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Abstract. We prove optimal convergence results for a finite element discretiza-
tion of three–dimensional stationary incompressible Navier–Stokes equations with
nostandard boundary conditions in case of a tetrahedral triangulation of a compu-
tational domain with piecewise smooth boundary.

1 Formulation of the Problem

Let Ω ⊂ IR3 be a bounded domain with a boundary consisting of the sets
ΓD and ΓN . We consider the following stationary Navier–Stokes equations:

−ν ∆ u + (∇u)u +∇ p = f , div u = 0 in Ω, (1.1)
u = ub on ΓD, (1.2)

u · n = 0 , (I − n⊗ n) (∇u +∇uT) n = ϕ on ΓN , (1.3)

where u denotes the velocity, p denotes the pressure, ν is a constant and
positive kinematic viscosity, f is an outer volume force, ϕ is a surface force,
I is the identity tensor and n is the unit outward normal vector to the
boundary ∂Ω of Ω. We assume that ∂Ω is Lipschitz–continuous and that
the sets ΓD and ΓN are open in ∂Ω, disjoint and such that meas2(ΓD) > 0,
meas2(ΓN ) ≥ 0 and ∂Ω = ΓD ∪ ΓN . Further we assume that

f ∈ L2(Ω)3 , ϕ ∈ H
1
2 (∂Ω)3 , ϕ · n = 0 on ΓN ,

ub ∈ H
1
2 (∂Ω)3 , ub · n = 0 on ΓN ,

∫
∂Ω

ub · n dσ = 0 .

For investigating effects caused by an approximation of Ω by a polyhedral
domain, we need some further assumptions on the regularity of ∂Ω. We
suppose that there exists an extension m ∈ W 2,∞(IR3)3 of the unit outward
normal vector to ΓN , i.e., m|

ΓN = n|
ΓN . The boundary of Ω is assumed

to consist of disjoint relatively open C2 surfaces Γi ⊂ ∂Ω, i = 1, . . . ,K,
such that Γi ⊂ ΓD for i = 1, . . . ,KD, Γi ⊂ ΓN for i = KD + 1, . . . ,K,
the boundaries ∂Γi are piecewise C2 and, in each point without this C2
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regularity, the angle between the respective parts of ∂Γi is positive. In
addition, we assume that each surface Γi can be extended to a C2 surface Γ̃i

satisfying dist(∂Γ̃i, ∂Γi) > 0. Finally, we shall assume that V ∩H l(Ω)3 = V,
where V = {v ∈ H1(Ω)3 ; v = 0 on ΓD , v ·n = 0 on ΓN } and l ∈ {2, 3}
is an integer for which the assumption A1 in Section 3 is satisfied.

The plan of the paper is as follows. In Section 2, we introduce a weak
formulation of (1.1)–(1.3) and mention some related results. In Section 3,
we define a finite element discretization of (1.1)–(1.3) and give all necessary
assumptions on the triangulation and the discrete spaces. In Section 4, we
present some auxiliary results and, particularly, we investigate convergence
of integrals over a part of the boundary of the approximating domain Ωh. In
Section 5, we introduce operator formulations of both the weak formulation
and the discrete problem which are based on auxiliary problems obtained
by replacing the nonlinear terms by linear functionals. Finally, in Section 6,
we investigate convergence properties of the auxiliary problems and present
optimal convergence results for the discretization of (1.1)–(1.3) which fol-
low using the theory of approximation of branches of nonsingular solutions.
Many of the techniques we use are new and most of them can be applied in
both 2D and 3D. In addition, we only use the above realistic assumptions
on Ω whereas most authors make restrictive additional assumptions such as
convexity of Ω and C2 regularity of ∂Ω. Unfortunately, many details of the
proofs cannot be mentioned here and we refer to [4] and [5]. Throughout
the paper we use a standard notation which can be found e.g. in [2].

2 Weak Formulation

Denoting a(u,v) = ν
2

∫
Ω (∇u + ∇uT) · (∇v + ∇vT) dx, n(u, ũ,v) =∫

Ω v · (∇ũ)u dx, b(v, p) = −
∫
Ω p div v dx and <g,v> =

∫
Ω f · v dx +

ν
∫
ΓN ϕ · v dσ, we introduce the following weak formulation which can be

obtained in a standard way.

Definition 2.1 Let ũb ∈ H1(Ω)3 be any function satisfying ũb|∂Ω = ub.
Then the functions u, p are a weak solution of the problem (1.1)–(1.3) if

u− ũb ∈ V , p ∈ L2
0(Ω) , (2.1)

a(u,v) + n(u,u,v) + b(v, p) = <g,v> ∀ v ∈ V , (2.2)
b(u, q) = 0 ∀ q ∈ L2

0(Ω) . (2.3)
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It can be shown that any classical solution u ∈ C2(Ω)3, p ∈ C1(Ω) ∩
L2

0(Ω) of (1.1)–(1.3) is a weak solution and that any weak solution satisfying
u ∈ C2(Ω)3, p ∈ C1(Ω) is a classical solution. Under the assumption

∃ ε ∈ (0, 1) ∀v ∈ V , div v = 0 ∃ ũb ∈ H1(Ω)3 : div ũb = 0 ,

ũb|ΓD = ub , ũb · n|ΓN = 0 , n(v,v, ũb) ≤ ε a(v,v) ,

one can prove using the Leray–Schauder principle that the weak formulation
is solvable. Further, the problem (1.1)–(1.3) has exactly one weak solution
if ‖f‖0,Ω/ν2, ‖ub‖ 1

2
,∂Ω

/ν and ‖ϕ‖
0,ΓN /ν are sufficiently small.

3 The Discrete Problem

We assume that we are given a family TTT = {Th} of triangulations of Ω
consisting of closed tetrahedra T having standard properties (cf. [1]). We
denote Ωh = int

⋃
T∈Th

T and assume that, for any face T ′ ⊂ ∂Ωh of some
T ∈ Th, there exists i ∈ {1, . . . ,K} such that all three vertices of T ′ be-
long to Γi. Further, we assume that the set of the vertices of any Th ∈ TTT
contains all the points, in which some ∂Γi is not C2. The family of the
triangulations is assumed to be regular, i.e., there exists a number σ > 0
such that hT /%T ≤ σ for any T ∈ Th, Th ∈ TTT , where hT = diam(T ) and %T

is the maximal diameter of balls contained in T . Since the set of the pa-
rameters h is bounded, we can introduce a bounded domain Ω̃ ⊂ IR3 with a
Lipschitz–continuous boundary such that Ω ⊂ Ω̃ and Ωh ⊂ Ω̃ for any h > 0.

For any i ∈ {1, . . . ,K}, the set Γi will be approximated by a rela-
tively open set Γih ⊂ ∂Ωh consisting of boundary faces T ′ ⊂ ∂Ωh such
that all vertices of T ′ belong to Γi and the barycentre xc

T ′ of T ′ satisfies
dist(xc

T ′ ,Γi) ≤ C h2
T ′ , where hT ′ = diam(T ′). The set ΓD will be approxi-

mated by a relatively open set ΓD
h consisting of Γih, i = 1, . . . ,KD, and the

set ΓN will be approximated by a relatively open set ΓN
h consisting of Γih,

i = KD + 1, . . . ,K.
For a given integer n > 0, we assume that we are given spaces

Vh ⊂ {v ∈ C(Ωh)3 ; v = 0 on ΓD
h , v|T ∈ Pn(T )3 ∀ T ∈ Th} ,

Qh ⊂ { v ∈ L2
0(Ωh) ; v|T ∈ Pn(T ) ∀ T ∈ Th }

approximating the spaces V and L2
0(Ω), respectively:
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A1: There exist an integer l ∈ {2, 3} and an operator rh ∈ L(V ∩
H l(Ω)3,Vh) such that

‖v − rh v‖1,Ωh
≤ C h

l
2 ‖v‖

l,Ω̃
∀ v ∈ H l(Ω̃)3 , v|Ω ∈ V .

If l = 2, then

‖vh · nh‖0, 4
3
,ΓN

h
≤ C h ‖vh‖1,Ωh

∀ vh ∈ Vh , (3.1)

where nh is the unit outward normal vector to ∂Ωh. If l = 3, then

‖vh · n̄h‖0,1,ΓN
h
≤ C h

3
2 ‖vh‖1,Ωh

∀ vh ∈ Vh , (3.2)

where n̄h ∈ L2(∂Ωh)3 is the piecewise linear interpolate of n. Any
vh ∈ Vh satisfies vh · n∗h = 0 in any vertex of Th lying in ΓN

h , where
n∗h satisfies for some fixed α ∈ (0, 1]

|n∗h(x)− n(x)| ≤ C h1+α
T in any vertex x ∈ ΓN

h ,

with T ∈ Th being any element containing the vertex x.

A2: There exists an operator sh ∈ L(L2
0(Ω) ∩H l−1(Ω),Qh) such that

‖q − sh q‖0,Ωh
≤ C h

l
2 ‖q‖

l−1,Ω̃
∀ q ∈ H l−1(Ω̃) , q|Ω ∈ L2

0(Ω) .

A3: There exists a constant β > 0 independent of h such that

sup
vh∈Vh,vh 6=0

∫
Ωh

qh div vh dx

‖vh‖1,Ωh

≥ β ‖qh‖0,Ωh
∀ qh ∈ Qh .

Examples of finite element spaces satisfying the above assumptions with
l = 2 were constructed in [4], Section V.7. Finite element spaces satisfying
A1–A3 with l = 3 can be found in [5].

We replace the forms used in the weak formulation by the forms ah, nh,
bh and gh obtained by changing Ω to Ωh and ΓN to ΓN

h and by extending
f and ϕ onto Ω̃, i.e., f ∈ L2(Ω̃)3 and ϕ ∈ H1(Ω̃)3. Further, we introduce
a function ũbh ∈ H1(Ωh)3 such that limh→0 ‖P ũb − ũbh‖1,Ωh

= 0 for some
extension operator P : H1(Ω)3 → H1(Ω̃)3.
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Definition 3.1 The functions uh, ph are a discrete solution of (1.1)–(1.3) if

uh − ũbh ∈ Vh , ph ∈ Qh , (3.3)
ah(uh,vh) + nh(uh,uh,vh) + bh(vh, ph) = <gh,vh> ∀ vh ∈ Vh , (3.4)

bh(uh, qh) = 0 ∀ qh ∈ Qh . (3.5)

It is important that the bilinear from ah is uniformly elliptic on Vh: there
exists a constant C > 0 independent of h such that C ‖vh‖2

1,Ωh
≤ ah(vh,vh)

for any vh ∈ Vh. It is the so–called discrete Korn inequality (cf. [3] or [5]).

4 Auxiliary Results

In view of the above assumptions, we have

meas3(Ω \ Ωh ∪ Ωh \ Ω) ≤ C h2 (4.1)

and there exist operators P∈L(H1(Ω),H1
0 (Ω̃)) and Ph ∈L(H1(Ωh),H1

0 (Ω̃))
satisfying for any v ∈ H1(Ωh), with C independent of h,

‖Ph v‖
1,Ω̃

≤ C ‖v‖1,Ωh
, lim

h→0
‖P v − Ph (P v)|Ωh

‖
1,Ω̃

= 0 . (4.2)

Further, it can be shown that ‖Ph vh‖1,Ω\Ωh∪Ωh\Ω ≤ C h
1
2 ‖vh‖1,Ωh

for any

vh ∈ Vh and that ‖qh‖0,Ωh\Ω ≤ C h
1
2 ‖qh‖0,Ωh

for any qh ∈ Qh.
The sets Γi, i = 1, . . . ,K, can be decomposed into disjoint sets ΓT ′ ⊂ Γi

assigned to the faces T ′ ⊂ Γih. We denote by K(T ′) the circle lying in
the plane determined by T ′ and having a radius hT ′ and the centre in the
barycentre of T ′. For small h, each ΓT ′ can be represented by the graph of a
function ϕT ′ ∈ C2(K(T ′)) satisfying |ϕT ′(x)| ≤ C h2

T ′ and |∇ϕT ′(x)| ≤ C hT ′

for any x ∈ K(T ′). Further, we can define disjoint sets GT ′ related to the
“space between T ′ and ΓT ′” and making up the set Ω \ Ωh ∪ Ωh \ Ω. We
denote by DT ′ the projection of ΓT ′ into K(T ′) and by BT ′ the intersec-
tion of T ′ with the projection of ΓT ′ ∩ GT ′ into K(T ′). Then, for esti-
mating the difference

∫
Γ1

θ v dσ −
∫
Γ1h

θ v dσ with θ, v ∈ H1(Ω̃), it suffices
to estimate the terms

∫
BT ′ θ(x, ϕT ′(x)) v(x, ϕT ′(x)) ρT ′(x)−θ(x, 0) v(x, 0) dx,∫

DT ′\BT ′ θ(x, ϕT ′(x)) v(x, ϕT ′(x)) ρT ′(x) dx and
∫
T ′\BT ′ θ(x, 0) v(x, 0) dx,

where ρT ′(x) = (1 + |∇ϕT ′(x)|2)
1
2 . Since

∫
BT ′ |v(x, ϕT ′(x)) − v(x, 0)|2 dx ≤

C h2
T ′ |v|21,GT ′ ∀ v ∈ H1(Ω̃), |1− ρT ′(x)| ≤ C h2

T ′ and
∑

T ′⊂∂Ωh
meas2((DT ′ \
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BT ′) ∪(T ′ \BT ′)) ≤ C h2, we infer that∣∣∣∣∫
Γ1

θ v dσ −
∫
Γ1h

θ v dσ

∣∣∣∣ ≤ C h ‖θ‖
1,Ω̃

‖v‖
1,Ω̃

∀ θ, v ∈ H1(Ω̃) . (4.3)

Using the above techniques, we can also prove that∣∣∣∣∫
Γ1

θ v dσ −
∫
Γ1h

θ v dσ

∣∣∣∣ ≤ C (h
3
2 ‖v‖

1,Ω̃
+ h |v|1,Ω\Ωh∪Ωh\Ω) ‖θ‖

0,∞,Ω̃
+

+C h |θ|1,Ω\Ωh∪Ωh\Ω ‖v‖1,Ω̃
∀ θ ∈ L∞(Ω̃) ∩H1(Ω̃), v ∈ H1(Ω̃) .

For any v ∈ H1(Ω̃) with v|Γ1h
= 0, we obtain ‖v‖

0, 4
3
,Γ1

≤ C h ‖v‖
1,Ω̃

and

‖v‖0,1,Γ1
≤ C h

3
2 ‖v‖

1,Ω̃
+ C h |v|1,Ω\Ωh∪Ωh\Ω. Finally, for v ∈ H1(Ω̃)3, we

have |‖v · n‖0, 4
3
,Γ1

− ‖v · nh‖0, 4
3
,Γ1h

| ≤ C h ‖v‖
1,Ω̃

and, if the extension Γ̃1

of Γ1 is a C3 surface, then |‖v · n‖0,1,Γ1
− ‖v · n̄h‖0,1,Γ1h

| ≤ C h
3
2 ‖v‖

1,Ω̃
+

C h |v|1,Ω\Ωh∪Ωh\Ω.

5 Operator Formulations

We denote X̂ = H1(Ω)3 × L2(Ω), X̂h = H1(Ωh)3 × L2(Ωh), X = H1
0 (Ω̃)3 ×

L2(Ω̃) and Y = H−1(Ω̃)3 and define an operator P̃ : X̂ → X such that,
for Û = (v, q) ∈ X̂, it holds P̃ Û = (P v, q), where P is the operator from
Section 4 and q is considered as extended by zero outside Ω. Analogously,
we define an operator P̃h : X̂h → X by P̃h (vh, qh) = (Ph vh, qh). Further,
we define an operator Rh : X → X̂h as restriction from Ω̃ onto Ωh. Finally,
we introduce arbitrary extension operators Pk : Hk(Ω) → Hk(Ω̃), k ≥ 0,
and define operators Pk : Hk(Ω)3 ×Hk−1(Ω) → Hk(Ω̃)3 ×Hk−1(Ω̃), k ≥ 1,
by Pk(v, q) = (Pk v,Pk−1 q) for any (v, q) ∈ Hk(Ω)3 ×Hk−1(Ω).

To define an operator formulation of (3.3)–(3.5), we first introduce the
following auxiliary problem: Given Φ ∈ Y, find uh, ph such that

uh − ũbh ∈ Vh , ph ∈ Qh , (5.1)
ah(uh,vh) + bh(vh, ph) = <Φ, Ph vh> ∀vh ∈ Vh , (5.2)

bh(uh, qh) = 0 ∀ qh ∈ Qh . (5.3)

This problem is uniquely solvable and we can therefore define an operator
Th : Y → X̂h such that Ûh = Th Φ is the solution of (5.1)–(5.3). Defining a
nonlinear operator Gh : X → Y by

<Gh(U),v> = <gh,v>− nh(u,u,v) , U = (u, p) ∈ X, v ∈ H1
0 (Ω̃)3 ,
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we can introduce an operator Fh : X → X defined by

Fh(U) = P̃h Th Gh(U)−U , U ∈ X .

Then any solution Ûh of (3.3)–(3.5) satisfies Fh(P̃h Ûh) = 0 and, for any
U ∈ X satisfying Fh(U) = 0, the restriction Rh U is a solution of (3.3)–(3.5).

Analogously, we can define an operator formulation of (2.1)–(2.3). For
this, we define an operator F : X → X by

F(U) = P̃T G(U)−U , U ∈ X ,

where T : Y → X̂ corresponds to an auxiliary problem of (2.1)–(2.3) and

<G(U),v> = <g,v>− n(u,u,v) , U = (u, p) ∈ X, v ∈ H1
0 (Ω̃)3 .

Theorem 5.1 The operators F, Fh : X → X are C1 mappings and we have

‖DFh(U)−DFh(Û)‖L(X,X) ≤ C ‖U− Û‖X ∀ U, Û ∈ X ,

where the constant C is independent of h, U and Û.

Proof. The proof of the C1 continuity is easy and the Lipschitz–continuity
of DFh follows from the Lipschitz–continuity of DGh. 2

6 Convergence Results

Theorem 6.1 The operators T and Th satisfy

lim
h→0

‖Rh P̃ T G(Ũ)− Th G(Ũ)‖
X̂h

= 0 ∀ Ũ ∈ X . (6.1)

Proof. Choose an arbitrary Ũ = (ũ, p̃) ∈ X and denote (u, p) = P̃T G(Ũ)
and (uh, ph) = Th G(Ũ). For any vh ∈ Vh, there exists functions v̄0

h, v̄b
h,

v̄h ∈ H1
0 (Ω̃)3 and ub

h ∈ H1
0 (Ω̃) satisfying

Ph vh = v̄0
h + v̄h + v̄b

h + ub
h m , v̄0

h|Ω ∈ V ,

‖v̄0
h‖1,Ω̃

+ ‖v̄h‖1,Ω̃
+ ‖v̄b

h‖1,Ω̃
+ ‖ub

h‖1,Ω̃
≤ C ‖vh‖1,Ωh

,

‖v̄h‖1,Ωh
≤ C hα ‖vh‖1,Ωh

, ‖v̄h‖0,4,Ωh
≤ C h1+α ‖vh‖1,Ωh

,

supp v̄b
h ⊂ Uh(ΓD) , suppub

h ⊂ Uh(∂Ω) ,
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where Uh(Γ) = {x ∈ IR3 ; dist(x,Γ) ≤ Ch}. Then

|a(u, v̄0
h)− ah(u,vh)| ≤ C (|u|1,Ω\Ωh∪Ωh\Ω∪Uh(∂Ω) + hα |u|1,Ω) ‖vh‖1,Ωh

,

|b(v̄0
h, p)− bh(vh, p)| ≤ C (‖p‖0,Ω\Ωh∪Uh(∂Ω) + hα ‖p‖0,Ω) ‖vh‖1,Ωh

,

|n(ũ, ũ, v̄0
h − Ph vh)| ≤ C (|ũ|1,Ω\Ωh∪Uh(∂Ω) ‖ũ‖1,Ω + h1+α ‖ũ‖2

1,Ω)‖vh‖1,Ωh
,∣∣∣∣∫

Ω
f · (v̄0

h − Ph vh) dx

∣∣∣∣ ≤ C (‖f‖0,Ω\Ωh∪Uh(∂Ω) + h1+α ‖f‖0,Ω) ‖vh‖1,Ωh
,∣∣∣∣∫

ΓN
ϕ · (v̄0

h − Ph vh) dx

∣∣∣∣ ≤ C (‖ϕ‖0,ΓN∩Uh(ΓD) + hα ‖ϕ‖
1,Ω̃

) ‖vh‖1,Ωh
.

Since v̄0
h|Ω can be used as a test function in the auxiliary problem represented

by the operator T, we obtain

|ah(uh − u,vh) + bh(vh, ph − p)| ≤ Kh ‖vh‖1,Ωh
,

where Kh → 0 for h → 0. Now the proof can be completed in a similar way
as for Ωh = Ω (cf. [2]). 2

Corollary 6.1 The operators F and Fh satisfy for any U ∈ X

lim
h→0

‖F(U)− Fh(U)‖X = 0 , (6.2)

lim
h→0

‖DF(U)−DFh(U)‖L(X,X) = 0 . (6.3)

Proof. The first relation follows from limh→0 ‖G(U)−Gh(U)‖Y = 0, which
is a consequence of (4.3) and (4.1), and from (4.2) and (6.1). The relation
(6.3) follows using limh→0 ‖DG(U) − DGh(U)‖L(X,Y) = 0, (6.1) and the
compactness of DG(U). 2

Theorem 6.2 Let k ∈ {2, 3} be a given integer and let A1 and A2 hold with
l = k. If k = 2, let f ∈ L3(Ω̃)3. If k = 3, let f ∈ L12(Ω̃)3, ϕ ∈ W 1,∞(Ω̃)3

and let the extensions Γ̃i of Γi, i = KD +1, . . . ,K, be C3 surfaces. Let Ũ =
(ũ, p̃) ∈ X be given and let ũ, ũb ∈ Hk(Ω̃)3, T G(Ũ) ∈ Hk(Ω)3 × Hk−1(Ω)
and ‖Pk ũb − ũbh‖1,Ωh

≤ C h
k
2 . Then

‖Rh Pk T G(Ũ)− Th Gh(Ũ)‖
X̂h

≤ C h
k
2 . (6.4)
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Proof. Denote (u, p) = Pk T G(Ũ) and (uh, ph) = Th Gh(Ũ). The functions
u, p satisfy (1.1)–(1.3) with (∇u)u replaced by (∇ ũ)ũ and, in the same way
as used for deriving the weak formulation, we can obtain an integral form of
the first equation valid for any test function v ∈ H1(Ω̃)3. Subtracting this
equation with v = Ph vh from (5.2) with Φ = Gh(Ũ), we get

ah(uh,vh)− a(u,Ph vh) + bh(vh, ph)− b(Ph vh, p) =

= <Gh(Ũ)−G(Ũ),Ph vh>− ν

∫
ΓD

(Ph vh) · (∇u +∇uT) n dσ −

− ν

∫
ΓN

(n · Ph vh)n · (∇u +∇uT) n dσ +
∫

∂Ω
p n · (Ph vh) dσ .

In view of (3.1), (3.2) and the results of Section 4, the terms on the right–
hand side are bounded by C h

k
2 ‖vh‖1,Ωh

. Thus, we obtain

|ah(uh − u,vh) + bh(vh, ph − p)| ≤ C h
k
2 ‖vh‖1,Ωh

∀ vh ∈ Vh

and the proof can be completed in a similar way as for Ωh = Ω (cf. [2]). 2

Theorem 6.3 Let the assumptions given in Sections 1 and 3 be satisfied.
Let Û = (u, p) ∈ X̂ be a nonsingular weak solution of the problem (1.1)–
(1.3). Then there exist constants h0 > 0 and R > 0 such that, for h ∈ (0, h0),
the discrete problem (3.3)–(3.5) has a solution which is unique in the ball

B̂h(Û, R) = {V ∈ X̂h ; ‖Rh P̃ Û−V‖
X̂h

≤ R} .

Moreover, this unique solution Ûh = (uh, ph) ∈ B̂h(Û, R) is nonsingular and
satisfies

lim
h→0

{ ‖P1 u− uh‖1,Ωh
+ ‖P0 p− ph‖0,Ωh

} = 0 . (6.5)

If, in addition, u ∈ Hk(Ω)3, p ∈ Hk−1(Ω) for some k ∈ {2, 3}, the assump-
tions A1 and A2 hold with l = k and ũb, f , ϕ and Ω are like in Theorem 6.2,
then

‖Pk u− uh‖1,Ωh
+ ‖Pk−1 p− ph‖0,Ωh

≤ C h
k
2 . (6.6)

Proof. The properties of the operators F and Fh given in Theorem 5.1 and
Corollary 6.1 make it possible to apply results of the theory of approximation
of branches of nonsingular solutions stated in [2], pp. 301–302, immediately
proving the locally unique solvability and the convergence (6.5). The esti-
mate (6.6) follows using (6.4). 2

9



References

[1] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems,
North–Holland, Amsterdam, 1978

[2] Girault, V., Raviart, P.–A.: Finite Element Methods for Navier–Stokes
Equations, Springer–Verlag, Berlin, 1986

[3] Knobloch, P.: Discrete Friedrichs’ and Korn’s inequalities in two and
three dimensions, East–West J. Numer. Math. 4 (1996), 35–51

[4] Knobloch, P.: Solvability and Finite Element Discretization of a Math-
ematical Model Related to Czochralski Crystal Growth, PhD Thesis,
Preprint MBI–96–5, Otto–von–Guericke–Universität, Magdeburg, 1996

[5] Knobloch, P.: Variational crimes in a finite element discretization of 3D
Stokes equations with nonstandard boundary conditions, in preparation

Author’s address: Institut für Analysis und Numerik, Otto–von–Guericke–
Universität Magdeburg, Postfach 4120, 39016 Magdeburg, Germany
E–mail: Petr.Knobloch@mathematik.uni–magdeburg.de
This work was supported by the Deutsche Forschungsgemeinschaft (DFG).

10


