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INFLUENCE OF MESH–DEPENDENT KORN’S INEQUALITY ON
THE CONVERGENCE OF NONCONFORMING FINITE ELEMENT

SCHEMES ∗

PETR KNOBLOCH1

Abstract. We discuss the validity of a discrete analogue of Korn’s first inequality for two–
dimensional nonconforming finite elements. For the Crouzeix–Raviart element and the rotated bi-
linear element, the constant in this inequality is mesh–dependent and we investigate its influence
on the convergence properties of finite element discretizations of the Stokes equations involving de-
formation tensor formulation of the Laplace operator. Whereas for the rotated bilinear element
convergence results can be proved, no convergence of the standard discret ization can be expected if
the Crouzeix–Raviart element is applied.
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1. Introduction. The aim of this paper is to discuss the validity of a discrete
analogue of Korn’s first inequality for nonconforming finite elements and, in cases
when the constant in this inequality is mesh–dependent, to investigate its influence
on the convergence properties of finite element discretizations.

To fix the ideas, let us introduce a simple model problem. We denote by Ω a
bounded domain in R

2 having a polygonal boundary ∂Ω and by ΓD a measurable
subset of ∂Ω with a positive one–dimensional measure. In the domain Ω, we consider
the Stokes equations

−∆ u + ∇ p = f in Ω,(1.1)

div u = 0 in Ω,(1.2)

u = 0 on ΓD,(1.3)

t · σ(u, p) n = 0 on ΓN ≡ ∂Ω \ ΓD,(1.4)

u · n = 0 on ΓN .(1.5)

Here u and p are the unknown velocity and pressure, respectively, f ∈ L2(Ω)2 is an
outer volume force, n is the outer unit normal vector to ∂Ω, t is a tangent vector to
∂Ω and σ(u, p) is the stress tensor defined by

σ(u, p) = −p I + 2 D(u) , D(u) =
1

2

(
∇u + (∇u)T

)

with I being the identity tensor. The homogenous Dirichlet boundary condition
(1.3) is considered for simplicity only; all the below results remain valid for the non–
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homegenous case as well. Boundary conditions of the form (1.3)–(1.5) appear when
a part of the boundary of Ω represents a free surface.

Denoting

V = {v ∈ H1(Ω)2; v = 0 on ΓD} , W = {v ∈ V ; v · n = 0 on ΓN} ,

the standard weak formulation of (1.1)–(1.5) reads: Find u ∈ W and p ∈ L2
0(Ω) such

that

a(u, v) + b(v, p) − b(u, q) = (f , v) ∀ v ∈ W, q ∈ L2
0(Ω) .

Here, (·, ·) denotes the usual inner product in L2(Ω)2 and

a(u, v) = 2 (D(u), D(v)) , b(v, p) = −(p, div v) .

Since the Korn first inequality (cf. e.g. [17]) states that there exists a positive constant
C such that

|v|1,Ω ≤ C ‖D(v)‖0,Ω ∀ v ∈ V ,(1.6)

the bilinear form a is W–elliptic. Moreover, the spaces W and L2
0(Ω) satisfy an inf–

sup condition (see [10]) and hence it can be proved that there always exists a unique
weak solution of (1.1)–(1.5) (cf. e.g. [3] or [10]). In what follows, we shall still assume
that this solution possesses at least the regularity u ∈ H2(Ω)2, p ∈ H1(Ω), which
implies that the functions u, p satisfy the equations (1.1)–(1.5) almost everywhere.

For approximating the velocity in incompressible flow problems like (1.1)–(1.5),
nonconforming finite elements are often used. One advantage of nonconforming finite
elements in comparison to conforming ones is that they usually satisfy inf–sup condi-
tions with more convenient pressure spaces and that discretely divergence–free bases
can often be more easily constructed for this type of finite elements. Another reason
for the application of nonconforming finite elements may be that they are more suit-
able for a parallel implementation since their degrees of freedom are associated with
edges (or with interior points of the elements of the triangulation), which leads to
a cheap local communication between processors. In addition, nonconforming finite
elements often show nice stability properties and lead to very efficient finite element
solvers. We refer to [11, 19] for more details on the properties of nonconforming finite
elements applied to incompressible flow problems.

Since nonconforming finite element spaces approximating V (or W ) are not con-
tained in V , the validity of a discrete analogue of the Korn inequality (1.6) is usually
not obvious. Moreover, it is often not clear how the constant in the discrete Korn
inequality depends on the discretization parameter, which is important for deriving
error estimates. Both these questions will be discussed in the present paper.

First, in the next section, we describe the nonconforming finite element spaces
considered in this paper, introduce a finite element discretization of (1.1)–(1.5) and
mention a standard error estimate. Section 3 is devoted to the validity of the discrete
Korn inequality for higher order nonconforming finite elements. Then, in Section 4,
we discuss the validity of the discrete Korn inequality for the Crouzeix–Raviart ele-
ment and the rotated bilinear element. Finally, in Section 5, we mention which error
estimates can be derived for these two finite elements.

Throughout the paper we use a standard notation (cf. e.g. [5]). Particularly, we
denote by ‖ ·‖0,G the norm in the space L2(G) and by ‖ ·‖k,G and | · |k,G the norm and

seminorm, respectively, in the Sobolev space Hk(G) ≡ W k,2(G), k ≥ 1. The notation
L2

0(G) is used for the space of those functions from L2(G) which have zero mean value
over G. As usual, we shall denote by C a generic positive constant independent of h.
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2. Nonconforming finite element discretization of (1.1)–(1.5). We as-
sume that we are given a family {Th} of triangulations of the domain Ω consisting of
triangular and/or quadrilateral elements K having the usual compatibility properties
(see e.g. [5]) and satisfying hK ≡ diam(K) ≤ h for any K ∈ Th. We require that
any edge of Th lying on ∂Ω belongs either to ΓD or to ΓN . The triangulations are
assumed to be shape–regular in the sense that there exists a constant σ̄ such that

hK

%K
≤ σ̄ ∀ K ∈ Th , h > 0 ,(2.1)

where %K is the maximum diameter of circles inscribed into K. Moreover, if K is
a quadrilateral, we further assume that h eK/% eK ≤ σ̄ for any triangle K̃ sharing its
vertices with K.

We denote by Eh the set of all edges E of Th, by E in
h the set of the inner edges

(i.e., E ∈ E in
h ⇔ E 6⊂ ∂Ω), by ED

h the set of the edges lying on ΓD, by EN
h the set of

the edges lying on ΓN , and by nE a fixed unit normal vector to E which corresponds
to the outer normal vector n for E ⊂ ∂Ω. Further, for any inner edge E ∈ E in

h , we
define the jump [|v|]E of a function v across E by

[|v|]E = (v|K)|E − (v| eK)|E ,

where K, K̃ are the two elements adjacent to E denoted in such a way that nE points
into K̃. For boundary edges, we simply set [|v|]E = v|E .

The typical feature of nonconforming finite element spaces is that they contain
functions which have jumps across the edges of the triangulation. However, these
jumps cannot be arbitrary but they have either to vanish at certain points on the edges
or to be L2 orthogonal to some spaces of polynomials defined on the edges. Often
(but not always, see e.g. [18]) these two requirements are equivalent. To simplify the
exposition, we shall consider the latter case only. Thus, to approximate the space V ,
we consider nonconforming spaces of the type

Vh = {vh ∈ L2(Ω)2; vh|K ∈ P (K)2 ∀K ∈ Th,(2.2) ∫

E

[|vh|]E q dγ = 0 ∀ q ∈ Pk(E), E ∈ E in
h ∪ ED

h } ,

where P (K) ⊂ H1(K) are some finite–dimensional local spaces and k ≥ 0 is a given
integer. Examples of such spaces Vh can be found in [4, 6, 7, 13, 14, 18]. The spaces
P (K) should be chosen in such a way that, for an integer l ≥ 1,

inf
vh∈Vh

‖v − vh‖1,Ω ≤ C hm ‖v‖m+1,Ω ∀ v ∈ V ∩ Hm+1(Ω)2 , m = 1, . . . , l ,(2.3)

see [5]. The usual choice is l = k + 1 but other possibilities can also be found in the
literature (cf. e.g. [13, 14]). In what follows, we shall assume that l ≤ k + 1. Since
Vh 6⊂ H1(Ω)2, we define the ‘elementwise’ differential operators Dh and divh by

Dh(v)|K =
1

2

(
∇(v|K) + (∇v|K)T

)
, (divh v)|K = div(v|K) ∀ K ∈ Th

and we set

ah(u, v) = 2 (Dh(u), Dh(v)) , bh(v, p) = −(p, divh v) .
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Further, we define a discrete analogue of | · |1,Ω by

|v|1,h =

(
∑

K∈Th

|v|21,K

)1/2

.

It is easy to see that | · |1,h is a norm on Vh.
The velocity space W from the weak formulation is approximated by the space

Wh = {vh ∈ Vh;

∫

E

vh · n q dγ = 0 ∀ q ∈ Pk(E), E ∈ EN
h }

satisfying an analogue of (2.3) and the pressure space L2
0(Ω) by a finite element

subspace Qh such that

inf
qh∈Qh

‖v − qh‖0,Ω ≤ C hm ‖v‖m,Ω ∀ v ∈ L2
0(Ω) ∩ Hm(Ω) , m = 1, . . . , l .(2.4)

We assume that the spaces Wh and Qh satisfy the inf–sup condition

sup
vh∈Wh\{0}

bh(vh, qh)

|vh|1,h

≥ β ‖qh‖0,Ω ∀ qh ∈ Qh(2.5)

with a positive constant β independent of h.
It is natural to define the discrete solution of (1.1)–(1.5) as functions uh ∈ Wh

and ph ∈ Qh such that

ah(uh, vh) + bh(vh, ph) − bh(uh, qh) = (f , vh) ∀ vh ∈ Wh, qh ∈ Qh .(2.6)

Let us denote Wh = {vh ∈ Wh; bh(vh, qh) = 0 ∀ qh ∈ Qh}. Obviously, the discrete
problem is uniquely solvable if and only if the only function vh ∈ Wh for which
ah(vh, vh) = 0 is vh = 0. This means that

√
ah(vh, vh) =

√
2 ‖Dh(vh)‖0,Ω has to

be a norm on Wh. Thus, in view of the equivalence of norms on finite–dimensional
spaces, we can say that the discrete problem is uniquely solvable if and only if, for
any h > 0, there exists a positive constant C̄h such that |vh|1,h ≤ C̄h ‖Dh(vh)‖0,Ω for
any vh ∈ Wh. In what follows, we shall consider the more general inequality

|vh|1,h ≤ C̄h ‖Dh(vh)‖0,Ω ∀ vh ∈ Vh .(2.7)

This is a discrete analogue of the Korn first inequality (1.6). In all cases we shall
investigate, the depence of C̄h on h is the same for both Vh and Wh.

Since the space Wh is nonconforming, the exact solution u, p does not solve the
discrete problem. Indeed, multiplying (1.1) by a function vh ∈ Wh, integrating by
parts over each K ∈ Th and summing up, we obtain

ah(u, vh) + bh(vh, p) = (f , vh) + eh(u, p; vh) ∀ vh ∈ Wh ,(2.8)

where the consistency error eh is defined by

eh(u, p; vh) =
∑

K∈Th

∫

∂K

vh|K · σ(u, p) n∂K dγ

with n∂K being the outer unit normal vector to the boundary of K. Using the
techniques of [7], we derive the estimate

eh(u, p; vh) ≤ C hm (|u|m+1,Ω + |p|m,Ω) |vh|1,h ∀ vh ∈ Wh, m = 1, . . . , k + 1(2.9)

which holds as far as the weak solution possesses the regularity indicated by the
seminorms on the right–hand side of (2.9). If the weak solution of (1.1)–(1.5) satisfies
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u ∈ Hm+1(Ω)2, p ∈ Hm(Ω) with some m ∈ {1, . . . , l}, then we derive applying
standard techniques (cf. [3, 10]) that

|u − uh|1,h + ‖p − ph‖0,Ω ≤ C C̄2
h hm (‖u‖m+1,Ω + ‖p‖m,Ω) .(2.10)

As we see, the standard technique leads to an optimal error etimate only if the constant
C̄h from the discrete Korn inequality (2.7) can be bounded independently of h.

3. Validity of the discrete Korn inequality. At the beginning of the nineties,
several papers have been published where the uniform validity (i.e., with C̄h bounded
independently of h) of the discrete Korn inequality (2.7) was investigated for particular
finite element spaces, see [8, 9, 16]. Later it was proved in [12] that there exists a
constant C̄ depending only on Ω, ΓD and σ̄ from (2.1) such that

|vh|1,h ≤ C̄ ‖Dh(vh)‖0,Ω ∀ vh ∈ Ṽh ,

where

Ṽh = {vh ∈ L2(Ω)2; vh|K ∈ H1(K)2 ∀K ∈ Th,∫

E

[|vh|]E q dγ = 0 ∀ q ∈ P1(E), E ∈ E in
h ∪ ED

h } .

Since the space Vh defined in (2.2) satisfies Vh ⊂ Ṽh for k ≥ 1, we see that the discrete
Korn inequality (2.7) holds uniformly whenever k ≥ 1. This result also follows from
the more general proof recently published in [2]. Consequently, for any nonconforming
space Vh with k ≥ 1, which are particularly all spaces of approximation order at least 2,
the error estimate (2.10) guarantees an optimal convergence of the discrete solution.

If k = 0, then the constant C̄h cannot be bounded independently of h (cf. [9, 12,
15]) and it may even happen that the discrete Korn inequality (2.7) does not hold at
all since the right–hand side of (2.7) vanishes for a non–vanishing vh (cf. [1, 9]). This
behaviour can be observed for the linear triangular Crouzeix–Raviart element [7], for
which P (K) = P1(K), and for the quadrilateral rotated bilinear element [18], for
which P (K) = span{1, x, y, x2 − y2} if K is a rectangle. If K is a general convex
quadrilateral, then P (K) is defined using a bilinear transformation of the reference
square onto K, but this possibility will not be considered here.

The remaining part of this paper will be devoted to the Crouzeix–Raviart element
and the rotated bilinear element. To simplify our considerations, we shall confine
ourselves to

Ω = (0, 1)2 , ΓD = ([0, 1]× {0}) ∪ ({0} × [0, 1])

and to triangulations of the type depicted in Fig. 3.1(a) in case of the Crouzeix–Raviart
element and of the type from Fig. 3.1(b) in case of the rotated bilinear element. It
is easy to verify that, in both cases, ah(vh, vh) 6= 0 for any vh ∈ Vh \ {0} and hence
the discrete Korn inequality (2.7) holds with some constant C̄h. We shall thoroughly
discuss the dependece of C̄h on h and we shall investigate to what extent the h–
dependent constant C̄h influences the convergence behaviour of the discrete solution.

4. Dependence of C̄h on h for the Crouzeix–Raviart element and the
rotated bilinear element. It was shown in [9] and [12] that, for both finite elements
and the mentioned types of triangulations, there exists a constant C > 0 independent
of h such that C̄h ≥ C h−1/2. For the rotated bilinear element, this result was
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(a) Triangulation for the Crouzeix–Ra-
viart element

(b) Triangulation for the rotated bilin-
ear element

Fig. 3.1. Considered types of triangulations.

improved to C̄h ≥ C h−1 in [15]. Let us prove this estimate also for the Crouzeix–
Raviart element.

For any edge E ∈ Eh, we introduce the functional

JE(v) =
1

|E|

∫

E

v dγ .

Let ṽh be a piecewise linear function with respect to Th which is continuous at the
midpoints of the inner edges of Th and satisfies for any E ∈ Eh

JE(ṽh) = (1, 0) if E is parallel to the x–axis,

JE(ṽh) = (0, 1) if E is parallel to the y–axis,

JE(ṽh) = 0 if E ∈ Ediag
h ,

where Ediag
h is the set of edges having the direction (1, 1) (cf. Fig. 4.1(a)). The

continuity of ṽh at midpoints of edges E ∈ E in
h implies that JE(ṽh|K) = JE(ṽh| eK

) for

the two elements K and K̃ adjacent to E. Therefore, we may simply write JE(ṽh).
Let n be the number of edges of Th on one side of Ω (i.e., n = 5 for Th from

Fig. 3.1(a)) and let E∗
h ⊂ Eh consist of all edges parallel to coordinate axes. We decom-

pose the set E∗
h into the sets E0

h, . . . , En−1

h defined in the following way (cf. Fig. 4.1(b)):

E0
h = {E ∈ E∗

h; E ⊂ ∂Ω} ,

E i
h = {E ∈ E∗

h \
i−1⋃

j=0

Ej
h; ∃ E′ ∈ E i−1

h : E ∩ E′ 6= ∅ ∧ E ⊥ E′} , i = 1, . . . , n − 1 .

Now we introduce a function vh ∈ Vh satisfying

JE(vh) = i JE(ṽh) ∀ E ∈ E i
h, i = 0, . . . , n − 1 ,

JE(vh) = 0 ∀ E ∈ Ediag
h .

The degrees of freedom of vh have the same directions as those of ṽh but their
magnitudes increase towards the centre of Ω as depicted in Fig. 4.1(b). Consider
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(a) Degrees of freedom of evh
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(b) Decomposition of E∗

h and degrees of
freedom of vh

Fig. 4.1. Definition of functions evh and vh.

any K ∈ Th. Then there exists i ≡ iK ∈ {0, . . . , n − 2} such that the two edges of K
parallel to the coordinate axes belong to E i

h ∪ E i+1

h . Moreover, at least one of these
edges belongs to E i

h or they both belong to En−1

h . Setting uK = vh|K − iK ṽh|K , we
have |JE(uK)| ≤ 1 for any edge E ⊂ ∂K. In addition, either JE(uK) = 0 for two
edges of K or uK = ṽh|K . Since Dh(ṽh) = 0, we obtain

∑

K∈Th

‖∇vh + (∇vh)T‖2
0,K =

∑

K∈Th

‖∇uK + (∇uK)T‖2
0,K ≤ 16 n2 .(4.1)

On the other hand, since cardE i
h = 4 (n − i) for i = 0, . . . , n − 1, we have (for n ≥ 2)

∑

K∈Th

|vh|21,K = 4
∑

E∈E∗

h

|JE(vh)|2 = 16

n−1∑

i=1

(n − i) i2 =
4

3
(n4 − n2) ≥ n4 .

This implies that C̄h ≥ 1√
2

h−1. The following theorem shows that this estimate

corresponds to the real behaviour of C̄h.
Theorem 1. For both the Crouzeix–Raviart element and the rotated bilinear

element on triangulations of the type depicted in Fig. 3.1, there exist constants C0

and C1 independent of h such that

C0 ‖vh‖0,Ω + C1 h |vh|1,h ≤ ‖Dh(vh)‖0,Ω ∀ vh ∈ Vh .(4.2)

Proof. For the rotated bilinear element, this theorem was proved in [15]. The proof
is based on rewriting the inequality (4.2) using the degrees of freedom of vh and on
manipulations with the resulting sums. To this end, a numbering of the edges of the
triangulation from Fig. 3.1(b) is introduced, see Fig. 4.2. First, the square elements
are numbered by indices i, j = 1, . . . , n such that the coordinates of the centre of the
element Kij are ((i − 0.5)/n, (j − 0.5)/n). Then the indices of the inner edges of the
triangulation are defined as the averages of the indices of the two square elements
adjacent to the respective edge. For edges lying on the boundary of Ω, the indices are
also defined in this way imagining that the triangulation continues outside Ω.
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i = 1 i = n

j = 1

j = n

1, 1 n, 1

1, n n, n

i, ji−1, j i+1, j

i, j−1

i, j+1

i, 1/2

i, j−1/2

i, j+1/2

i, n+1/2

i−1/2, j

i+1/2, j

1/2, j n+1/2, j

Fig. 4.2. Numbering of elements and edges for the triangulation from Fig. 3.1(b).

Here we prove the inequality (4.2) for the Crouzeix–Raviart element and a trian-
gulation of the type depicted in Fig. 3.1(a). The idea of the proof is analogous as for
the rotated bilinear element. For edges parallel to the coordinate axes, we shall use
the numbering mentioned above and, for edges having the direction (1, 1), we shall
use the indices of the corresponding square elements (i.e., ((i − 0.5)/n, (j − 0.5)/n)
are the coordinates of the midpoint of such a ‘diagonal’ edge Eij).

Now consider any vh ∈ Vh. We denote by u, v the components of vh and, for
an edge Eα,β , we set (uα,β , vα,β) = JEα,β

(vh). Note that (uα,β, vα,β) is the value of
vh at the midpoint of Eα,β . Since the degrees of freedom associated with boundary
edges lying on ΓD vanish, we have

ui,1/2 = vi,1/2 = 0 , i = 1, . . . , n , u1/2,j = v1/2,j = 0 , j = 1, . . . , n .

A direct computation gives ‖Dh(vh)‖2
0,Ω =

∑n
i,j=1

(2 rij + sij) with

rij = (ui−1/2,j − uij)
2 + (uij − ui+1/2,j)

2 + (vi,j−1/2 − vij)
2 + (vij − vi,j+1/2)

2 ,

sij = (uij − ui,j+1/2 + vi−1/2,j − vij)
2 + (ui,j−1/2 − uij + vij − vi+1/2,j)

2 .

Since a2 + b2 + c2 ≥ 1

3
(a + b + c)2 for any a, b, c ∈ R, we deduce that ‖Dh(vh)‖2

0,Ω ≥∑n
i,j=1

(rij + 1

3
tij) with

tij = (fi−1/2,j − fi,j+1/2)
2 + (fi,j−1/2 − fi+1/2,j)

2 , f = u + v .

For any α1, . . . , αn ∈ R and α0 = 0, we have

n∑

i=1

(αi − αi−1)
2 ≥ 1

n2

n∑

i=1

α2
i(4.3)

and hence we immediately get

n∑

i,j=1

rij ≥ 1

4 n2

n∑

i,j=1

{u2
i+1/2,j + v2

i,j+1/2 + u2
ij + v2

ij} .
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Further, applying (4.3) along the diagonals i − j = const. (cf. [15]), we derive

n∑

i,j=1

tij ≥ 1

4 n2

n∑

i,j=1

(f2
i,j+1/2 + f2

i+1/2,j) .

Since u2
i+1/2,j+

1

3
f2

i+1/2,j ≥ 2

9
{u2

i+1/2,j+(ui+1/2,j−fi+1/2,j)
2} = 2

9
(u2

i+1/2,j+v2
i+1/2,j)

and, analogously, v2
i,j+1/2

+ 1

3
f2

i,j+1/2
≥ 2

9
(u2

i,j+1/2
+ v2

i,j+1/2
), we get

‖Dh(vh)‖2
0,Ω ≥ 1

4 n2

n∑

i,j=1

(
2

9
zij + u2

ij + v2
ij

)

with zij = u2
i,j+1/2

+v2
i,j+1/2

+u2
i+1/2,j+v2

i+1/2,j . An easy computation gives ‖vh‖2
0,Ω ≤

1

3 n2

∑n
i,j=1

(zij +u2
ij +v2

ij) and |vh|21,h ≤ 8
∑n

i,j=1
(zij +2 u2

ij +2 v2
ij). Thus, ‖vh‖0,Ω ≤√

6 ‖Dh(vh)‖0,Ω and |vh|1,h ≤ 12 n‖Dh(vh)‖0,Ω, which completes the proof. �

Theorem 1 implies that, for both the Crouzeix–Raviart element and the rotated
bilinear element, the right–hand side of the standard error estimate (2.10) tends to
infinity like h−1. In the next section, we shall discuss whether this really means that
no convergence of the discrete solutions of the problem (1.1)–(1.5) can be expected.

5. Error estimates for the Crouzeix–Raviart element and the rotated
bilinear element. Let us consider the discrete problem (2.6) where the space Wh is
defined using the Crouzeix–Raviart element or the rotated bilinear element and using
a triangulation of the type depicted in Fig. 3.1(a) or Fig. 3.1(b), respectively. The
space Qh consists of piecewise constant functions from the space L2

0(Ω). Then the
inf–sup condition (2.5) is satisfied and (2.3) and (2.4) hold with l = 1.

According to (2.6) and (2.8), we have for any vh ∈ Wh

eh(u, p; vh) = ah(u − uh, vh) + bh(vh, p − ph)(5.1)

≤ 2 (‖Dh(u − uh)‖0,Ω + ‖p − ph‖0,Ω) ‖Dh(vh)‖0,Ω

and hence a necessary condition for the convergence of the discrete solution uh, ph to
the weak solution u, p (with respect to the usual norms) is

lim
h→0

sup
vh∈Wh\{0}

eh(u, p; vh)

‖Dh(vh)‖
0,Ω

= 0 ∀ vh ∈ Wh .(5.2)

Let us first consider the discrete problem defined using the Crouzeix–Raviart
element. For any inner edge E ∈ E in

h , let ζE be the standard Crouzeix–Raviart basis
function associated with E (i.e., ζE is piecewise linear, equals 1 on E and vanishes at
the midpoints of all edges different from E). Then, for any α ∈ R

2, we have

eh(0, x; α ζE) =





1

6
h2 (α2 − α1) if E is parallel to the x–axis,

1

6
h2 α1 if E is parallel to the y–axis,

− 1

6
h2 α2 if E ∈ Ediag

h .

Let u = 0 and p = x− 1

2
and let vh be the function defined in Section 4. Then, using

(4.1) and the notation of Section 4, we get (for n ≥ 2)

|eh(u, p; vh)| =
h2

6

∑

E∈E∗

h

JE(vh) · (1, 0) =
h2

3

n−1∑

i=1

(n − i) i ≥ n

18
≥ 1

36
‖Dh(vh)‖0,Ω .

Therefore, the necessary condition (5.2) generally does not hold for the Crouzeix–
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Raviart element and hence we cannot expect that the Crouzeix–Raviart element will
lead to a convergent discrete solution.

For the rotated bilinear element, it was shown in [15] that (5.2) holds if u ∈
H3(Ω)2 and p ∈ H2(Ω). Precisely, it was proved that

eh(u, p; vh) ≤ C h (|u|3,Ω + |p|2,Ω) ‖Dh(vh)‖0,Ω ∀ vh ∈ Wh .(5.3)

The proof of (5.3) relies on the discrete Korn inequality (4.2) and the fact that

∑

E⊂∂K

∫

E

(vh|K − JE(vh)) · σ n∂K dγ = 0 ∀ vh ∈ Wh, σ ∈ P1(K)2×2, K ∈ Th .

Thus, let us assume that the weak solution of (1.1)–(1.5) satisfies u ∈ H3(Ω)2 and
p ∈ H2(Ω). We consider any zh ∈ Wh satisfying bh(zh, qh) = 0 ∀ qh ∈ Qh and set
wh = uh − zh. Then, using (5.1), we obtain for any qh ∈ Qh

2 ‖Dh(wh)‖2
0,Ω = ah(u − zh, wh) + bh(wh, p − qh) − eh(u, p; wh) .

Hence, in view of (5.3), we get

2 ‖Dh(wh)‖0,Ω ≤ 2 ‖Dh(uh − zh)‖0,Ω +
√

2 ‖p− qh‖0,Ω + C h (|u|3,Ω + |p|2,Ω) .

This implies by applying standard techniques (cf. e.g. [10]) and using (4.2) that

‖u− uh‖0,Ω + ‖Dh(u − uh)‖0,Ω + ‖p − ph‖0,Ω ≤ C h (‖u‖3,Ω + ‖p‖2,Ω) .(5.4)

Unfortunately, we were not able to prove the convergence of uh with respect to the
seminorm |·|1,h although numerical experiments show optimal convergence behaviour.
The estimate of ‖Dh(u−uh)‖0,Ω and ‖p− ph‖0,Ω is optimal with respect to the con-
vergence order but the required regularity of the weak solution is higher than usu-
ally. However, a counterexample in [15] shows that the usual regularity requirement
u ∈ H2(Ω)2, p ∈ H1(Ω) is not sufficient. The suboptimal estimate of the velocity
error in the L2 norm cannot be improved using the Aubin–Nitsche duality technique
due to the higher regularity requirement in (5.3). Let us also remark how the results
change if we consider the boundary condition σ(u, p) n = g on ΓN instead of (1.4)
and (1.5), which leads to the additional term

∑
E⊂ΓN

∫
E g · (vh − JE(vh)) dγ when

estimating the consistency error. For sufficiently regular g, this term can be estimated
by C h1/2 ‖Dh(vh)‖0,Ω, which limits the convergence order in (5.4) to 1/2.

For the Crouzeix–Raviart element, the estimate (2.9) with m = 1 and the discrete
Korn inequality (4.2) show that eh(u, p; vh) ≤ C (|u|2,Ω + |p|1,Ω) ‖Dh(vh)‖0,Ω for any
vh ∈ Wh. As we have seen above, this estimate cannot be improved. Using this
estimate together with the techniques just applied for the rotated bilinear element,
we obtain error estimates of the type ‖u − uh‖0,Ω = O(1), ‖Dh(u − uh)‖0,Ω =

O(1), |u − uh|1,h = O(h−1) and ‖p − ph‖0,Ω = O(1) which were also confirmed by
numerical experiments. Some results are presented in Table 5.1 where we compare
the convergence behaviour of the Crouzeix–Raviart element (denoted P nc

1 ) and the
rotated bilinear element (denoted Qrot

1 ) for ΓN = ∅ and an exact solution u1(x, y) =
2 x2 (1−x)2 y (1−y) (1−2 y), u2(x, y) = −2 y2 (1−y)2 x (1−x) (1−2 x) and p(x, y) =
x3 + y3 − 0.5. The number n has the meaning introduced in the preceding section,
i.e., the respective triangulation contains (n + 1)2 vertices. The convergence orders
were always computed using values from triangulations with n = 32 and n = 64.

Thus, we can conclude that, for the Crouzeix–Raviart element, the mesh–depen-
dent Korn inequality prevents the discrete solutions from converging to the weak
solution. On the other hand, for the rotated bilinear element, the negative influence of
the mesh–dependent Korn inequality is compensated by a superconvergent behaviour
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Table 5.1

Comparison of the convergence for the Crouzeix–Raviart and rotated bilinear elements.

‖u − uh‖0,Ω |u − uh|1,h ‖p − ph‖0,Ωn
P nc

1
Qrot

1
P nc

1
Qrot

1
P nc

1
Qrot

1

8 2.71−2 1.10−3 7.13−1 3.55−2 1.64−1 6.92−2
16 2.71−2 2.81−4 1.44+0 1.80−2 1.56−1 3.44−2
32 2.71−2 7.09−5 2.89+0 9.07−3 1.54−1 1.72−2
64 2.71−2 1.78−5 5.79+0 4.54−3 1.53−1 8.57−3

order 0.00 2.00 −1.00 1.00 0.00 1.00

of the consistency error so that a convergence of the discrete solution is possible,
provided that the weak solution is sufficiently regular.
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