dimensional spaces

Residual-based stabilization (SUPG/PSPG/div-div)

Find $\mathbf{u}_{h} \in V_{h}^{d}$ and $p_{h} \in Q_{h}$ such that
$a\left(\mathbf{u}_{h}, \mathbf{v}_{h}\right)-\left(p_{h}, \operatorname{div} \mathbf{v}_{h}\right)+\left(q_{h}, \operatorname{div} \mathbf{u}_{h}\right)$
$+\left(-v \Delta_{h} \mathbf{u}_{h}+(\mathbf{b} \cdot \nabla) \mathbf{u}_{h}+\sigma \mathbf{u}_{h}+\nabla p_{h}-\mathbf{f}, \delta\left((\mathbf{b} \cdot \nabla) \mathbf{v}_{h}+\nabla q_{h}\right)\right)$
$+\left(\operatorname{div} \mathbf{u}_{h}, \gamma \operatorname{div} \mathbf{v}_{h}\right)=\left(\mathbf{f}, \mathbf{v}_{h}\right) \quad \forall \mathbf{v}_{h} \in V_{h}^{d}, q_{h} \in Q_{h}$.
Drawbacks: non-symmetric, second-order derivatives, difficulties for non-steady problems, strong coupling between velocity and pressure

Residual-based stabilization (SUPG/PSPG/div-div)

Find $\mathbf{u}_{h} \in V_{h}^{d}$ and $p_{h} \in Q_{h}$ such that
$a\left(\mathbf{u}_{h}, \mathbf{v}_{h}\right)-\left(p_{h}, \operatorname{div} \mathbf{v}_{h}\right)+\left(q_{h}, \operatorname{div} \mathbf{u}_{h}\right)$
$+\left(-v \Delta_{h} \mathbf{u}_{h}+(\mathbf{b} \cdot \nabla) \mathbf{u}_{h}+\sigma \mathbf{u}_{h}+\nabla p_{h}-\mathbf{f}, \delta\left((\mathbf{b} \cdot \nabla) \mathbf{v}_{h}+\nabla q_{h}\right)\right)$
$+\left(\operatorname{div} \mathbf{u}_{h}, \gamma \operatorname{div} \mathbf{v}_{h}\right)=\left(\mathbf{f}, \mathbf{v}_{h}\right) \quad \forall \mathbf{v}_{h} \in V_{h}^{d}, q_{h} \in Q_{h}$.

Projection-based stabilization

$$
\kappa_{h}=i d-\pi_{h}
$$

Find $\mathbf{u}_{h} \in V_{h}^{d}$ and $p_{h} \in Q_{h}$ such that
$a\left(\mathbf{u}_{h}, \mathbf{v}_{h}\right)-\left(p_{h}, \operatorname{div} \mathbf{v}_{h}\right)+\left(q_{h}, \operatorname{div} \mathbf{u}_{h}\right)$
$+\left(\kappa_{h}\left((\mathbf{b} \cdot \nabla) \mathbf{u}_{h}\right), \delta^{u} \kappa_{h}\left((\mathbf{b} \cdot \nabla) \mathbf{v}_{h}\right)\right)+\left(\kappa_{h} \nabla p_{h}, \delta^{p} \kappa_{h} \nabla q_{h}\right)$
$+\left(\kappa_{h} \operatorname{div} \mathbf{u}_{h}, \gamma \kappa_{h} \operatorname{div} \mathbf{v}_{h}\right)=\left(\mathbf{f}, \mathbf{v}_{h}\right) \quad \forall \mathbf{v}_{h} \in V_{h}^{d}, q_{h} \in Q_{h}$.
Codina (2000)
Kaya, Layton (2003)
Braack, Burman (2006)

Local projection stabilizations

Becker, Braack (2001) Stokes
Becker, Braack (2004) transport, Navier-Stokes
Braack, Burman (2006) Oseen
Braack, Richter $(2006,2007)$ Stokes; Navier-Stokes; react. flows Becker, Vexler (2007) conv.-diff.-react., optimal control Lube, Rapin, Löwe (2007) Oseen
Ganesan, Tobiska (2007) conv.-diff.-react., Stokes, Oseen
Matthies, Skrzypacz, Tobiska (2007) Oseen, enrichment
Matthies, Skrzypacz, Tobiska (2008) conv.-diff.-react.
Knobloch, Lube (2009) conv.-diff.-react.
Knobloch, Tobiska (2009) conv.-diff.-react.
Braack $(2008,2009)$ Navier-Stokes; Oseen, optimal control
Braack, Lube (2009) review on LPS for incompressible flows

Local projection stabilizations

Advantages: preserve the stability properties of RBS no second order derivatives no couplings between various unknowns easy to apply to non-steady problems symmetric operations discretization and optimization commute Becker, Vexler (2007), Braack (2009)

Local projection stabilizations

Advantages: preserve the stability properties of RBS no second order derivatives no couplings between various unknowns easy to apply to non-steady problems symmetric operations discretization and optimization commute Becker, Vexler (2007), Braack (2009)

Drawbacks: more DOFs than RBS
in some cases less accurate

Assumptions

$V_{h} \subset H_{0}^{1}(\Omega) \ldots$ FE space on \mathscr{T}_{h}

Assumptions

$V_{h} \subset H_{0}^{1}(\Omega) \ldots$ FE space on \mathscr{T}_{h}
$\mathscr{M}_{h} \ldots$ set of a finite number of open subsets M of Ω such that

$$
\bar{\Omega}=\bigcup_{M \in \mathscr{M}_{h}} \bar{M},
$$

Assumptions

$V_{h} \subset H_{0}^{1}(\Omega) \ldots$ FE space on \mathscr{T}_{h}
$\mathscr{M}_{h} \ldots$ set of a finite number of open subsets M of Ω such that

$$
\bar{\Omega}=\bigcup_{M \in \mathscr{M}_{h}} \bar{M},
$$

For any $M \in \mathscr{M}_{h}$:

$$
\operatorname{card}\left\{M^{\prime} \in \mathscr{M}_{h} ; M \cap M^{\prime} \neq \emptyset\right\} \leq C,
$$

Assumptions

$V_{h} \subset H_{0}^{1}(\Omega) \ldots$ FE space on \mathscr{T}_{h}
$\mathscr{M}_{h} \ldots$ set of a finite number of open subsets M of Ω such that

$$
\bar{\Omega}=\bigcup_{M \in \mathscr{M}_{h}} \bar{M},
$$

For any $M \in \mathscr{M}_{h}$:

$$
\begin{aligned}
& \operatorname{card}\left\{M^{\prime} \in \mathscr{M}_{h} ; M \cap M^{\prime} \neq \emptyset\right\} \leq C, \\
& h_{M}:=\operatorname{diam}(M) \leq C h,
\end{aligned}
$$

Assumptions

$V_{h} \subset H_{0}^{1}(\Omega) \ldots$ FE space on \mathscr{T}_{h}
$\mathscr{M}_{h} \ldots$ set of a finite number of open subsets M of Ω such that

$$
\bar{\Omega}=\bigcup_{M \in \mathscr{M}_{h}} \bar{M},
$$

For any $M \in \mathscr{M}_{h}$:

$$
\begin{aligned}
& \operatorname{card}\left\{M^{\prime} \in \mathscr{M}_{h} ; M \cap M^{\prime} \neq \emptyset\right\} \leq C \\
& h_{M}:=\operatorname{diam}(M) \leq C h \\
& h_{M} \leq C h_{M^{\prime}} \quad \forall M^{\prime} \in \mathscr{M}_{h}, M \cap M^{\prime} \neq \emptyset
\end{aligned}
$$

Assumptions

$V_{h} \subset H_{0}^{1}(\Omega) \ldots$ FE space on \mathscr{T}_{h}
$\mathscr{M}_{h} \ldots$ set of a finite number of open subsets M of Ω such that

$$
\bar{\Omega}=\bigcup_{M \in \mathscr{M}_{h}} \bar{M},
$$

For any $M \in \mathscr{M}_{h}$:

$$
\begin{aligned}
& \operatorname{card}\left\{M^{\prime} \in \mathscr{M}_{h} ; M \cap M^{\prime} \neq \emptyset\right\} \leq C, \\
& h_{M}:=\operatorname{diam}(M) \leq C h, \\
& h_{M} \leq C h_{M^{\prime}} \quad \forall M^{\prime} \in \mathscr{M}_{h}, M \cap M^{\prime} \neq \emptyset, \\
& \left|v_{h}\right|_{1, M} \leq C h_{M}^{-1}\left\|v_{h}\right\|_{0, M} \quad \forall v_{h} \in V_{h}
\end{aligned}
$$

Assumptions

$V_{h} \subset H_{0}^{1}(\Omega) \ldots$ FE space on \mathscr{T}_{h}
$\mathscr{M}_{h} \ldots$ set of a finite number of open subsets M of Ω such that

$$
\bar{\Omega}=\bigcup_{M \in \mathscr{M}_{h}} \bar{M},
$$

For any $M \in \mathscr{M}_{h}$:

$$
\begin{aligned}
& \operatorname{card}\left\{M^{\prime} \in \mathscr{M}_{h} ; M \cap M^{\prime} \neq \emptyset\right\} \leq C, \\
& h_{M}:=\operatorname{diam}(M) \leq C h, \\
& h_{M} \leq C h_{M^{\prime}} \quad \forall M^{\prime} \in \mathscr{M}_{h}, M \cap M^{\prime} \neq \emptyset, \\
& \left|v_{h}\right|_{1, M} \leq C h_{M}^{-1}\left\|v_{h}\right\|_{0, M} \quad \forall v_{h} \in V_{h} \\
& \exists B_{M} \subset\left(\left.V_{h}\right|_{M}\right) \cap H_{0}^{1}(M): \quad \operatorname{dim} B_{M}>0, \quad B_{M} \subset V_{h},
\end{aligned}
$$

Assumptions

$V_{h} \subset H_{0}^{1}(\Omega) \ldots$ FE space on \mathscr{T}_{h}
$\mathscr{M}_{h} \ldots$ set of a finite number of open subsets M of Ω such that

$$
\bar{\Omega}=\bigcup_{M \in \mathscr{M}_{h}} \bar{M},
$$

For any $M \in \mathscr{M}_{h}$:

$$
\begin{aligned}
& \operatorname{card}\left\{M^{\prime} \in \mathscr{M}_{h} ; M \cap M^{\prime} \neq \emptyset\right\} \leq C, \\
& h_{M}:=\operatorname{diam}(M) \leq C h, \\
& h_{M} \leq C h_{M^{\prime}} \quad \forall M^{\prime} \in \mathscr{M}_{h}, M \cap M^{\prime} \neq \emptyset, \\
& \left|v_{h}\right|_{1, M} \leq C h_{M}^{-1}\left\|v_{h}\right\|_{0, M} \quad \forall v_{h} \in V_{h} \\
& \exists B_{M} \subset\left(\left.V_{h}\right|_{M}\right) \cap H_{0}^{1}(M): \quad \operatorname{dim} B_{M}>0, \quad B_{M} \subset V_{h}, \\
& \exists D_{M} \subset L^{2}(M): \quad \sup _{v \in B_{M}} \frac{(v, q)_{M}}{\|v\|_{0, M}} \geq \beta_{L P}\|q\|_{0, M} \quad \forall q \in D_{M},
\end{aligned}
$$

One-level approach
$\mathscr{M}_{h}=\mathscr{T}_{h}$
examples of spaces:

$$
D_{M}=P_{l-1}(M) \quad \forall M \in \mathscr{M}_{h},
$$

$$
V_{h}=P_{l, \mathscr{O}_{h}}+\bigoplus_{M \in \mathscr{M}_{h}} b_{M} \cdot P_{l-1}(M)
$$

$$
\text { or } \quad V_{h}=Q_{l, \mathscr{F}_{h}}+\bigoplus_{M \in \mathscr{M}_{h}} b_{M} \cdot Q_{l-1}(M)
$$

Two-level approach

\mathscr{T}_{h} is obtained by a refinement of \mathscr{M}_{h}

Two-level approach

\mathscr{T}_{h} is obtained by a refinement of \mathscr{M}_{h}

examples of spaces:

$$
\begin{aligned}
& D_{M}=P_{l-1}(M) \\
& \quad \forall M \in \mathscr{M}_{h},
\end{aligned}
$$

$$
\begin{aligned}
& V_{h}=P_{l, \mathscr{T}_{h}} \\
& \text { or } \\
& V_{h}=Q_{l, \mathscr{O}_{h}}
\end{aligned}
$$

Two-level approach

\mathscr{T}_{h} is obtained by a refinement of \mathscr{M}_{h}

examples of spaces:

$$
\begin{aligned}
& D_{M}=P_{l-1}(M) \\
& \quad \forall M \in \mathscr{M}_{h},
\end{aligned}
$$

$V_{h}=P_{l, \mathscr{T}_{h}}$
can be viewed as one-level approach for simplicial meshes

Overlapping sets $M \in \mathscr{M}_{h}$
Let any element of \mathscr{T}_{h} have a vertex in Ω.
Let $x_{1}, \ldots, x_{N_{h}}$ be the vertices of \mathscr{T}_{h} lying in Ω.
Set $\quad M_{i}=$ int $\quad \bigcup \quad \bar{T}, \quad i=1, \ldots, N_{h}$,

$$
\begin{array}{r}
T \in \mathscr{T}_{h}, x_{i} \bar{T} \\
\mathscr{M}_{h}=\left\{M_{i}\right\}_{i=1}^{N_{h}} .
\end{array}
$$

Overlapping sets $M \in \mathscr{M}_{h}$
Let any element of \mathscr{T}_{h} have a vertex in Ω.
Let $x_{1}, \ldots, x_{N_{h}}$ be the vertices of \mathscr{T}_{h} lying in Ω.
Set $\quad M_{i}=$ int $\quad \bigcup \quad \bar{T}, \quad i=1, \ldots, N_{h}$,

$$
\begin{aligned}
& T \in \mathscr{T}_{h}, x_{i} \bar{T} \\
& \mathscr{M}_{h}=\left\{M_{i}\right\}_{i=1}^{N_{h}} .
\end{aligned}
$$

Then we can use

$$
\begin{aligned}
& D_{M}=P_{l-1}(M) \quad \forall M \in \mathscr{M}_{h}, \\
& V_{h}=P_{l, \mathscr{T}_{h}} \quad \text { or } \quad V_{h}=Q_{l, \mathscr{T}_{h}} .
\end{aligned}
$$

Overlapping sets $M \in \mathscr{M}_{h}$
Let any element of \mathscr{T}_{h} have a vertex in Ω.
Let $x_{1}, \ldots, x_{N_{h}}$ be the vertices of \mathscr{T}_{h} lying in Ω.
Set $\quad M_{i}=$ int $\quad \bigcup \quad \bar{T}, \quad i=1, \ldots, N_{h}$,

$$
\begin{array}{r}
T \in \mathscr{T}_{h}, x_{i} \bar{T} \\
\mathscr{M}_{h}=\left\{M_{i}\right\}_{i=1}^{N_{h}} .
\end{array}
$$

Then we can use

$$
\begin{aligned}
& D_{M}=P_{l-1}(M) \quad \forall M \in \mathscr{M}_{h}, \\
& V_{h}=P_{l, \mathscr{T}_{h}} \quad \text { or } \quad V_{h}=Q_{l, \mathscr{H}_{h}} .
\end{aligned}
$$

cheaper and more robust than the previous approaches

Assumptions

$V_{h} \subset H_{0}^{1}(\Omega) \ldots$ FE space on \mathscr{T}_{h}
$\mathscr{M}_{h} \ldots$ set of a finite number of open subsets M of Ω such that

$$
\bar{\Omega}=\bigcup_{M \in \mathscr{M}_{h}} \bar{M},
$$

For any $M \in \mathscr{M}_{h}$:

$$
\begin{aligned}
& \operatorname{card}\left\{M^{\prime} \in \mathscr{M}_{h} ; M \cap M^{\prime} \neq \emptyset\right\} \leq C, \\
& h_{M}:=\operatorname{diam}(M) \leq C h, \\
& h_{M} \leq C h_{M^{\prime}} \quad \forall M^{\prime} \in \mathscr{M}_{h}, M \cap M^{\prime} \neq \emptyset, \\
& \left|v_{h}\right|_{1, M} \leq C h_{M}^{-1}\left\|v_{h}\right\|_{0, M} \quad \forall v_{h} \in V_{h} \\
& \exists B_{M} \subset\left(\left.V_{h}\right|_{M}\right) \cap H_{0}^{1}(M): \quad \operatorname{dim} B_{M}>0, \quad B_{M} \subset V_{h}, \\
& \exists D_{M} \subset L^{2}(M): \quad \sup _{v \in B_{M}} \frac{(v, q)_{M}}{\|v\|_{0, M}} \geq \beta_{L P}\|q\|_{0, M} \quad \forall q \in D_{M},
\end{aligned}
$$

Assumptions

$V_{h} \subset H_{0}^{1}(\Omega) \ldots$ FE space on \mathscr{T}_{h}
$\mathscr{M}_{h} \ldots$ set of a finite number of open subsets M of Ω such that

$$
\bar{\Omega}=\bigcup_{M \in \mathscr{M}_{h}} \bar{M},
$$

For any $M \in \mathscr{M}_{h}$:
$\pi_{M} \ldots$ orthogonal L^{2} projection of $L^{2}(M)$ onto D_{M}

Assumptions

$V_{h} \subset H_{0}^{1}(\Omega) \ldots$ FE space on \mathscr{T}_{h}
$\mathscr{M}_{h} \ldots$ set of a finite number of open subsets M of Ω such that

$$
\bar{\Omega}=\bigcup_{M \in \mathscr{M}_{h}} \bar{M},
$$

For any $M \in \mathscr{M}_{h}$:
$\pi_{M} \ldots$ orthogonal L^{2} projection of $L^{2}(M)$ onto D_{M} $\kappa_{M}:=i d-\pi_{M} \ldots$ fluctuation operator

Assumptions

$V_{h} \subset H_{0}^{1}(\Omega) \ldots$ FE space on \mathscr{T}_{h}
$\mathscr{M}_{h} \ldots$ set of a finite number of open subsets M of Ω such that

$$
\bar{\Omega}=\bigcup_{M \in \mathscr{M}_{h}} \bar{M},
$$

For any $M \in \mathscr{M}_{h}$:
$\pi_{M} \ldots$ orthogonal L^{2} projection of $L^{2}(M)$ onto D_{M}
$\kappa_{M}:=i d-\pi_{M} \ldots$ fluctuation operator
$\mathbf{b}_{M} \in \mathbb{R}^{d}$ such that

$$
\left|\mathbf{b}_{M}\right| \leq\|\mathbf{b}\|_{0, \infty, M}, \quad\left\|\mathbf{b}-\mathbf{b}_{M}\right\|_{0, \infty, M} \leq C h_{M}|\mathbf{b}|_{1, \infty, M}
$$

Assumptions

$V_{h} \subset H_{0}^{1}(\Omega) \ldots$ FE space on \mathscr{T}_{h}
$\mathscr{M}_{h} \ldots$ set of a finite number of open subsets M of Ω such that

$$
\bar{\Omega}=\bigcup_{M \in \mathscr{M}_{h}} \bar{M},
$$

For any $M \in \mathscr{M}_{h}$:
$\pi_{M} \ldots$ orthogonal L^{2} projection of $L^{2}(M)$ onto D_{M}
$\kappa_{M}:=i d-\pi_{M} \ldots$ fluctuation operator
$\mathbf{b}_{M} \in \mathbb{R}^{d}$ such that

$$
\left|\mathbf{b}_{M}\right| \leq\|\mathbf{b}\|_{0, \infty, M}, \quad\left\|\mathbf{b}-\mathbf{b}_{M}\right\|_{0, \infty, M} \leq C h_{M}|\mathbf{b}|_{1, \infty, M}
$$

$Q_{h} \subset H^{1, h}(\Omega) \cap L_{0}^{2}(\Omega) \ldots$ FE space on \mathscr{T}_{h}

$$
H^{1, h}(\Omega)=\left\{q \in L^{2}(\Omega) ;\left.q\right|_{T} \in H^{1}(T) \forall T \in \mathscr{T}_{h}\right\}
$$

A local projection discretization

Find $\mathbf{u}_{h} \in V_{h}^{d}$ and $p_{h} \in Q_{h}$ such that

$$
A_{h}\left(\left[\mathbf{u}_{h}, p_{h}\right],\left[\mathbf{v}_{h}, q_{h}\right]\right)=\left(\mathbf{f}, \mathbf{v}_{h}\right) \quad \forall \mathbf{v}_{h} \in V_{h}^{d}, q_{h} \in Q_{h}
$$

where

$$
\begin{aligned}
A_{h}([\mathbf{u}, p],[\mathbf{v}, q]) & =a(\mathbf{u}, \mathbf{v})-(p, \operatorname{div} \mathbf{v})+(q, \operatorname{div} \mathbf{u}) \\
& +s_{h}^{b}(\mathbf{u}, \mathbf{v})+s_{h}^{u}(\mathbf{u}, \mathbf{v})+s_{h}^{p}(p, q)+s_{h}^{j}(p, q)
\end{aligned}
$$

A local projection discretization

$$
\begin{aligned}
& s_{h}^{b}(\mathbf{u}, \mathbf{v})=\sum_{M \in \mathscr{M}_{h}} \tau_{M}\left(\kappa_{M}\left[\left(\mathbf{b}_{M} \cdot \nabla\right) \mathbf{u}\right], \kappa_{M}\left[\left(\mathbf{b}_{M} \cdot \nabla\right) \mathbf{v}\right]\right)_{M} \\
& s_{h}^{u}(\mathbf{u}, \mathbf{v})=\sum_{M \in \mathscr{M}_{h}} \mu_{M}\left(\kappa_{M}(\operatorname{div} \mathbf{u}), \kappa_{M}(\operatorname{div} \mathbf{v})\right)_{M} \\
& s_{h}^{p}(p, q)=\sum_{M \in \mathscr{M}_{h}} \alpha_{M}\left(\kappa_{M}\left(\nabla_{h} p\right), \kappa_{M}\left(\nabla_{h} q\right)\right)_{M} \\
& s_{h}^{j}(p, q)=\sum_{E \in \mathscr{E}_{h}} \beta_{E}\left([p]_{E},[q]_{E}\right)_{E}
\end{aligned}
$$

Stabilization parameters:

$$
\begin{aligned}
& \tau_{M} \approx \gamma_{M}:=\frac{h_{M}^{2}}{v+h_{M}\|\mathbf{b}\|_{0, \infty, M}+h_{M}^{2} \sigma}, \\
& \mu_{M} \approx v+h_{M}^{2} \sigma, \quad \alpha_{M} \approx \frac{h_{M}^{2}}{v+h_{M}^{2} \sigma}, \quad \beta_{E} \approx \frac{h_{E}}{v+h_{E}^{2} \sigma} \\
& \left.\mu_{M}=0\right)
\end{aligned}
$$

Stability of the local projection discretization

Local projection norm:

$$
\begin{aligned}
\|[\mathbf{v}, q]\| \|_{L P}=\left(v|\mathbf{v}|_{1, \Omega}^{2}+\sigma\|\mathbf{v}\|_{0, \Omega}^{2}\right. & +s_{h}^{b}(\mathbf{v}, \mathbf{v})+s_{h}^{u}(\mathbf{v}, \mathbf{v}) \\
& \left.+s_{h}^{p}(q, q)+s_{h}^{j}(q, q)\right)^{1 / 2}
\end{aligned}
$$

Stability of the local projection discretization

Local projection norm:

$$
\begin{aligned}
\|\|[\mathbf{v}, q]\|\|_{L P}=\left(v|\mathbf{v}|_{1, \Omega}^{2}+\sigma\|\mathbf{v}\|_{0, \Omega}^{2}\right. & +s_{h}^{b}(\mathbf{v}, \mathbf{v})+s_{h}^{u}(\mathbf{v}, \mathbf{v}) \\
& \left.+s_{h}^{p}(q, q)+s_{h}^{j}(q, q)\right)^{1 / 2}
\end{aligned}
$$

Stronger norm:
$\|\|[\mathbf{v}, q]\|\|=\left(\| \|[\mathbf{v}, q]\| \|_{L P}^{2}+\frac{1}{1+\omega_{h}^{1}} \sum_{M \in \mathscr{M}_{h}} \gamma_{M}\left\|(\mathbf{b} \cdot \nabla) \mathbf{v}+\nabla_{h} q\right\|_{0, M}^{2}\right)^{1 / 2}$
with

$$
\omega_{h}^{1}=\max _{M \in \mathscr{M}_{h}} \frac{h_{M}^{2}|\mathbf{b}|_{1, \infty, M}}{v+h_{M}^{2} \sigma}
$$

Stability of the local projection discretization

Theorem $\exists \beta>0$ such that, for any $\mathbf{u}_{h} \in V_{h}^{d}$ and $p_{h} \in Q_{h}$,

$$
\sup _{\left[\mathbf{v}_{h}, q_{h}\right] \in V_{h}^{d} \times Q_{h}} \frac{A_{h}\left(\left[\mathbf{u}_{h}, p_{h}\right],\left[\mathbf{v}_{h}, q_{h}\right]\right)}{\| \|\left[\mathbf{v}_{h}, q_{h}\right]\| \|} \geq \beta\| \|\left[\mathbf{u}_{h}, p_{h}\right] \| .
$$

Stability of the local projection discretization

Theorem $\exists \beta>0$ such that, for any $\mathbf{u}_{h} \in V_{h}^{d}$ and $p_{h} \in Q_{h}$,

$$
\sup _{\left.q_{h}\right] \in V_{h}^{d} \times Q_{h}} \frac{A_{h}\left(\left[\mathbf{u}_{h}, p_{h}\right],\left[\mathbf{v}_{h}, q_{h}\right]\right)}{\| \|\left[\mathbf{v}_{h}, q_{h}\right]\| \|} \geq \beta\| \|\left[\mathbf{u}_{h}, p_{h}\right]\| \| .
$$

General error estimate for any $\mathbf{w}_{h} \in V_{h}^{d}$ and $r_{h} \in Q_{h}$

$$
\begin{aligned}
\beta\left\|\left\|\left[\mathbf{u}-\mathbf{u}_{h}, p-p_{h}\right]\right\|\right\| & \leq \beta\| \|\left[\mathbf{u}-\mathbf{w}_{h}, p-r_{h}\right]\| \| \\
& +\sup _{\left[\mathbf{v}_{h}, q_{h}\right] \in V_{h}^{d} \times Q_{h}} \frac{A_{h}\left(\left[\mathbf{u}-\mathbf{w}_{h}, p-r_{h}\right],\left[\mathbf{v}_{h}, q_{h}\right]\right)}{\| \|\left[\mathbf{v}_{h}, q_{h}\right]\| \|} \\
& +\sup _{\left[\mathbf{v}_{h}, q_{h}\right] \in V_{h}^{d} \times Q_{h}} \frac{s_{h}^{b}\left(\mathbf{u}, \mathbf{v}_{h}\right)+s_{h}^{p}\left(p, q_{h}\right)}{\| \|\left[\mathbf{v}_{h}, q_{h}\right]\| \|}
\end{aligned}
$$

Stability of the local projection discretization

Theorem $\exists \beta>0$ such that, for any $\mathbf{u}_{h} \in V_{h}^{d}$ and $p_{h} \in Q_{h}$,

$$
\sup _{\left.q_{h}\right] \in V_{h}^{d} \times Q_{h}} \frac{A_{h}\left(\left[\mathbf{u}_{h}, p_{h}\right],\left[\mathbf{v}_{h}, q_{h}\right]\right)}{\| \|\left[\mathbf{v}_{h}, q_{h}\right]\| \|} \geq \beta\| \|\left[\mathbf{u}_{h}, p_{h}\right] \| .
$$

General error estimate for any $\mathbf{w}_{h} \in V_{h}^{d}$ and $r_{h} \in Q_{h}$

$$
\begin{aligned}
\beta\left\|\left\|\left[\mathbf{u}-\mathbf{u}_{h}, p-p_{h}\right]\right\|\right\| & \leq \beta\| \|\left[\mathbf{u}-\mathbf{w}_{h}, p-r_{h}\right]\| \| \\
& +\sup _{\left[\mathbf{v}_{h}, q_{h}\right] \in V_{h}^{d} \times Q_{h}} \frac{A_{h}\left(\left[\mathbf{u}-\mathbf{w}_{h}, p-r_{h}\right],\left[\mathbf{v}_{h}, q_{h}\right]\right)}{\| \|\left[\mathbf{v}_{h}, q_{h}\right]\| \|} \\
& +\sup _{\left[\mathbf{v}_{h}, q_{h}\right] \in V_{h}^{d} \times Q_{h}} \frac{s_{h}^{b}\left(\mathbf{u}, \mathbf{v}_{h}\right)+s_{h}^{p}\left(p, q_{h}\right)}{\| \|\left[\mathbf{v}_{h}, q_{h}\right]\| \|}
\end{aligned}
$$

For an optimal estimate of the consistency error, it is essential that we use \mathbf{b}_{M} instead of \mathbf{b} in s_{h}^{b}.

Approximation properties of the spaces V_{h}, Q_{h} and D_{M}
$\exists i_{h} \in \mathscr{L}\left(H^{2}(\Omega) \cap H_{0}^{1}(\Omega), V_{h}\right)$ and $j_{h} \in \mathscr{L}\left(H^{1}(\Omega) \cap L_{0}^{2}(\Omega), Q_{h}\right)$
such that, for some constants $l_{V} \in \mathbb{N}, l_{Q} \in \mathbb{N}_{0}$ and C and for any $M \in \mathscr{M}_{h}$,

$$
\begin{aligned}
& \left|v-i_{h} v\right|_{1, M}+h_{M}^{-1}\left\|v-i_{h} v\right\|_{0, M} \leq C h_{M}^{r}|v|_{r+1, M} \\
& \forall v \in H^{r+1}(\Omega), r=1, \ldots, l_{V}, \\
& \left\|\nabla_{h}\left(v-j_{h} v\right)\right\|_{0, M}+h_{M}^{-1}\left\|v-j_{h} v\right\|_{0, M} \leq C h_{M}^{r}|v|_{r+1, M} \\
& \forall v \in H^{r+1}(\Omega) \cap L_{0}^{2}(\Omega), r=0, \ldots, l_{Q} .
\end{aligned}
$$

\exists constants $l_{D} \in \mathbb{N}$ and C such that
$\inf _{v \in D_{M}}\|q-v\|_{0, M} \leq C h_{M}^{r}|q|_{r, M} \quad \forall q \in H^{r}(M), M \in \mathscr{M}_{h}, r=1, \ldots, l_{D}$.

A priori error estimates

Theorem Let $\mathbf{u} \in H^{r+1}(\Omega)^{d}$ and $p \in H^{s+1}(\Omega)$ with $1 \leq r \leq \min \left\{l_{V}, l_{D}\right\}$ and $0 \leq s \leq \min \left\{l_{Q}, l_{D}\right\}$. Then

$$
\begin{aligned}
\left\|\left|\left[\mathbf{u}-\mathbf{u}_{h}, p-p_{h}\right]\right|\right\| & \leq C h^{r}\left(1+\omega_{h}^{1}\right)^{1 / 2}\left(\sum_{M \in \mathscr{M}_{h}} \delta_{M}|\mathbf{u}|_{r+1, M}^{2}\right)^{1 / 2} \\
& +C h^{s}\left(\sum_{M \in \mathscr{M}_{h}} \alpha_{M}|p|_{s+1, M}^{2}\right)^{1 / 2}
\end{aligned}
$$

where

$$
\delta_{M}=v+h_{M}\|\mathbf{b}\|_{0, \infty, M}+h_{M}^{2} \sigma, \quad \alpha_{M} \approx \frac{h_{M}^{2}}{v+h_{M}^{2} \sigma}
$$

and C is independent of h and the data.

Estimate of $\left\|p-p_{h}\right\|_{0, \Omega}$

Lemma There is a constant $\gamma>0$ independent of h such that, for any $q \in H^{1, h}(\Omega) \cap L_{0}^{2}(\Omega)$,

$$
\begin{aligned}
\sup _{\mathbf{v}_{h} \in V_{h}^{d}} \frac{\left(q, \operatorname{div} \mathbf{v}_{h}\right)}{\left|\mathbf{v}_{h}\right|_{1, \Omega}} & +\left(\sum_{M \in \mathscr{M}_{h}} h_{M}^{2}\left\|\kappa_{M} \nabla_{h} q\right\|_{0, M}^{2}\right)^{1 / 2} \\
& +\left(\sum_{E \in \mathscr{E}_{h}} h_{E}\left\|[q]_{E}\right\|_{0, E}^{2}\right)^{1 / 2} \geq \gamma\|q\|_{0, \Omega}
\end{aligned}
$$

Estimate of $\left\|p-p_{h}\right\|_{0, \Omega}$
Theorem Let $\mathbf{u} \in H^{r+1}(\Omega)^{d}$ with $r \in\left\{0, \ldots, l_{D}\right\}$ and $p \in H^{1}(\Omega)$. Then

$$
\begin{aligned}
\| p- & p_{h} \|_{0, \Omega} \\
\leq & C\left(v+C_{F}^{2} \sigma\right)^{1 / 2}\left(1+\frac{C_{F}\|\mathbf{b}\|_{0, \infty, \Omega}}{v+C_{F}^{2} \sigma}\right)\| \|\left[\mathbf{u}-\mathbf{u}_{h}, p-p_{h}\right]\| \|_{L P} \\
& +C\left(v+h\|\mathbf{b}\|_{0, \infty, \Omega}+C_{F}^{2} \sigma\right)^{1 / 2} h^{r+1 / 2}\|\mathbf{b}\|_{0, \infty, \Omega}^{1 / 2}|\mathbf{u}|_{r+1, \Omega},
\end{aligned}
$$

where C is independent of h and the data.

Stokes problem

\equiv Oseen problem with $v=1, \mathbf{b}=\mathbf{0}, \sigma=0$

Stokes problem

\equiv Oseen problem with $v=1, \mathbf{b}=\mathbf{0}, \sigma=0$
Stabilization parameters:

$$
\begin{aligned}
& \mu_{M} \approx 1, \quad \alpha_{M} \approx h_{M}^{2}, \quad \beta_{E} \approx h_{E} \\
&\text { (or } \left.\mu_{M}=0\right)
\end{aligned}
$$

Stokes problem

\equiv Oseen problem with $v=1, \mathbf{b}=\mathbf{0}, \sigma=0$
Stabilization parameters:

$$
\begin{aligned}
& \mu_{M} \approx 1, \quad \alpha_{M} \approx h_{M}^{2}, \quad \beta_{E} \approx h_{E} \\
&\left(\text { or } \mu_{M}=0\right)
\end{aligned}
$$

Theorem Let $\mathbf{u} \in H^{r+1}(\Omega)^{d}$ and $p \in H^{s+1}(\Omega)$ with $1 \leq r \leq l_{V}$ and $0 \leq s \leq \min \left\{l_{Q}, l_{D}\right\}$. Then
$\left|\left|\left|\left[\mathbf{u}-\mathbf{u}_{h}, p-p_{h}\right]\right|\right|\right|+\left\|p-p_{h}\right\|_{0, \Omega} \leq C h^{r}|\mathbf{u}|_{r+1, \Omega}+C h^{s+1}|p|_{s+1, \Omega}$.

Conclusions

- generalization of LPS to projection spaces defined on overlapping sets

Conclusions

- generalization of LPS to projection spaces defined on overlapping sets
- overlapping LPS is cheaper and more robust

Conclusions

- generalization of LPS to projection spaces defined on overlapping sets
- overlapping LPS is cheaper and more robust
- stability and optimal error estimates with respect to an improved norm for the Oseen problem

Conclusions

- generalization of LPS to projection spaces defined on overlapping sets
- overlapping LPS is cheaper and more robust
- stability and optimal error estimates with respect to an improved norm for the Oseen problem
- modification of the convective stabilization term

Conclusions

- generalization of LPS to projection spaces defined on overlapping sets
- overlapping LPS is cheaper and more robust
- stability and optimal error estimates with respect to an improved norm for the Oseen problem
- modification of the convective stabilization term
- correctly scaled stabilization parameters

Conclusions

- generalization of LPS to projection spaces defined on overlapping sets
- overlapping LPS is cheaper and more robust
- stability and optimal error estimates with respect to an improved norm for the Oseen problem
- modification of the convective stabilization term
- correctly scaled stabilization parameters
- discontinuous pressures

