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Preface

Incompressible flow problems appear in many models of physical processes and
applications. Their numerical simulation requires in particular a spatial discret-
ization. Finite element methods belong to the mathematically best understood
discretization techniques.

This monograph is devoted mainly to the mathematical aspects of finite element
methods for incompressible flow problems. It addresses researchers, Ph.D. students,
and even students aiming for the master’s degree. The presentation of the material,
in particular of the mathematical arguments, is performed in detail. This style
was chosen in the hope to facilitate the understanding of the topic, especially for
nonexperienced readers.

Most parts of this monograph were presented in three consecutive master’s
level courses taught at the Free University of Berlin, and this monograph is based
on the corresponding lecture notes. First of all, I like to thank the students who
attended these courses. Many of them wrote finally their master’s thesis under my
supervision. Then, I like to thank two collaborators of mine, Julia Novo (Madrid)
and Gabriel R. Barrenechea (Glasgow), who read parts of this monograph and gave
valuable suggestions for improvement. Above all, I like to thank my beloved wife
Anja and my daughter Josephine for their continual encouragement. Their efforts to
manage our daily life and to save me working time were an invaluable contribution
for writing this monograph in the past 3 years.

Colbitz, Germany Volker John
July 2016
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Chapter 1
Introduction

The behavior of incompressible fluids is modeled with the system of the incom-
pressible Navier–Stokes equations. These equations describe the conservation of
linear momentum and the conservation of mass. In the special case of a steady-
state situation and large viscosity of the fluid, the Navier–Stokes equations can be
approximated by the Stokes equations. Incompressible flow problems are not only
of interest by themselves, but they are part of many complex models for describing
phenomena in nature or processes in engineering and industry.

Usually it is not possible to find an analytic solution of the Stokes or Navier–
Stokes equations such that numerical methods have to be employed for approxi-
mating the solution. To this end, a so-called discretization has to be applied to the
equations, in the general case a temporal and a spatial discretization. Concerning
the spatial discretization, this monograph considers finite element methods. Finite
element methods are very popular and they are understood quite well from the
mathematical point of view.

First applications of finite element methods for the simulation of the Stokes
and Navier–Stokes equations were performed in the 1970s. Also the finite element
analysis for these equations started in this decade, e.g., by introducing in Babuška
(1971) and Brezzi (1974) the inf-sup condition which is a basis of the well-
posedness of the continuous as well as of the finite element problem. The early
works on the finite element analysis cumulated in the monograph (Girault and
Raviart 1979). The extended version of this monograph, Girault and Raviart (1986),
became the classical reference work. Three decades have been passed since its
publication. Of course, in this time, there were many new developments and new
results have been obtained. More recent monographs that study finite element
methods for incompressible flow problems, or important aspects of this topic,
include Layton (2008), Boffi et al. (2008), Elman et al. (2014).

This monograph covers on the one hand a wide scope, from the derivation of the
Navier–Stokes equations to the simulation of turbulent flows. On the other hand,
there are many topics whose detailed presentation would amount in a monograph

© Springer International Publishing AG 2016
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Series in Computational Mathematics 51, DOI 10.1007/978-3-319-45750-5_1
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2 1 Introduction

itself and they are only sketched here. The main emphasis of the current monograph
is on mathematical issues. Besides many results for finite element methods, also a
few fundamental results concerning the continuous equations are presented in detail,
since a basic understanding of the analysis of the continuous problem provides a
better understanding of the considered problem in its entirety.

A main feature of this monograph is the detailed presentation of the mathematical
tools and of most of the proofs. This feature arose from the experience in sometimes
spending (wasting) a lot of time in understanding certain steps in proofs that are
written in the short form which is usual in the literature. Often, such steps would
have been easy to understand if there would have been just an additional hint or
one more line in the estimate. Thus, the presentation is mostly self-contained in the
way that no other literature has to be used for understanding the majority of the
mathematical results. Altogether, the monograph is directed to a broad audience:
experienced researchers on this topic, young researchers, and master students. The
latter point was successfully verified. Most parts of this monograph were presented
in master courses held at the Free University of Berlin, in particular from 2013–
2015. As a result, several master’s theses were written on topics related to these
courses.

1.1 Contents of this Monograph

Chapter 2 sketches the derivation of the incompressible Navier–Stokes equations
on the basis of the conservation of mass and the conservation of linear momentum.
Important properties of the stress tensor are derived from physical considerations.
The non-dimensionalized equations are introduced and appropriate boundary con-
ditions are discussed.

The following structure of this monograph is based on the inherent difficulties of
the incompressible Navier–Stokes equations pointed out in Chap. 2.

• First, the coupling of velocity and pressure is studied:

ı Chapter 3 presents an abstract theory and discusses the choice of appropriate
finite element spaces.

ı Chapter 4 applies the abstract theory to the Stokes equations.

• Second, the issue of dominant convection is also taken into account:

ı Chapter 5 studies this topic for the Oseen equations, which are a kind of
linearized Navier–Stokes equations.

• Third, the nonlinearity of the Navier–Stokes equations is considered in addition
to the other two difficulties:

ı Chapter 6 studies stationary flows that occur only for small Reynolds numbers.
ı Chapter 7 considers laminar flows that arise for medium Reynolds numbers.
ı Chapter 8 studies turbulent flows that occur for large Reynolds numbers.
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The coupling of velocity and pressure in incompressible flow problems does
not allow the straightforward use of arbitrary pairs of finite element spaces. For
obtaining a well-posed problem, the spaces have to satisfy the so-called discrete inf-
sup condition. This condition is derived in Chap. 3. The derivation is based on the
study of the well-posedness of an abstract linear saddle point problem. The abstract
theory is applied first to a continuous linear incompressible flow problem, thereby
identifying appropriate function spaces for velocity and pressure. These spaces
satisfy the so-called inf-sup condition. Then, it is discussed that the satisfaction of
the inf-sup condition does not automatically lead to the satisfaction of the discrete
inf-sup condition. Examples of velocity and pressure finite element spaces that do
not satisfy this condition are given. Next, some techniques for proving the discrete
inf-sup condition are presented and important inf-sup stable pairs of finite element
spaces are introduced. For some pairs, the proof of the discrete inf-sup condition
is presented. In addition, a way for computing the discrete inf-sup constant is
described. The final section of this chapter discusses the Helmholtz decomposition.

Chapter 4 applies the theory developed in the previous chapter to the Stokes
equations. The Stokes equations, being a system of linear equations, are the simplest
model of incompressible flows, modeling only the flow caused by viscous forces.
First, the existence, uniqueness, and stability of a weak solution is discussed. The
next section presents results from the finite element error analysis. Conforming finite
element methods are considered in the first part of this section and a low order non-
conforming finite element discretization is studied in the second part. Some remarks
concerning the implementation of the finite element methods are given. Next, a
basic introduction to a posteriori error estimation is presented and its application
for adaptive mesh refinement is sketched. It follows a presentation of methods that
allow to circumvent the discrete inf-sup condition. Such methods enable the usage
of the same finite element spaces with respect to the piecewise polynomials for
velocity and pressure, which is appealing from the practical point of view. A detailed
numerical analysis of one of these methods, the PSPG method, is provided and a
couple of other methods are discussed briefly. Finite element methods satisfy in
general the conservation of mass only approximately. This chapter concludes with a
survey of methods that reduce the violation of mass conservation or even guarantee
its conservation.

The Oseen equations, i.e., a linear equation with viscous (second order),
convective (first order), and reactive (zeroth order) term are the topic of Chap. 5.
These equations arise in various numerical methods for solving the Navier–Stokes
equations. Usually, the convective or the reactive term dominate the viscous term.
A major issue in the analysis consists in tracking the dependency of the stability
and error bounds on the coefficients of the problem. After having established the
existence and uniqueness of a solution of the equations, the standard Galerkin finite
element method is studied. It turns out that the stability and error bounds become
large if convection or reaction dominates. Numerical studies support this statement.
For improving the numerical solutions, stabilized methods have to be applied. The
analysis of a residual-based stabilized method, the SUPG/PSPG/grad-div method,
is presented in detail and some further stabilized methods are reviewed briefly.
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In Chap. 6, the first nonlinear model of an incompressible flow problem is
studied—the steady-state Navier–Stokes equations. At the beginning of this chapter,
the nonlinear term is investigated. Different forms of this term are introduced
and various properties are derived. Then, the solution of the continuous steady-
state Navier–Stokes equations is studied. It turns out that a unique solution can be
expected only for sufficiently small external forces, which do not depend on time,
and sufficiently large viscosity. For this situation, a finite element error analysis
is presented, with the emphasis on bounding the nonlinear term. Next, iterative
methods for solving the nonlinear problem are discussed. The final section of this
chapter presents the Dual Weighted Residual (DWR) method. This method is an
approach for the a posteriori error estimation with respect to quantities of interest.

Chapter 7 starts with the investigation of the time-dependent incompressible
Navier–Stokes equations. From the point of view of finite element discretizations,
so-called laminar flows are considered, i.e., flows where a standard Galerkin finite
element method is applicable. At the beginning of this chapter, a short introduction
into the analysis concerning the existence and uniqueness of a weak solution of
the time-dependent incompressible Navier–Stokes equations is given. In particular,
the mathematical reason is highlighted that prevents to prove the uniqueness in the
practically relevant three-dimensional case. Then, the finite element error analysis
for the Galerkin finite element method in the so-called continuous-in-time case is
presented, i.e., without the consideration of a discretization with respect to time.
For practical simulations, a temporal discretization has to be applied. The next
part of this chapter introduces a number of time stepping schemes that require the
solution of a coupled velocity-pressure problem in each discrete time. In particular,
�-schemes are discussed in detail. It follows the presentation of a finite element
error analysis for the fully discretized equations at the example of the backward
Euler scheme. The approaches presented so far in this chapter require the solution
of saddle point problems, which might be computational expensive. Projection
methods, which circumvent the solution of such problems, are presented in the last
section of this chapter. In these methods, only scalar equations for each component
of the velocity field and for the pressure have to be solved.

The topic of Chap. 8 is the simulation of turbulent flows. There is no math-
ematical definition of what is a turbulent flow. Thus, this chapter starts with a
description of characteristics of flow fields that are considered to be turbulent. In
addition, a mathematical approach for describing turbulence is sketched. It turns
out that turbulent flows possess scales that are much too small to be representable
on grids with affordable fineness. The impact of these scales on the resolvable
scales has to be modeled with a so-called turbulence model. The bulk of this
chapter presents turbulence models that allow mathematical or numerical analysis
or whose derivation is based on mathematical arguments. A very popular approach
for turbulence modeling is large eddy simulation (LES). LES aims at simulating
only large (resolved) scales that are defined by spatial averaging. In the first section
on LES, the derivation of equations for these scales is discussed, in particular
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the underlying assumption of commuting differentiation and spatial averaging.
It is shown that usually commutation errors occur that are not negligible. The
next section presents the most popular LES model, the Smagorinsky model. For
the Smagorinsky model, a well developed mathematical and numerical analysis
is available. Then, LES models are described that are derived on the basis of
approximations in wave number space. The final section on LES considers so-called
Approximate Deconvolution models (ADM). As next turbulence model, the Leray-
˛ model is presented. This model is based on a regularization of the velocity field.
Afterward, the Navier–Stokes-˛ model is considered. Its derivation is performed by
studying a Lagrangian functional and the corresponding trajectory. The last class of
turbulence models that is discussed is the class of Variational Multiscale (VMS)
methods. VMS methods define the large scales, which should be simulated, in
a different way than LES models, namely by projections in appropriate function
spaces. Two principal types of VMS methods can be distinguished, those based on
a two-scale decomposition and those using a three-scale decomposition of the flow
field. Five different realizations of VMS methods are described in detail. The final
section of Chap. 8 presents a few numerical studies of turbulent flow simulations
using the Smagorinsky model and one representative of the VMS models.

The linearization and discretization of the incompressible Navier–Stokes equa-
tions results for many methods in coupled algebraic systems for velocity and
pressure. Chapter 9 gives a brief introduction into solvers for such equations.
One can distinguish between sparse direct solvers and iterative solvers, where the
latter solvers have to be used with appropriate preconditioners. Some emphasis
in the presentation is on the preconditioner that was used for simulating most of
the numerical examples presented in this monograph, namely a coupled multigrid
method.

Appendix A provides some basic notations from functional analysis. A number
of inequalities and theorems are given that are used in the analysis and numerical
analysis presented in this monograph. Some basics of the finite element method are
provided in Appendix B. In particular, those finite element spaces are described
in some detail that are used for discretizing incompressible flow problems. The
approximation of functions from Sobolev spaces with finite element functions by
interpolation or projection is the topic of Appendix C. The corresponding estimates
are heavily used in the finite element error analysis. Finally, Appendix D describes
a number of examples for numerical simulations, which are divided into three
groups:

• examples for steady-state flow problems,
• examples for laminar time-dependent flow problems,
• examples for turbulent flow problems.

The described examples were utilized for performing numerical simulations whose
results are presented in this monograph.
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The master courses held at the Free University of Berlin covered the following
topics:

• Course 1: Chaps. 2, and 3, Sect. 4.1–4.3,
• Course 2: Sects. 4.4–4.6, Chaps. 5–7, and 9,
• Course 3: Chap. 8.

Of course, the presentation in these courses concentrated on the most important
issues of each topic.



Chapter 2
The Navier–Stokes Equations as Model
for Incompressible Flows

Remark 2.1 (Basic Principles and Variables) The basic equations of fluid dynamics
are called Navier–Stokes equations. In the case of an isothermal flow, i.e., a
flow at constant temperature, they represent two physical conservation laws: the
conservation of mass and the conservation of linear momentum. There are various
ways for deriving these equations. Here, the classical one of continuum mechanics
will be outlined. This approach contains some heuristic steps.

The flow will be described with the variables

• �.t; x/ : density Œkg=m3�,
• v.t; x/ : velocity Œm=s�,
• P.t; x/ : pressure ŒPa D N=m2�,

which are assumed to be sufficiently smooth functions in the time interval Œ0;T� and
the domain˝ � R

3. ut

2.1 The Conservation of Mass

Remark 2.2 (General Conservation Law) Let ! be an arbitrary open volume in ˝
with sufficiently smooth surface @!, which is constant in time, and with mass

m.t/ D
Z
!

�.t; x/ dx Œkg�:

If mass in ! is conserved, the rate of change of mass in ! must be equal to the flux
of mass �v.t; x/ Œkg=.m2s/� across the boundary @! of !

d

dt
m.t/ D d

dt

Z
!

�.t; x/ dx D �
Z
@!

.�v/ .t; s/ � n.s/ ds; (2.1)
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where n.s/ is the outward pointing unit normal on s 2 @!. Since all functions and
@! are assumed to be sufficiently smooth, the divergence theorem can be applied
(integration by parts), which gives

Z
!

r � .�v/ .t; x/ dx D
Z
@!

.�v/ .t; s/ � n.s/ ds:

Inserting this identity in (2.1) and changing differentiation with respect to time and
integration with respect to space leads to

Z
!

.@t�.t; x/C r � .�v/ .t; x// dx D 0:

Since ! is an arbitrary volume, it follows that

.@t� C r � .�v// .t; x/ D 0 forallst 2 .0;T�; x 2 ˝: (2.2)

This relation is the first equation of fluid dynamics, which is called continuity
equation. ut
Remark 2.3 (Time-Dependent Domain) It is also possible to consider a time-
dependent domain !.t/. In this case, the Reynolds transport theorem can be applied.
Let �.t; x/ be a sufficiently smooth function defined on an arbitrary volume !.t/
with sufficiently smooth boundary @!.t/, then the Reynolds transport theorem has
the form

d

dt

Z
!.t/

�.t; x/ dx D
Z
!.t/

@t�.t; x/ dx C
Z
@!.t/

.�v � n/ .t; s/ ds: (2.3)

In the special case that �.t; x/ is the density, one gets for the change of mass

d

dt

Z
!.t/

�.t; x/ dx D
Z
!.t/

@t�.t; x/ dx C
Z
@!.t/

.�v � n/ .t; s/ ds:

Conservation of mass and the divergence theorem yields

0 D
Z
!.t/

.@t� C r � .�v// .t; x/ dx:

Since !.t/ is assumed to be arbitrary, Eq. (2.2) follows. ut
Remark 2.4 (Incompressible, Homogeneous Fluids) If the fluid is incompressible
and homogeneous, i.e., composed of one fluid only, then �.t; x/ D � > 0 and (2.2)
reduces to

�
@xv1 C @yv2 C @zv3

�
.t; x/ D r � v.t; x/ D 0 forallst 2 .0;T�; x 2 ˝; (2.4)
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where

v.t; x/ D
0
@v1.t; x/v2.t; x/
v3.t; x/

1
A :

Thus, the conservation of mass for an incompressible, homogeneous fluid imposes
a constraint on the velocity only. ut

2.2 The Conservation of Linear Momentum

Remark 2.5 (Newton’s Second Law of Motion) The conservation of linear momen-
tum is the formulation of Newton’s second law of motion

net force = mass � acceleration (2.5)

for flows. It states that the rate of change of the linear momentum must be equal to
the net force acting on a collection of fluid particles. ut
Remark 2.6 (Conservation of Linear Momentum) The linear momentum in an
arbitrary volume ! is given by

Z
!

�v.t; x/ dx ŒNs�:

Then, the conservation of linear momentum in ! can be formulated analogously to
the conservation of mass in (2.1)

d

dt

Z
!

�v.t; x/ dx D �
Z
@!

.�v/ .v � n/ .t; s/ ds C
Z
!

f net.t; x/ dx ŒN�;

where the term on the left-hand side describes the change of the momentum in !, the
first term on the right-hand side models the flux of momentum across the boundary
of ! and f net ŒN=m3� represents the force density in !. It is

v.v � n/ D
0
@v1v1n1 C v1v2n2 C v1v3n3
v2v1n1 C v2v2n2 C v2v3n3
v3v1n1 C v3v2n2 C v3v3n3

1
A D vvTn:

Applying integration by parts and changing differentiation with respect to time and
integration on ! gives

Z
!

�
@t .�v/C r � ��vvT

��
.t; x/ dx D

Z
!

f net.t; x/ dx:
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The product rule yields
Z
!

.@t�vC �@tv C vvTr� C �.r � v/vC �.v � r/v� .t; x/ dx

D
Z
!

f net.t; x/ dx: (2.6)

In the usual notation .v � r/v, one can think of v � r D v1@x C v2@y C v3@z acting
on each component of v. In the literature, one often finds the notation v � rv.

In the case of incompressible flows, i.e., � is constant, it is known that r � v D 0,
see (2.4), such that (2.6) simplifies to

Z
!

� .@tvC .v � r/v/ .t; x/ dx D
Z
!

f net.t; x/ dx:

Since ! was chosen to be arbitrary, one gets the conservation law

� .@tvC .v � r/v/ D f net 8 t 2 .0;T�; x 2 ˝:
The same conservation law can be derived for a time-dependent volume !.t/

using the Reynolds transport theorem (2.3). ut
Remark 2.7 (External Forces) The forces acting on ! are composed of external
(body) forces and internal forces. External forces include, e.g., gravity, buoyancy,
and electromagnetic forces (in liquid metals). These forces are collected in a body
force term

Z
!

f ext.t; x/ dx:

ut
Remark 2.8 (Internal Forces, Cauchy’s Principle, and the Stress Tensor) Internal
forces are forces which a fluid exerts on itself. These forces include the pressure and
the viscous drag that a ‘fluid element’ exerts on the adjacent element. The internal
forces of a fluid are contact forces, i.e., they act on the surface of the fluid element!.
Let t ŒN=m2� denote this internal force vector, which is called Cauchy stress vector or
torsion vector, then the contribution of the internal forces on ! is

Z
@!

t.t; s/ ds:

Adding the external and internal forces, the equation for the conservation of linear
momentum is, for an arbitrary constant-in-time volume !,

Z
!

�.t; x/ .@tvC .v � r/v/ .t; x/ dx D
Z
!

f ext.t; x/ dx C
Z
@!

t.t; s/ ds: (2.7)
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The right-hand side of (2.7) describes the net force acting on and inside !. Now, a
detailed description of the internal forces represented by t.t; s/ is necessary.

The foundation of continuum mechanics is the stress principle of Cauchy. The
idea of Cauchy on internal contact forces was that on any (imaginary) plane on @!
there is a force that depends (geometrically) only on the orientation of the plane.
Thus, it is t D t.n/, where n is the outward pointing unit normal vector of the
imaginary plane.

Next, it will be discussed that t depends linearly on n. To this end, consider a
tetrahedron ! with the vertices p0 D .0; 0; 0/T , p1 D .x1; 0; 0/T , p2 D .0; y2; 0/T ,
p3 D .0; 0; z3/T , and with x1; y2; z3 > 0, see Fig. 2.1 for an illustration. Denote the
plane containing p1; p2; p3 by @!.n/. The unit outward pointing normal of @!.n/ is
given by

n D . p2 � p1/ � . p3 � p1/

k. p2 � p1/ � . p3 � p1/k2

D 1

k. p2 � p1/ � . p3 � p1/k2

0
@y2z3

z3x1
x1y2

1
A D

0
@n1

n2
n3

1
A : (2.8)

The face of the tetrahedron with the normal �ei will be denoted by @!.ei/, i D
1; 2; 3. Let t.n/ be the Cauchy stress vector at @!.n/. Assuming that the Cauchy
stress vectors depend only on the normal of the respective face, they are constant on

n

x

z

∂ω(n)

p1p0

p2

y

p3

Fig. 2.1 Illustration of the tetrahedron used for discussing the linear dependency of the Cauchy
stress vector on the normal
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each face of the tetrahedron and the integrals on the faces can be computed easily.
Applying in addition Newton’s second law of motion (2.5) and the formula for the
volume of a tetrahedron leads to

t.n/
ˇ̌
@!.n/

ˇ̌ �
3X

iD1
t.ei/

ˇ̌
@!.ei/

ˇ̌
„ ƒ‚ …

internal force

D �
h.n/

3

ˇ̌
@!.n/

ˇ̌
„ ƒ‚ …

mass

a; ŒN� (2.9)

where j�j is the area of the faces, t.ei/ the constant stress vector at face @!.ei/, a Œm=s2�

is an acceleration, and h.n/ is the distance of the face @!.n/ to the origin. The area of
@!.n/ can be calculated with the cross product, giving

ˇ̌
@!.n/

ˇ̌ D 1

2
j. p2 � p1/ � . p3 � p1/j D 1

2

������

0
@y2z3

z3x1
x1y2

1
A
������
2

:

Using the representation (2.8) of the normal leads to

ˇ̌
@!.e1/

ˇ̌ D 1

2
y2z3 D 1

2
n1 k. p2 � p1/ � . p3 � p1/k2 D ˇ̌

@!.n/
ˇ̌
n1:

Analogous formulas are derived for
ˇ̌
@!.e2/

ˇ̌
and

ˇ̌
@!.e3/

ˇ̌
. Inserting these formulas

into (2.9) gives

t.n/ �
3X

iD1
t.ei/ni D �

h.n/

3
a: (2.10)

Shrinking now the tetrahedron to the origin, where @!.n/ moves in the direction n,
the left-hand side of (2.10) stays constant whereas the right-hand side vanishes since
h.n/ ! 0. Hence, one obtains in the limit that

t.n/ D
3X

iD1
t.ei/ni D �

t.e1/ t.e2/ t.e3/
�
n;

where .�; �; �/ denotes a tensor with the respective columns. This relation means that
t.n/ depends linearly on n.

Thus, the model for the Cauchy stress vector is

t D Sn; (2.11)

where S.t; x/ ŒN=m2� is a 3 � 3-tensor that is called stress tensor. The stress tensor
represents all internal forces of the flow. Inserting (2.11) in the term representing
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the internal forces in (2.7) and applying the divergence theorem gives

Z
@!

t.t; s/ ds D
Z
!

r � S.t; x/ dx;

where the divergence of a tensor is defined row-wise

r � A D
0
@@xa11 C @ya12 C @za13
@xa21 C @ya22 C @za23
@xa31 C @ya32 C @za33

1
A :

Since (2.7) holds for every volume !, it follows that

� .@tvC .v � r/v/ D r � S C f ext 8 t 2 .0;T�; x 2 ˝: (2.12)

This relation is the momentum equation. ut
Remark 2.9 (Symmetry of the Stress Tensor) Let ! be an arbitrary volume with
sufficiently smooth boundary @! and let the net force be given by the right-hand
side of (2.7). The torque in ! with respect to the origin 0 of the coordinate system
is then defined by

M0 D
Z
!

r � f ext dx C
Z
@!

r � .Sn/ ds ŒNm�; (2.13)

where (2.11) was used. In (2.13), r D xe1 C ye2 C ze3 is the vector pointing from 0

to a point x 2 !. A straightforward calculation shows that

r � .Sn/ D .r � S�1 r � S�2 r � S�3/ n;

where S�i is the i-th column of S and .�/ denotes here the tensor with the respective
columns. Inserting this expression in (2.13), applying integration by parts, and using
the product rule leads to

M0 D
Z
!

r � f ext dx C
Z
!

r � ..r � S�1 r � S�2 r � S�3// dx

D
Z
!

r � . f ext C r � S/ dx

C
Z
!

@xr � S�1 C @yr � S�2 C @zr � S�3 dx: (2.14)

Consider now a fluid in equilibrium state, i.e., the net forces acting on this fluid are
zero. Hence, the right-hand side of (2.12) vanishes and so the first integral of (2.14).
In addition, equilibrium requires in particular that M0 D 0. Thus, from (2.14) it
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follows that

0 D
Z
!

@xr � S�1 C @yr � S�2 C @zr � S�3 dx: (2.15)

Using now

@xr D lim
�x!0

.x C�x/e1 � xe1
�x

D e1;

@yr D e2, @zr D e3, and inserting these equations in (2.15) leads finally to

0 D
Z
!

0
@S32 � S23

S13 � S31

S21 � S12

1
A .t; x/ dx

for an arbitrary volume !. From this relation, one deduces that S has to be
symmetric, S D S

T , and S possesses six unknown components. ut
Remark 2.10 (Decomposition of the Stress Tensor) To model the stress tensor in the
basic variables introduced in Remark 2.1, this tensor is decomposed into

S D V � PI: (2.16)

Here, V ŒN=m2� is the so-called viscous stress tensor, representing the forces coming
from the friction of the particles, and P ŒPa� is the pressure, describing the forces
acting on the surface of each fluid volume !, where I is the identity tensor. The
viscous stress tensor will be modeled in terms of the velocity, see Remark 2.12. ut
Remark 2.11 (The Pressure) The pressure P acts on a surface of a fluid volume !
only normal to that surface and it is directed into !. This property is reflected by the
negative sign in the ansatz (2.16) since

�
Z
@!

Pn ds D �
Z
!

rP dx D �
Z
!

r � .PI/ dx:

ut
Remark 2.12 (The Viscous Stress Tensor) Friction between fluid particles can only
occur if the particles move with different velocities. For this reason, the viscous
stress tensor is modeled to depend on the gradient of the velocity. For the reason
of symmetry, Remark 2.9, it is modeled to depend on the symmetric part of
the gradient, the so-called velocity rate-of-deformation tensor or shortly velocity
deformation tensor

D .v/ D rvC .rv/T
2

Œ1=s�:
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The gradient of the velocity is a tensor with the components

.rv/ij D @jvi D @vi

@xj
; i; j D 1; 2; 3:

If the velocity gradients are not too large, one can assume that first the dependency
is linear and second that higher order derivatives can be neglected. Since there is
no friction for a flow with constant velocity, such that V vanishes in this case,
lower order terms than first order derivatives of the velocity should not appear in
the model. The most general form of a tensor that satisfies all conditions is

V D aD .v/C b .r � v/ I;

where a and b do not depend on the velocity. Introducing the first order viscosity
� Œkg=.m s/� and the second order viscosity � Œkg=.m s/�, one writes this tensor in fluid
dynamics in the form

V D 2�D .v/C
�
� � 2�

3

�
.r � v/ I ŒN=m2�: (2.17)

The viscosity� is also called dynamic or shear viscosity. The law (2.17) is for fluids
the analog of Hooke’s law for solids. ut
Example 2.13 (Steady Rotation) There is no viscous stress, i.e., V D 0, if the fluid
is rotating steadily. In this situation, the velocity is given by

v D ! � x D
0
@!1!2
!3

1
A �

0
@x

y
z

1
A D

0
@!3y � !2z
!1z � !3x
!2x � !1y

1
A ;

where ! Œ1=s� is a constant angular velocity. One has obviously r � v D 0 and

rv D
0
@ 0 !3 �!2

�!3 0 !1
!2 �!1 0

1
A H) D .v/ D 0:

Hence, (2.17) is an appropriate model in this case. ut
Remark 2.14 (Newtonian Fluids) The linear relation (2.17) is only an approxi-
mation for a real fluid. In general, the relation will be nonlinear. Only for small
stresses, a linear approximation of the general stress-deformation relation can be
used. A linear stress-deformation relation was postulate by Newton. For this reason,
a fluid satisfying assumption (2.17) is called Newtonian fluid. More general relations
than (2.17) exist, however they are less well understood from the mathematical point
of view. ut
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Remark 2.15 (Normal and Shear Stresses, Trace of the Stress Tensor) The diagonal
components S11;S22;S33 of the stress tensor are called normal stresses and the off-
diagonal components shear stresses.

For incompressible flows one gets with (2.4), (2.16), and (2.17)

S D 2�D .v/ � PI: (2.18)

The trace of the stress tensor is the sum of the normal stresses

tr.S/ D S11 C S22 C S33

D 2�.@xv1 C @yv2 C @zv3/C 3

�
� � 2�

3

�
.r � v/ � 3P

D 3� .r � v/� 3P:

For incompressible fluids, it follows that

tr.D .v// D 1

2�
.tr.S/C tr.PI// D 1

2�
.�3P C 3P/ D 0

and

P.t; x/ D �1
3
.S11 C S22 C S33/ .t; x/: (2.19)

ut
Remark 2.16 (The Navier–Stokes Equations) Now, the pressure part of the stress
tensor and the model (2.17) of the viscous stress tensor can be inserted in (2.12)
giving the general Navier–Stokes equations (including the conservation of mass)

� .@tvC .v � r/v/ � 2r � .�D .v//

�r �
��
� � 2�

3

�
.r � v/ I

�
C rP D f ext in .0;T� �˝;

@t�C r � .�v/ D 0 in .0;T� �˝:

(2.20)

If the fluid is incompressible and homogeneous, such that � and � are positive
constants, the Navier–Stokes equations simplify to

@tv � 2	r � D .v/C .v � r/vC r P

�
D f ext

�
in .0;T� �˝;

r � v D 0 in .0;T� �˝:
(2.21)

Here, 	 D �=� Œm2=s� is the kinematic viscosity of the fluid. ut
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2.3 The Dimensionless Navier–Stokes Equations

Remark 2.17 (Characteristic Scales) Mathematical analysis and numerical simula-
tions are based on dimensionless equations. To derive dimensionless equations from
system (2.21), the quantities

• L Œm�—a characteristic length scale of the flow problem,
• U Œm=s�—a characteristic velocity scale of the flow problem,
• T� Œs�—a characteristic time scale of the flow problem,

are introduced. ut
Remark 2.18 (The Navier–Stokes Equations in Dimensionless Form) Denote by
.t0; x0/ Œs;m� the old variables. Applying the transform of variables

x D x0

L
; u D v

U
; t D t0

T� ; (2.22)

one obtains from (2.21) and a rescaling

L

UT� @tu � 2	

UL
r � D .u/C .u � r/u C r P

�U2
D L

�U2
f ext in .0;T� �˝;

r � u D 0 in .0;T� �˝;
where all derivatives are with respect to the new variables. Without having
emphasized this issue in the notation, also the domain and the time interval are
now dimensionless. Defining

p D P

�U2
; Re D UL

	
; St D L

UT� ; f D L

�U2
f ext; (2.23)

the incompressible Navier–Stokes equations in dimensionless form

St@tu � 2

Re
r � D .u/C .u � r/u C rp D f in .0;T� �˝;

r � u D 0 in .0;T� �˝;
(2.24)

are obtained. The constant Re is called Reynolds number and the constant St
Strouhal number. These numbers allow the classification and comparison of dif-
ferent flows. ut
Remark 2.19 (Inherent Difficulties of the Dimensionless Navier–Stokes Equations)
To simplify the notations, one uses the characteristic time scale T� D L=U such
that (2.24) simplifies to

@tu � 2	r � D .u/C .u � r/u C rp D f in .0;T� �˝;
r � u D 0 in .0;T� �˝;

(2.25)
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with the dimensionless viscosity 	 D Re�1. Here, with an abuse of notation, the
same symbol is used as for the kinematic viscosity.

This transform and the resulting Eq. (2.25) are the basic equations for the
mathematical analysis of the incompressible Navier–Stokes equations and the
numerical simulation of incompressible flows. System (2.25) comprises two impor-
tant difficulties:

• the coupling of velocity and pressure,
• the nonlinearity of the convective term.

Additionally, difficulties for the numerical simulation occur if

• the convective term dominates the viscous term, i.e., if 	 is small.
ut

Remark 2.20 (Different Forms of Terms in (2.25)) With the help of the divergence
constraint, i.e., the second equation in (2.25), the viscous and the convective term of
the Navier–Stokes equations can be reformulated equivalently.

Assume that u is sufficiently smooth with r � u D 0. Then, straightforward
calculations, using the Theorem of Schwarz and the second equation of (2.25), give

r � .ru/ D �u; r � �ruT
� D r .r � u/ D

0
@@x .r � u/
@y .r � u/
@z .r � u/

1
A D 0: (2.26)

Thus, the viscous term becomes

� 2	r � D .u/ D �	�u: (2.27)

For the convective term, ones uses the identity (product rule)

r � �uvT
� D

0
@@x .u1v1/C @y .u1v2/C @z .u1v3/
@x .u2v1/C @y .u2v2/C @z .u2v3/
@x .u3v1/C @y .u3v2/C @z .u3v3/

1
A

D
0
@u1

�
@xv1 C @yv2 C @zv3

�
u2
�
@xv1 C @yv2 C @zv3

�
u3
�
@xv1 C @yv2 C @zv3

�
1
AC

0
@v1@xu1 C v2@yu1 C v3@zu1
v1@xu2 C v2@yu2 C v3@zu2
v1@xu3 C v2@yu3 C v3@zu3

1
A

D .r � v/u C .v � r/u: (2.28)

In the case v D u with r � u D 0, it follows that

.u � r/u D r � �uuT
�
: (2.29)

A detailed presentation and discussion of different forms of the convective term is
given in Sect. 6.1.2. ut
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Remark 2.21 (Two-dimensional Navier–Stokes Equations) Even if real flows occur
only in three dimensions, the consideration of the Navier–Stokes equations (2.25) in
two dimensions is also of interest. There are applications where the flow is constant
in the third direction and it behaves virtually two-dimensional. ut
Remark 2.22 (Special Cases of Incompressible Flow Models)

• In a stationary flow, the velocity and the pressure do not change in time. Hence
@tu D 0 and these flows are modeled by the so-called stationary or steady-state
Navier–Stokes equations

�	�u C .u � r/u C rp D f in ˝;

r � u D 0 in ˝:
(2.30)

A necessary condition for the time-independence of a flow field is that the data of
the problem, i.e., the right-hand side and the boundary conditions, see Sect. 2.4,
are time-independent. But this condition is not sufficient, cf. Example D.8.

• If in a stationary flow the viscous transport dominates the convective transport,
i.e., if the fluid moves very slowly, the nonlinear convective term of the Navier–
Stokes equations (2.30) can be neglected. This situation leads to a linear system
of equations, the so-called Stokes equations

��u C rp D f in ˝;

r � u D 0 in ˝:
(2.31)

Here, the momentum equation was divided by 	, defining a new pressure and a
new right-hand side.

• In some standard schemes for solving the Navier–Stokes equations numerically,
the so-called Oseen equations appear. Given a divergence-free flow field b, the
Oseen equations are a system of linear equations of the form

�	�u C .b � r/u C rp C cu D f in ˝;

r � u D 0 in ˝;
(2.32)

with a scalar-valued function c.x/ � 0.
ut

2.4 Initial and Boundary Conditions

Remark 2.23 (General Considerations) The Navier–Stokes equations (2.25) are a
first order partial differential equation with respect to time and a second order partial
differential equation with respect to space. Thus, they have to be equipped with an
initial condition for the velocity at t D 0 and with boundary conditions on the
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boundary 
 D @˝ of ˝ , if ˝ is a bounded domain. There are several kinds of
boundary conditions which can be prescribed for incompressible flows. Of course, a
compatibility condition should be fulfilled between the boundary conditions of the
initial velocity field and the limit of the prescribed boundary conditions for t ! 0;

t > 0.
In applications, the initial and boundary conditions are given in terms of

quantities with dimensions. For the analysis and the simulation of the Navier–Stokes
equations, these conditions have to be converted to non-dimensional quantities
with the characteristic scales from Remark 2.17. Here, only conditions for the
dimensionless equations will be discussed. ut
Remark 2.24 (Initial Condition) Concerning the initial condition, an initial velocity
field u.0; x/ D u0.x/ is prescribed at t D 0. The initial flow field has to be in some
sense divergence-free. ut
Remark 2.25 (Dirichlet Boundary Conditions, No-slip Boundary Conditions, Essen-
tial Boundary Conditions) Often used boundary conditions describe the velocity
field at a part of the boundary

u.t; x/ D g.t; x/ in .0;T� � 
diri;

with 
diri � 
 . This boundary condition is called Dirichlet boundary condition. It
models in particular prescribed inflows into ˝ and outflows from˝ .

In the special case g.t; x/ D 0 in .0;T� � 
diri, this boundary condition is called
no-slip boundary condition. The no-slip condition is usually applied at fixed walls.
Let n be the unit normal vector in x 2 
nosl � 
diri and ft1; t2g unit tangential vectors
such that fn; t1; t2g is an orthonormal system of vectors. Then, the no-slip boundary
condition can be decomposed into three parts:

u.t; x/ D 0 ” u.t; x/ � n D 0; u.t; x/ � t1 D 0; u.t; x/ � t2 D 0

in x 2 
nosl. The condition u.t; x/ � n D 0 states that the fluid does not penetrate the
wall. The other two conditions describe that the fluid does not slip along the wall.

If Dirichlet boundary conditions are prescribed on the whole boundary of ˝ ,
there are two additional issues. First, the pressure is determined only up to
an additive constant. An additional condition for fixing the constant has to be
introduced, e.g., that the integral mean value of the pressure should vanish

Z
˝

p.t; x/ dx D 0 t 2 .0;T�:

Second, from the divergence-free constraint and integration by parts it follows that
the boundary condition has to satisfy the compatibility condition

0 D
Z
˝

r � u.t; x/ dx D
Z



.u � n/ .t; s/ ds D
Z



.g � n/.t; s/ ds (2.33)

for all times.



2.4 Initial and Boundary Conditions 21

In the case of the Navier–Stokes equations and their special cases, Dirichlet
boundary conditions are so-called essential boundary conditions. Such boundary
conditions enter the definition of appropriate function spaces for the study of the
equations in the framework of functional analysis, see Sect. 3.2. ut
Remark 2.26 (Free Slip Boundary Conditions, Slip with Friction Boundary Condi-
tions) The free slip boundary condition is applied on boundaries without friction.
It has the form

u � n D g in .0;T� � 
slip;

nT
Stk D 0 in .0;T� � 
slip; 1 � k � d � 1; (2.34)


slip � 
 , where the dimensionless stress tensor is given by

S D 2	D .u/ � pI: (2.35)

There is no penetration through the wall if g D 0 on 
slip.
The slip with linear friction and no penetration boundary condition has the form

u � n D 0 in .0;T� � 
slfr;

u � tk C ˇ�1nT
Stk D 0 in .0;T� � 
slfr; 1 � k � d � 1; (2.36)

with 
slfr � 
 . This boundary condition states that the fluid does not penetrate
the wall and it slips along the wall while loosing energy. The loss of energy is
given by the friction parameter ˇ. In the limit case ˇ�1 ! 0, the no-slip condition
is recovered and in the limit case ˇ�1 ! 1 the free slip condition. Slip with
friction boundary conditions were studied already by Maxwell (1879) and Navier
(1823). The difficulty in the application of this boundary condition consists in
the determination of the friction parameter ˇ, which might depend, e.g., on the
roughness of the wall.

Since n and tk are orthogonal vectors, the values of the pressure do not play any
role in the boundary conditions (2.34) and (2.36). Hence, an additional condition for
the pressure is needed to fix the additive constant. ut
Remark 2.27 (Do-Nothing Boundary Condition, Natural Boundary Conditions)
For numerical simulations, the so-called do-nothing boundary condition

Sn D 0 in .0;T� � 
donot; (2.37)


donot � 
 is often applied. This boundary condition models the situation that the
normal stress, which is equal to the Cauchy stress vector (2.11), vanishes on the
boundary part 
donot. A do-nothing boundary condition is often used if no other
boundary condition at the outlet is available.

From the mathematical point of view, the do-nothing boundary condition is a
natural boundary conditions. Deriving from the strong form of the equations (2.25)
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a so-called weak form, natural boundary conditions appear in the arising integrals on
the boundary. In the special case of the do-nothing boundary condition, the integral
on 
donot vanishes since the term in the integral is zero.

The boundary condition (2.37) contains also a contribution from the pressure.
This issue fixes the problem of the additive constant, i.e., if on a part of the boundary
the do-nothing boundary condition is prescribed, it is not necessary to introduce an
additional condition for the pressure.

However, there are two problems with the do-nothing boundary condition
(2.37):

• It turns out that this boundary condition is incorrect for a simple two-dimensional
channel flow, see Example 2.28. This problem can be fixed by modifying the
tensor in the boundary condition, compare (2.40) below.

In practice, a slightly incorrect boundary condition at the outlet might be of
minor importance. If possible, the computational domain can be extended such
that the impact of the boundary condition at the outlet on the solution in regions
of interest becomes negligible.

• For problems where the do-nothing boundary condition (2.37) or the modified
do-nothing condition (2.40) is prescribed on a part of the boundary, the stability
of the solution can be proved only with some additional assumption on the
solution, see Remark 2.29.

ut
Example 2.28 (Do-Nothing Conditions for a Two-dimensional Channel Flow Prob-
lem (Hagen–Poiseuille Flow)) Let ˝ D .0; lx/ � .�ly; ly/, lx; ly > 0, be a bounded
domain. On the boundary x D 0 the parabolic inflow condition

u D Uin

 
l2y � y2

0

!
; Uin > 0; (2.38)

and at the boundaries y D �ly; y D ly, the no-slip condition u D 0 are prescribed.
There are no body forces in this problem, i.e., f D 0, and the kinematic viscosity 	
is assumed to be sufficiently large. Taking (2.38) as velocity of the flow field, one
finds with direct calculations that

@tu D 0; r � u D 0; .u � r/u D 0; �u D 2r � D .u/ D
��2Uin

0

�
:

From (2.25) it follows that (2.38) together with

p D 2	Uin.x C C/; C 2 R; (2.39)

is a solution of the Navier–Stokes equations. This solution is called Hagen–
Poiseuille flow.
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Now, the constant in the pressure (2.39) should be determined such that at the
outlet x D lx the do-nothing condition (2.37) is satisfied. At the outlet it is n D
.1; 0/T . One finds that

Sn D .2	D .u/ � pI/n D 2	Uin

��
0 �y

�y 0

�
�
�

x C C 0

0 x C C

���
1

0

�

D �2	Uin

�
x C C

y

�
:

This expression does not vanish because the second component does not vanish.
Hence, the do-nothing boundary condition (2.37) is not satisfied for the Hagen–
Poiseuille flow.

A modification of the do-nothing boundary condition (2.37) consists in replacing
the velocity deformation tensor with the velocity gradient, using (2.27),

.	ru � pI/ n D 0 in .0;T� � 
donot; (2.40)


donot � 
 . For the Hagen–Poiseuille flow, one obtains

.	ru � pI/ n D 2	Uin

��
0 �y
0 0

�
�
�

x C C 0

0 x C C

���
1

0

�

D �2	Uin

�
x C C
0

�
:

With the choice C D �lx, the do-nothing condition (2.40) is satisfied at the boundary
x D lx.

The differences of the do-nothing conditions (2.37) and (2.40) for the Hagen–
Poiseuille flow were noted, e.g., in Heywood et al. (1996, Fig. 10). With the do-
nothing condition (2.37), the velocity field at the outlet becomes directed to the
boundary of the channel. ut
Remark 2.29 (Directional Do-Nothing Condition) Do-nothing conditions of the
form (2.37) or (2.40) are usually applied at outlets of the domain. However, at outlets
there might be also some inflow, e.g., if a vortex crosses the outlet.

From the mathematical point of view, the stability of flows with inflows in
combination with do-nothing boundary conditions can be controlled only under a
smallness assumption for the size of the inflow, see Braack and Mucha (2014) for
details. To overcome this problem, a directional do-nothing condition can be used,
reading

.	ru � pI/n D 0 if u � n � 0;

.	ru � pI/ n � 1

2
.u � n/u D 0 if u � n < 0;

9=
; in .0;T� � 
dirdonot; (2.41)



24 2 The Navier–Stokes Equations as Model for Incompressible Flows


dirdonot � 
 . If there is no inflow, i.e., u � n � 0, the directional condition (2.41)
reduces to the do-nothing condition (2.40). ut
Remark 2.30 (A Boundary Condition on the Pressure) A boundary condition of the
form

u � n D gu � n in .0;T� � 
pres; (2.42)

p C 1

2
u � u D gp in .0;T� � 
pres; (2.43)

with 
pres � 
 and given functions gu; gp can be applied for the Navier–Stokes
equations, e.g., see Bernardi et al. (2015). In two dimensions, (2.42) represents a
condition on the tangential velocity

u � n D
0
@ 0

0

u � t

1
A ; with t D

�
n2

�n1

�
:

The quantity on the left-hand side of (2.43) is called Bernoulli pressure.
For the Stokes equations, the second term on the left-hand side of (2.43) has to

be removed. ut
Remark 2.31 (Conditions for an Infinite Domain, Periodic Boundary Conditions)
The case ˝ D R

3 is also considered in analytical and numerical studies of the
Navier–Stokes equations. There are two situations in this case. In the first one,
the decay of the velocity field as kxk2 ! 1 is prescribed. The second situation
consists of applying periodic boundary conditions. These boundary conditions do
not possess any physical meaning. They are used to simulate an infinite extension
of ˝ in one or more directions, where it is assumed that the flow is periodic in this
direction with the length l of the period. In computations, e.g., the cube˝ D .0; l/d

is used and the periodic boundary conditions are given by

u.t; x C lei/ D u.t; x/ 8 .t; x/ 2 .0;T� � 
:

From the point of view of the finite computational domain, all appearing functions
have to be extended periodically in the periodic direction to return to the original
problem.

The use of space-periodic boundary conditions may also facilitate analytical
investigations, see Temam (1995, p. 4). ut



Chapter 3
Finite Element Spaces for Linear Saddle Point
Problems

Remark 3.1 (Motivation) This chapter deals with the first difficulty inherent to the
incompressible Navier–Stokes equations, see Remark 2.19, namely the coupling of
velocity and pressure. The characteristic feature of this coupling is the absence of
a pressure contribution in the continuity equation. In fact, the continuity equation
can be considered as a constraint for the velocity and the pressure in the momentum
equation as a Lagrangian multiplier. This kind of coupling is called saddle point
problem.

Appropriate finite element spaces for velocity and pressure have to satisfy the
so-called discrete inf-sup condition. This condition is derived on the basis of the
theory for an abstract linear saddle point problem. Several techniques for proving
the discrete inf-sup condition will be presented and applied for concrete pairs of
finite element spaces for velocity and pressure.

All special cases of models for incompressible flow problems given in
Remark 2.22 possess the same coupling of velocity and pressure, in particular
the linear models of the Stokes and the Oseen equations. Linear problems are also
of interest in the numerical simulation of the Navier–Stokes equations. After having
discretized these equations implicitly in time, a nonlinear saddle point problem
has to be solved in each discrete time. The solution of this problem is performed
iteratively, requiring in each iteration step the solution of a linear saddle point
problem for velocity and pressure. These linear saddle point problems will be
discretized with finite element spaces. The existence and uniqueness of a solution
of these discrete linear problems is crucial for performing the iteration. Altogether,
the theory of linear saddle problems plays an essential role for the theory of all
models for incompressible flows from Chap. 2.

A comprehensive presentation of the theory of linear saddle point problems can
be found in the monograph Boffi et al. (2013). ut
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3.1 Existence and Uniqueness of a Solution of an Abstract
Linear Saddle Point Problem

Remark 3.2 (Contents) This section presents an abstract framework for studying
the existence and uniqueness of solutions of those types of linear saddle point
problems which are of interest for incompressible flow problems. The presentation
follows Girault and Raviart (1986, Chap. I, § 4). ut
Remark 3.3 (Abstract Linear Saddle Point Problem) Let V and Q be two real
Hilbert spaces with inner products .�; �/V and .�; �/Q and with induced norms k�kV
and k�kQ, respectively. Their corresponding dual spaces are given by V 0 and Q0,
with the dual pairing denoted by h�; �iV0 ;V and h�; �iQ0;Q. The norms of the dual spaces
are defined in the usual way by

k�kV0 WD sup
v2V;v¤0

h�; viV0;V

kvkV

; k kQ0 WD sup
q2Q;q¤0

h ; qiQ0;Q

kqkQ

: (3.1)

Two continuous bilinear forms are considered

a.�; �/ W V � V ! R; b.�; �/ W V � Q ! R; (3.2)

with the usual definition of their norms

kak D sup
v;w2V;v;w¤0

a.v;w/

kvkV kwkV

; kbk D sup
v2V;q2Q;v;q¤0

b.v; q/

kvkV kqkQ

: (3.3)

The following problem is studied: Find .u; p/ 2 V �Q such that for given . f ; r/ 2
V 0 � Q0

a.u; v/C b.v; p/ D h f ; viV0;V 8 v 2 V;

b.u; q/ D hr; qiQ0 ;Q 8 q 2 Q:
(3.4)

System (3.4) is called linear saddle point problem. Concrete choices of the spaces
and bilinear forms for incompressible flow problems are discussed in Sect. 3.2. ut
Remark 3.4 (Operator Form of the Linear Saddle Point Problem) Problem (3.4) can
be transformed into an equivalent form using operators instead of bilinear forms.
Linear operators can be defined which are associated with the bilinear forms given
in (3.2):

A 2 L
�
V;V 0� defined by hAu; viV0;V D a.u; v/ 8 u; v 2 V;

B 2 L
�
V;Q0� defined by hBu; qiQ0;Q D b.u; q/ 8 u 2 V; 8 q 2 Q:
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Using the definition of the norms of the dual spaces (3.1), the norms of the operators
are given by

kAvkV0 D sup
w2V;w¤0

hAv;wiV0;V

kwkV

H)

kAkL.V;V0/ D sup
v2V;v¤0

kAvkV0

kvkV

D sup
v;w2V;v;w¤0

a.v;w/

kvkV kwkV

D kak ;

and analogously

kBkL.V;Q0/ D kbk :

Let B0 2 L.Q;V 0/ be the adjoint (dual) operator of B defined by

˝
B0q; v

˛
V0;V

D hBv; qiQ0;Q D b.v; q/ 8 v 2 V; 8 q 2 Q:

With these operators, Problem (3.4) can be written in the equivalent form: Find
.u; p/ 2 V � Q such that

Au CB0p D f in V 0;

Bu D r in Q0:
(3.5)

ut
Definition 3.5 (Well-posedness of Problem (3.5)) Let

˚ 2 L
�
V � Q;V 0 � Q0� W ˚.v; q/ D .Av C B0q;Bv/

be a linear operator, where .�; �/ denotes a vector with two components. Prob-
lem (3.5) is said to be well-posed if ˚.�; �/ is an isomorphism from V � Q onto
V 0 � Q0. ut
Remark 3.6 (On Definition 3.5) Definition 3.5 means that Problem (3.5) possesses
for all possible right-hand sides a unique solution. The purpose of the following
studies consists in deriving necessary and sufficient conditions for (3.5) to be well-
posed. ut
Remark 3.7 (The Finite-dimensional Case) Consider for the moment that V and
Q are finite-dimensional spaces of dimension nV and nQ, respectively. Then, the
operators in (3.5) can be represented with matrices, with B0 D BT , and the functions
with vectors. The well-posedness of (3.5) means that the linear system of equations

�
A BT

B 0

� 
u
p

!
D
 

f
r

!
;

�
A BT

B 0

�
2 R

.nV CnQ/�.nV CnQ/; (3.6)
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has a unique solution or, equivalently, that the system matrix is non-singular. Here,
conditions will be derived such that this property is given. These considerations
should provide an idea of the kind of conditions to be expected in the general case.

Separate Consideration of Velocity and Pressure A possible way to solve (3.6)
starts by solving the first equation of (3.6) for u

u D A�1 	f � BTp


: (3.7)

Inserting this expression into the second equation gives

�
BA�1BT

�
p D BA�1f � r: (3.8)

If (3.8) possesses a unique solution p, this solution can be inserted into (3.7) and
a unique solution u is obtained, too. This way to compute a unique solution works
if

• A W V ! V 0 is an isomorphism, i.e., A is non-singular,
• BA�1BT W Q ! Q0 is an isomorphism, i.e., BA�1BT is non-singular.

Let p be a solution of (3.8). Then, also p C Qp with Qp 2 ker
�
BT
�

is a solution
of (3.8). Thus, for BA�1BT to be non-singular, it is necessary that ker

�
BT
� D f0g or

equivalently that BT W Q ! V 0 D V is injective. With a similar argument, one finds
that B must be injective on the range of A�1BT , i.e., ker.B/\ range

�
A�1BT

� D f0g.

Joint Consideration of Velocity and Pressure One can also consider the system
matrix (3.6) as a whole. A first necessary condition for the matrix to be non-singular
is nQ � nV , since the last rows of the system matrix span a space of dimension at
most nV (only the first nV entries of these rows might be non-zero). Assume that A
is non-singular, then the system matrix is non-singular if and only if B has full rank,
i.e., rank.B/ D nQ. It will be shown now that rank.B/ D nQ if and only if

inf
q2RnQ ;q¤0

sup
v2RnV ;v¤0

vTBTq

kvk2
���q
���
2

� ˇ > 0: (3.9)

Let (3.9) be satisfied and let rank.B/ < nQ. Then, there is a q 2 R
nQ , q ¤ 0, such

that q 2 ker
�
BT
�
, i.e., BTq D 0. For this vector, it is vTBTq D 0 for all v 2 R

nV

such that the supremum of (3.9) is zero and (3.9) cannot be satisfied. This result is a
contradiction and hence rank.B/ D nQ.
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On the other hand, let rank.B/ D nQ. Then, for each q 2 R
nQ , q ¤ 0, one has that

BTq ¤ 0 with BTq 2 R
nV . Choosing v D BTq gives

inf
q2RnQ ;q¤0

sup
v2RnV ;v¤0

vTBTq

kvk2
���q
���
2

� inf
q2RnQ ;q¤0

���BTq
���2
2���BTq

���
2

���q
���
2

D inf
q2RnQ ;q¤0

���BTq
���
2���q

���
2

: (3.10)

It is

���BTq
���2
2���q

���2
2

D qTBBTq

qTq
:

This expression is a Rayleigh quotient and it is known that

inf
q2RnQ ;q¤0

qTBBTq

qTq
D �min

�
BBT

�
;

where �min
�
BBT

�
is the smallest eigenvalue of BBT , see Lemma A.19. Since B was

assumed to have full rank, one has �min
�
BBT

�
> 0 and hence with (3.10)

inf
q2RnQ ;q¤0

sup
v2RnV ;v¤0

vTBTq

kvk2
���q
���
2

� �
1=2
min

�
BBT

�
> 0:

Altogether, under the assumption that

• A is non-singular, i.e., A W V ! V 0 is an isomorphism,
• (3.9) is satisfied,

the system matrix (3.6) is non-singular.
The result presented here just states that the given problem has a unique solution

because (3.9) is satisfied. In the finite element theory it turns out that there is
another important aspect to study, namely the dependency of ˇ on the dimension
of the finite element spaces. To obtain optimal orders of convergence, ˇ has to be
independent of the dimension, e.g., compare Remark 4.29. This aspect can also be
taken into account in the matrix-vector formulation of linear saddle point problems,
see Sect. 3.6.6. Then, one has to solve a generalized eigenvalue problem, see (3.150).
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It turns out that one gets similar conditions in the general case, see Lemma 3.12
and Theorem 3.18. Whether or not these conditions are satisfied depends finally on
the spaces V and Q. ut
Remark 3.8 (A Manifold and a Subspace in V) A manifold of V will be defined that
contains all elements which fulfill the second equation of (3.5)

V.r/ D fv 2 V W Bv D rg; V0 WD V.0/ D ker.B/:

The manifold V0 is even a subspace of V . From Hilbert space theory, it follows that
there is an orthogonal decomposition, with respect to the inner product of V ,

V D V?
0 ˚ V0;

where V?
0 is the orthogonal complement of V0. ut

Lemma 3.9 (Properties of V0 and V?
0 ) The spaces V0 and V?

0 are closed sub-
spaces of V.

Proof First, the closeness of V0 will be proved. Let fvng1
nD1 be an arbitrary Cauchy

sequence with vn 2 V0 for all n. Since V is complete, there exists a v 2 V with
limn!1 vn D v. One has to show that v 2 V0. By the continuity of the linear
operator B, it follows that

Bv D B
	

lim
n!1 vn



D lim

n!1 .Bvn/ D lim
n!1 0 D 0:

Hence v 2 V0 and V0 is closed.
The closeness of V?

0 follows from the fact that the orthogonal complement of
every subspace is closed, see Lemma A.17. �

Remark 3.10 (Functionals Vanishing on V0) A subset of V 0 is defined for the
following analysis:

QV 0 D f� 2 V 0 W h�; viV0;V D 0 8 v 2 V0g � V 0: (3.11)

This subset, which is even a closed subspace of V 0, contains all linear functionals
on V that vanish for all v 2 V0 D ker.B/. ut
Remark 3.11 (Reduction of the System to a Single Equation in a Subspace) In the
next step, the following problem is associated with Problems (3.4) and (3.5): Find
u 2 V.r/ such that

a.u; v/ D h f ; viV0;V 8 v 2 V0: (3.12)
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Clearly, if .u; p/ 2 V � Q is a solution of (3.4) or (3.5), then u 2 V.r/. In addition,
one obtains

˝
B0p; v

˛
V0;V

D hBv; piQ0;Q D b.v; p/ D 0 8 v 2 V0: (3.13)

Since the first equation of (3.4) holds for all v 2 V , it holds in particular for all
v 2 V0. With (3.13) it follows that u is a solution of (3.12).

The aim of the analysis consists now in finding conditions to ensure that the
converse of this statement holds: if u 2 V.r/ is a solution of (3.12), one can find a
unique p 2 Q such that .u; p/ is the unique solution of (3.4) or (3.5), respectively.

ut
Lemma 3.12 (The Inf-Sup Condition) The three following properties are equiv-
alent:

i) There exists a constant ˇis > 0 such that

inf
q2Q;q¤0

sup
v2V;v¤0

b.v; q/

kvkV kqkQ

� ˇis: (3.14)

ii) The operator B0 is an isomorphism from Q onto QV 0 and

��B0q
��

V0
� ˇis kqkQ 8 q 2 Q: (3.15)

iii) The operator B is an isomorphism from V?
0 onto Q0 and

kBvkQ0 � ˇis kvkV 8 v 2 V?
0 : (3.16)

Proof The proof follows Girault and Raviart (1986).

• i) and ii) are equivalent.

ii) H) i). From the definition of the norm of a linear functional and the definition
of the adjoint operator, it follows that

��B0q
��

V0
D sup

v2V;v¤0
hB0q; viV0;V

kvkV

D sup
v2V;v¤0

hBv; qiQ0;Q

kvkV

D sup
v2V;v¤0

b.v; q/

kvkV

:

(3.17)
Hence, (3.15) gives

sup
v2V;v¤0

b.v; q/

kvkV

� ˇis kqkQ 8 q 2 Q:
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Dividing by kqkQ and taking the infimum with respect to q on both sides of this
inequality shows that ii) implies i).

i) H) ii). The inequality (3.15) follows from (3.14) and (3.17). It remains to
prove that B0 is an isomorphism from Q onto QV 0. First, it will be shown that B0
is an isomorphism from Q onto range .B0/ with a continuous inverse, see also
Theorem A.70. By the definition of the range, B0 is surjective on range .B0/. If it
would be not injective then there would be q1 ¤ q2 2 Q such that B0q1 D B0q2 or
equivalently B0.q1 � q2/ D 0. In this case, it follows that

˝
B0.q1 � q2/; v

˛
V0;V

D b.v; q1 � q2/ D 0

for all v 2 V and kq1 � q2kQ > 0. Then, (3.14) cannot hold, in contrast to the
assumption. Hence, B0 is an isomorphism from Q onto range .B0/.

Moreover, the inverse operator is continuous (or bounded) if and only if
range .B0/ is a closed subspace of V 0. By assumption, it is B0 2 L.Q;V 0/, hence
B0 is bounded. Thus, one can apply the Closed Range Theorem of Banach, see
Theorem A.71 iv), to B0 and one obtains immediately

range
�
B0� D QV 0:

Since QV 0 is a closed subspace of V 0, see Remark 3.10, the inverse operator is contin-
uous. Alternatively, the closedness of range .B0/ follows from Theorem A.71 iii).

Altogether, B0 is an isomorphism from Q onto QV 0.

• ii) and iii) are equivalent.

A standard property of an operator B and its adjoint operator B0 is that range .B0/ D
.domain.B//0. Hence, one has to show that the range QV 0 of B0 can be identified with
the dual space

�
V?
0

�0
of the domain of B.

An isomorphism between QV 0 and
�
V?
0

�0
will be constructed. The space V?

0 is
defined in Remark 3.8. Let v 2 V and denote the projection of v onto V?

0 by v?.
Then, with � 2 �V?

0

�0
, one associates the element  2 V 0 defined by

h ; viV0;V D ˝
�; v?˛

V0;V
8 v 2 V: (3.18)

In particular, one obtains for v 2 V0 that v? D 0 and

h ; viV0 ;V D ˝
�; v?˛

V0;V
D h�; 0iV0;V D 0 8 v 2 V0:

Hence,  2 QV 0.
The linear continuous mapping

�
V?
0

�0 ! QV 0, � 7!  is injective since for

�0; �1 2 �V?
0

�0
with �0 ¤ �1 and

h ; viV0;V D ˝
�0; v

?˛
V0;V

D ˝
�1; v

?˛
V0 ;V

8 v 2 V;
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it follows that

˝
�0 � �1; v?˛

V0;V D 0 8 v 2 V:

Since all elements of V?
0 are arguments of the linear functional �0 � �1, it follows

that �0 � �1 is the null element of
�
V?
0

�0
.

The mapping is also surjective. Consider an arbitrary element  2 QV 0 and an
arbitrary element v 2 V . Using the decomposition v D v0Cv?, v0 2 V0, v? 2 V?

0 ,
gives

h ; viV0;V D h ; v0iV0;V C ˝
 ; v?˛

V0;V D ˝
 ; v?˛

V0;V 8 v 2 V:

Comparing this equation with (3.18) shows that the restriction of  from V to V?
0

defines the inverse image of  . Thus, surjectivity is proved.
Altogether, the mapping is bijective and the spaces

�
V?
0

�0
and QV 0 can be

identified. In essence, each functional from QV 0 is mapped to the functional that
corresponds to its restriction (of its domain) from V on V?

0 and there are no two
functionals that both vanish on V0 and give the same result in V?

0 .
The equivalence of the range of B0 and the dual space of the domain of B proves

the statements concerning the isomorphisms.
For proving the equivalence of the inequalities (3.15) and (3.16), first

sup
v2V;v¤0

hBv; qiQ0;Q

kvkV

D sup
v2V?

0 ;v¤0

hBv; qiQ0;Q

kvkV

(3.19)

will be shown. That the left-hand side is larger or equal than the right-hand side
follows from the fact that the supremum is taken in a larger set. Using the orthogonal
decomposition v D v0 C v?, v0 2 V0, v? 2 V?

0 , yields

sup
v2V;v¤0

hBv; qiQ0;Q

kvkV

D sup
v2V;v¤0

˝
Bv0 C Bv?; q

˛
Q0;Q	

kv0k2V C ��v?��2
V


1=2

D sup
v2V;v¤0

˝
Bv?; q

˛
Q0 ;Q	

kv0k2V C ��v?��2
V


1=2

� sup
v2V;v¤0

˝
Bv?; q

˛
Q0;Q��v?��
V

D sup
v2V?

0 ;v¤0

hBv; qiQ0;Q

kvkV

;
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since reducing the denominator can at most increase the quotient. Combining both
inequalities proves (3.19). One gets from (3.15), the definition of the norm in V 0, the
definition of the adjoint operator, (3.19), and the definition of the norm in Q0

ˇ�1
is � sup

q2Q;q¤0
kqkQ

kB0qkV0

D sup
q2Q;q¤0

sup
v2V;v¤0

kqkQ kvkV

hB0q; viV0;V

D sup
q2Q;q¤0

sup
v2V;v¤0

kqkQ kvkV

hBv; qiQ0;Q

D sup
q2Q;q¤0

sup
v2V?

0 ;v¤0

kqkQ kvkV

hBv; qiQ0;Q

D sup
v2V?

0 ;v¤0
sup

q2Q;q¤0
kqkQ kvkV

hBv; qiQ0;Q

D sup
v2V?

0 ;v¤0

kvkV

kBvkQ0

:

From this estimate, (3.16) follows. Analogously, one can derive (3.15) from (3.16).
Thus, both estimates are equivalent. �
Theorem 3.13 (Inf-Sup Condition for the Complete Bilinear Form, Babuška’s
Inf-Sup Condition) Let V1 and V2 be two Hilbert spaces with inner products .�; �/V1
and .�; �/V2 . Let A.�; �/ be a bilinear form on V1 � V2 such that

jA.v1; v2/j � C1 kv1kV1 kv2kV2 ; 8 v1 2 V1; v2 2 V2;

sup
v12V1;kv1kV1¤0

A.v1; v2/
kv1kV1

� C2 kv2kV2 8 v2 2 V2;

sup
v22V2;kv2kV2¤0

A.v1; v2/
kv2kV2

� C3 kv1kV1 8 v1 2 V1;

with C1 < 1 and C2;C3 > 0. Let f 2 V 0
2, then there exists exactly one element

u 2 V1 such that

A.u; v2/ D h f ; v2iV0

2;V2
8 v2 2 V2

and

kukV1 � 1

C2
kf kV0

2
:

Proof For the proof, it is referred to Babuška (1971). �
Remark 3.14 (Inf-Sup Conditions, Babuška–Brezzi Condition) Condition (3.14) is
called inf-sup condition. It was introduced in this form in Brezzi (1974). In Babuška
(1971), the inf-sup condition presented in Theorem 3.13 was proved. Choosing in
this theorem V1 D V2 D V � Q and setting the bilinear form to be

A.v1; v2/ D A..v C w/; .q C r// D a.v;w/C b.w; q/C b.v; r/



3.1 Existence and Uniqueness of a Solution of an Abstract Linear Saddle Point. . . 35

leads to the inf-sup condition

sup
.v;q/2V�Q

kvkV CkqkQ¤0

a.v;w/C b.w; q/C b.v; r/

kvkV C kqkQ

� ˇis;Bab
�kwkV C krkQ

�

for all .w; r/ 2 V � Q. If a.�; �/ is symmetric, then both inf-sup conditions in
Theorem 3.13 are identical. The inf-sup condition from Babuška (1971) was applied
to the analysis of finite element problems with Lagrangian multipliers in Babuška
(7273). Note that the pressure in the Navier–Stokes equations can be interpreted
as a Lagrangian multiplier associated with the imposition of the divergence-free
constraint for the velocity.

Nevertheless, it became common to call (3.14) Babuška–Brezzi condition. The
relation between the inf-sup conditions from Babuška (1971, 7273) and Brezzi
(1974) in the context of finite element methods is discussed briefly in Remark 3.54.

Sometimes, the inf-sup condition (3.14) is even called Ladyzhenskaya–Babuška–
Brezzi condition or LBB condition. It is mentioned in the literature, e.g., in
Gunzburger (2002), that in the book Ladyzhenskaya (1969) the property (3.16)
is proved. The proof of the uniqueness of the pressure in Ladyzhenskaya (1969,
Chap. 2.1) uses an argument that is based on the uniqueness of the Helmholtz
decomposition of vector fields in L2.˝/, see Sect. 3.7. ut
Remark 3.15 (On the Inf-Sup Condition and the Coercivity) For a bounded bilinear
form c W V � V ! R, the theorem of Lax–Milgram, see Theorem B.4, states that
the coercivity of c.�; �/ is a sufficient condition for the existence of a unique solution
of a corresponding problem. The coercivity can be written in the form that there is
a constant m > 0

m kwk2V � c.w;w/ 8 w 2 V ” m kwkV � c.w;w/

kwkV

8 w 2 V:

From the last formulation, it follows that also

m kwkV � sup
v2V;v¤0

c.v;w/

kvkV

8 w 2 V; (3.20)

holds. Observe that in this more general condition, the spaces in the bilinear form
are allowed to be different.

Assume now that u 2 V.r/ is the unique solution of (3.12). Then, the first
equation of (3.4) can be written in the form

b.v; p/ D h f ; viV0;V � a.u; v/ 8 v 2 V:
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The concept of coercivity cannot be applied for the analysis of this equation. But
note that the inf-sup condition (3.14) can be written in the form

ˇis kqkQ � sup
v2V;v¤0

b.v; q/

kvkV

8 q 2 Q;

which is the same form as (3.20).
Altogether, the inf-sup condition can be viewed as a generalization of the

coercivity condition to bilinear forms where the arguments are from different spaces.
ut

Remark 3.16 (The Space V.r/ is Not Empty) From the inf-sup condition, one gets
that V(r) is not empty. Let r 2 Q0, then it follows from Lemma 3.12 iii) that there is
a v 2 V?

0 such that Bv D r. ut
Remark 3.17 (An Imbedding Operator) Before stating the results concerning the
well-posedness of Problem (3.5), see Definition 3.5, the linear continuous operator
E0 2 L

�
V 0;V 0

0

�
given by

hE0�; viV0;V D h�; viV0 ;V 8 � 2 V 0; 8 v 2 V0; (3.21)

is introduced. This operator is an imbedding operator. Since V0 � V , it is V 0
0 � V 0

and E0� is the restriction of the functional � from V onto V0. The subspace V0 is
equipped with the same norm as V , hence one obtains

kE0�kV0

0
D sup

v2V0;v¤0
hE0�; viV0;V

kvkV

D sup
v2V0;v¤0

h�; viV0 ;V

kvkV

� sup
v2V;v¤0

h�; viV0;V

kvkV

D k�kV0 : (3.22)

ut
Theorem 3.18 (Well-posedness of Problem (3.5)) Problem (3.5) is well-posed
if and only if the following two conditions hold:

i) The operator E0 ı A is an isomorphism from V0 onto V 0
0.

ii) The bilinear form b.�; �/ satisfies the inf-sup condition (3.14).

Proof • The conditions i) and ii) are sufficient.
Assume that conditions i) and ii) are satisfied. In the first step, it will be proved

that Problem (3.12) possesses a unique solution u 2 V.r/. Then, the second step
proves the existence of a unique solution .u; p/ 2 V � Q of Problem (3.5).

Unique Solution u 2 V.r/ of Problem (3.12) It follows from Lemma 3.12 iii) that
there is a unique u0 2 V?

0 such that

Bu0 D r; ku0kV � 1

ˇis
krkQ0 : (3.23)
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Therefore, Problem (3.12) can be stated equivalently in the following way: Find
w D u � u0 2 V0 such that

a.w; v/ D h f ; viV0;V � a.u0; v/ 8 v 2 V0:

Now, the ansatz and the test space are the same. Writing the equation in the form

hAw; viV0;V D hf � Au0; viV0;V 8 v 2 V0; (3.24)

then it follows from (3.21) that w satisfies the operator equation

.E0 ı A/w D E0 ı .f � Au0/ in V 0
0: (3.25)

By assumption i), E0ıA is an isomorphism from V0 onto V 0
0, such there is a unique w

satisfying this equation. Hence, Problem (3.12) has the unique solution u D u0Cw 2
V.r/.

Unique Solution .u; p/ 2 V�Q of Problem (3.5) From the boundedness of A and E0,
it follows that E0 ı A is bounded. Therefore, the inverse .E0 ı A/�1 is a continuous
bounded operator, see Theorem A.70. From (3.25), this property, and (3.22), it
follows that

kwkV D
���.E0 ı A/�1 E0 ı .f � Au0/

���
V

� C kE0 ı .f � Au0/kV0

0

� C kf � Au0kV0 :

The application of the triangle inequality, the boundedness of the operator A, and
twice (3.23) yields

kukV � ku0kV C kwkV � 1

ˇis
krkQ0 C C kf � Au0kV0

� C
�krkQ0 C kf kV0 C ku0kV

� � C
�krkQ0 C kf kV0

�
: (3.26)

Using the decomposition of u and (3.24) yields f � Au D f � Au0 � Aw 2 QV 0. Thus,
according to Lemma 3.12 ii) there exists a unique p 2 Q such that

B0p D f � Au:

Using Lemma 3.12 ii), the triangle inequality, the boundedness of A, and (3.26), one
obtains

kpkQ � 1

ˇis
kf � AukV0 � 1

ˇis
.kf kV0 C kAukV0/

� 1

ˇis
.kf kV0 C C kukV/ � C

�kf kV0 C krkQ0

�
: (3.27)
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Hence, Problem (3.5) has a unique solution .u; p/ and the norm of the solution is
bounded by the norm of the data of the problem, which is stability. Or in other words,
from (3.26) and (3.27), it follows that the mapping from the right-hand side to the
solution . f ; r/ 7! .u; p/ is bounded. Thus, this mapping is continuous from V 0 � Q0
onto V � Q. This property means, together with the already proved uniqueness of u
and p, that ˚ is an isomorphism from V � Q onto V 0 � Q0.

• The conditions i) and ii) are necessary.

Assume now that˚ is an isomorphism from V �Q onto V 0 �Q0. It will be proved
in the first step that then the inf-sup condition (3.14) holds, i.e., condition ii) of the
theorem. The second step proves that also condition i) of the theorem is satisfied.

Condition ii) of the Theorem Holds Consider the restriction of B to V?
0 and denote

it by B?. Every u 2 V can be decomposed uniquely into u D u0 C Qu, u0 2 V0,
Qu 2 V?

0 . Then, one obtains, using the definition of V0,

Bu D Bu0 C BQu D BQu D B? Qu: (3.28)

Since ˚ is an isomorphism, it is range .B/ D Q0 and because of (3.28), one gets
range

�
B?� D Q0. Hence, B? is surjective. Next, one has to show that B? is injective.

Let u0; u1 2 V?
0 with B?u0 D B?u1 D  . Hence B?.u0 � u1/ D 0 from what

follows that u0 � u1 2 V0. Because u0; u1 2 V?
0 also each linear combination is

element of V?
0 , in particular u0 � u1 2 V?

0 . The only element which is in V0 and
V?
0 is the zero element such that u0 D u1 follows and B? is injective. Altogether,

B? is an isomorphism between V?
0 and Q0. Consequently, the inverse map .B?/�1

is also an isomorphism. Theorem A.70 gives that it is a bounded operator, i.e., for
all  2 Q0 there is a constant C such that

��.B?/�1 
��

V
� C k kQ0 :

Choosing  D Bv, one observes that this inequality is equivalent to the existence
of a constant ˇis such that for all v 2 V?

0

ˇis kvkV � kBvkQ0 :

From Lemma 3.12 it follows that then condition (3.14) holds.

Condition i) of the Theorem Holds Let � 2 V 0
0 be arbitrary. By the Hahn–Banach

Theorem, Theorem A.72, there exists at least one element f 2 V 0 such that � D E0f .
Setting .u; p/ D ˚�1. f ; 0/, then one has u 2 V0, since Bu D 0, and

Au C B0p D f in V 0: (3.29)

By the definition of E0 it follows that for all v 2 V0

˝
E0 ı B0p; v

˛
V0;V

D ˝
B0p; v

˛
V0;V

D hBv; piQ0;Q D 0:
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That means E0 ı B0p D 0 in V 0
0 and one gets with (3.29)

E0 ı Au D E0f D � in V 0
0:

Hence, for each � 2 V 0
0 there is an element u 2 V0 with E0 ı Au D �, such that

E0 ı A is surjective.
Now, the injectivity of E0 ı A will be proved. Let v1 ¤ v2 2 V0 with

E0 ı Av1 D E0 ı Av2 D � H) E0 ı A.v1 � v2/ D 0: (3.30)

Let q 2 Q be arbitrary. Then

Av1 C B0q D f1; Av2 C B0q D f2 2 V 0;

with f1 ¤ f2 since ˚ is an isomorphism and Bv1 D Bv2 D 0. It follows that

A.v1 � v2/ D f1 � f2 2 V 0 ” ˚.v1 � v2; 0/ D .f1 � f2; 0/: (3.31)

By the definition (3.21) of E0, one obtains with (3.30) and (3.31)

0 D hE0 ı A.v1 � v2/; viV0;V D hA.v1 � v2/; viV0;V D hf1 � f2; viV0;V 8 v 2 V0:

With the definition of QV 0 it follows that f1 � f2 2 QV 0. It was already proved that
the inf-sup condition holds. Thus, it follows from Lemma 3.12 ii) that there is a
unique q 2 Q such that B0q D f1 � f2. Hence, ˚.0; q/ D .f1 � f2; 0/. Since ˚ is an
isomorphism, it follows with (3.31) that .v1 � v2; 0/ D .0; q/, and in particular that
v1 D v2.

Thus, E0 ı A is a one-to-one linear continuous mapping from V0 onto V 0
0 and

therefore an isomorphism from V0 onto V 0
0. �

Lemma 3.19 (Sufficient Condition on a.�; �/ for the Well-posedness of (3.5))
Assume that the bilinear form a.�; �/ is V0-elliptic, i.e., there is a constant ˛ > 0

such that

a.v; v/ � ˛ kvk2V 8 v 2 V0:

Then, Problem (3.5) is well-posed if and only if the bilinear form b.�; �/ satisfies the
inf-sup condition (3.14).

Proof • V0-ellipticity and inf-sup condition H) well-posed problem. It will be
shown that the V0-ellipticity implies the first condition of Theorem 3.18. Let
f 2 V 0

0 be arbitrary. Since a.�; �/ is V0-elliptic, the Lax–Milgram theorem, see
Theorem B.4, gives that there is a unique u 2 V0 such that

a.u; v/ D h f ; viV0;V 8 v 2 V0;
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or equivalently, that there is a unique u 2 V0 such that

E0 ı Au D f :

Since f was chosen to be arbitrary, E0 ı A is surjective.
Consider now the injectivity of E0 ı A. Let u 2 V0 with E0 ı Au D 0: By the

definition (3.21) of E0, it is

0 D hE0 ı Au; viV0;V D hAu; viV0;V 8 v 2 V0;

and in particular

0 D hAu; uiV0;V D a.u; u/:

From the V0-ellipticity it follows that u D 0, which implies injectivity.
Altogether, E0 ıA is an isomorphism from V0 onto V 0

0 and Theorem 3.18 gives
the well-posedness of Problem 3.5.

• V0-ellipticity and well-posed problem H) inf-sup condition. The satisfaction of
the inf-sup condition in case Problem 3.5 is well-posed follows directly from
Theorem 3.18. The V0-ellipticity of the bilinear form a.�; �/ is a special case of
the first condition of Theorem 3.18.

�

Remark 3.20 (Formulation as an Optimization Problem, Saddle Point Problem)
The Problems (3.5) and (3.12) can formulated as optimization problems under
certain conditions. Let J0 W V ! R and J1 W V � Q ! R be two quadratic
functionals defined by

J0.v/ D 1

2
a.v; v/ � h f ; viV0;V ; J1.v; q/ D J0.v/C b.v; q/� hr; qiQ0;Q :

The functional J0 is called energy functional associated with Problem (3.12) and J1
is the Lagrangian functional associated with Problem (3.5).

Consider the following problem: Find a saddle point .u; p/ 2 V � Q of the
Lagrangian functional J1 over V � Q, i.e., find a pair .u; p/ 2 V � Q such that

J1.u; q/ � J1.u; p/ � J1.v; p/ 8 v 2 V; 8 q 2 Q: (3.32)

This form is the classical formulation of a saddle point problem. The characteriza-
tion (3.32) inspired the notation saddle point problem also for Problem (3.5). ut
Theorem 3.21 (Existence and Uniqueness of a Solution of (3.32)) Assume the
conditions i) and ii) of Theorem 3.18. Assume in addition that the bilinear form
a.�; �/ is symmetric and positive semi-definite on V, i.e.,

a.v; v/ � 0 8 v 2 V:
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Then, Problem (3.32) has a unique solution .u; p/ 2 V � Q that is precisely the
solution of Problem (3.5).

Proof It is referred to Girault and Raviart (1986, p. 62) for the proof. �

Remark 3.22 (Some Generalizations) Generalizations of the saddle point problem
considered in this section have been studied in the literature.

• In Ciarlet et al. (2003), solvability and stability conditions for a saddle point
problem of the form

a.u; v/C b1.v; p/ D h f ; viV0;V 8 v 2 V;

b2.u; q/� c. p; q/ D hr; qiQ0;Q 8 q 2 Q;

are established.
• Abstract saddle point problems of form (3.4) can be also studied in Banach

spaces, see Ern and Guermond (2004, Chap. 2.4) and the references therein.
ut

3.2 Appropriate Function Spaces for Continuous
Incompressible Flow Problems

Remark 3.23 (Contents) The theory of Sect. 3.1 will now be applied to characterize
appropriate function spaces for weak formulations of incompressible flow problems.
Theorem 3.18 and Lemma 3.19 give two conditions for the well-posedness of the
linear saddle point problem. One condition concerns only the space V . It will be
discussed for the individual incompressible flow models later, e.g., see Theorem 4.6
for the Stokes equations. The emphasis of this section is on the second condition,
which establishes a connection between the spaces V and Q. These spaces have to
satisfy the inf-sup condition (3.14). Note that the inf-sup condition guarantees the
uniqueness of the pressure, e.g., see the proof of Theorem 3.18. ut
Remark 3.24 (The Bilinear Form b.�; �/ for Incompressible Flow Problems) In the
inf-sup condition (3.14), the velocity and pressure space are coupled by a bilinear
form. A weak formulation of incompressible flow problems is obtained in the usual
way by multiplying the momentum equation with a test function v 2 V and the
continuity equation with a test function q 2 Q. Then, both equations are integrated
on ˝ . One obtains for the continuity equation

Z
˝

.r � u/ q dx D .r � u; q/ D 0:

For the viscous term and the pressure term in the continuity equation, integration
by parts is applied. Assuming that the functions are sufficiently smooth and that the
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integral on the boundary vanishes in performing the integration by parts, one gets
the term

Z
˝

rp � v dx D �
Z
˝

.r � v/ p dx D �.r � v; p/: (3.33)

Thus, the framework of Sect. 3.1 can be used if one defines

b.v; q/ D �
Z
˝

.r � v/ q dx D �.r � v; q/ v 2 V; q 2 Q: (3.34)

ut
Remark 3.25 (Function Spaces for Velocity and Pressure for Homogeneous Dirich-
let Boundary Conditions) Let ˝ be a bounded and connected domain in R

d,
d 2 f2; 3g, with Lipschitz boundary. To simplify the presentation, only problems
with Dirichlet boundary conditions on the whole boundary will be considered. Since
these are essential boundary conditions, they enter the definition of the velocity
space. Define

V D H1
0 .˝/ D ˚

v W v 2 H1.˝/ with v D 0 on 

�
;

where the value of v on the boundary is to be understood in the sense of traces, and

Q D L20 .˝/ D
�

q W q 2 L2.˝/ with
Z
˝

q.x/ dx D 0


:

Both spaces are Hilbert spaces. The inner product in V and the induced norm are
given by

.v;w/ D
Z
˝

.rv � rw/ .x/ dx; kvkV D krvkL2.˝/ : (3.35)

Poincaré’s inequality (A.12) shows that (3.35) defines in fact an inner product and a
norm in V . The inner product and the induced norm in Q are given by

.q; r/ D
Z
˝

.qr/.x/ dx; kqkQ D kqkL2.˝/ :

The dual space of V is V 0 D H�1.˝/ and the dual of the pressure space is Q0 D Q.
For v 2 V it follows that rv 2 L2.˝/ and with estimate (3.41) proved below,

one obtains that r � v 2 L2.˝/. Thus, the definition of the spaces implies that all
terms in (3.33) are well defined and that this equality holds. ut
Remark 3.26 (Notation for Spaces of Vector-valued and Tensor-valued Functions)
For simplicity of notation, spaces of vector-valued or tensor-valued are denoted with
the same symbol as the corresponding space for scalar functions. This notation has
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to be understood in the sense that each component of the vector-valued or tensor-
valued function belongs to this space. ut
Remark 3.27 (Spaces for Other Boundary Conditions) In applications, Dirichlet
boundary conditions are often given only on a part 
diri of the boundary 
 . These
boundary conditions enter still the definition of the velocity space. Other boundary
conditions will appear in the bilinear forms of the weak formulation of the equations.

If outflow boundary conditions (2.37) are prescribed on a part 
donot of the
boundary, then these boundary conditions describe also the pressure at 
donot. As
already discussed in Remark 2.27, in this situation there is no need to fix an additive
constant of the pressure and the pressure space is given by Q D L2.˝/.

Since the analysis depends on the actual spaces and the spaces depend on
the boundary conditions, different boundary conditions might require different
analytical tools and they might lead to different results. Here, only the basic case,
which is also the most simple one, of prescribing homogeneous Dirichlet boundary
conditions on the whole boundary 
 will be considered. ut
Remark 3.28 (The Divergence Operator) The divergence operator is defined by

div W V ! range.div/; v 7! r � v:

From (3.41) below, one gets for v 2 V that r �v 2 L2.˝/. Integration by parts gives

Z
˝

.r � v/ .x/ dx D 0 8 v 2 V;

such that the integral mean value is zero and hence range.div/ 	 Q D Q0 can be
concluded. In Lemma 3.43 it will be shown that even equality holds: range.div/ D
Q0. It follows from Lemma 3.12 iii), that this condition necessarily holds if the inf-
sup condition is satisfied.

Altogether, the operator B 2 L.V;Q0/ from Sect. 3.1 can be characterized in
incompressible flow problems as the negative divergence operator. ut
Remark 3.29 (The Gradient Operator) The gradient operator will be defined on Q

grad W Q ! range.grad/; q 7! rq:

Since the gradient of a function from L2.˝/ is in H�1.˝/, one obtains
range.grad/ � V 0. The range of grad will be characterized more precisely in
Lemma 3.41, accordingly to the condition from Lemma 3.12, ii).

Integration by parts gives

h�div.v/; qiQ0;Q D �
Z
˝

.r � v/q dx D
Z
˝

rq � v dx

D hgrad.q/; viV0;V 8 v 2 V; q 2 Q: (3.36)



44 3 Finite Element Spaces for Linear Saddle Point Problems

From this identity it follows that �div and grad are dual operators and grad
represents the operator B0 2 L.Q;V 0/ from Sect. 3.1. ut
Definition 3.30 (Distributional and Weak Divergence) For a vector field v 2
L1.˝/, the mapping

C1
0 .˝/ ! R;  7!

Z
˝

r � v dx

is called the distributional divergence of v.
If for a vector field v 2 Lp.˝/ with p � 1 there exists a function � 2 L1loc.˝/

such that

�
Z
˝

r � v dx D
Z
˝

 � dx 8  2 C1
0 .˝/;

then the function � is called the weak divergence of v. ut
Remark 3.31 (A Space of Functions with Weak Divergence) For incompressible
flow problems, the space of vector fields in L2.˝/ where the divergence belongs
also to L2.˝/

H .div;˝/ D ˚
v 2 L2.˝/ W r � v 2 L2.˝/

�
(3.37)

is important. The space H .div;˝/ is a Hilbert space with the inner product and the
induced norm, respectively,

.v;w/H.div;˝/ D .v;w/C .r � v;r � w/ ;

kvkH.div;˝/ D
	
kvk2L2.˝/ C kr � vk2L2.˝/


1=2
:

ut
Definition 3.32 (Divergence-free Vector Field) In view of Definition 3.30, a
vector field v 2 Lp.˝/, p � 1, is called to be weakly divergence-free if

Z
˝

r � v dx D 0 8  2 C1
0 .˝/:

ut
Remark 3.33 (Spaces of Weakly Divergence-free Functions) It became clear in
Sect. 3.1, Remark 3.8, that the kernel of the operator B is of importance. This kernel
is the space of weakly divergence-free functions in V

V0 D Vdiv D fv 2 V W .r � v; q/ D 0 8 q 2 Qg : (3.38)
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Thus, the divergence of the functions from Vdiv vanishes in the sense of L2.˝/, i.e.,
it is .r � v/.x/ D 0 almost everywhere in ˝ .

Another space of divergence-free functions is defined by

Hdiv.˝/ D fv 2 H .div;˝/ W r � v D 0 and v � n D 0 on 


in the sense of tracesg : (3.39)

The regularity requirement for functions from Hdiv.˝/ is weaker than for functions
from Vdiv.

For bounded domains with Lipschitz boundary, it can be shown that Hdiv.˝/ is
the closure of C1

0;div.˝/, see (A.7), in the norm k�kL2.˝/, e.g., see Constantin and
Foias (1988, Proposition 1.8) or Sohr (2001, Chap. II, Lemma 2.5.3). ut
Lemma 3.34 (Estimating the L2.˝/ Norm of the Divergence by the L2.˝/
Norm of the Gradient for Functions from H1.˝/) Let ˝ � R

d, d 2 f2; 3g,
and let v 2 H1.˝/, then it holds

kr � vkL2.˝/ � p
d krvkL2.˝/ 8 v 2 H1.˝/: (3.40)

This estimate is sharp.

Proof Let v D .v1; : : : ; vd/
T , then the Cauchy–Schwarz inequality for sums (A.2)

and the extension of a sum by non-negative terms gives

kr � vk2L2.˝/ D
Z
˝

 
dX

iD1

@vi

@xi
.x/

!2
dx �

Z
˝

 
dX

iD1
1

! 
dX

iD1

�
@vi

@xi

�2!
.x/ dx

D d
Z
˝

dX
iD1

�
@vi

@xi

�2
.x/ dx � d

Z
˝

dX
i;jD1

�
@vi

@xj

�2
.x/ dx

D d krvk2L2.˝/ ;

which proves (3.40).
Let v.x/ D .x; y; z/T in an arbitrary domain ˝ . Then, one finds

kr � vk2L2.˝/ D
Z
˝

.r � v/2.x/ dx D
Z
˝

32 dx D 9 j˝j

and

krvk2L2.˝/ D
Z
˝

rv W rv dx D
Z
˝

3 dx D 3 j˝j :

Hence, the factor
p

d in (3.40) cannot be improved. �
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Remark 3.35 (Improvement of (3.40) for Functions from H1
0.˝/) It will be shown

in Lemma 3.179 that for functions from V D H1
0.˝/ it holds

kr � vkL2.˝/ � krvkL2.˝/ 8 v 2 H1
0.˝/: (3.41)

Since the proof of this estimate uses some tools which are introduced in Sect. 3.7, it
is postponed to this section. ut
Remark 3.36 (Estimating the Norm of the Deformation Tensor by the Norm of the
Gradient) Using the triangle inequality and that the norm of a tensor is defined
component-by-component, one obtains readily

kD .u/kL2.˝/ D
�����

ru C .ru/T

2

�����
L2.˝/

� 1

2
krukL2.˝/ C 1

2

��.ru/T
��

L2.˝/
D krukL2.˝/ :

Thus, the norm of the symmetric part of the gradient can be estimated by the norm of
the gradient. There is also an estimate in the other direction, which is called Korn’s
inequality. ut
Lemma 3.37 (Korn’s Inequality in V) For all v 2 V it holds

2 kD .v/k2L2.˝/ D krvk2L2.˝/ C kr � vk2L2.˝/ : (3.42)

Consequently, it is

krvkL2.˝/ � p
2 kD .v/kL2.˝/ ; (3.43)

which is called Korn’s inequality.

Proof Let v 2 V . Integration by parts gives

.r � .rv/ ; v/ D � .rv;rv/ D � krvk2L2.˝/ :

Using (2.26) and again integration by parts yields

�r � �rvT
�
; v
� D .r .r � v/ ; v/ D � kr � vk2L2.˝/ :

Applying the definition of the deformation tensor leads to

� 2 .r � .D .v// ; v/ D � .r � .rv/ ; v/ �
	
r �

	
rvT



; v



D krvk2L2.˝/ C kr � vk2L2.˝/ :
(3.44)
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On the other hand, one finds with integration by parts and the symmetry of the
deformation tensor

�2 .r � .D .v// ; v/ D 2 .D .v/ ;rv/ D .D .v/ ;rv/C �
.D .v//T ; .rv/T�

D .D .v/ ;rv/C �
D .v/ ; .rv/T� D 2 kD .v/k2L2.˝/ :

Inserting this identity in (3.44) proves (3.42). �

Remark 3.38 (On Korn’s Inequality) Korn’s equality (3.43) provides an estimate of
the L2.˝/ norm of the deformation tensor of v, which is the symmetric part of rv,
with the L2.˝/ norm of the gradient of v if v 2 V . There are further estimates of
this type, e.g., in other Lebesgue spaces and under different conditions on v, see
Friedrichs (1947), Horgan (1995) for details. It should be also noted that estimates
of Korn’s type do not hold for all spaces, e.g., they do not hold for certain non-
conforming finite element spaces. ut
Lemma 3.39 (Boundedness, Continuity, and Norm of the Bilinear Form b.�; �/)
The bilinear form b.�; �/ from (3.34) is bounded

jb.v; q/j � kvkV kqkQ

and consequently it is continuous. In addition, it holds kbk D 1.

Proof The boundedness follows with the Cauchy–Schwarz inequality (A.10)
and (3.41)

jb.v; q/j D
ˇ̌
ˇ̌�
Z
˝

.r � v/ q dx

ˇ̌
ˇ̌ � kr � vkL2.˝/ kqkL2.˝/ � krvkL2.˝/ kqkL2.˝/ :

(3.45)
Continuity follows from boundedness.

The statement concerning the norm of b.�; �/ follows from the definition (3.3) of
this norm and (3.45). �

Lemma 3.40 (Vdiv is a Closed Subspace of V) The subspace of weakly divergence-
free functions Vdiv is closed in V.

Proof The proof is essentially the same as in the general case, see Lemma 3.9. It is
given here for completeness of presentation.

Since b.�; �/ is a bilinear form, it follows that

.˛r � v1 C ˇr � v2; q/ D ˛ .r � v1; q/C ˇ .r � v2; q/ D 0

8 ˛; ˇ 2 R; v1; v2 2 Vdiv; q 2 Q:

Hence, any linear combination of weakly divergence-free functions is weakly
divergence-free and therefore Vdiv is a subspace of V .
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Let v 2 V be arbitrary such that a sequence vn ! v, vn 2 Vdiv, n D 1; 2; : : :,
exists which converges to v in V , i.e., kv � vnkV ! 0 as n ! 1. To prove that Vdiv

is closed, one has to show that v 2 Vdiv. Let q 2 Q be arbitrary but fixed, then it
follows from the continuity of b.�; �/ that

b.v; q/ D b
	

lim
n!1 vn; q



D lim

n!1 b .vn; q/ D lim
n!1 0 D 0:

Since q 2 Q was arbitrary, one gets b.v; q/ D 0 for all q 2 Q, i.e., v 2 Vdiv. �

Lemma 3.41 (Isomorphism of the Gradient Operator) If f 2 V 0 satisfies

hf ; viV0 ;V D 0 8 v 2 Vdiv;

then there exists a unique q 2 Q such that

f D grad.q/:

That means, the range of the gradient operator consists of the functionals in V 0 that
vanish on Vdiv

QV 0 D ˚
f 2 V 0 W hf ; viV0;V D 0; 8 v 2 Vdiv

�
;

compare (3.11), and this operator is an isomorphism from Q onto QV 0.

Proof It is known that the range of grad is a subspace of V 0, see Remark 3.29. It
can be even shown, see Girault and Raviart (1986, p. 20) on the basis of results
from Carroll et al. (1966) or Duvaut and Lions (1972), that range .grad/ is a
closed subspace of V 0. The operators �div and grad are dual operators. From the
Closed Range Theorem of Banach, Theorem A.71 iv), it follows that range .grad/
is the subspace of functionals from V 0 which vanish on the kernel of div, i.e.,
range .grad/ D QV 0.

To prove uniqueness, consider q1; q2 2 Q with

f D grad.q1/ D grad.q2/:

Then, one has

0 D grad.q1/� grad.q2/ D grad.q1 � q2/:

Hence q1 � q2 2 ker.grad/, i.e., q1 � q2 2 Q is almost everywhere a constant
function. The only function that is constant almost everywhere in Q is q D 0. It
follows that q1 D q2 in the sense of L2.˝/. �

Remark 3.42 (Orthogonal Decomposition of V) The space V can be decomposed
into orthogonal subspaces

V D Vdiv ˚ V?
div;

where the orthogonality is based on the inner product (3.35) of V . ut
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Lemma 3.43 (Isomorphism of the Divergence Operator) The operator div is an
isomorphism from V?

div onto Q.

Proof The proof is similar to the second part of the proof of Lemma 3.12.
The operator �div is the dual of grad. From Lemma 3.41 it follows that �div,

and with that the operator div, is an isomorphism from the dual space of QV 0 onto Q0.
It will be shown that the dual space of QV 0 is V?

div, which is equivalent to show that
QV 0 D �

V?
div

�0
. To this end, an isomorphism

�
V?

div

�0 ! QV 0 will be constructed.

Let Qg 2 �V?
div

�0
, then a functional g 2 V 0 can be defined by setting

hg; viV0;V D ˝Qg; v?˛
V0;V 8 v 2 V;

where v? is the orthogonal projection of v onto V?
div. In particular, it holds for all

v 2 Vdiv that

hg; viV0;V D hQg; 0iV0;V D 0:

Hence, g 2 QV 0. In this way, a linear mapping

�
V?

div

�0 ! QV 0; Qg 7! g

is defined.
First, it will be shown that this mapping is injective. Let Qg1; Qg2 2 �V?

div

�0
with

hg; viV0;V D ˝Qg1; v?˛
V0;V

D ˝Qg2; v?˛
V0;V

8 v 2 V;

then it is

˝Qg1 � Qg2; v?˛
V0;V

D 0 8 v 2 V:

This equality holds in particular for all v 2 V?
div, from which it follows that the

functionals Qg1; Qg2 are identical.
Next, the surjectivity of the mapping will be proved. Let g 2 QV 0, i.e., hg; viV0;V D

0 for all v 2 Vdiv. Consider an arbitrary v 2 V . This function can be decomposed
into v D vdiv C v?

div with vdiv 2 Vdiv, v?
div 2 V?

div. Since v is arbitrary, also v?
div is

arbitrary. It follows that

hg; viV0 ;V D hg; vdiviV0;V C ˝
g; v?

div

˛
V0;V

D ˝
g; v?

div

˛
V0;V

8 v?
div 2 V?

div:

This relation defines a functional on V?
div which is mapped onto g. Consequently, the

mapping is surjective. �
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Corollary 3.44 (Each Pressure is the Divergence of a Velocity Field) For each
q 2 Q there is a unique v 2 V?

div � V such that

r � v D q and kqkQ � kvkV ; kvkV � C kqkQ ; (3.46)

with C independent of v and q. In the proof of Theorem 3.46 below, it will be shown
that C D ˇ�1

is .

Proof The existence of a unique v 2 V?
div with r � v D q follows from

the isomorphism of the divergence operator, see Lemma 3.43. Then, one gets
with (3.41)

kqkQ D kr � vkL2.˝/ � krvkL2.˝/ D kvkV :

The inverse map of the divergence operator is an isomorphism, too. In particular, it is
bounded, see Theorem A.70. Hence there is a C > 0 such that kvkV D ��div�1q

��
V

�
C kqkQ for all q 2 Q and all v 2 V?

div. �

Remark 3.45 (Forms of the Inf-Sup Condition (3.14) Found in the Literature) Since
with each function which can be inserted in the inf-sup condition also its negative
can be inserted, one has

inf
q2Q;q¤0

sup
v2V;v¤0

b.v; q/

kvkV kqkQ

D inf
q2Q;q¤0

sup
v2V;v¤0

� .r � v; q/
krvkL2.˝/ kqkL2.˝/

D inf
q2Q;q¤0

sup
v2V;v¤0

.r � v; q/
krvkL2.˝/ kqkL2.˝/

� ˇis > 0:

The last line is a form that can be found often in the literature.
Another form is that for each q 2 Q, it holds that

sup
v2V;v¤0

.r � v; q/
krvkL2.˝/

� ˇis kqkL2.˝/ : (3.47)

ut
Theorem 3.46 (Inf-Sup Condition for V and Q) The spaces V and Q satisfy the
inf-sup condition (3.14), i.e., there is a ˇis > 0 such that

inf
q2Q;q¤0

sup
v2V;v¤0

.r � v; q/
kvkV kqkQ

� ˇis: (3.48)
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Proof Let q 2 Q be arbitrary. By Corollary 3.44 there exists a unique v 2 V?
div such

that

r � v D q; kvkV � C kqkQ :

It follows that

.r � v; q/
kvkV

D .q; q/

kvkV

D kqk2Q
kvkV

� 1

C
kqkQ :

Hence

sup
v2V;v¤0

.r � v; q/
kvkV

� 1

C
kqkQ ;

and because q 2 Q is arbitrary, one obtains

inf
q2Q;q¤0

sup
v2V;v¤0

.r � v; q/
kvkV kqkQ

� 1

C
DW ˇis:

�
Corollary 3.47 (Estimating the Gradient by the Divergence for Functions from
V?

div) For all v 2 V?
div it holds

kvkV � 1

ˇis
kr � vkL2.˝/ ; (3.49)

cf. Lemma 3.12 and (3.16).

Proof From (3.46) and the specification of C, it follows that

kvkV � C kr � vkL2.˝/ D 1

ˇis
kr � vkL2.˝/ :

�
Lemma 3.48 (Upper Bound for the Inf-Sup Constant) It is ˇis � 1.

Proof Using Corollary 3.44, one can take q D r � v in the inf-sup condition (3.48).
Applying then estimate (3.41) yields

ˇis � sup
v2V;v¤0

.r � v;r � v/
krvkL2.˝/ kr � vkL2.˝/

D sup
v2V;v¤0

kr � vk2L2.˝/
krvkL2.˝/ kr � vkL2.˝/

� sup
v2V;v¤0

krvkL2.˝/ kr � vkL2.˝/

krvkL2.˝/ kr � vkL2.˝/

D 1:

�
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Remark 3.49 (Dependency of ˇis on the Domain)

• Let ˝ � R
d, d 2 f2; 3g, be a bounded domain that is star-shaped with respect to

some ball with radius r > 0. Then it holds

1

ˇis
� C

�
diam.˝/

r

�d �
1C diam.˝/

r

�
; (3.50)

where C is a constant depending only on the dimension. Inequality (3.50) is a
special case of the estimate proved in Galdi (2011, Theorem III.3.1).

• The dependency of ˇis on ˝ is analyzed for two types of two-dimensional
domains in Chizhonkov and Olshanskii (2000). In particular, for a rectangular
domain with side lengths l1 � l2, it is proved that ˇis D O .l1=l2/. Consequently,
the inf-sup constant is very small in long and thin channel-type domains.

ut

3.3 General Considerations on Appropriate Function Spaces
for Finite Element Discretizations

Remark 3.50 (On Finite Element Methods) A brief introduction to finite element
methods is provided in Appendix B. The main idea of using finite element methods
consists in replacing the infinite-dimensional spaces V and Q by a finite-dimensional
velocity space Vh and a finite-dimensional pressure space Qh and to apply the
Galerkin method, see Remark B.10. If Vh � V and Qh � Q, the finite element
method is called conforming, otherwise it is called non-conforming.

For incompressible flow problems, the pair of velocity-pressure finite element
spaces is denoted by Vh=Qh. It is usual that it will not be emphasized in the notation
that Vh consists of vector-valued functions and that Qh is possibly intersected with
L20.˝/, depending on the boundary condition. ut
Remark 3.51 (Application of the Abstract Theory, the Discrete Inf-Sup Condition)
Clearly, the finite-dimensional spaces are Hilbert spaces and the theory developed
in Sect. 3.1 can be applied for the investigation of the existence and the uniqueness
of a solution of the finite element problems arising in the discretization of
incompressible flow models. In particular, the spaces Vh and Qh have to satisfy
an inf-sup condition of the form

inf
qh2Qhnf0g

sup
vh2Vhnf0g

bh
�
vh; qh

�
kvhkVh kqhkQh

� ˇh
is > 0 (3.51)

or equivalently that there is a ˇh
is > 0 such that

sup
vh2Vhnf0g

bh
�
vh; qh

�
kvhkVh

� ˇh
is

��qh
��

Qh 8 qh 2 Qh: (3.52)
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This condition is called discrete inf-sup condition. In (3.51) and (3.52), the bilinear
form bh W Vh � Qh ! R is defined by

bh
�
vh; qh

� D �
X

K2T h

�r � vh; qh
�

K
; (3.53)

where T h is a triangulation of ˝ and K 2 T h are the mesh cells. For conforming
finite element spaces, the bilinear form bh.�; �/ can be written in the same form as
the bilinear form b.�; �/ with an integral on ˝ , see (3.34). In this case, bh.�; �/ is just
the restriction of b.�; �/ from V � Q to Vh � Qh. The norms in the denominator are
defined by

��vh
��

Vh D
 X

K2T h

�rvh;rvh
�

K

!1=2
;

��qh
��

Qh D ��qh
��

L2.˝/
: (3.54)

For a conforming velocity finite element space, it is
��vh

��
Vh D ��rvh

��
L2.˝/

.
In the same way as in the proof of Lemma 3.48, one finds for conforming finite

element spaces that ˇh
is � 1. ut

Remark 3.52 (Non-inheritance of the Inf-Sup Condition from V and Q) Consider a
conforming finite element method, then

sup
vh2Vhnf0g

b
�
vh; q

�
krvhkL2.˝/ kqkL2.˝/

� sup
v2Vnf0g

b .v; q/

krvkL2.˝/ kqkL2.˝/

since the supremum in Vh is searched in a smaller set. In general, the strong
inequality will hold. Hence

inf
q2Qnf0g

sup
vh2Vhnf0g

b
�
vh; q

�
krvhkL2.˝/ kqkL2.˝/

� inf
q2Qnf0g

sup
v2Vnf0g

b .v; q/

krvkL2.˝/ kqkL2.˝/

(3.55)

and the continuous inf-sup parameter ˇis, which is a lower bound of the right-hand
side of (3.55), cannot be expected to be a lower bound of the left-hand side, too. In
fact, the left-hand side is zero since Vh and Q do not satisfy an inf-sup condition, see
Remark 3.7. In this remark, it was discussed that the dimension of the pressure space
should not exceed the dimension of the velocity space in order to get a well-posed
problem.

Turning to a finite element method, the infinite-dimensional space Q has to
be replaced by a finite-dimensional space Qh. This replacement might lead to an
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increase of the left-hand side of (3.55) since now the infimum is taken in a smaller
set. Eventually, Qh becomes sufficiently small such that

inf
qh2Qhnf0g

sup
vh2Vhnf0g

b
�
vh; qh

�
krvhkL2.˝/ kqhkL2.˝/

becomes positive. Then, Vh and Qh satisfy a discrete inf-sup condition.
These considerations give a rough idea about appropriate choices for the finite

element spaces with respect to the discrete inf-sup condition. The velocity space
Vh should be sufficiently large such that the supremum of vh 2 Vh becomes large
and the pressure space Qh should be sufficiently small such that the infimum of
qh 2 Qh becomes large, too. A condition in this direction can be found already
in Remark 3.7, where nQ � nV was required. However, there is a conflicting
requirement for the pressure finite element space. For obtaining accurate results, this
space has to be large enough such that it is possible to approximate the continuous
pressure sufficiently well. Also an accurate conservation of mass requires a large
discrete pressure space compared with the discrete velocity space, see Remark 3.56
for details. ut
Lemma 3.53 (ˇh

is � ˇis for Conforming Finite Element Spaces) Consider a
family of finite element spaces

˚
Vh � Qh

�
with Vh � V, Qh � Q, and let this family

satisfy the discrete inf-sup condition (3.51) independently of h. Assume that for each
q 2 Q \ H1.˝/ there is a qh 2 Qh such that

��q � qh
��

L2.˝/
� Ch kqkH1.˝/ ; (3.56)

with C independent of q and h. Then, it holds ˇh
is � ˇis, where both values are the

largest possible values in (3.51) and (3.48), respectively.

Proof The proof follows Chizhonkov and Olshanskii (2000). Since q 2 Q \
H1.˝/ � Q, it is

inf
q2.Q\H1.˝//nf0g

sup
v2Vnf0g

.r � v; q/
kvkV kqkQ

� inf
q2Qnf0g

sup
v2Vnf0g

.r � v; q/
kvkV kqkQ

:

On the other hand, because of the density of Q \ H1.˝/ in Q, which follows from
Theorem A.38, even the equal sign holds, such that

ˇis D inf
q2.Q\H1.˝//nf0g

sup
v2Vnf0g

.r � v; q/
kvkV kqkQ

: (3.57)

Consider an arbitrary q 2 Q \ H1.˝/ and " 2 .0; 1/. For sufficiently small h, one
has

Ch kqkH1.˝/ � " kqkL2.˝/ ;
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such that (3.56) gives

��q � qh
��

L2.˝/ � " kqkL2.˝/ : (3.58)

By the triangle inequality, one obtains from this relation

kqkL2.˝/ � ��q � qh
��

L2.˝/
C ��qh

��
L2.˝/

� " kqkL2.˝/ C ��qh
��

L2.˝/
;

which is equivalent to

.1 � "/ kqkL2.˝/ � ��qh
��

L2.˝/
: (3.59)

For each qh 2 Qh, one gets with the discrete inf-sup condition (3.51), the property
that the supremum of a sum is lower or equal than the sum of the suprema, the
Cauchy–Schwarz inequality (A.10), estimates (3.41), (3.58), (3.59) with q 2 Q \
H1.˝/, and the inclusion Vh � V

ˇh
is � sup

vh2Vhnf0g
b
�
vh; qh

�
krvhkL2.˝/ kqhkL2.˝/

� sup
vh2Vhnf0g

b
�
vh; q

�
krvhkL2.˝/ kqhkL2.˝/

C sup
vh2Vhnf0g

b
�
vh; qh � q

�
krvhkL2.˝/ kqhkL2.˝/

� sup
vh2Vhnf0g

b
�
vh; q

�
krvhkL2.˝/ kqhkL2.˝/

C sup
vh2Vhnf0g

��rvh
��

L2.˝/

��q � qh
��

L2.˝/

krvhkL2.˝/ kqhkL2.˝/

� 1

1 � "
sup

vh2Vhnf0g
b
�
vh; q

�
krvhkL2.˝/ kqkL2.˝/

C "

1 � "

� 1

1 � "
sup

v2Vnf0g
b .v; q/

krvkL2.˝/ kqkL2.˝/

C "

1 � " :

Taking the infimum with respect to q on both sides of this inequality gives
with (3.57)

ˇh
is � 1

1 � " .ˇis C "/ ” ˇh
is � ˇis � "

�
1C ˇh

is

�
:

Since the right-hand side of the last inequality is arbitrarily close to zero for
sufficiently small ", the relation ˇh

is > ˇis cannot hold, which proves the statement
of the lemma. �

Remark 3.54 (The Babuška Condition) The discrete inf-sup condition (3.51) is also
called discrete Babuška–Brezzi or discrete Ladyzhenskaya–Babuška–Brezzi (LBB)
condition.
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To be more precise, Babuška (1971) considered the discrete inf-sup condition

inf
.uh;ph/2Vh

�Qh

.uh;ph/¤.0;0/

sup
.vh;qh/2Vh

�Qh

.vh;qh/¤.0;0/

a
�
uh; vh

�C b
�
vh; ph

�C b
�
uh; qh

�
�kuhkVh C kphkQh

� �kvhkVh C kqhkQh

� � Q̌h
is > 0: (3.60)

It can be shown that the discrete inf-sup condition (3.51), together with appropriate
assumptions on the bilinear form a.�; �/, and the discrete Babuška condition imply
each other, see Xu and Zikatanov (2003), Demkowicz (2006), where the inf-sup
constants are in general different. In Braess and Blömer (1990), it is proved that
an inf-sup condition of form (3.60) for a generalized saddle point problem follows
from the satisfaction of an inf-sup condition of type (3.51), even in the continuous
setting.

From the fulfillment of the discrete Babuška inf-sup condition (3.60), the unique
solvability of the coupled discrete system can be concluded. This approach can be
used if the bilinear form a.�; �/ becomes complicated, e.g., if so-called stabilized
methods are used, see Corollary 5.40. ut
Remark 3.55 (The Space of Discretely Divergence-free Functions) Exactly as in
Sect. 3.1, a linear operator Bh can be associated with the bilinear form bh.�; �/

Bh W Vh ! �
Qh
�0
;

˝
Bhvh; qh

˛
.Qh/0;Qh D bh

�
vh; qh

�
: (3.61)

Thus, Bh is a discrete (negative) divergence operator divh. Note that by the
representation theorem of Riesz, Theorem B.3, the space

�
Qh
�0

can be identified
with Qh. Usually, it is r � vh 62 Qh. Thus, definition (3.61) strictly speaking uses
the L2.˝/ projection of r � vh into Qh, which reads for a conforming finite element
method

�
Bhvh; qh

� D � �Ph
L2
�r � vh

�
; qh
� D � �r � vh; qh

� 8 qh 2 Qh:

From Sect. 3.1 it is known that the kernel of Bh plays an important role in the theory.
This kernel is called the space of discretely divergence-free functions

Vh
div D ˚

vh 2 Vh W bh
�
vh; qh

� D 0 8 qh 2 Qh
�
: (3.62)

The dual operator of the discrete divergence is a discrete gradient operator

�
Bh
�T W Qh ! �

Vh
�0 D�

Bh
�T

qh; vh
E
.Vh/0;Vh

D bh
�
vh; qh

�
; (3.63)

which will be denoted by gradh.
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Since the discrete divergence Bh is a linear operator between finite-dimensional
spaces, it can be represented by a matrix, once bases in Vh and Qh have been chosen.
This matrix has the dimension dim Qh � dim Vh. The notation in (3.63) for the
discrete gradient is used because it can be represented with the transposed matrix.
By the Riesz representation theorem, Theorem B.3,

�
Vh
�0

can be identified with Vh.

In particular it holds that dim
�
Vh
� D dim

	�
Vh
�0


. ut
Remark 3.56 (On Discretely Divergence-free Functions, Violation of Mass Conser-
vation) Let Qh ¨ Q, then the functions from Vh

div need to satisfy less conditions
than the functions from Vdiv. Consequently, there is no injection, i.e., in general
Vh

div 6� Vdiv. In particular, one finds that discretely divergence-free functions are
in general neither weakly nor pointwise divergence-free. Thus, the conservation of
mass, which was modeled by the divergence-free constraint, Sect. 2.1, is not satisfied
exactly, but only in some approximate or mean sense.

When applying finite element methods for the simulation of incompressible
flows, one has to be aware that the conservation of mass might be violated.
The extent of the violation depends on the concrete choice of the finite element
spaces. Note that there are some pairs of finite element spaces which are mass
conservative, like the Scott–Vogelius finite element, see Sect. 3.6.3. The topic of
mass conservation will be discussed in detail in Sect. 4.6.

Consider the case Vh � V . Note that a finite element function vh 2 Vh
div is weakly

divergence-free if r � Vh 	 Qh. In this case, it is r � vh 2 Qh such that from the
definition (3.62) of Vh

div it follows that

0 D b
�
vh;r � vh

� D ��r � vh
��2

L2.˝/
:

Thus, the divergence vanishes in the sense of L2.˝/. For the condition r � Vh 	 Qh

to be hold, Qh has to be sufficiently large or Vh should be sufficiently small. These
requirements are just contrary to the requirements for the fulfillment of the discrete
inf-sup condition, see the discussion at the end of Remark 3.52. Thus, one might
suspect that the enforcement of the discrete inf-sup condition (3.51) probably has
to be paid with a relaxation of the continuity constraint, as it is in fact the case for
most inf-sup stable pairs of finite element spaces. ut
Remark 3.57 (The Discrete Inf-Sup Parameter ˇh

is) A standard approach of dis-
cretizing partial differential equations consists in starting with a coarse triangulation
of ˝ , solving the considered problem on this triangulation, refining the grid,
and repeating this process until, e.g., a finest grid is reached on which the
solution is sufficiently accurate, or on which memory restrictions prevent a further
refinement. On all grid levels, finite element spaces which satisfy the discrete inf-
sup condition (3.51) should be used, where the corresponding inf-sup parameters
ˇh

is might be different.
Finite element error analysis will reveal that the inf-sup parameters enter the

error estimates, e.g., see Theorem 4.21 for the Stokes equations. The error bounds
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depend on inverse of powers of ˇh
is. Thus, a behavior of the form ˇh

is ! 0 for
successive refinements leads to a deterioration of the order of convergence in the
error estimates, e.g., compare Remark 4.29. For this reason, it is important that the
used finite element spaces satisfy (3.51) with a parameter ˇh

is > 0 that is independent
of the refinement level of the grid or, equivalently, independent of the mesh size
parameter h. ut
Lemma 3.58 (Each Discrete Pressure is the Divergence of a Discrete Velocity
Field) Let Vh � V with Vh D Vh

div ˚ �
Vh

div

�?
and let the discrete inf-sup

condition (3.51) be satisfied. Then there is for each qh 2 Qh a unique vh 2 �
Vh

div

�?
such that

r � vh D qh;
��vh

��
V

� 1

ˇh
is

��qh
��

Q
: (3.64)

Proof By Lemma 3.12 it is known that the satisfaction of the discrete inf-
sup condition, point i) in Lemma 3.12, is equivalent with the existence of an

isomorphism between
�
Vh

div

�?
and Qh and with the inequality from (3.64), point

iii) of Lemma 3.12. �
Remark 3.59 (Importance of the Best Approximation Error) In the Galerkin
method, the error of the finite element solution uh 2 Vh to the solution of the
continuous problem u 2 V , in the norm of V , can be estimated with the best
approximation error, see the Lemma of Cea, Lemma B.12. For incompressible
flow problems, it is often convenient to perform the finite element error analysis in
the space Vh

div, since in Vh
div the problem is only an equation for the velocity and

not a coupled system. Sometimes, it turns out that the best approximation error
in Vh

div can be estimated directly, e.g., by constructing a sequence of elements in
Vh

div which have the optimal order of convergence. One example where this can be
done is the non-conforming Crouzeix–Raviart element Pnc

1 =P0, see Lemma 4.53.
However, estimates of the best approximation error are generally known only for
standard finite element spaces, which can be used for Vh, e.g., see the interpolation
error estimates in Appendix C. With the help of the discrete inf-sup condition, it is
possible to estimate the best approximation error in Vh

div with the best approximation
error in Vh. ut
Lemma 3.60 (Best Approximation Estimate for Vh

div) Let Vh � V, v 2 Vdiv, and
let the discrete inf-sup condition (3.51) hold. Then

inf
vh2Vh

div

��r �
v � vh

���
L2.˝/

�
�
1C 1

ˇh
is

�
inf

wh2Vh

��r �v � wh
���

L2.˝/
: (3.65)

Proof Let wh 2 Vh be arbitrary. Since the discrete inf-sup condition holds, Vh
div is

not empty, see Remark 3.16. It follows from Hilbert space theory that there is a
unique decomposition of wh D vh � zh into a component vh 2 Vh

div and a component
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�zh 2 �Vh
div

�?
. Hence, one gets, with b

�
vh; qh

� D 0,

b
�
zh; qh

� D b
�
vh � wh; qh

� D b
�
v � wh; qh

� 8 qh 2 Qh: (3.66)

Note that b
�
v; qh

� D 0 since v is weakly divergence-free. From Lemma 3.58, it
follows that there is a qh D r � zh 2 Qh. Inserting this function in (3.66) gives,
together with the Cauchy–Schwarz inequality (A.10) and (3.41),

��r � zh
��2

L2.˝/
� ��r � �v � wh

���
L2.˝/

��r � zh
��

L2.˝/

� ��r �
v � wh

���
L2.˝/

��r � zh
��

L2.˝/ :

With (3.64), one obtains

��rzh
��

L2.˝/
� 1

ˇh
is

��qh
��

L2.˝/
D 1

ˇh
is

��r � zh
��

L2.˝/
� 1

ˇh
is

��r �
v � wh

���
L2.˝/

:

Applying the triangle inequality and inserting this estimate yields

��r �
v � vh

���
L2.˝/

� ��r �v � wh
���

L2.˝/
C ��rzh

��
L2.˝/

�
�
1C 1

ˇh
is

���r �
v � wh

���
L2.˝/ :

Since wh was chosen to be arbitrary, one can find for each wh 2 Vh a function
vh 2 Vh

div such that this estimate holds, which finishes the proof of the lemma. �

Remark 3.61 (On Estimate (3.65)) Estimate (3.65) is a worst case estimate. Taking
vh D 0 2 Vh

div shows that the left-hand side is always bounded, even if ˇh
is D 0.

In contrast, the right-hand side becomes unbounded for ˇh
is D 0 or if ˇh

is converges
sufficiently fast to 0 as h ! 0. ut
Remark 3.62 (Alternative Estimate for the Best Approximation Error for Vh

div in
the Case v 2 Vdiv) In Girault and Scott (2003), an interpolation operator was
constructed that offers an alternative estimate for the best approximation error for
Vh

div. This interpolation operator is a quasi-local operator that preserves the discrete
divergence.

Assume that there is an interpolation operator Ih 2 L
�
V;Vh

�
with

Z
K

r � �v � Ihv
�

dx D 0 8 v 2 V; K 2 T h; (3.67)

and, compare (C.7),

��Dk.v � Ihv/
��

Lp.K/
� ChmC1�k

K

��DmC1v
��

Lp.!.K//
; (3.68)
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for k 2 f0; 1g, p 2 Œ1;1�, 0 � m � l, where l is the polynomial degree of Vh,
and C is independent of h and !.K/. Here, !.K/ is a neighborhood of K containing
all mesh cells that share a face, an edge, or a vertex with K. Then, an operator
Ih
div 2 L

�
V;Vh

�
was constructed in Girault and Scott (2003), adding an appropriate

correction to Ih such that

�r � �v � Ih
divv

�
; qh
� D 0 8 qh 2 Qh; (3.69)

and

��Dk.v � Ih
divv/

��
Lp.K/ � ChmC1�k

K

��DmC1v
��

Lp.MK /
; (3.70)

where MK is a suitable macroelements containing K and C is independent of h, K,
and the number of macroelements. The parameters in (3.70) can be chosen in the
same way as in (3.68).

The macroelements are allowed to overlap. It is assumed that there is a maximal
number, independent of h, of mesh cells contained in one macroelement and that
the number of macroelements where a mesh cell belongs to should be bounded, also
independently of h.

If v 2 Vdiv, it follows that Ih
divv 2 Vh

div and with (3.70) for p D 2, k D 1, one
obtains

inf
vh2Vh

div

��r �
v � vh

���
L2.˝/

� ��r �
v � Ih

divv
���

L2.˝/
� Chm

K

��DmC1v
��
˝
: (3.71)

The constant C in (3.70) and (3.71) depends on the inverse of local discrete inf-
sup constants. Operators Ih that satisfy the assumptions (3.67) and (3.68) are known,
e.g, for space Pl and Ql with l � d. However, the available theory does not apply
for the Taylor-Hood spaces P2=P1 and Q2=Q1 in three dimensions. For concrete
constructions of the operator Ih

div, it is referred to Girault and Scott (2003). ut
Lemma 3.63 (Existence of an Operator Ih

div Implies Satisfaction of the Discrete
Inf-Sup Condition) Given an operator Ih

div with (3.69) and (3.70), then the discrete
inf-sup condition is satisfied with a constant independent of h, but depending on the
inverse of the constant from estimate (3.70).

Proof Using (3.69), the triangle inequality, (3.70) for k D 1 and m D 0, and the
inf-sup condition (3.48) for the continuous spaces yields

inf
qh2Qhnf0g

sup
vh2Vhnf0g

�r � vh; qh
�

kvhkVh kqhkQh

� inf
qh2Qhnf0g

�r � Ih
divv; q

h
�

��Ih
divv

��
Vh kqhkQh

D inf
qh2Qhnf0g

�r � v; qh
�

��Ih
divv

��
Vh kqhkQh
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� inf
qh2Qhnf0g

�r � v; qh
�

�kvkV C ��v � Ih
divv

��
Vh

� kqhkQh

� inf
qh2Qhnf0g

�r � v; qh
�

.1C C/ kvkV kqhkQh

� inf
q2Qnf0g

.r � v; q/
.1C C/ kvkV kqkQ

� 1

.1C C/ˇis
;

where C is the constant from (3.70). �

Remark 3.64 (Jumps Across Faces and Averages on Faces of Functions) Consider
a triangulation T h and let K1;K2 2 T h be two mesh cells with a common .d � 1/

face E D K1 \ K2. Without loss of generality, the normal nE at E should be the
outward normal with respect to K1. Then, the jump of a function v across the face E
in the point x 2 E is defined by

Œjvj�E D lim
y!x;y2K1

v. y/� lim
y!x;y2K2

v. y/; x 2 E; (3.72)

if both limits are well defined. Changing the direction of nE changes the sign of the
jump.

The average is defined by

ffvggE D limy!x;y2K1 v. y/C limy!x;y2K2 v. y/
2

; x 2 E:

Straightforward calculations, using these definitions, show

Œjv C wj�E D Œjvj�E C Œjwj�E ;
ffv C wggE D ffvggE C ffwggE ;

Œjvwj�E D Œjvj�E ffwggE C ffvggE Œjwj�E : (3.73)

If w is continuous almost everywhere on E, then it follows from (3.73)

Œjvwj�E D Œjvj�E w:

ut
Remark 3.65 (Sets of .d � 1/ Faces) The set of all .d � 1/ faces will be denoted by

Eh
and the set of all faces which are not part of the boundary of ˝ will be denoted

by Eh. ut
Lemma 3.66 (Sufficient and Necessary Condition for a Finite Element Func-
tion to be in H .div;˝/, i.e., to Possess a Divergence in L2.˝/) Let T h be a
regular triangulation of ˝ . A finite element function vh 2 L2.˝/, i.e., a piecewise
polynomial function belongs to H .div;˝/, see (3.37), if and only if vh � nE is
continuous for all faces E of the triangulation.
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Proof It has to be shown that r � vh 2 L2.˝/ if and only if the normal component
of vh is continuous for all faces. By definition, r � vh 2 L2.˝/ if and only if there
exists a function w 2 L2.˝/ such that

�
Z
˝

vh.x/ � r'.x/ dx D
Z
˝

w.x/'.x/ dx 8 ' 2 C1
0 .˝/: (3.74)

Integration by parts yields

�
Z
˝

vh.x/ � r'.x/ dx

D �
X

K2T h

Z
K
vh.x/ � r'.x/ dx

D
X

K2T h

�Z
K

r � vh.x/'.x/ dx �
Z
@K
'.s/vh.s/ � n@K ds

�

D
X

K2T h

Z
K

r � vh.x/'.x/ dx �
X

K2T h

X
E2@K

Z
E
'.s/vh.s/ � nE ds

D
Z
˝

r � vh.x/'.x/ dx �
X
E2Eh

Z
E
'.s/

�ˇ̌
vh � nE

ˇ̌�
E .s/ ds

�
X

E2EhnEh

Z
E
'.s/vh.s/ � nE ds 8 ' 2 C1

0 .˝/: (3.75)

The normal nE on the interior faces can be chosen arbitrarily. Using the opposite
normal �nE, also the sign of the jump has to be changed, i.e., one obtains

� �ˇ̌vh � .�nE/
ˇ̌�

E
.s/ D �ˇ̌

vh � nE

ˇ̌�
E
.s/;

where (3.73) was applied. The last term in (3.75) vanishes since the test function
vanishes at the boundary of ˝ . Thus, (3.74) is satisfied if and only if all integrals
on the interior faces vanish for all test functions. Therefore, the jumps

�ˇ̌
vh � nE

ˇ̌�
E

have to vanish on all interior faces, which is equivalent with the requirement that
the normal component of vh is continuous across all faces of the mesh cells. �

3.4 Examples of Pairs of Finite Element Spaces Violating the
Discrete Inf-Sup Condition

Remark 3.67 (On Low Order Pairs of Finite Element Spaces) The simplest and
most common finite element spaces are spaces of continuous functions which are
piecewise polynomials of first order, i.e., the P1 space on triangular or tetrahedral
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grids and the Q1 space on quadrilateral or hexahedral grids. Since for the pressure
finite element space to be conforming it suffices that Qh � L20.˝/, one can use
for Qh also discontinuous finite element spaces, in the simplest case piecewise
constants, i.e., P0 or Q0. However, the investigation of the discrete inf-sup condi-
tion (3.51) will show that this condition is not satisfied for pairs of those simple
finite element spaces. These results are meanwhile classical and they can be found,
e.g., in Girault and Raviart (1986, Chap. II, § 3.3) or Ern and Guermond (2004,
Section 4.3.2). They have attracted a lot of research on appropriate finite element
spaces for incompressible flow problems. ut
Remark 3.68 (A Condition for the Violation of the Discrete Inf-Sup Condition) The
violation of the discrete inf-sup condition (3.51) is proved, e.g., if one finds a non-
trivial qh 2 Qh such that

bh
�
vh; qh

� D 0 8 vh 2 Vh: (3.76)

In this case, it holds

sup
vh2Vh;vh¤0

bh
�
vh; qh

�
kvhkVh

D 0;

from what follows, by dividing by
��qh

��
Q
> 0 and taking on both sides the infimum

of the finite element pressure functions, that the discrete inf-sup condition (3.51)
cannot be satisfied. Such non-trivial qh 2 Qh are called spurious pressure modes.

ut
Example 3.69 (The P1=P1 Pair of Finite Element Spaces) Probably every finite
element code which uses simplicial grids can apply the P1 finite element. If it would
be possible to choose P1=P1 for velocity and pressure finite elements, the extension
of such codes to the simulation of incompressible flows would be straightforward.
However, this example shows that P1=P1 does not satisfy the discrete inf-sup
condition (3.51).

Let ˝ D .0; 1/2 and consider a triangulation of ˝ with equally sized triangles
with measure jKj > 0. Both, the finite element velocity and the finite element
pressure are continuous and piecewise linear functions. The nodes of the finite
element functions are their values in the vertices of the triangles, see Example B.38.

Consider first the integral mean value condition for the pressure, Qh � L20.˝/.
Let K be a mesh cell and qh

1;K ; q
h
2;K ; q

h
3;K be the values of the pressure in the vertices

of K. Then, the integral of qh on K can be evaluated exactly by a quadrature rule
which uses only the values at the vertices of K

Z
K

qh.x/ dx D jKj
3

�
qh
1;K C qh

2;K C qh
3;K

�
:
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Hence, the integral mean value condition for the finite element pressure reads as
follows

0 D
Z
˝

qh.x/ dx D
X

K2T h

Z
K

qh.x/ dx D jKj
3

X
K2T h

�
qh
1;K C qh

2;K C qh
3;K

�
: (3.77)

Now, a function qh 2 Qh will be constructed that satisfies (3.76). On each mesh
cell K, it is

vh
ˇ̌
K
.x/ D

�
˛11x1 C ˛12x2 C �1
˛21x1 C ˛22x2 C �2

�
;

from what follows that

r � vh
ˇ̌
K
.x/ D ˛11 C ˛22 D cK :

Then, (3.76) becomes

0 D �
X

K2T h

Z
K

��r � vh
�

qh
�
.x/ dx D �

X
K2T h

cK

Z
K

qh.x/ dx

D �jKj
3

X
K2T h

cK
�
qh
1;K C qh

2;K C qh
3;K

�
: (3.78)

From (3.77) and (3.78), it follows that a counterexample for the fulfillment of the
discrete inf-sup condition (3.51) is found, if a non-trivial function qh with

qh
1;K C qh

2;K C qh
3;K D 0

for all K 2 T h can be constructed. In this case, the integral mean value condition
and (3.76) are satisfied both. Two examples of such functions are given in Fig. 3.1.
The form of the spurious modes led to the name checkerboard-type instabilities. ut

Example 3.70 (The P1=P0 Pair of Finite Element Spaces) As it was noted in
Remark 3.52, the pressure finite element space should be sufficiently small for the
fulfillment of the discrete inf-sup condition. From Example 3.69, it follows that
this is obviously not the case for the P1=P1 finite element. On the first glance, a
straightforward idea consists in approximating the pressure by even lower order
polynomials, i.e., by piecewise constants instead of by continuous piecewise linears.
The space P0 consists of discontinuous functions, see Example B.37. Piecewise
constant functions can be implemented without difficulties and the P1=P0 pair
of finite element spaces would be easy to use, if it satisfies the discrete inf-sup
condition (3.51).
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Fig. 3.1 Checkerboard instabilities for the P1=P1 finite element

For the pair P1=P0, it holds that r � P1 � P0. According to Remark 3.56, the
discretely divergence-free finite element velocities have the desirable property to be
even weakly divergence-free. However, the pair P1=P0 does not satisfy the discrete
inf-sup condition (3.51).

From Fig. 3.1, it becomes clear that the dimension of the scalar-value space P0
might be even larger than the dimension of the scalar-value space P1. On these
meshes, P1 possesses 25 degrees of freedom (number of vertices) whereas P0 has
even 32 degrees of freedom (number of mesh cells). There is one degree of freedom
less in the corresponding pressure finite element spaces since the discrete pressure
has to fulfill the integral mean value condition. Thus, spurious modes have to be
expected, which will be demonstrated now in detail. Besides this issue, another
phenomenon can occur, which is called locking.

First, for showing that spurious modes can appear, consider for simplicity ˝ D
.0; 1/2 and grids of the types presented in Fig. 3.1 with 2n2 mesh cells, n > 1.
Then, the dimension of Vh corresponds to twice the number of interior vertices,
dim

�
Vh
� D 2 .n � 1/2. The dimension of Qh corresponds to the number of mesh

cells reduced by one (because of the integral mean value condition), i.e., dim
�
Qh
� D

2n2 � 1. It follows that

dim
�
Vh
� � dim

�
Qh
� D 2n2 � 4n C 2 � 2n2 C 1 D 3 � 4n < 0

for n � 1. Hence, the necessary condition for the unique solvability of the discrete
system, dim

�
Vh
� � dim

�
Qh
�
, see Remark 3.7, is not satisfied. Thus, there are at

least .4n � 3/ rows in Bh or columns in
�
Bh
�T

linearly dependent. It follows that
there is a subspace of Qh with dimension at least .4n � 3/ such that for all qh from
this subspace it holds

0 D
D�

Bh
�T

qh; vh
E
.Vh/0;Vh

D b
�
vh; qh

� D � �r � vh; qh
� 8 vh 2 Vh;
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Fig. 3.2 Grid for the locking
phenomenon of the P1=P0
finite element

K2

K4

K1 K3
M

which is (3.76). An extension of this example to general polygonal domains in two
dimensions is possible, see Ern and Guermond (2004, p. 189).

Second, the locking phenomenon will be illustrated. Consider again˝ D .0; 1/2

and a triangulation with four triangles that are obtained by drawing the two
diagonals in ˝ , see Fig. 3.2. Denote the piecewise constant pressure test function
qh restricted to the triangles Ki, i D 1; : : : ; 4, by qh

1; : : : ; q
h
4. Since all triangles have

the same area, it follows from the mean value condition qh 2 L20.˝/ that

qh
1 C qh

2 C qh
3 C qh

4 D 0:

Thus, there are three independent degrees of freedom for the discrete pressure. It
follows that a function vh 2 Vh

div has to satisfy three independent conditions, see
the definition (3.62) of this space. However, there are only two (scalar) degrees of
freedom for the velocity, that are situated in the cross point M of the diagonals. Let
vh D .uh; vh/T , then one finds with a direct calculation that

r � vh
ˇ̌
K1

D �r � vh
ˇ̌
K3

D uh.M/

2
; r � vh

ˇ̌
K4

D �r � vh
ˇ̌
K2

D vh.M/

2
:

Let, without loss of generality, qh
1; q

h
2; q

h
3 be the independent degrees of freedom for

the discrete pressure. Then, one obtains from the condition for vh being an element
of Vh

div

0 D �r � vh; qh
�

D jK1j
	

qh
1 r � vh

ˇ̌
K1

C qh
2 r � vh

ˇ̌
K2

C qh
3 r � vh

ˇ̌
K3

� �
qh
1 C qh

2 C qh
3

� r � vh
ˇ̌
K4




D jK1j
�

uh.M/

�
qh
1

2
� qh

3

2

�
� vh.M/

�
qh
1

2
C qh

2 C qh
3

2

��
;
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Fig. 3.3 Notation for
Example 3.71

Ki−1,j Kij

vh
i,j+1 vh

i+1,j+1

vh
ij

Ki,j−1Ki−1,j−1

E

vh
i+1,j

for arbitrary qh
1; q

h
2; q

h
3. Hence uh.M/ D vh.M/ D 0 and Vh

div D f0g. The situation
that the only discretely divergence-free velocity is the trivial velocity is called
locking phenomenon. ut
Example 3.71 (The Q1=Q0 Pair of Finite Element Spaces) Consider ˝ D .0; 1/2

and a triangulation of˝ that consists of n � n squares, where n is even. The squares
are denoted by Kij, i; j D 1; : : : ; n. A lexicographic enumeration (left to right, bottom
to top) is used. The finite element velocity is piecewise bilinear and it is determined
by its values at the vertices of the squares Kij, see Example B.50. Denote the value

at the lower left vertex by vh
ij D

	
uh

ij; v
h
ij


T
, see Fig. 3.3. A piecewise constant finite

element function is used for approximating the pressure, see Example B.49. Its value
in Kij is denoted by qh

ij.
Compared with the P1=P0 finite element on a corresponding grid, where the

squares are divided by their diagonals, the number of degrees of freedom for the
finite element velocity is the same, since the number of interior vertices is equal.
However, the number of degrees of freedom of the Q0 finite element pressure space
(number of mesh cells minus one) is only roughly half of the corresponding P0 finite
element space. Following Remark 3.52, the decrease of the dimension of Qh might
be a way to obtain an inf-sup stable pair of finite element spaces.

Since the integral mean value of finite element pressures should be zero, it
follows that

Z
˝

qh.x/ dx D
nX

i;jD1

Z
Kij

qh
ij dx D h2

nX
i;jD1

qh
ij D 0;

where h is the length of the edges of Kij and h2 D ˇ̌
Kij

ˇ̌
. Hence, it holds

nX
i;jD1

qh
ij D 0: (3.79)
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Consider a single mesh cell Kij. Integration by parts gives

Z
Kij

�r � vh
�

qh
ij dx D qh

ij

Z
Kij

r � vh dx D qh
ij

Z
@Kij

vh � n@Kij ds;

where vh D .uh; vh/T and n@Kij denotes the outward pointing unit normal on @Kij.
The outward pointing normals on @Kij are ˙ei, i D 1; 2, and the restriction of a Q1

finite element function to an edge is a linear function. That means, the integrals on
the edges can be computed exactly by the trapezoidal rule. One obtains, e.g., for the
bottom edge E

Z
E
vh � n@Kij ds D �

Z
E
vh � e2 ds D �

Z
E
vh.s/ ds D �h

2

�
vh

ij C vh
iC1;j

�
:

Altogether, it is

Z
Kij

��r � vh
�

qh
�
.x/ dx D �r � vh; qh

�
Kij

D h

2
qh

ij

	
� vh

ij � vh
iC1;j C uh

iC1;j C uh
iC1;jC1 C vh

iC1;jC1 C vh
i;jC1 � uh

i;jC1 � uh
ij



:

Now, the contributions of the integrals that are connected to an interior velocity node
are considered. Nodes on the boundary are not of interest since the velocity vanishes
in these nodes. One gets for the node ij, i; j D 2; : : : ; n, the following contributions
from the four mesh cells for which this node is a vertex

uh
ij

h

2

�
qh

i�1;j�1 C qh
i�1;j � qh

i;j�1 � qh
ij

�
;

vh
ij

h

2

�
qh

i�1;j�1 C qh
i;j�1 � qh

i�1;j � qh
ij

�
:

The sum of the integrals on the mesh cells is the same as the sum of the contributions
connected to the interior velocity nodes, because this is just a rearrangement of the
sum. Hence, condition (3.76) can be written in the form

0 D �r � vh; qh
� D

nX
i;jD1

�r � vh; qh
�

Kij

D h

2

nX
i;jD2

h
uh

ij

�
qh

i�1;j�1 C qh
i�1;j � qh

i;j�1 � qh
ij

�

Cvh
ij

�
qh

i�1;j�1 C qh
i;j�1 � qh

i�1;j � qh
ij

� i 8 vh 2 Vh:
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In particular, this equality holds for all finite element velocities where just one value
uh

ij or vh
ij is non-zero. Inserting these finite element functions, it follows that the finite

element pressure has to fulfill

qh
i�1;j�1 C qh

i�1;j � qh
i;j�1 � qh

ij D 0; qh
i�1;j�1 C qh

i;j�1 � qh
i�1;j � qh

ij D 0;

i; j D 2; : : : n. Adding these conditions, respectively subtracting them, leads to the
new conditions

qh
ij D qh

i�1;j�1; qh
i;j�1 D qh

i�1;j i; j D 2; : : : n: (3.80)

With (3.80), there are on the first glance two free choices for setting the finite
element pressure values. Setting on a cell, e.g., on K11 the value ˛ 2 R, then half
of the mesh cells, i.e., n2=2 mesh cells, get the same value. These are all mesh cells
where the sum of the indices is even. Setting on another mesh cell, where the sum
of the indices is odd, the value ˇ, then the second half of the mesh cells get this
value. For dividing the set of mesh cells into two subsets with the same number
of elements, the assumption that n is even is needed. From the condition on the
vanishing integral mean value (3.79), one gets

0 D
nX

i;jD1;iCj even

˛ C
nX

i;jD1;iCj odd

ˇ D n2

2
.˛ C ˇ/ :

Hence, it is ˇ D �˛, ˛ 2 R. In summary, for all ˛ ¤ 0, a non-trivial finite element
pressure was found that satisfies (3.76), for an example see Fig. 3.4. Because of its
particular form, this instability is called checkerboard instability. ut

Fig. 3.4 A checkerboard
instability for the Q1=Q0

finite element −1
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1 −1

1
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Remark 3.72 (Modifications of the Q1=Q0 Finite Element for Improving the Stabil-
ity)

• Since the spurious mode can be well characterized, one could try to define a
smaller finite element pressure space by taking only those functions from Qh

which are L2.˝/ orthogonal to this mode. It was shown that this approach leads
to an inf-sup stable pair of finite element spaces. However, the inf-sup parameter
depends on the mesh width, ˇh

is D Ch, with C independent of h, e.g., see Girault
and Raviart (1986, II, §3). It will become obvious in the finite element error
analysis that the inverse of ˇh enters the estimates. Thus, this method might not
converge.

• In Boland and Nicolaides (1985), a further modification of the pressure finite
element space was proposed that leads to a uniformly in h stable pair of finite
element spaces, see also Girault and Raviart (1986, p. 167) for details. However,
to the best of our knowledge, the method from Boland and Nicolaides (1985) is
not used in practice.

• The fulfillment of the discrete inf-sup condition for the Q1=Q0 pair of finite
element spaces can be proved on a very special mesh, see Stenberg (1984).

ut
Example 3.73 (Pk=Pdisc

k�1, k � 2, on a Special Macro Cell) Consider the pair of
spaces Pk=Pdisc

k�1, k � 2, on the grid shown in Fig. 3.5, in particular in the macro cell
which is surrounded boldly. The diagonals of the macro cell should be parallel to the
coordinate axes. The pair Pk=Pdisc

k�1, k � 2, is called Scott–Vogelius finite element,
see Scott and Vogelius (1985).

Let vh 2 Pk, then r � vh 2 Pdisc
k�1 D Qh. Hence, Remark 3.56 gives that discretely

divergence-free finite element velocities from Pk=Pdisc
k�1 are even weakly divergence-

free, which is a desirable property. However, it turns out that Pk=Pdisc
k�1 does not fulfill

the discrete inf-sup condition on the mesh presented in Fig. 3.5.

M

K1 K2

K3K4

Fig. 3.5 Grid for Pk=Pdisc
k�1, k � 2, finite element
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Consider vh D .vh
1 ; v

h
2/

T 2 Vh
div. Since vh is continuous, the tangential derivatives

rvh � t on the edges are continuous, too. Using that the tangentials are Cartesian unit
vectors, one obtains

@vh
2

ˇ̌
K1

@y
D @vh

2

ˇ̌
K2

@y
;

@vh
1

ˇ̌
K2

@x
D @vh

1

ˇ̌
K3

@x
;

@vh
2

ˇ̌
K3

@y
D @vh

2

ˇ̌
K4

@y
;

@vh
1

ˇ̌
K4

@x
D @vh

1

ˇ̌
K2

@x
:

These equations hold in particular in the vertex M. Using in addition the pointwise
divergence-free constraint in K2;K3, and K4, it follows that

@vh
1

ˇ̌
K1

@x
.M/C @vh

2

ˇ̌
K1

@y
.M/

D @vh
1

ˇ̌
K1

@x
.M/C @vh

2

ˇ̌
K2

@y
.M/ D @vh

1

ˇ̌
K1

@x
.M/ � @vh

1

ˇ̌
K2

@x
.M/

D @vh
1

ˇ̌
K1

@x
.M/ � @vh

1

ˇ̌
K3

@x
.M/ D @vh

1

ˇ̌
K1

@x
.M/C @vh

2

ˇ̌
K3

@y
.M/

D @vh
1

ˇ̌
K1

@x
.M/C @vh

2

ˇ̌
K4

@y
.M/ D @vh

1

ˇ̌
K1

@x
.M/ � @vh

1

ˇ̌
K4

@x
.M/

D @vh
1

ˇ̌
K1

@x
.M/ � @vh

1

ˇ̌
K1

@x
.M/ D 0:

That means, the divergence-free condition in M for the restriction of vh to K1 follows
from the continuity of the tangential derivatives on the edges and the divergence-free
conditions in K2, K3, and K4.

Since vh is weakly divergence-free, it is

�r � vh; qh
�

K1
D 0 8 qh 2 Qh.K1/: (3.81)

One deduces from (3.81) that there are dim Pk�1.K1/ D dim Qh.K1/ D k.k C 1/=2

conditions to determine r � vh 2 Pk�1.K1/ and there is independently the derived
condition r � vh

ˇ̌
K1
.M/ D 0. Hence, there is one condition too much in (3.81).

Since one of the conditions from (3.81) can be neglected, it follows that one of the
pressure degrees of freedom in K1 is not determined by (3.81). This pressure degree
of freedom becomes a spurious node. ut
Remark 3.74 (The Scott–Vogelius Element on Other Meshes) The consideration of
the special grid in Example 3.73 is crucial for proving that the Scott–Vogelius finite
element does not satisfy the discrete inf-sup condition. It can be shown that Scott–
Vogelius pairs of finite element spaces of sufficiently high order fulfill the discrete
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inf-sup condition on meshes that are in some sense less structured than the mesh
from Fig. 3.5, see Sect. 3.6.3. ut
Remark 3.75 (Circumventing the Discrete Inf-Sup Condition) As mentioned in
Remark 3.67, low order finite element spaces are quite popular. In order to use
them for incompressible flow simulations, several proposals were presented that
circumvent the need of satisfying the discrete inf-sup condition (3.51). The principal
idea consists in removing the saddle point character of the problem by introducing
a bilinear form in the continuity equation that leads to a pressure-pressure coupling.
One example is the PSPG method discussed in Sect. 5.3. Of course, a consequence
of introducing an additional term into the continuity equation results in a violation
of the (discrete) mass balance. ut

3.5 Techniques for Checking the Discrete Inf-Sup Condition

Remark 3.76 (Contents) This section presents some ways for checking the discrete
inf-sup condition (3.51) or equivalently (3.52). A few applications of these ideas to
concrete pairs of finite element spaces will be presented in Sect. 3.6.

A comprehensive overview of techniques for proving the discrete inf-sup condi-
tion and corresponding results can be found, e.g., in Boffi et al. (2008) and Boffi
et al. (2013, Sections 8.4 and 8.5). ut

3.5.1 The Fortin Operator

Remark 3.77 (A Connection Between the Continuous and the Discrete Inf-Sup
Condition) For conforming finite element spaces, it is possible to check the discrete
inf-sup condition (3.51) with the help of the continuous inf-sup condition (3.48).
The connection of both conditions is shown in the following lemma. The result
is due to Fortin (1977) and it can be generalized to Banach spaces, see Ern and
Guermond (2004, Lemma 4.19). Also the generalization to some non-conforming
cases is possible, see Sect. 3.6.5.

For conforming finite element spaces, it is bh.�; �/ D b.�; �/. ut
Lemma 3.78 (Fortin Criterion for Checking the Discrete Inf-Sup Condition)
Let V, Q, and b.�; �/ fulfill the assumptions of Remark 3.3 and let the inf-sup
condition (3.48) be satisfied. Consider conforming spaces Vh � V and Qh � Q.
Then, Vh and Qh satisfy the discrete inf-sup condition (3.51) if and only if there
exists a constant �h > 0, which is independent of h, such that for all v 2 V there is
an element Ph

Forv 2 Vh with

b
�
v; qh

� D b
�
Ph

Forv; q
h
� 8 qh 2 Qh and

��Ph
Forv

��
V

� �h kvkV : (3.82)
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Proof • Assume that (3.82) holds.
Let qh 2 Qh be arbitrary. From span

˚
Ph

Forv
� 	 Vh, it follows, using also (3.82)

and (3.48), that

sup
vh2Vhnf0g

b
�
vh; qh

�
kvhkV

� sup
v2Vnf0g

b
�
Ph

Forv; q
h
�

��Ph
Forv

��
V

D sup
v2Vnf0g

b
�
v; qh

�
��Ph

Forv
��

V

� sup
v2Vnf0g

b
�
v; qh

�
�h kvkV

� ˇis

�h

��qh
��

Q
:

This inequality is just the discrete inf-sup condition (3.51) with ˇh
is D ˇis=�

h.

• Assume that (3.51) is satisfied.

Consider the restriction of b.�; �/ from V � Q to V � Qh. This restriction defines
a continuous linear operator

QB 2 L
	

V;
�
Qh
�0

;

˝ QBv; qh
˛
.Qh/0;Qh D b

�
v; qh

�
:

By definition, it is QBv 2 �
Qh
�0

for all v 2 V . Since the discrete inf-sup
condition (3.51) holds, it follows from Lemma 3.12 iii) that the operator Bh defined
in (3.61), the discrete divergence operator, is an isomorphism from .Vh

div/
? onto�

Qh
�0

. In particular, Bh is surjective. Since QBv 2 �Qh
�0

, there must be an element Qvh

from .Vh
div/

? such that
˝
Bh Qvh; qh

˛
.Qh/0;Qh D ˝ QBv; qh

˛
.Qh/0;Qh 8 qh 2 Qh:

Consequently, for all vh 2 Vh whose projection into .Vh
div/

? is equal to Qvh, it holds
˝
Bhvh; qh

˛
.Qh/0;Qh D ˝ QBv; qh

˛
.Qh/0;Qh 8 qh 2 Qh: (3.83)

One of these elements can be chosen to be Ph
Forv. Then, (3.83) is equivalent to

b
�
Ph

Forv; q
h
� D b

�
v; qh

� 8 qh 2 Qh:

With these relations, it follows from Lemma 3.12 iii), the definition of the norm in
Qh, the definition of the norm of b.�; �/ from (3.3), and the estimate of this norm
from Lemma 3.39 that

��Ph
Forv

��
V

� 1

ˇh
is

��Bh
�
Ph

Forv
���

Q
D 1

ˇh
is

sup
qh2Qhnf0g

˝
Bh
�
Ph

Forv
�
; qh
˛
.Qh/0;Qh

kqhkQ

D 1

ˇh
is

sup
qh2Qhnf0g

b
�
Ph

Forv; q
h
�

kqhkQ

D 1

ˇh
is

sup
qh2Qhnf0g

b.v; qh/

kqhkQ

� 1

ˇh
is

sup
qh2Qhnf0g

kbk kvkV

��qh
��

Q

kqhkQ

D kbk
ˇh

is

kvkV D �h kvkV :
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Since v was chosen to be arbitrary, (3.82) is proved. �

Remark 3.79 (On Condition (3.76)) This condition, which implies that the discrete
inf-sup condition is violated, cannot be fulfilled if (3.82) holds. Assume that there
is a qh 2 Qh such that b.vh; qh/ D 0 for all vh 2 Vh. From (3.82) it follows that then
b.v; qh/ D 0 for all v 2 V , since Ph

Forv 2 Vh. Because qh 2 Q and V and Q satisfy
the inf-sup condition (3.48), it follows that qh D 0. Hence, there is no non-trivial
qh 2 Qh for which (3.76) holds. ut
Remark 3.80 (Kernel of the Gradient Operators) From condition (3.82), first part,
one obtains ker.gradh/ 	 ker.grad/. To show this inclusion, let qh 2 ker.gradh/,
then b.vh; qh/ D 0 for all vh 2 Vh. Since Ph

Forv 2 Vh for all v 2 V , it follows that
b.v; qh/ D 0 for all v 2 V . Hence, qh 2 ker.grad/. ut
Remark 3.81 (A Possible Construction of a Fortin Operator) Sometimes, it is
possible to construct a linear Fortin operator Ph

For with the help of two linear
operators Ph

1;P
h
2 2 L.V;Vh/. Assume that

��Ph
1v
��

V
� C1 kvkV 8 v 2 V; (3.84)

��Ph
2

�
I � Ph

1

�
v
��

V � C2 kvkV 8 v 2 V; (3.85)

b
�
v � Ph

2v; q
h
� D 0 8 v 2 V; 8 qh 2 Qh; (3.86)

where C1;C2 are independent of h. Then, a Fortin operator is defined by

Ph
For 2 L.V;Vh/ v 7! Ph

1vC Ph
2

�
v � Ph

1v
�
: (3.87)

ut
Lemma 3.82 (A Property of the Operator (3.87)) The operator defined in (3.87)
satisfies (3.82).

Proof Applying (3.87), (3.86) for Ph
1v, and once again (3.86) for v, one obtains for

all qh 2 Qh

b
�
Ph

Forv; q
h
� D b

�
Ph
1vC Ph

2

�
v � Ph

1v
�
; qh
�

D b
�
Ph
1v � Ph

2P
h
1v; q

h
�C b

�
Ph
2v; q

h
�

D b
�
Ph
2v; q

h
� D b

�
v; qh

�
:

The boundedness of Ph
For is obtained by applying the triangle inequality and

using (3.84) and (3.85)

��Ph
Forv

��
V

� kP1vkV C ��Ph
2

�
v � Ph

1v
���

V
� C1 kvkV C C2 kvkV D �h kvkV ;

with �h D C1 C C2. �
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Remark 3.83 (A More Detailed Construction of the Fortin Operator) Often, the
Clément operator Ph

Cle (C.17), with the modification that preserves homogeneous
Dirichlet boundary conditions, see Remark C.22, plays the role of Ph

1. Then,
condition (3.85) for Ph

2 can be replaced with

��Ph
2v
��

H1.K/ � C
�
h�1

K kvkL2.K/ C jvjH1.K/

�
; 8 K 2 T h; 8 v 2 V; (3.88)

where the constant C does not depend on hK . ut
Lemma 3.84 (A Property of the Fortin Operator Constructed with (C.17),
(3.86), and (3.88)) Consider a family of quasi-uniform triangulations

˚
T h
�
. Let

Ph
1 D Ph

Cle be the modified Clément interpolation operator (C.17), which preserves
homogeneous Dirichlet boundary conditions, and let Ph

2 satisfy (3.86) and (3.88).
Then, Ph

For defined by (3.87) is a Fortin operator.

Proof The first property of (3.82) is proved analogously as in the proof of
Lemma 3.82, since the proof used only (3.86) and (3.87). It remains to show the
second property with �h independent of h.

From the quasi-uniformity of the family of triangulations, it follows that for each
K there is a maximal number of mesh cells in !K , see Fig. C.1, which is independent
of the triangulation and that the diameter of !K can be estimated by ChK with
a constant C independent of T h. Using (3.87), the triangle inequality, (3.88),
and (C.18) for k D 0; l D 1 and k D l D 1, one obtains

��Ph
Forv

��2
V

D ˇ̌
Ph

Forv
ˇ̌2
H1.˝/

� 2
ˇ̌
Ph

Clev
ˇ̌2
H1.˝/

C 2
ˇ̌
Ph
2

�
v � Ph

Clev
�ˇ̌2

H1.˝/

� C
	ˇ̌

Ph
Clev � vˇ̌2

H1.˝/
C jvj2H1.˝/



C 2

X
K2T h

ˇ̌
Ph
2

�
v � Ph

Clev
�ˇ̌2

H1.K/

� C

 X
K2T h

ˇ̌
Ph

Clev � vˇ̌2H1.K/ C jvj2H1.˝/

!

CC

 X
K2T h

.h�2
K

��v � Ph
Clev

��2
L2.K/

C ˇ̌
v � Ph

Clev
ˇ̌2
H1.K/

!

� C

 
jvj2H1.˝/ C

X
K2T h

	
jvj2H1.!K/

C jvj2H1.!K /
C jvj2H1.!K/


!

� C krvk2L2.˝/ D C kvk2V :

�
Remark 3.85 (Non-conforming Discretizations) The concept of the Fortin operator
is also applied in non-conforming methods for proving the satisfaction of the
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discrete inf-sup condition, e.g., see the proof of Theorem 3.151 for the Crouzeix–
Raviart pair of finite element spaces: Equations (3.144) and (3.145). ut

3.5.2 Splitting the Discrete Pressure into a Piecewise Constant
Part and a Remainder

Remark 3.86 (The Approach) It was noted in Remark 3.52 that a small pressure
finite element space is advantageous to satisfy the discrete inf-sup condition (3.51)
or equivalently (3.52). A small finite element space on a given triangulation is
the space of piecewise constants which is intersected with L20.˝/. The approach
presented in this section uses the assumption that the discrete inf-sup condition
holds for Vh=P0 or Vh=Q0. The finite element pressure on the right-hand side of
discrete inf-sup condition (3.52) will be split into a piecewise constant part qh and a
remainder

qh D qh C �
qh � qh

�
:

For this remainder, also an inf-sup condition is assumed to prove finally the desired
discrete inf-sup condition. The idea is that the proof of the inf-sup condition for both
parts, the piecewise constant one and the remainder, is comparatively easy.

This approach was introduced in Brezzi and Bathe (1990). ut
Lemma 3.87 (A Property of the L2.˝/ Projection into a Piecewise Constant
Finite Element Space) Let qh 2 Qh and denote by qh its L2.˝/ projection into P0
or Q0

�
qh � qh; rh

� D 0 8 rh 2 P0.or Q0/: (3.89)

Then

qh
ˇ̌
K

D 1

jKj
Z

K
qh.x/ dx 8 K 2 T h;

where jKj is the measure of K, and qh 2 L20.˝/.

Proof Using that qh and rh are piecewise constant, one obtains

�
qh; rh

� D
X

K2T h

�
qh; rh

�
K

D
X

K2T h

rh
ˇ̌
K

Z
K

qh.x/ dx

and

�
qh; rh

� D
X

K2T h

rh
ˇ̌
K

qh
ˇ̌
K

Z
K

dx D
X

K2T h

rh
ˇ̌
K

qh
ˇ̌
K jKj :
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Inserting both expressions in (3.89) proves the formula for qh
ˇ̌
K

. Using this formula
and qh 2 L20.˝/ shows that the mean value of qh vanishes, since

Z
˝

qh.x/ dx D
X

K2T h

Z
K

qh.x/ dx D
X

K2T h

qh
ˇ̌
K

Z
K

dx

D
X

K2T h

1

jKj
Z

K
qh.x/ dx

Z
K

dx D
Z
˝

qh.x/ dx D 0:

�

Remark 3.88 (A Modified Inf-Sup Condition) A central role in this approach plays
an inf-sup condition of the form

sup
vh2Vhnf0g

bh.vh; qh/

kvhkVh

� ˇ1
��qh � qh

��
Q

8 qh 2 Qh; (3.90)

with ˇ1 > 0 independent of the mesh width. Note that by Lemma 3.87 it holds
.qh �qh/ 2 L20.˝/. First, it becomes clear from this representation that (3.90) cannot
hold for pairs of finite element spaces for which a function qh 2 Qh can be found that
satisfies (3.76), which is a sufficient condition for Vh=Qh to violate the discrete inf-
sup condition. In (3.76), the left-hand side of (3.90) is zero whereas the right-hand
side of (3.90) does not vanish. On the other hand, (3.90) is a weaker condition than
the discrete inf-sup condition. Consider for simplicity a quasi-uniform mesh. Then,
by properties of the L2.˝/ projection (C.28) and the inverse inequality (C.35), one
obtains

��qh � qh
��

Q
D
 X

K2T h

��qh � qh
��2

L2.K/

!1=2

� C

 X
K2T h

h2K
��rqh

��2
L2.K/

!1=2

� C

 X
K2T h

��qh
��2

L2.K/

!1=2
D C

��qh
��

Q
:

Hence, if (3.51) holds, or equivalently (3.52), then (3.90) follows. ut
Theorem 3.89 (Sufficient Conditions for the Discrete Inf-Sup Condition Based
on an Inf-Sup Condition for Piecewise Constant Finite Element Pressure)
Assume that a discrete inf-sup conditions holds for Vh=P0 or Vh=Q0

sup
vh2Vhnf0g

bh.vh; qh/

kvhkVh

� ˇ0
��qh

��
Q

8 qh 2 P0.or Q0/; (3.91)
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with ˇ0 > 0 independent of h. Suppose that in addition an inf-sup condition
of form (3.90) is valid with ˇ1 independent of h. Then, the discrete inf-sup
condition (3.51) or (3.52) holds with

ˇh
is D ˇ0ˇ1

QC C ˇ0 C ˇ1
> 0;

with QC D 1 for conforming velocity spaces and QC D p
d for non-conforming

velocity spaces.

Proof Since the supremum of a sum is lower or equal than the sum of the suprema,
one obtains

sup A D sup .A C B � B/ � sup .A C B/C sup B;

such that

sup .A C B/ � sup A � sup B: (3.92)

Let qh 2 Qh be arbitrary. Applying (3.92), (3.91), and (3.41) for conforming
velocity spaces or (3.40) for non-conforming velocity spaces, respectively, yields

sup
vh2Vhnf0g

bh.vh; qh/

kvhkVh

D sup
vh2Vhnf0g

�
bh.vh; qh � qh/

kvhkVh

C bh.vh; qh/

kvhkVh

�

� sup
vh2Vhnf0g

bh.vh; qh/

kvhkVh

� sup
vh2Vhnf0g

bh.vh; qh � qh/

kvhkVh

� ˇ0
��qh

��
Q � sup

vh2Vhnf0g

��r � vh
��

L2.˝/

��qh � qh
��

Q

kvhkVh

� ˇ0
��qh

��
Q � QC ��qh � qh

��
Q : (3.93)

For non-conforming velocity finite element spaces,
��r � vh

��
L2.˝/

has to be replaced
by the sum over the mesh cells and (3.40) has to be applied for each mesh cell.

Now, using (3.90) and (3.93) gives

sup
vh2Vhnf0g

bh.vh; qh/

kvhkVh

� ˇ1
��qh � qh

��
Q

� ˇ1

 
ˇ0
QC
��qh

��
Q

� 1

QC sup
vh2Vhnf0g

bh.vh; qh/

kvhkVh

!
:
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Rearranging terms leads to

sup
vh2Vhnf0g

bh.vh; qh/

kvhkVh

� ˇ0ˇ1
QC C ˇ1

��qh
��

Q
: (3.94)

Using the triangle inequality in (3.90) and inserting (3.94) yields

sup
vh2Vhnf0g

bh.vh; qh/

kvhkVh

� ˇ1
��qh

��
Q

� ˇ1
��qh

��
Q

� ˇ1
��qh

��
Q

� QC C ˇ1

ˇ0
sup

vh2Vhnf0g
bh.vh; qh/

kvhkVh

:

Transferring the last term to the left-hand side leads, since qh was chosen to be
arbitrary, to the discrete inf-sup condition (3.52) with the constant ˇh

is given in the
statement of the theorem. �

Remark 3.90 (To Condition (3.90))

• A so-called patch test for checking condition (3.90) is proposed in Brezzi and
Bathe (1990).

• In Brezzi and Bathe (1990), another case was presented where (3.90) leads to the
fulfillment of the discrete inf-sup condition, see Theorem 3.96.

ut

3.5.3 An Approach for Conforming Velocity Spaces and
Continuous Pressure Spaces

Remark 3.91 (Contents) This section presents two criteria for checking the discrete
inf-sup condition (3.51) or (3.52) in the case that the pressure space consists of
continuous finite element functions. The first criterion was proved in Verfürth (1984)
and the second one in Brezzi and Bathe (1990). It turns out that both criteria are
more or less equivalent.

The techniques of this section for deriving the discrete inf-sup condition apply an
integration by parts of a term of the form bh.v; qh/ for a continuous function v. This
step gives in general contributions of jumps of the discrete pressure across faces of
mesh cells. The smoothness assumption Qh � H1.˝/ guarantees that these jumps
vanish.

It will be assumed that Vh � V such that bh.�; �/ D b.�; �/ and k�kVh D k�kV . ut
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Lemma 3.92 (Lower Bound for the Supremum) Given a quasi-uniform family
of triangulations, let Vh � V, and Qh � H1.˝/. Assume that there exists a linear
operator Ph

1 W V ! Vh such that

��v � Ph
1v
��

Hk.˝/
� C

 X
K2T h

h2�2k
K krvk2L2.K/

!1=2
8 v 2 V; k D 0; 1; (3.95)

with a positive constant C that does not depend on the mesh width. Then, there exist
constants C1;C2 > 0 such that for every qh 2 Qh

sup
vh2Vhnf0g

b.vh; qh/

kvhkV

� C1
��qh

��
Q

� C2

 X
K2T h

h2K
��rqh

��2
L2.K/

!1=2
: (3.96)

Proof Let qh 2 Qh � Q be arbitrary. From Corollary 3.44 it follows that there is a
v 2 V such that r � v D qh and kvkV � C3

��qh
��

Q
with C3 independent of v and

qh. Then, for this v, one obtains with the triangle inequality in the denominator, the
application of (3.95) for k D 1 in the denominator, and the triangle inequality in the
numerator

sup
vh2Vhnf0g

b.vh; qh/

kvhkV

�
ˇ̌
b.Ph

1v; q
h/
ˇ̌

��Ph
1v
��

V

�
ˇ̌
b.Ph

1v; q
h/
ˇ̌

kvkV C ��v � Ph
1v
��

V

� 1

1C C

ˇ̌
b.Ph

1v; q
h/
ˇ̌

kvkV

� 1

1C C

 ˇ̌
b.v; qh/

ˇ̌
kvkV

�
ˇ̌
b.v � Ph

1v; q
h/
ˇ̌

kvkV

!
: (3.97)

For the first term, one gets

ˇ̌
b.v; qh/

ˇ̌
kvkV

D
��qh

��2
Q

kvkV

� 1

C3

��qh
��

Q
:

For the second term, integration by parts is applied, leading to

�r � �v � Ph
1v
�
; qh
� D

X
K2T h

�r � �v � Ph
1v
�
; qh
�

K

D
X

K2T h

�
� �rqh; v � Ph

1v
�

K
C
Z
@K

�
qh
�
v � Ph

1v
�
n@K

�
.s/ ds

�
:

The conditions on the regularity of the discrete velocity and pressure imply that
terms on the faces cancel out. Applying the Cauchy–Schwarz inequality (A.10),
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the Cauchy–Schwarz inequality for sums (A.2), (3.95) for k D 0, and the quasi-
uniformity of the family of meshes yields

ˇ̌
b.v � Ph

1v; q
h/
ˇ̌

kvkV

D
ˇ̌�.rqh; v � Ph

1v/
ˇ̌

kvkV

�
P

K2T h

	
hK

��rqh
��

L2.K/
h�1

K

��v � Ph
1v
��

L2.K/




kvkV

�
	P

K2T h h2K
��rqh

��2
L2.K/


1=2 	P
K2T h h�2

K

��v � Ph
1v
��2

L2.K/


1=2
kvkV

�
�

min
K2T h

hK

��1
	P

K2T h h2K
��rqh

��2
L2.K/


1=2 ��v � Ph
1v
��

L2.˝/

kvkV

� C

�
min

K2T h
hK

��1
	P

K2T h h2K
��rqh

��2
L2.K/


1=2 	P
K2T h h2K krvk2L2.K/


1=2
kvkV

� C

�
min

K2T h
hK

��1 �
max
K2T h

hK

� 	P
K2T h h2K

��rqh
��2

L2.K/


1=2 krvkL2.˝/

kvkV

� C

 X
K2T h

h2K
��rqh

��2
L2.K/

!1=2
:

Inserting these estimates in (3.97) gives (3.96) with C1 D 1=.C3.1C C// and C2 D
C=.1C C/. �
Remark 3.93 (A Possible Choice of Ph

1) It was already noted in Verfürth (1984) that
the Clément operator Ph

Cle (C.17), with its modification that preserves homogeneous
Dirichlet boundary conditions from Remark C.22, can be used as Ph

1. ut
Theorem 3.94 (Criterion for Checking the Discrete Inf-Sup Condition (3.51)
for Continuous Pressure Spaces from Verfürth (1984)) Suppose that the
assumptions of Lemma 3.92 hold. Assume in addition that an inf-sup condition
of the form

sup
vh2Vhnf0g

b.vh; qh/

kvhkV

� ˇ2

 X
K2T h

h2K
��rqh

��2
L2.K/

!1=2
8 qh 2 Qh; (3.98)

is valid. Then, the discrete inf-sup condition (3.51), or equivalently (3.52), holds.
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Proof Adding ˇ2 times (3.96) and C2 times (3.98) gives

.ˇ2 C C2/ sup
vh2Vhnf0g

b.vh; qh/

kvhkV

� C1ˇ2
��qh

��
Q
;

such that (3.52) is satisfied with ˇh
is D C1ˇ2=.ˇ2 C C2/. �

Corollary 3.95 (Criterion for Satisfaction of (3.98)) Consider a quasi-uniform
family of triangulations. If for every qh 2 Qh there is a vh 2 Vh and positive
constants C1;C2 such that

b.vh; qh/ � C1
��rqh

��2
L2.˝/

and
��vh

��
L2.˝/

� C2
��rqh

��
L2.˝/

; (3.99)

then (3.98) is satisfied.

Proof One obtains with the inverse inequality (C.37) and the assumptions (3.99)

sup
vh2Vhnf0g

b.vh; qh/

kvhkV

� C sup
vh2Vhnf0g

b.vh; qh/

h�1 kvhkL2.˝/

� Ch sup
vh2Vhnf0g

C1
��rqh

��2
L2.˝/

C2 krqhkL2.˝/

D Ch
��rqh

��
L2.˝/ ;

which is equivalent to (3.98) for families of quasi-uniform triangulations. �

Theorem 3.96 (Criterion for Checking the Discrete Inf-Sup Condition (3.51)
for Continuous Pressure Spaces from Brezzi and Bathe (1990)) Let Vh � V,
Qh � H1.˝/, and consider a quasi-uniform family of triangulations. In addition,
suppose that for each v 2 V an interpolant vh

I 2 Vh exists such that

��v � vh
I

��
L2.˝/

� Ch kvkV ; (3.100)
��vh

I

��
V � C kvkV ; (3.101)

with constants independent of the triangulation. If in addition (3.90) holds, then
Vh=Qh satisfies the discrete inf-sup condition (3.51) or equivalently (3.52).

Proof Under the conditions on Vh and Qh, integration by parts gives for all v 2 V

b.vh
I � v; qh/ D

X
K2T h

Z
K

r � �vh
I � v� qh dx

D
X

K2T h

�Z
@K

qh
�
vh

I � v� � n@K ds �
Z

K

�
vh

I � v� � rqh dx
�

D �.rqh; vh
I � v/: (3.102)
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Let qh 2 Qh � Q be arbitrary. Since the pair V=Q satisfies the continuous inf-sup
condition (3.48), there is a Qv 2 V such that

b. Qv; qh/

kQvkV

� .ˇis � "/
��qh

��
Q (3.103)

with arbitrary small " 2 .0; ˇis=2/. Denote Q̌
is D ˇis � " > 0. Taking a special

element in the supremum, noting that the supremum is larger or equal also in
the case that the negative of this element is taken, applying (3.101), the triangle
inequality, (3.103), (3.102), the Cauchy–Schwarz inequality (A.10), and (3.100), it
follows that

sup
vh2Vhnf0g

b.vh; qh/

kvhkV

�
ˇ̌
b. Qvh

I ; q
h/
ˇ̌

�� Qvh
I

��
V

� C

ˇ̌
b. Qvh

I ; q
h/
ˇ̌

kQvkV

� C

 
�
ˇ̌
b. Qvh

I � Qv; qh/
ˇ̌

kQvkV

C
ˇ̌
b. Qv; qh/

ˇ̌
kQvkV

!

� C

 
�
ˇ̌
b. Qvh

I � Qv; qh/
ˇ̌

kQvkV

C Q̌
is

��qh
��

Q

!

D C

 
�
ˇ̌�.rqh; Qvh

I � Qv/ˇ̌
kQvkV

C Q̌
is

��qh
��

Q

!

� C

 
Q̌
is

��qh
��

Q
�
�� Qvh

I � Qv��
L2.˝/

��rqh
��

L2.˝/

kQvkV

!

� C
	 Q̌

is

��qh
��

Q
� h

��rqh
��

L2.˝/



: (3.104)

Let qh be defined by (3.89). Then, using r �
qh
ˇ̌
K

� D 0 for all mesh cells, the inverse
inequality (C.35), and the quasi-uniformity of the family of triangulations gives

��rqh
��

L2.˝/
D
 X

K2T h

��r.qh � qh/
��2

L2.K/

!1=2

� C

 X
K2T h

h�2
K

��qh � qh
��2

L2.K/

!1=2
� Ch�1 ��qh � qh

��
Q
:

Inserting this estimate in (3.104) and using (3.90) yields

sup
vh2Vhnf0g

b.vh; qh/

kvhkV

� C Q̌
is

��qh
��

Q
� C

ˇ1
sup

vh2Vhnf0g
b.vh; qh/

kvhkV

:
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Transferring the last term to the left-hand side and dividing by the arising factor on
the left-hand side, finishes the proof. �

Remark 3.97 (Equivalence of Assumptions (3.90) and (3.98)) Analogously as in
the proof of Theorem 3.96, one can show, using the inverse inequality (C.35), that

 X
K2T h

h2K
��rqh

��2
L2.K/

!1=2
D
 X

K2T h

h2K
��r.qh � qh/

��2
L2.K/

!1=2

� Cinv

��qh � qh
��

Q
:

For the L2.˝/ projection into the space of piecewise constant finite element
functions, it follows from (C.28) that

��qh � qh
��

Q
D
 X

K2T h

��qh � qh
��2

L2.K/

!1=2
� C

 X
K2T h

h2K
��rqh

��2
L2.K/

!1=2
:

Hence, the assumptions (3.90) and (3.98) are equivalent. In particular, the discussion
of (3.90) from Remark 3.88 applies also to (3.98). ut
Remark 3.98 (Theorem 3.94 Implies Theorem 3.96) If the assumptions of Theo-
rem 3.94 are fulfilled, then the assumptions of Theorem 3.96 are satisfied, too.
The equivalence of (3.90) and (3.98) was already discussed in Remark 3.97. From
the assumptions (3.95) on the operator Ph

1, it follows for quasi-uniform families of
triangulations that

��v � Ph
1v
��

L2.˝/
� Ch krvkL2.˝/ D Ch kvkV ;

and

��Ph
1v
��

V
D ��rPh

1v
��

L2.˝/
� ��r.v � Ph

1v/
��

L2.˝/
C krvkL2.˝/

� .C C 1/ krvkV D C krvkV :

Thus, setting vh
I D Ph

1v, the assumptions (3.100) and (3.101) in Theorem 3.96 are
also fulfilled. ut

3.5.4 Macroelement Techniques

Remark 3.99 (Goal) The goal of macroelement techniques consists in reducing the
proof of the discrete inf-sup condition to the proof of a local inf-sup condition.
Approaches of this kind were proposed in Boland and Nicolaides (1983) and
Stenberg (1984, 1987, 1990). ut
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Remark 3.100 (The Approach of Boland and Nicolaides (1983)) This approach
relies on a decomposition of ˝ into open subdomains˝r, r D 1; : : : ;R, such that

˝ D
R[

rD1
˝r; ˝r \˝s D ; for r ¤ s:

Using the global finite element spaces Vh and Qh, one defines local spaces on˝r

Vh.˝r/ D
n
vh
ˇ̌
˝r

W vh 2 Vh; vh D 0 in ˝ n˝r

o
;

Qh.˝r/ D
n

qh
ˇ̌
˝r

W qh 2 Qh
o

\ L20.˝r/:

Then, also the global pressure finite element space consisting of piecewise constant
functions is needed

Qh
0 D

n
qh 2 L20.˝/ W qh

ˇ̌
˝r

2 P0.˝r/; r D 1; : : : ;R
o
:

Now, a local discrete inf-sup condition can be formulated: it exists ˇh
is;loc indepen-

dent of h such that

inf
qh2Qh.˝r/nf0g

sup
vh2Vh.˝r/nf0g

�r � vh; qh
�
˝r

kvhkVh.˝r/
kqhkQh.˝r/

� ˇh
is;loc > 0; (3.105)

for all r D 1; : : : ;R. ut
Theorem 3.101 (Criterion from Boland and Nicolaides (1983)) Let the local inf-
sup condition (3.105) be satisfied with a constant ˇh

is;loc > 0 independent of r and

h. Assume that there is a subspace V
h � Vh such that V

h
=Qh

0 is inf-sup stable with

a constant ˇ
h
is > 0 independent of h. Then, there exists a constant ˇh

is such that the
discrete inf-sup condition (3.51) is satisfied for Vh=Qh independently of h.

Proof The proof can be found in Boland and Nicolaides (1983) or Girault and
Raviart (1986, Chap. II, Theorem 1.12). �

Definition 3.102 (Macroelement) Two mesh cells in R
d are said to be neighbors,

if there intersection is a common d � 1 face. The union of one or more neighboring
mesh cells is called a macroelement M. A macroelement M is said to be equivalent
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to a reference macroelement OM if there is a map FM W OM ! M satisfying the
following conditions:

i) FM is continuous and one-to-one,
ii) FM. OM/ D M,

iii) if OM D [m
jD1 OKj, where OKj, j D 1; : : : ;m, are the mesh cells contained in OM, then

Kj D FM. OKj/, j D 1; : : : ;m, are the mesh cells defining M,
iv) FMj OKj

D FKj ı F�1
OKj

, j D 1; : : : ;m, where F OKj
and FKj are the affine or d-linear

maps from the reference mesh cell onto OKj and Kj, respectively.

The family of macroelements which are equivalent to OM will be denoted by F OM . ut
Remark 3.103 (On Macroelements) The meaning of the first two conditions is
clear. The third condition states that the image of the restriction of FM to any mesh
cell in OM is a mesh cell in M. Condition iv) defines the map FM with the help of
the standard maps to reference cells. The restriction of the map FM to OKj is the
composition of the reference map from OKj to the reference cell OK and the reference
map from OK to Kj. ut

Remark 3.104 (Function Spaces on Macroelements) On the macroelement M, a
finite element space is considered whose functions vanish at the boundary of M

Vh
0;M D ˚

vh 2 H1
0.M/ W vh

ˇ̌
K

2 Rk.K/ 8 K � M
�
; (3.106)

where Rk.K/ is Pk.K/ if K is a simplex and Qk.K/ if K is a quadrilateral
or a parallelepiped. With respect to the pressure, continuous and discontinuous
approximations can be considered

Qh
M D ˚

qh 2 L2.M/\ C.M/ W qh
ˇ̌
K 2 Rl.K/ 8 K � M

�
; or

Qh
M D ˚

qh 2 L2.M/ W qh
ˇ̌
K

2 Rl.K/ 8 K � M
�
; or

Qh
M D ˚

qh 2 L2.M/ W qh
ˇ̌
K 2 Pl.K/ 8 K � M

�
:

Note that in the last spaces the functions from Pl.K/ might be defined on
quadrilaterals or hexahedra. From these spaces, the functions with vanishing integral
mean value are of interest

Qh
0;M D Qh

M \ L20.M/:

Note that the finite element spaces defined on M are conforming such that the
restriction of the bilinear form bh.�; �/ to M is the same as the restriction of b.�; �/ to
M and it will be denoted by bM.�; �/.

Finally, a space which corresponds to the kernel of the discrete gradient operator
on the macroelement is introduced

Qh
grad;M D ˚

qh 2 Qh
M W bM.r � vh; qh/ D 0 8 vh 2 Vh

0;M

�
:
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It is clear that the constant functions of Qh
M are contained in Qh

grad;M . ut
Remark 3.105 (On the Triangulations) The presentation of the analysis will be
restricted for simplicity to the two-dimensional case.

A quasi-uniformity of the family of triangulations has to be assumed, see
Definition C.9. For quadrilaterals, in addition it is supposed that

jcos .�i;K/j � C; C 2 .0; 1/; (3.107)

for all mesh cells K with C independent of K, where �i;K , i D 1; : : : ; 4, are the angles
of K. ut

Lemma 3.106 (Discrete Inf-Sup Condition on Macroelements) Let F OM be a
class of macroelements. Suppose that for every M 2 F OM the space Qh

grad;M is one-
dimensional, consisting only of functions that are constant on M. Then, there is
a positive constant ˇh

OM, depending only on OM and the regularity of the family of
triangulations, such that

sup
vh2Vh

0;Mnf0g

bM.v
h; qh/

krvhkL2.M/

� ˇh
OM
��qh

��
L2.M/ 8 qh 2 Qh

0;M: (3.108)

Proof The proof consists of two steps. In the first step, an inf-sup condition of
form (3.108) is proved for all M 2 F OM where the constants depend on M. Then,
in the second step, it is shown that these constants can be bounded from below by a
constant that depends only on OM and the regularity of the family of triangulations.

Consider a macroelement M 2 F OM and define

ˇh
M WD inf

qh2Qh
0;M ;kqhkL2.M/D1

sup
vh2Vh

0;M ;krvhkL2.M/D1
bM.v

h; qh/ � 0: (3.109)

This is just the inf-sup condition for the macroelement. The normalization is
achieved by including the two factors in the denominator of the usual form of the
inf-sup condition into the bilinear form.

The set
n
vh 2 Vh

0;M with
��rvh

��
L2.M/

D 1
o

is bounded and closed, hence it is a

compact set since Vh
0;M is a finite-dimensional space. Since bM.�; �/ is continuous, it

follows from the Weierstrass Theorem that there is a function Qvh
qh such that for each

qh the supremum is attained

sup
vh2Vh

0;M ;krvhkL2.M/D1
bM.v

h; qh/ D bM. Qvh
qh ; q

h/ � 0:

For the same reasons as for the velocity, also
n
qh 2 Qh

0;M with
��qh

��
L2.M/

D 1
o

is

a compact set and there is a Qqh such that

inf
qh2Qh

0;M ;kqhkL2.M/D1
bM. Qvh

qh ; q
h/ D bM. Qvh

qh ; Qqh/ D ˇh
M � 0:
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Assume that ˇh
M D 0. Then, one gets for Qqh

sup
vh2Vh

0;Mnf0g

bM.v
h; Qqh/

krvhkL2.M/

D sup
vh2Vh

0;M ;krvhkL2.M/D1
bM.v

h; Qqh/ D 0;

from what follows that

bM.v
h; Qqh/ D 0 8 vh 2 Vh

0;M:

Hence, Qqh 2 Qh
grad;M , i.e., Qqh is constant on M. The only constant in Qh

0;M is Qqh D 0.

But then
��Qqh

��
L2.M/

D 0 ¤ 1, which is a contradiction to the definition of the set of

functions for taking the infimum. Hence ˇh
M > 0.

Now, it has to be shown that the infimum of ˇh
M with respect to M can be bounded

uniformly away from zero. To this end, let Oxi, i D 1; : : : ; dM, denote the coordinates
of the vertices of the mesh cells in OM. Then, every M 2 F OM is uniquely determined
by the coordinates of its vertices xi D F OM .Oxi/, i D 1; : : : ; dM . In this way, the inf-
sup constant can be written in the form ˇh

M D ˇ .x1; : : : ; xdM /. The coordinates of
the vertices can be considered as a point X D .x1; : : : ; xdM /

T 2 R
2dM and one can

define a function ˇ.X/ which takes for all admissible coordinates of the vertices of
M 2 F OM the value ˇh

M .
Now, set hM D maxK2M hK , assume hM D 1, and assume that x1 coincides

with the origin in R
2. These assumptions do not restrict generality, since the general

situation can be mapped with x 7! h�1
M .x � x1/ to this case (translation and scaling).

It follows from this construction that all points .x1; : : : ; xdM / are within a given
distance from the origin. Hence, the arguments X form a bounded set. By the
assumptions on the admissible mesh cells, one gets that this set is closed, since
in the conditions (C.5) and (3.107) the equal sign leads to admissible mesh cells.
Consequently, X is closed and altogether, X is a compact set in R

2dM .
The definition of ˇ.X/, see (3.109), shows that the arguments in the bilinear

form change continuously if vertices change continuously, since the arguments are
polynomials on each mesh cell, the bilinear form is continuous, the supremum is
continuous, and the infimum as well. Altogether,ˇ.X/ defines a continuous function
on a compact set. From the first part of the proof it is known that ˇ.X/ > 0 for
all arguments. The Theorem of Weierstrass states that a continuous function on a
compact set takes its infimum, or, equivalently, the infimum is a minimum. Hence,
this minimum is positive and gives the searched inf-sup constant ˇh

OM . �

Definition 3.107 (The Macroelement Condition) The macroelement condition
assumes that there is a fixed set of classes F OMi

, i D 1; : : : ; n, n � 1, such that for
each M 2 F OMi

, i D 1; : : : ; n, it is

Qh
grad;M \ Qh

0;M D f0g : (3.110)

ut
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Remark 3.108 (On the Macroelement Condition) It will be shown below that the
macroelement condition is sufficient for proving that a pair of finite element spaces
satisfies the discrete inf-sup condition. For a single mesh cell, (3.110) was already
used at the end of the proof of Lemma 3.106. ut
Lemma 3.109 (For Each Discrete Pressure Exists a Discrete Velocity with
Certain Properties) Suppose the assumptions of Lemma 3.106 and assume the
macroelement condition (3.110). Further, it will be assumed that the mesh cells
can be group together to macroelements such that one obtains a partition of ˝
consisting of disjoint macroelements with the property that each macroelement
belongs to some class F OMi

, i D 1; : : : ; n.
Then, there is a constant C1 > 0 such that for every qh 2 Qh there is a function

vh
1 2 Vh satisfying

�r � vh
1; q

h
� D

	
r � vh

1;
	

I � Ph
L2;M



qh



D
���
	

I � Ph
L2;M



qh
���2

Q
(3.111)

and

��vh
1

��
V

� C1
���
	

I � Ph
L2;M



qh
���

Q
: (3.112)

Here, Ph
L2;M

is the L2.˝/ projection from Qh onto the space of piecewise (with
respect to the macroelements) constant pressures

QQh
0;M D ˚

qh 2 L20.˝/ W qh
ˇ̌
M

is constant for all M
�
:

Proof Note that in general
	

I � Ph
L2;M



qh 62 Qh, e.g., if Qh is a space consisting of

continuous functions. But it is
	

I � Ph
L2;M



qh
ˇ̌
ˇ
M

2 Qh
0;M for all M 2 F OMi

, as shall

be proved first. It is
	

I � Ph
L2;M



qh 2 Qh

M since qh 2 Qh
M and Ph

L2;M
qh 2 Qh

M , too.

Now, one has to show that the integral mean on M vanishes. By the definition of the
projection operator, it is

X
M

rh
ˇ̌
M

Z
M

	
I � Ph

L2;M



qh.x/ dx D 0 8 rh 2 QQh

0;M;

where the sum is taken over all macroelements. Let QM be an arbitrary macroelement.
Taking

rh
ˇ̌
M

D
(
1C c in QM;
c else;
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where c 2 R is chosen such that
R
˝

rh.x/ dx D 0, gives

0 D .1C c/
Z

QM

	
I � Ph

L2;M



qh.x/ dx C c

X
M;M¤ QM

Z
M

	
I � Ph

L2;M



qh.x/ dx

D
Z

QM

	
I � Ph

L2;M



qh.x/ dx C c

X
M

Z
M

	
I � Ph

L2;M



qh.x/ dx

D
Z

QM

	
I � Ph

L2;M



qh.x/ dx C c

Z
˝

qh.x/ dx � c
Z
˝

Ph
L2;Mqh.x/ dx:

Since qh 2 L20.˝/ and Ph
L2;M

qh 2 L20.˝/, the last two integrals vanish and one gets	
I � Ph

L2;M



qh 2 L20.M/ for an arbitrary macroelement M.

From the inf-sup condition (3.108) on M, it follows that for
	

I � Ph
L2;M



qh
ˇ̌
ˇ
M

there is a vh
M 2 Vh

0;M , more precisely in the orthogonal complement of the discretely

divergence-free functions of Vh
0;M , such that r � vh

M D
	

I � Ph
L2;M



qh
ˇ̌
ˇ
M

and

��rvh
M

��
L2.M/ � C1;M

���
	

I � Ph
L2;M



qh
���

L2.M/
;

which is proved analogously to Corollary 3.44. Analogously to Corollary 3.47, see
also Lemma 3.12 iii), one finds that C1;M D 1=ˇh

OM and setting

C1 D
�

min
iD1;:::;nˇ

h
OMi

��1

leads to a uniform estimate with constant C1 for all classes F OMi
. In addition, it is

bM

	
vh

M;
	

I � Ph
L2;M



qh



D
	
r � vh

M;
	

I � Ph
L2;M



qh



M
D
���
	

I � Ph
L2;M



qh
���2

L2.M/
:

Now, one takes vh
1 2 Vh with vh

1

ˇ̌
M

D vh
M . Summation over all macros gives the

equation on the right-hand side of (3.111) and the estimate (3.112).
Since vh

1 D 0 on the boundary of every macroelement, one gets

	
r � vh

1;P
h
L2;Mqh



D 0 8 qh 2 Qh;

which gives finally the equation on the left-hand side of (3.111). �
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Lemma 3.110 (For Each Discrete Pressure Exists Another Discrete Velocity
with Certain Properties) Let the assumption of Lemma 3.109 be valid and let
k � 2 in (3.106). Then there is a constant C2 > 0 such that for every qh 2 Qh there
is a vh

2 2 Vh such that

	
r � vh

2;P
h
L2;Mqh



D
���Ph

L2;Mqh
���2

Q
and

��vh
2

��
V � C2

���Ph
L2;Mqh

���
Q
:

Proof Let qh 2 Qh be arbitrary. Since Ph
L2;M

qh 2 Q, there is a v 2 V such that

r � v D Ph
L2;Mqh and kvkV � C

���Ph
L2;Mqh

���
Q
; (3.113)

see Lemma 3.12 iii) or Corollary 3.47. Now, an operator Ih W V ! Vh is constructed
with

�r � Ihv; qh
� D �r � v; qh

� 8 qh 2 QQh
0;M;��Ihv

��
V

� C kvkV :

Note that these are the properties of a Fortin operator for QQh
0;M , compare (3.82).

For details of this construction, it is referred to Stenberg (1984). Setting vh
2 D Ihv,

qh D Ph
L2;M

qh, and using the properties (3.113) of v leads to the statement of the
lemma. �

Theorem 3.111 (Macroelement Condition of Stenberg (1984)) Let the assump-
tions of Lemmas 3.109 and 3.110 be satisfied, then the discrete inf-sup condi-
tion (3.51) or (3.52) holds.

Proof Choose qh 2 Qh arbitrarily, let vh
1; v

h
2 2 Vh, and let C1;C2 be the constants

from Lemmas 3.109 and 3.110. Setting

vh D vh
1 C C3v

h
2; C3 D 2

1C C2
2

;

one obtains with (3.111)

�r � vh; qh
� D �r � vh

1; q
h
�C C3

�r � vh
2; q

h
�

D
���
	

I � Ph
L2;M



qh
���2

Q
C C3

	
r � vh

2;P
h
L2;Mqh




CC3
	
r � vh

2;
	

I � Ph
L2;M



qh


:
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Next, Lemma 3.110 is applied to the second term on the right-hand side.
The last term is estimated with the Cauchy–Schwarz inequality (A.10), (3.41),
Lemma 3.110, and Young’s inequality (A.5), leading to
�r � vh; qh

�

�
���
	

I � Ph
L2;M



qh
���2

Q
C C3

���Ph
L2;Mqh

���2
Q

� C3
��r � vh

2

��
L2.˝/

���
	

I � Ph
L2;M



qh
���

Q

�
���
	

I � Ph
L2;M



qh
���2

Q
C C3

���Ph
L2;Mqh

���2
Q

� C3C2
���Ph

L2;Mqh
���

Q

���
	

I � Ph
L2;M



qh
���

Q

�
���
	

I � Ph
L2;M



qh
���2

Q
C C3

���Ph
L2;Mqh

���2
Q

� C3
2

���Ph
L2;Mqh

���2
Q

�C3C2
2

2

���
	

I � Ph
L2;M



qh
���2

Q

D
�
1 � C3C2

2

2

����
	

I � Ph
L2;M



qh
���2

Q
C C3

2

���Ph
L2;Mqh

���2
Q
:

Next, the orthogonality of the L2.˝/ projection is used,

���
	

I � Ph
L2;M



qh
���2

Q
D ��qh

��2
Q

C
���Ph

L2;Mqh
���2

Q
;

as well as the definition of C3, giving

�r � vh; qh
� �

�
1 � C3C2

2

2

���qh
��2

Q
C
�
1 � C3C2

2

2
C C3

2

�
„ ƒ‚ …

>0

���Ph
L2;Mqh

���2
Q

� 1

1C C2
2

��qh
��2

Q
:

Applying the triangle inequality, (3.112), Lemma 3.110, and the stability of the
L2.˝/ projection (C.26) leads to

��vh
��

V
� ��vh

1

��
V

C C3
��vh

2

��
V

� C1
���
	

I � Ph
L2;M



qh
���

Q
C C3C2

���Ph
L2;Mqh

���
Q

� C
��qh

��
Q
:

Combining the last two estimates gives that for all qh 2 Qh there is a vh 2 Vh

with

�r � vh; qh
�

kvhkV

� 1

1C C2
2

��qh
��2

Q

kvhkV

� 1

C
�
1C C2

2

� ��qh
��

Q :
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Taking the supremum with respect to Vh on both sides of this estimate, one obtains
that the discrete inf-sup condition (3.52) is satisfied. �

Remark 3.112 (Relaxing the Condition on the Macroelements) The condition that
the macroelements should be disjoint can be relaxed, e.g., see Stenberg (1987,
1990). It is sufficient that there is a fixed number m such that each mesh cell does
not belong to more than m macroelements. ut

3.6 Inf-Sup Stable Pairs of Finite Element Spaces

Remark 3.113 (Contents) This section present pairs of inf-sup stable finite element
spaces. For some of these pairs, the proof of the discrete inf-sup condition will be
given in detail. ut

3.6.1 The MINI Element

Remark 3.114 (The MINI Element) The MINI element is defined on simplicial
grids and it is given by

Vh D P1 ˚ Vh
bub; Qh D P1; (3.114)

where Vh
bub is a space consisting of local bubble functions

Vh
bub D

(
vh

bub W supp
�
vh

bub

� D K; vh
bub

ˇ̌
K

D ˛

dC1Y
iD1

�i;K 2 T h; ˛ 2 R

)
;

where �i are the barycentric coordinates of the simplex K, see Definition B.31. It
follows that

vh
bub

ˇ̌
K

2 PdC1.K/\ H1
0.K/:

This pair of finite element spaces was introduced by Arnold et al. (1984). It is the
lowest order conforming inf-sup stable pair of finite element spaces.

The basic idea for the construction of the MINI element consists in starting
with standard finite element spaces for velocity and pressure and then enriching
the velocity space such that the discrete inf-sup condition (3.51) is satisfied. The
fulfillment of the discrete inf-sup condition will be proved with the construction of
a Fortin operator, see Lemma 3.78. ut
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Lemma 3.115 (Properties of Bubble Functions) Let K 2 T h be a simplex and let

vh
bub.x/ D

dC1Y
iD1

�i.x/; x 2 K;

be a bubble function on K. Then, the following estimates hold

��vh
bub

��
L2.K/

� Chd
K ; (3.115)

��rvh
bub

��
L2.K/

� Ch.d�2/=2
K ; (3.116)

Z
K
vh

bub.x/ dx � C jKj ; (3.117)

where the constants are independent of K.

Proof • Estimate (3.115). This estimate follows directly by Hölder’s inequal-
ity (A.9)

��vh
bub

��
L2.K/ � ��vh

bub

��
L1.K/ k1kL1.K/ D ��vh

bub

��
L1.K/ jKj D Chd

K : (3.118)

• Estimate (3.116). Since K is a simplex, there is an affine transform (B.18)
to the reference simplex OK. Applying this transform to the integral gives, see
also (B.34),

��rvh
bub

��2
L2.K/ D

Z
K

�rvh
bub � rvh

bub

�
.x/ dx

D jdet.B/j
Z

OK
B�Tr� Ovh

bub.�/ � B�Tr� Ovh
bub.�/ d�;

where B is the matrix of the affine transform. Using now the triangle inequality,
the Cauchy–Schwarz inequality (A.2), and the compatibility of the Euclidean
vector norm and the spectral matrix norm yields

��rvh
bub

��2
L2.K/

� jdet.B/j
Z

OK
ˇ̌
B�Tr� Ovh

bub.�/ � B�Tr� Ovh
bub.�/

ˇ̌
d�

� jdet.B/j
Z

OK

��B�Tr� Ovh
bub.�/

��2
2

d�

� jdet.B/j��B�T
��2
2

Z
OK
�� Ovh

bub.�/
��2
2

d�:
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The last factor does not depend on K and it can be considered to be a constant.
Applying finally (C.6) and (C.9) gives

��rvh
bub

��2
L2.K/

� Chd
Kh�2

K D Chd�2
K :

• Estimate (3.117). The bubble functions are polynomials of degree d C 1 in K.
Hence, there are quadrature rules with positive weights and nodes in the interior
of K such that they can be integrated exactly

Z
K
vh

bub.x/ dx D jKj
N0X

iD1
!iv

h
bub.xi/;

see Remark 3.116, i.e., !i > 0, vh
bub.xi/ > 0, i D 1; : : : ;N0. It follows that

ˇ̌
ˇ̌
Z

K
vh

bub.x/ dx

ˇ̌
ˇ̌ D jKj

ˇ̌
ˇ̌
ˇ

N0X
iD1

!iv
h
bub.xi/

ˇ̌
ˇ̌
ˇ D jKj

N0X
iD1

!iv
h
bub.xi/

� jKj min
iD1;:::;N0

vh
bub.xi/

N0X
iD1

!i D C jKj :

�

Remark 3.116 (Concerning the Bubble Functions)

• One can show with standard calculus that a bubble function takes its maximum
in the barycenter of K. Then, the factor in (3.118) is

��vh
bub

��
L1.K/

D 1

27
if d D 2;

��vh
bub

��
L1.K/

D 1

216
if d D 3:

• In Cools and Rabinowitz (1993), one can find that there are quadrature rules with
positive weights and nodes in the interior of a simplex for polynomials of degree
2 � k � 7 for d D 2 and of degree 1 � k � 5 for d D 3. For triangles, the
so-called Gauss3 quadrature rule can be used, see Stroud (1971), which is exact
for polynomials of order 5 and possesses seven nodes.

ut
Remark 3.117 (Generalization of the Fortin Criterion (3.82)) The first part of the
Fortin criterion (3.82) can be written in the form

�
Z
˝

r � �v � Ph
Forv

�
qh dx D 0 8 v 2 V; 8 qh 2 Qh:

It follows, for conforming finite element spaces and a continuous finite element
pressure space, using integration by parts, that

Z
˝

�
v � Ph

Forv
� � rqh dx D 0 8 v 2 V; 8 qh 2 Qh: (3.119)
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The first step of the construction of the Fortin operator consists in replacing the
global criterion (3.119) by a set of local criteria

Z
K

�
v � Ph

Forv
� � rqh dx D 0 8 v 2 V; 8 qh 2 Qh; 8 K 2 T h: (3.120)

Clearly, (3.120) induces (3.119), but not vice versa. ut
Remark 3.118 (Enrichment of the Velocity Space) Let Qh.K/ D Pk.K/, then it
follows that rqh 2 Pk�1.K/. It is clear that (3.120) can be satisfied, for fixed Qh, the
easier the larger the space Vh.K/ is, since for a larger space Vh.K/ there are more
possibilities to define Ph

Forv. The idea of Arnold et al. (1984) was to start for Vh.K/
also with polynomials of order k and then to extend this space locally, i.e., with
functions whose support is restricted to K, until the velocity space is sufficiently
large to satisfy (3.120). ut
Remark 3.119 (Local Condition (3.120) for the MINI Element) For the MINI
element (3.114), condition (3.120) simplifies to

Z
K

�
v � Ph

Forv
�

dx D 0 8 v 2 V; 8 K 2 T h; (3.121)

since the gradient of the local discrete pressure is a constant. ut
Remark 3.120 (Construction of the Fortin Operator) The construction of the Fortin
operator is based on the Clément interpolation operator Ph

Cle defined (C.17), with
the modification to preserve homogeneous Dirichlet boundary conditions, see
Remark 3.83. This operator satisfies the interpolation estimate (C.18). Consider a
quasi-uniform family of triangulations. Then, the number of mesh cells in the set
!K from (C.18) is bounded uniformly from above and one gets the global estimates

X
K2T h

h�2
K

��v � Ph
Clev

��2
L2.K/ � C kvk2H1.˝/ 8 v 2 H1.˝/; (3.122)

X
K2T h

��r �
v � Ph

Clev
���2

L2.K/
� C kvk2H1.˝/ 8 v 2 H1.˝/: (3.123)

From the triangle inequality and (3.123), one gets in particular the stability estimate

X
K2T h

��rPh
Clev

��2
L2.K/

(3.124)

� 2

 X
K2T h

��r �
v � Ph

Clev
���2

L2.K/
C
X

K2T h

krvk2L2.K/
!

� C kvk2H1.˝/ :
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Now, the Fortin operator is defined by

Ph
Forv.x/ D Ph

Clev.x/C ˛Kv
h
bub.x/; (3.125)

with

˛K D
R

K

�
v � Ph

Clev
�
.x/ dxR

K v
h
bub.x/ dx

: (3.126)

This construction is of form (3.87) with Ph
2 just being the integral operator on K

equipped with some scaling. ut
Theorem 3.121 (The Discrete Inf-Sup Condition for the MINI Element) Con-
sider a quasi-uniform family of triangulations. Then, the operator (3.125) is a
Fortin operator. Hence, the MINI element (3.114) satisfies the discrete inf-sup
condition (3.51) or equivalently (3.52).

Proof One has to verify the conditions stated in (3.82). Instead of the first of these
conditions, the more general condition (3.121) will be considered.

• Condition (3.121). Inserting (3.125) and (3.126) in (3.121) yields for an arbitrary
mesh cell KZ

K

�
v � Ph

Forv
�
.x/ dx

D
Z

K

�
v � Ph

Clev � ˛Kv
h
bub

�
.x/ dx

D
Z

K

�
v � Ph

Clev
�
.x/ dx � ˛K

Z
K
vh

bub.x/ dx

D
Z

K

�
v � Ph

Clev
�
.x/ dx �

R
K

�
v � Ph

Clev
�
.x/ dxR

K v
h
bub.x/ dx

Z
K
vh

bub.x/ dx D 0:

• Second condition of (3.82). The triangle inequality and the homogeneity of a
norm, Definition A.6, gives

��rPh
Forv

��
L2.K/

� ��rPh
Clev

��
L2.K/

C k˛Kk2
��rvh

bub

��
L2.K/

; (3.127)

where k˛Kk2 is the Euclidean norm of the vector-valued constant ˛K . One
obtains for the second term, using (3.126), (3.116), the Cauchy–Schwarz inequal-
ity (A.10), (3.117), and jKj D Chd

K

k˛Kk2
��rvh

bub

��
L2.K/

� C

��R
K

�
v � Ph

Clev
�
.x/ dx

��
2ˇ̌R

K v
h
bub.x/ dx

ˇ̌ h.d�2/=2
K

� C

��v � Ph
Clev

��
L2.K/ jKj1=2

jKj h.d�2/=2
K
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� C
��v � Ph

Clev
��

L2.K/
hd=2�1�d=2

K

D Ch�1
K

��v � Ph
Clev

��
L2.K/

:

Inserting this estimate in (3.127), taking the square, using Young’s inequal-
ity (A.5), and summing over all mesh cells gives

��Ph
Forv

��2
V

� C

 X
K2T h

��rPh
Clev

��2
L2.K/

C h�2
K

��v � Ph
Clev

��2
L2.K/

!
:

Now the proof is finished by inserting (3.124), (3.122), and applying Poincaré’s
inequality (A.12).

�

Remark 3.122 (To MINI-type Elements)

• Using the MINI element is quite popular.
• The construction of the MINI element can be extended to higher order finite

elements, see Arnold et al. (1984). But to the best of our knowledge, the use of
these higher order elements is not popular.

• It is mentioned in Boffi et al. (2008, Section 4.6) that almost any pair of finite
element spaces can be stabilized by enriching the velocity space with bubble
functions.

ut

3.6.2 The Family of Taylor–Hood Finite Elements

Remark 3.123 (The Family of Taylor–Hood Finite Element Spaces) The family of
Taylor–Hood finite element spaces on triangular and tetrahedral grids is given by
Pk=Pk�1, k � 2, and on quadrilateral and hexahedral grids by Qk=Qk�1, k � 2.
That means, the pressure is approximated by a continuous function. Hence, it is
bh .�; �/ D b .�; �/ and k�kVh D k�kV .

In Hood and Taylor (1974), the use of the Q.8/
2 =Q1 pair of finite element spaces

was proposed for solving the Navier–Stokes equations on quadrilateral meshes,
where the Q.8/

2 finite element is the Q2 finite element without internal degree of
freedom, see Fig. 3.6. It was proved in Stenberg (1984) with the macroelement
technique that the Q.8/

2 =Q1 pair of finite element spaces satisfies the discrete inf-
sup condition on meshes consisting of rectangles (such that the domain ˝ is just a
union of rectangles).

The pairs of Taylor–Hood finite element spaces are among the most popular pairs
for discretizing equations modeling incompressible flows, in particular the pairs for
k D 2. A reason for this popularity is certainly that the implementation of the P2=P1



3.6 Inf-Sup Stable Pairs of Finite Element Spaces 99

Fig. 3.6 The finite element
Q
.8/
2

and Q2=Q1 finite element pairs is comparatively easy compared with other inf-sup
stable pairs of finite elements.

Note that it was already proved that the pairs P1=P0 and Q1=Q0 are not inf-sup
stable, see Examples 3.70 and 3.71. ut
Remark 3.124 (Historical Remarks Concerning Pk=Pk�1, k � 2) Because of their
popularity there were already rather early attempts to prove the discrete inf-sup
condition for pairs of Taylor–Hood finite element spaces.

In Bercovier and Pironneau (1979) a discrete inf-sup condition for the pair P2=P1
in two dimensions was proved with wrong norms

sup
vh2Vhnf0g

b.vh; qh/

kvhkL2.˝/

� C
��rqh

��
L2.˝/

8 qh 2 Qh: (3.128)

The connections of (3.128) to the discrete inf-sup condition (3.51) are studied in
Guzmán et al. (2013).

In proof presented in Bercovier and Pironneau (1979), the square of the gradient
of the pressure is estimated by a sum of squares of derivatives on interior edges, see
Bercovier and Pironneau (1979, estimate (2.11)). This estimate requires that there
are at least two interior edges for each triangle and hence, it was assumed that each
triangle possesses a vertex that is not on @˝ . In Verfürth (1984), the correct discrete
inf-sup condition (3.51) was proved, based on (3.128) and the criterion formulated
in Theorem 3.94. The assumptions include still that all triangles have at least one
interior vertex. Then, in Stenberg (1990) and Brezzi and Falk (1991) the discrete
inf-sup condition was proved for P3=P2 in two dimensions. The analysis of Brezzi
and Falk (1991) requires still some mild assumption concerning triangles with two
edges on the boundary. Finally, a proof for arbitrary order spaces Pk=Pk�1, k � 2,
without restrictions with respect to triangles with two edges on @˝ was presented
in Boffi (1994). This proof uses also Theorem 3.94. A Fortin operator for the P2=P1
pair of spaces in two dimensions was constructed in Mardal et al. (2013).

The inf-sup condition for P2=P1 in three dimensions was proved in Stenberg
(1987) with the macroelement technique and the analysis was extended to higher
order Taylor–Hood pairs in Boffi (1997). It is required in the analysis that each
tetrahedron has at least one vertex in the interior of ˝ . The presentation in this
section follows Boffi et al. (2013, Section 8.8.2) and Boffi (1994). ut
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1

K1 K2

y

b

x1
a

0−1

c

Fig. 3.7 Proof of Lemma 3.125. The situation with two triangles

Lemma 3.125 (Two-dimensional Case: Necessary Condition on the Triangula-
tion) Let ˝ � R

2 be a polygonal domain and let fT hg be a regular family of
triangulations of ˝ with triangles. Then the pair of spaces Pk=Pk�1, k � 2, does
not satisfy the discrete inf-sup condition (3.51) if the triangulation consists of less
than three triangles.

Proof The cases of T h consisting of one or two triangles will be studied separately.
T h consists of one triangle. The discrete inf-sup condition is equivalent to the

condition r � Vh D Qh, see Lemma 3.12. This condition is equivalent to the
satisfaction of the two conditions r � Vh 	 Qh and Qh 	 r � Vh.

Consider first the reference mesh cell OK and the vertex 0 at the origin. In this
vertex, all derivatives of vh 2 Vh are determined by the homogeneous boundary
conditions of Vh, i.e., all derivatives of vh vanish and in particular it is r �vh.0/ D 0.
However, the value qh.0/ of an arbitrary qh 2 Qh is not necessarily zero and hence
Qh 6	 r � Vh.

For a general mesh cell K consider the vertex a1 which is mapped to the origin.
From (B.27) or (B.31), it follows that

�r � vh
�
.a1/ D �

DF�1
K .FK.Ox//

�T W DOx Ovh.0/ D 0;

because all derivatives of Ovh vanish in the origin. With the same argument as before,
it follows that Qh 6	 r � Vh.

T h consists of two triangles. For this case, the situation as shown in Fig. 3.7
is considered. Similarly to the case with one triangle, the general situation can be
mapped with suitable affine mappings of K1 and K2 to the situation depicted in
Fig. 3.7.

The barycentric coordinates, see Definition B.31, are given by

�1;a D 1C x � y; �1;c D y;
�2;a D 1 � x � y; �2;b D x; �2;c D y:

(3.129)
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Let L.x/ be the Legendre polynomial of degree .k � 2/ on .0; 1/ with respect to the
weight x.1 � x/3, i.e., it holds

Z 1

0

x.1 � x/3L.x/pl.x/ dx D 0 (3.130)

for all polynomials of degree l < k � 2. With the help of L.x/, an element from Qh

is defined which does not depend on y and for which it holds

@xqh.x/ D
(

�L.�x/ if x < 0;

L.x/ if x � 0:
(3.131)

It will be shown that this pressure is L2.˝/ orthogonal r � Vh.
Considering the numerator in the discrete inf-sup condition (3.51), one finds with

integration by parts that

�r � vh; qh
� D � �vh;rqh

� D �
Z

K1[K2

�
vh
1@xqh

�
.x/ dx: (3.132)

Hence, only the first component of vh needs to be taken into account. Since vh
1

belongs to the Taylor–Hood space, it has the following properties.

• It is on each mesh cell a polynomial of degree k.
• It vanishes at all edges of K1 and K2 which are not the common edge.

This property can be imposed on each mesh cell by multiplying an arbitrary
polynomial of degree .k �2/ with the appropriate barycentric coordinates, which
are linear polynomials.

• It is continuous at x D 0. This property is achieved by decomposing the arbitrary
polynomial of degree .k � 2/ into an arbitrary polynomial of degree .k � 2/ with
respect to y and a polynomial of degree .k � 2/ which vanishes at x D 0.

These requirements lead to the following general form of vh
1

vh
1.x/ D

(
�1;a�1;c . Opk�2. y/C xQpk�3.x; y// if x 2 K1;

�2;a�2;c . Opk�2. y/C xpk�3.x; y// if x 2 K2;

where the subscript indicates the degree of the polynomials. This expression can
be inserted in (3.132), One gets for K1 with (3.131), the substitution  D �x, the
definition of the barycentric coordinates (3.129), and switching the lower and upper
bound of the integral

�
Z

K1

�1;a�1;c . Opk�2.y/C xQpk�3.x; y// L.�x/ dx

D �
Z 0

�1

Z 1Cx

0

.1C x � y/y . Opk�2.y/C xQpk�3.x; y// L.�x/ dy dx



102 3 Finite Element Spaces for Linear Saddle Point Problems

D
Z 0

1

Z 1�

0

.1 �  � y/y . Opk�2.y/ �  Qpk�3.�; y// L./ dy d

D �
Z

K2

�2;a�2;c . Opk�2.y/� xQpk�3.�x; y// L.x/ dx:

Inserting this expression in (3.132), one obtains that the term with Opk�2.y/ vanishes
and one gets

�r � vh; qh
� D �

Z
K2

�2;a�2;b�2;c .pk�3.x; y/� Qpk�3.�x; y// L.x/ dx

D �
Z 1

0

xL.x/

�Z 1�x

0

.1 � x � y/yMpk�3.x; y/dy

�
dx; (3.133)

where Mpk�3.x; y/ is a polynomial of degree .k � 3/. With a direct computation, one
finds for 0 � i C j � k � 3

Z 1�x

0

.1 � x � y/yxiyj dy D xi.1 � x/
.1� x/jC2

j C 2
� xi .1 � x/jC3

j C 3

D .1 � x/3
xi.1 � x/j

.j C 2/.j C 3/
D .1� x/3pk�3.x/;

where pk�3.x/ is a polynomial of degree .k � 3/. Inserting this expression in (3.133)
gives together with (3.130)

�r � vh; qh
� D �

Z 1

0

xL.x/.1 � x/3pk�3.x/ dx D 0:

Hence, the discrete inf-sup condition (3.51) cannot be satisfied. �
Lemma 3.126 (Decomposition of the Domain) Let ˝ D ˝1 [˝2 and set

Vh .˝i/ D ˚
vh 2 Vh W vh D 0 in ˝ n˝i

�
; i D 1; 2:

Suppose that the inf-sup conditions

sup
vh2Vh.˝1/nf0g

R
˝1

�r � vh
�

qh dx

krvhkL2.˝1/

� ˇh
1

��qh
��

L2.˝1/
8 qh 2 Qh;

sup
vh2Vh.˝2/nf0g

R
˝2

�r � vh
�

qh dx

krvhkL2.˝2/

� ˇh
2

��qh
��

L2.˝2/
8 qh 2 Qh;
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hold. Then the inf-sup condition

sup
vh2Vh.˝/nf0g

�r � vh; qh
�

krvhkL2.˝/

� ˇh
is

��qh
��

L2.˝/
8 qh 2 Qh (3.134)

is valid with ˇh
is D minfˇh

1; ˇ
h
2g=2. If ˝1 and ˝2 are disjoint, then ˇh

is D
minfˇh

1; ˇ
h
2g.

Proof Let qh 2 Qh be given. From the satisfaction of the inf-sup condition in the
subdomains, it follows from (3.46) that there is a function vh

1 2 Vh.˝1/ and a
function vh

2 2 Vh.˝1/ such that

Z
˝i

�r � vh
i

�
qh dx D ��qh

��2
L2.˝i/

;
��rvh

i

��
L2.˝i/

� 1

ˇh
i

��qh
��

L2.˝i/
; i D 1; 2:

(3.135)
The constant C in (3.46) is specified in the proof of Theorem 3.46.

Let vh D vh
1 C vh

2 2 Vh, then one gets with the first inequality of (3.135)

�r � vh; qh
� D

Z
˝1

�r � vh
1

�
qh dx C

Z
˝2

�r � vh
2

�
qh dx

D ��qh
��2

L2.˝1/
C ��qh

��2
L2.˝2/

� ��qh
��2

L2.˝/
: (3.136)

The triangle inequality, the second inequality of (3.135), and estimating the norms
of the pressure in the subdomains by the norm in ˝ from above yields

��rvh
��

L2.˝/ � ��rvh
1

��
L2.˝1/

C ��rvh
2

��
L2.˝2/

� 1

ˇh
1

��qh
��

L2.˝1/
C 1

ˇh
2

��qh
��

L2.˝2/

� max

�
1

ˇh
1

;
1

ˇh
2

 	��qh
��

L2.˝1/
C ��qh

��
L2.˝2/




� 2

min
˚
ˇh
1; ˇ

h
2

� ��qh
��

L2.˝/
: (3.137)

Using (3.136) and (3.137), one obtains for all qh 2 Qh that there is a vh 2 Vh such
that

�r � vh; qh
�

krvhkL2.˝/

� 1

2
min

˚
ˇh
1 ; ˇ

h
2

� ��qh
��2

L2.˝/

kqhkL2.˝/

D 1

2
min

˚
ˇh
1 ; ˇ

h
2

� ��qh
��

L2.˝/
:

(3.138)
Taking the supremum over Vh on both sides of this inequality proves (3.134).
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If the subdomains are disjoint, one does not need to estimate the norms of the
pressure in the subdomains by the norm in˝ but one has with the second inequality
of (3.135)

��rvh
��2

L2.˝/ D ��rvh
1

��2
L2.˝1/

C ��rvh
2

��2
L2.˝2/

�
�
1

ˇh
1

�2 ��qh
��2

L2.˝1/
C
�
1

ˇh
2

�2 ��qh
��2

L2.˝2/

� max

(�
1

ˇh
1

�2
;

�
1

ˇh
2

�2) 	��qh
��2

L2.˝1/
C ��qh

��2
L2.˝2/




D min
n�
ˇh
1

�2
;
�
ˇh
2

�2o ��qh
��2

L2.˝/
:

Taking the square root and applying the same reasoning as in (3.138) gives the last
statement of the lemma. �

Remark 3.127 (More than Two Subdomains) If ˝ is decomposed into more than
two subdomains, a result which is similar to that of Lemma 3.126 can be proved.
Estimate (3.136) is performed in the same way. In estimate (3.137), one gets a larger
factor, depending on the number of overlappings of the subdomains. Consequently,
one obtains a smaller factor in the corresponding global inf-sup condition.

The proof of the discrete inf-sup condition for the Taylor–Hood pair of spaces
Pk=Pk�1, k � 2, starts with a decomposition of the triangulation into macroelements
consisting of three adjacent triangles. It is remarked in Boffi et al. (2013, p. 499)
that it is possible to prove that each triangulation of a polygonal domain can be
represented as the disjoint union of triplets of adjacent triangles and of polygons
than can be obtained as unions of triplets with at most three intersections. Hence,
the maximal number of overlappings that have an impact on the constant in
estimate (3.137) is independent of the triangulation. Consequently, the scaling factor
of the global inf-sup constant is independent of the triangulation. ut
Theorem 3.128 (Two-dimensional Case: Sufficient Condition on the Triangu-
lation) Let ˝ � R

2 be a polygonal domain and let fT hg be a regular family of
triangulations of ˝ with triangles. The pair of spaces Pk=Pk�1, k � 2, satisfies the
discrete inf-sup condition (3.51) if the triangulation contains at least three triangles.

Proof Let T h be a member of the family of quasi-uniform triangulations of ˝ .
For proving the discrete inf-sup condition (3.51), it follows from Lemma 3.126
and Remark 3.127 that it is sufficient to prove the discrete inf-sup condition for
an arbitrary triplet of triangles.

Consider an arbitrary triangle K2 2 T h with the adjacent triangles K1 and K3.
The triangles are mapped with the reference map F�1

K2
such that K2 becomes the

reference triangle, see Fig. 3.8. For simplicity of notation, the triangles will be still
denoted with K1;K2;K3 and the domain spanned is ! D K1 [ K2 [ K3.
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1

K2

y

d

x1

e

b

c

K3

0

a K1

Fig. 3.8 Proof of Theorem 3.128. The situation with three triangles

The main idea for proving the discrete inf-sup condition for Vh D Vh.!/ and
Qh D Qh.!/ consists in applying the criterion formulated in Theorem 3.94. To this
end, it is sufficient to prove the conditions given in Corollary 3.95. The proof is
performed by induction, starting with k D 2.

Preliminaries The barycentric coordinates in the mesh cell K1 which vanish on the
edge Ea;b are denoted by �1;a;b and so on.

Let L1;l;x.x/ be the Legendre polynomial of degree l in Œxa; 0�, with xa being the
x-coordinate of the vertex a, with respect to the measure �1;x, where the measure is
defined by

Z 0

xa

f .x/ d�1;x D
Z

K1

�1;a;b.x/�1;a;e.x/f .x/ dx; 8 f W Œxa; 0� ! R:

The Legendre polynomial satisfies

0 D
Z 0

xa

L1;l;x.x/pk.x/ dx D
Z

K1

�1;a;b.x/�1;a;e.x/1;l;x.x/pk.x/ dx (3.139)

for all polynomials pk.x/ with degree k < l. In the same way, other Legendre
polynomials are defined: L2;l;x.x/ with �2;d;e; �2;b;d, L2;l;y.y/ with �2;d;e; �2;b;e, and
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L3;l;y.y/ with �3;b;c; �3;c;d. All Legendre polynomials are normalized such that they
take the value 1 if the argument is 0.

Start of the Induction: The Case k D 2 Given an arbitrary qh 2 Qh then the function
vh D �

vh
1 ; v

h
2

�T
is defined triangle by triangle in the following way

vh
1.x; y/ D

8̂
<̂
ˆ̂:

��1;a;b�1;a;e
��rqh

��
L2.!/

� in K1;

��2;d;e�2;b;d
��rqh

��
L2.!/ � � �2;d;e�2;b;e@xqh in K2;

��3;b;c�3;c;d@xqh in K3;

vh
2.x; y/ D

8̂
<̂
ˆ̂:

��1;a;b�1;a;e@yqh in K1;

��2;d;e�2;b;e
��rqh

��
L2.!/

� � �2;d;e�2;b;d@yqh in K2;

��3;b;c�3;c;d
��rqh

��
L2.!/

� in K3:

The factors � and � are chosen in f�1; 1g such that the terms

�1 D �
��rqh

��
L2.!/

�Z
K1

�1;a;b�1;a;e@xqh dx C
Z

K2

�2;d;e�2;b;d@xqh dx
�
;

�1 D �
��rqh

��
L2.!/

�Z
K2

�2;d;e�2;b;e@yqh dx C
Z

K3

�3;b;c�3;c;d@yqh dx
�

are non-negative. The function vh belongs to Vh:

• In each mesh cell, each term is the product of two barycentric coordinates, which
are linear polynomials, and constant factors. Thus, vh is in each mesh cell a
polynomial of at most degree 2.

• The function vh vanishes on @! since in its definition the respective barycentric
coordinates that vanish on @! are involved.

• Finally, vh is continuous at the edges Eb;e and Eb;d. Consider for example Eb;e,
then it holds on this edge that �1;a;e D �2;d;e and �1;a;b D �2;b;d. In addition, from
the continuity of qh it follows that the tangential derivative @xqh is continuous.
Hence, the continuity of vh at Eb;e is proved. A similar reasoning can be applied
for Eb;d.

Now, the inequalities (3.99) have to be shown. Using that the barycentric
coordinates take values in Œ0; 1� and the triangle inequality gives

��vh
��2

L2.!/

D
Z

K1

�
vh
1

�2 C �
vh
2

�2
dx C

Z
K2

�
vh
1

�2 C �
vh
2

�2
dx C

Z
K3

�
vh
1

�2 C �
vh
2

�2
dx

�
Z

K1

	��rqh
��2

L2.!/
C �

@yqh
�2


dx
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C2
Z

K2

	
2
��rqh

��2
L2.!/

C �
@xqh

�2 C �
@yqh

�2

dx

C
Z

K3

	�
@xqh

�2 C ��rqh
��2

L2.!/



dx

� C
h
j!j ��rqh

��2
L2.!/

C ��rqh
��2

L2.K1/
C ��rqh

��2
L2.K2/

C ��rqh
��2

L2.K3/

i

� C2
��rqh

��2
L2.!/ : (3.140)

By this estimate it is obvious that the constant C2 does not depend on qh and vh.
To prove the other inequality in (3.99), one starts by showing that from

b
�
vh; qh

� D 0 it follows that rqh D 0. A straightforward calculation gives

0 D �b
�
vh; qh

� D
Z
!

�r � vh
�

qh dx D �
Z
!

vhrqh dx

D
Z

K1

�1;a;b�1;a;e
�
@yqh

�2
dx C �1

C
Z

K2

	
�2;d;e�2;b;e

�
@xqh

�2 C �2;d;e�2;b;e
�
@yqh

�2

dx

C�1 C
Z

K3

�3;b;c�3;c;d
�
@xqh

�2
dx: (3.141)

Since the barycentric coordinates are positive in the interior of the mesh cells and �1
and �1 are defined to be non-negative, it follows that all terms have to vanish. One
gets immediately @yqh D 0 in K1, @xqh D @yqh D 0 in K2, and @xqh D 0 in K3. From
�1 D 0 and @xqh D 0 in K2, it follows that @xqh D 0 in K1. With the same argument,
one obtains @yqh D 0 in K3. Altogether rqh D 0 in ! and there is a constant C1

�
qh
�

such that

b.vh; qh/ � C1
�
qh
� ��rqh

��2
L2.!/

:

It has to be shown that one can choose a positive constant C1 independent of qh.
To this end, one observes first that considering the function ˛qh with ˛ 2

R n f0g, one obtains with the velocity ˛vh also an estimate with the constant
C1
�
qh
�
. Hence, all possible values of C1

�
qh
�

are taken on each sphere Sq Dn
qh 2 Qh W ��qh

��
L2.˝/

D q > 0
o
. Since Qh is a finite-dimensional space, Sq is a

compact set.
On the other hand, considering the function qh

" D qh C "�h with arbitrary but
fixed  h 2 Qh, defining a function vh

" in the same spirit as vh, then one gets an
estimate with a constant C1

�
qh
"

�
. It is lim"!0 qh

" D qh and because of the continuity
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of the norm and the linearity of the differentiation one finds lim"!0 v
h
" D vh. It

follows with the linearity of the integration and the continuity of the norm that

lim
"!0

�b
�
vh
"; q

h
"

�
��rqh

"

��2
L2.!/

D lim
"!0

� R! vh
"rqh dx � "

R
! v

h
"r h dx��rqh

"

��2
L2.!/

D � R! vhrqh dx��rqh
��2

L2.!/

� C1
	

qh


:

Hence, one can choose C1
�
qh
"

�
such that C1

�
qh
"

� ! C1
�
qh
�

and the constants
C1
�
qh
�

can be chosen as a continuous function with respect to qh.
Since C1

�
qh
�

takes all of its values on Sq, C1
�
qh
�

is continuous and Sq is
compact, it follows from the Theorem of Weierstrass that C1

�
qh
�

takes its infimum
and this infimum is the minimum of C1

�
qh
�
. Because all values of C1

�
qh
�

are
positive, it follows now that

C1 D inf
qh2Sq

C1
�
qh
� D min

qh2Sq

C1
�
qh
�
> 0

is a positive constant that satisfies the first inequality in (3.99) independent of qh.
Since the analysis was performed for the reference configuration depicted in

Fig. 3.8, C1 does not depend on the mesh width. Transforming this configuration
to a configuration in a domain ˝ requires the transformation of the numerator and
of the denominator of the discrete inf-sup condition. Mapping the numerator gives
the factor jdet.BK/j�1, where BK is the matrix of the affine transform, see (B.35).
Both terms of the denominator introduce the factor jdet.BK/j�1=2, compare (B.32)
and (B.34). Hence, these factors cancel and the inf-sup constant for the configuration
in ˝ is independent of the mesh width.

Induction: The Case k > 2 Hypothesis of the induction: The statement of
Theorem 3.128 is proved for Pk�1=Pk�2.

Consider again an arbitrary function qh 2 Qh. It will be assumed that there is at
least one triangle where qh is exactly of degree .k �1/. Otherwise, the result follows
from the hypothesis of the induction. A corresponding function vh is defined in a
similar way as for k D 2

vh
1.x; y/ D

8̂
<̂
ˆ̂:

��1;a;b�1;a;e
��rqh

��
L2.!/

L1;k�2;x� in K1;

��2;d;e�2;b;d
��rqh

��
L2.!/ L2;k�2;x� � �2;d;e�2;b;e@xqh in K2;

��3;b;c�3;c;d@xqh in K3;

vh
2.x; y/ D

8̂
<̂
ˆ̂:

��1;a;b�1;a;e@yqh in K1;

��2;d;e�2;b;e
��rqh

��
L2.!/

L2;k�2;y� � �2;d;e�2;b;d@yqh in K2;

��3;b;c�3;c;d
��rqh

��
L2.!/

L3;k�2;y� in K3;
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with the factors � and � chosen in f�1; 1g such that the terms

�1 D �
���rqh

���
L2.!/

 Z
K1
�1;a;b�1;a;eL1;k�2;x@xqh dx C

Z
K2
�2;d;e�2;b;dL2;k�2;x@xqh dx

!
;

�1 D �
���rqh

���
L2.!/

 Z
K2
�2;d;e�2;b;eL2;k�2;y@yqh dx C

Z
K3
�3;b;c�3;c;dL3;k�2;y@yqh dx

!

are non-negative. Using similar arguments as in the case k D 2, one shows that
vh 2 Vh. The additional arguments are the followings:

• The restriction of vh to a mesh cell is at most a polynomial of degree k since
the Legendre polynomials are polynomials of degree .k � 2/ and the barycentric
coordinates are polynomials of degree 1.

• Because of the normalization, the Legendre polynomials L1;k�2;x and L2;k�2;x take
the same values at x D 0. Likewise L2;k�2;y and L3;k�2;y take the same value at
y D 0. These properties ensure the continuity of vh.

The proof of the second estimate of (3.99) is performed in the same way
as (3.140), using in addition that the Legendre polynomials are bounded from above,
since they are continuous functions, and these bounds do not depend on qh and vh.

Assuming now that b
�
vh; qh

� D 0, one finds with an analog of the calcula-
tion (3.141) and with the same arguments as for k D 2 that @yqh D 0 in K1,
@xqh D @yqh D 0 in K2, @xqh D 0 in K3, �1 D �1 D 0. From �1 D 0 and @xqh D 0

in K2, one gets

Z
K1

�1;a;b�1;a;eL1;k�2;x@xqh dx D 0:

The property (3.139) gives that @xqh is in K1 a polynomial of degree less than .k�2/.
It follows that qh is in K1 a polynomial of degree less than .k � 1/. In the same way,
one finds that qh is in K3 a polynomial of degree less than .k � 1/. Altogether, qh is
in each mesh cell a polynomial of degree less than .k � 1/, in contradiction to the
assumption. Hence there is a constant C1

�
qh
�

such that

b
�
vh; qh

� � C1
�
qh
� ��rqh

��2
L2.!/

:

The arguments for finding a constant C1 independent of qh and h are the same as in
the case k D 2. �

Theorem 3.129 (Three-dimensional Case) Let ˝ � R
3 be a polygonal domain

and let fT hg be a regular family of decompositions of˝ in tetrahedra. It is assumed
that every tetrahedron has at least one interior vertex. Then, the pair of spaces
Pk=Pk�1, k � 2, satisfies the discrete inf-sup condition (3.51).
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Proof The proof is performed with the macroelement technique introduced in
Sect. 3.5.4.

Consider an overlapping macroelement partition of T h and define for each vertex
a in the interior of ˝ the macroelement

Ma D ˚
K W K 2 T h; a is vertex of K

�
:

Since a regular family of triangulations is considered, there is a uniform upper bound
for the number of tetrahedra sharing a common vertex. Hence, there is uniform finite
number of types of macroelements. From the assumption that each tetrahedron has
a vertex in the interior of ˝ , it follows that each tetrahedron belongs to at least on
macroelement. Each mesh cell belongs to at most four macroelements. Hence, the
geometric assumptions of Lemma 3.109 and Remark 3.112 are satisfied. It remains
to show the macroelement condition (3.110).

Let K 2 Ma and let E be an edge of K where a is one of its vertices.
The coordinate system is chosen such that E is on the x-axis. Take any function
qh 2 Qh

grad;M \ Qh
0;M . It will be shown first that qh is constant on K. To this end,

define the function

vh D � ��i;1�i;2@xqh; 0; 0
�T

in Ki;

where fKig is the set of mesh cells in Ma sharing the edge E. The functions �i;1 and
�i;2 are the barycentric coordinates of Ki with respect to the two faces of Ki that do
not share the edge E. On all other mesh cells of Ma, it is set vh D 0. The function
vh belongs to the space Vh

0;M for the following reasons.

• The function vh is a polynomial of degree k since @xqh is a polynomial of degree
.k � 2/ and �i;1, �i;2 are both linear polynomials.

• By construction with the appropriate barycentric coordinates it follows that
vhj@Ma D 0.

• Since qh is continuous, the tangential derivatives of qh on all faces are continuous.
The edge E is a tangential vector on all faces with this edge, thus @xqh is
continuous on all faces with edge E. Likewise, the barycentric coordinates are
continuous on these faces. On all other faces, vh vanishes. Altogether, vh is
continuous.

Since qh 2 Qh
grad;M , one finds

0 D �r � vh; qh
�

M D � �vh;rqh
�

M D
X

Ki2Ma

Z
Ki

�i;1�i;2
�
@xqh

�2
dx:

Consequently @xqh D 0 and qh does not depend on x in Ki, in particular not in
K. Applying the same argument for the two other edges of K with vertex a, one
finds that three partial derivatives of qh vanish in K. Since the edges form linearly
independent directions, it follows that rqh D 0 in K.
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The same procedure can be applied for all K 2 Ma. It follows that qh is a constant
in each mesh cell in Ma and since qh is continuous, one gets that qh is a constant.
Because the only constant in Qh

0;M is zero, it follows that qh D 0, which is just the
macroelement condition (3.110). �

Remark 3.130 (Qk=Qk�1, k � 2) The discrete inf-sup condition (3.51) for the pair
Q2=Q1 in two dimensions was proved in Stenberg (1984) using the macroelement
technique developed in this paper. The macroelement consists of two mesh cells.
The analysis was extended to higher order pairs of Qk=Qk�1 spaces in Stenberg
(1990). For three dimensions, the discrete inf-sup condition was proved for Q2=Q1

in Stenberg (1987). ut
Remark 3.131 (The Modified Taylor–Hood Finite Element) Let the triangulation
T h consist of triangles, or of quadrilaterals, or of hexahedra. These mesh cells
are regularly refined, e.g., by connecting the barycenters of the edges of a triangle,
leading to a triangulation T h=2.

Considering for simplicity triangles, then the modified Taylor–Hood finite
element spaces are defined by using as velocity space the Ph=2

1 finite element space
on the fine grid and as pressure space the P1 finite element space on the coarse
grid. The number of degrees of freedom of Ph=2

1 is the same as of the space P2
on the coarse grid, but instead of piecewise quadratic functions, piecewise linear
functions are considered. Similar constructions can be performed for quadrilaterals
and hexahedra. A reason for using the modified Taylor–Hood space might be that
the available code only supports lowest order finite elements.

The satisfaction of the discrete inf-sup condition for the modified Taylor–Hood
pair of spaces can be proved, e.g., with the technique from Bercovier and Pironneau
(1979) and Verfürth (1984) which is mentioned in Remark 3.124. ut

3.6.3 Spaces on Simplicial Meshes with Discontinuous
Pressure

Remark 3.132 (Motivation) A motivation for using finite element spaces with
discontinuous pressure found in the literature is that such spaces satisfy a local mass
conservation. This aspect is discussed in Remark 4.32. ut
Remark 3.133 (Basic Ideas for the Construction) The pair of finite element spaces
Pbubble
2 =Pdisc

1 proposed in Crouzeix and Raviart (1973), the Scott–Vogelius pair of
finite element spaces, Pk=Pk�1, k � 2, introduced in Scott and Vogelius (1985), and
the Bernardi–Raugel spaces from Bernardi and Raugel (1985) apply discontinuous
pressure approximations on simplicial grids. It was already shown in Examples 3.70



112 3 Finite Element Spaces for Linear Saddle Point Problems

and 3.73 that using the combination Pk=Pdisc
k�1 generally violates the discrete inf-sup

condition (3.51).
The Scott–Vogelius finite element considers still Pk=Pdisc

k�1, k � d, but on special
meshes, which allow to show the satisfaction of the discrete inf-sup condition.
The idea of the Pbubble

2 =Pdisc
1 finite element and the Bernardi–Raugel finite element

consists in enriching the discrete velocity space with bubble functions until it
is sufficiently large such that the discrete inf-sup condition is satisfied, compare
Remark 3.52. ut
Remark 3.134 (The Scott–Vogelius Pair of Finite Element Spaces) This pair of
finite element spaces is given by Pk=Pdisc

k�1, k � 2. Since

r � Vh D r � Pk D Pdisc
k�1 D Qh;

finite element velocities from this pair are weakly divergence-free, which is
a desirable property. However, as already demonstrated in Example 3.73, the
Scott–Vogelius finite element generally does not satisfy the discrete inf-sup con-
dition (3.51). But it can be proved that the pair Pk=Pdisc

k�1 satisfies the discrete inf-sup
condition in special situations, i.e., on special meshes. In this section, an overview
on the known results will be given. ut
Remark 3.135 (Pk=Pdisc

k�1 in Two Dimensions) The fulfillment of the discrete inf-
sup condition (3.51) was proved already in Scott and Vogelius (1985) in the two-
dimensional case for k � 4 if there is no so-called singular vertex in the mesh.
An internal vertex is said to be singular if edges which meet at the vertex fall onto
two straight lines. In the counterexample for the general fulfillment of the discrete
inf-sup condition, a singular vertex was considered, see Fig. 3.5.

The basic idea to overcome this problem consists in using meshes without singu-
lar vertices. To this end, so-called barycentric-refined grids are constructed. Starting
from any admissible triangular mesh, new edges are introduced by connecting all
vertices of a mesh cell with the barycenter of this mesh cell. This step creates smaller
triangles, see Fig. 3.9 for an example. On barycentric-refined meshes, the Pk=Pdisc

k�1,
k 2 f2; 3g, pair of finite element spaces was shown to satisfy the discrete inf-sup
condition in Qin (1994), see also Example 4.144 for a proof in the case k D 2. Note
that the case k � 4 is covered by the analysis from Scott and Vogelius (1985).

The use of the P2=Pdisc
1 pair of finite element spaces on barycentric-refined

meshes can be found occasionally in the literature, in particular to demonstrate the
advantages of using pairs of finite element spaces which provide weakly divergence-
free velocity solutions, e.g., see John et al. (2015) and the references therein. ut
Remark 3.136 (Pk=Pdisc

k�1 in Three Dimensions) In three dimensions, the use of
barycentric-refined meshes avoids singular vertices and singular edges. In Zhang
(2005), it was shown that the pair Pk=Pdisc

k�1, k � 3, satisfies the discrete inf-
sup condition on such meshes. The proof uses the macroelement technique from
Stenberg (1984) introduced in Sect. 3.5.4.
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Fig. 3.9 Barycentric-refined simplicial grid on the unit square

The Scott–Vogelius pair of finite element spaces P3=Pdisc
2 on barycentric-

refined meshes in three dimensions was used in electro-chemical applications, see
Fuhrmann et al. (2009, 2011), and in the simulation of turbulent flows in Cuff et al.
(2015). ut
Remark 3.137 (The Pbubble

2 =Pdisc
1 and Pbubble

3 =Pdisc
2 Pairs of Spaces) This pair was

proposed in Crouzeix and Raviart (1973). To get an inf-sup stable pair of finite
element spaces with a piecewise linear but discontinuous pressure on arbitrary
simplicial grids, one has to enrich the velocity space. It turned out that it suffices
to use bubble functions, i.e., local functions. In the two-dimensional case, one needs
to add just all mesh cell bubble functions. For each triangular mesh cell, the cell
bubble function is given by the product of the barycentric coordinates �1�2�3. In
three dimensions, the enrichment proposed in Crouzeix and Raviart (1973) is given
by all mesh cell bubble functions and all face bubble functions. For a mesh cell
K with barycentric coordinates �1; : : : ; �4, a mesh cell bubble function is given
by �1�2�3�4 and the four face bubble functions are the product of three mutually
distinct barycentric coordinates, e.g., �1�2�3. Thus, for each velocity component,
there are 15 degrees of freedom such that the dimension of the local space for
enrichment is 45. From the practical point of view one has to take into consideration
that bubbles are higher degree polynomials and their use requires the application of
higher order quadrature rules. The Pbubble

2 =Pdisc
1 pair of spaces is considered to be a

good one in Gresho and Sani (2000, p. 553).
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The approach of stabilizing pairs of finite element spaces by enrichment with
bubble functions can be extended to higher order spaces. For instance, in Crouzeix
and Raviart (1973), one finds the pair Pbubble

3 =Pdisc
2 in two dimensions. ut

Remark 3.138 (The Bernardi–Raugel Element of First Order PBR
1 =P0) In the

construction of the Bernardi–Raugel finite element of first order, the space P1.K/
is enriched with genuinely vector-valued basis functions. Let �i, i D 1; : : : ; d C 1,
be the barycentric coordinates given in Definition B.31. With these functions, face
(or in two dimensions edge) bubble functions are defined by

vh
bub;i D

dC1Y
jD1;j¤i

�jni; i D 1; : : : ; d C 1;

where ni is the unit outward pointing normal on the face Ei which is opposite to the
vertex ai. The face bubble functions are polynomials. The local finite element space
is given by

PBR
1 .K/ D P1.K/˚ span

˚
vh

bub;i; i D 1; : : : ; d C 1
�
:

The degrees of freedom are the values at the vertices vh .ai/, i D 1; : : : ; dC1, (d.dC
1/ values) and the fluxes through the faces vh �ni, i D 1; : : : ; d C1, (.d C1/ values).
Hence, the number of local degrees of freedom used for enrichment is .d C 1/2.

The corresponding global velocity space consists of continuous functions. The
face bubble functions of two mesh cells K1 and K2 with the common face Ei are
continuous. By using for both mesh cells the outward pointing normal on E, one gets
vh

bub;i.K1/
ˇ̌
Ei

D � vh
bub;i.K2/

ˇ̌
Ei

. But also the flux across the face has an opposite sign

for this definition of the normals, such that the coefficients in front of vh
bub;i.K1/ and

vh
bub;i.K2/ have the same absolute value but the opposite sign. Hence, the proposed

combination of the basis functions and the local functionals leads to a globally
continuous function.

The proof of the discrete inf-sup condition for the global space is based on the
construction of a Fortin operator, see Lemma 3.78. This operator has the form (3.87)
with Ph

1 D Ph
Cle, see also Remark 3.83. It is defined, for each mesh cell K, by

Ph
Forv .ai/ D Ph

Cle .ai/ ;Z
Ei

�
v � Ph

Forv
� � ni ds D 0; i D 1; : : : ; d C 1:

The properties (3.82) from the Fortin criterion are proved in Bernardi and Raugel
(1985, Lemma II.4).

The pair PBR
1 =P0 is used only occasionally for academic purposes. ut

Remark 3.139 (Families of Triangulations with Quadrilateral Mesh Cells) It is
remarked in Bernardi and Raugel (1985) that both, the construction of the velocity
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space and the proof of the inf-sup condition, can be extended to regular families
of triangulations consisting of quadrilaterals. This result was used in proving the
discrete inf-sup condition for spaces with discontinuous pressure on quadrilateral
grids, see Remarks 3.143 and 3.145. ut
Remark 3.140 (The Bernardi–Raugel Element of Order Two PBR

2 =Pdisc
1 in Three

Dimensions) On tetrahedral grids, the space

PBR
2 .K/ D P2.K/˚ span

˚
vh

bub;i; i D 1; : : : ; 4
�˚ .span f�1�2�3�4g/3

was proposed for the local velocity space in Bernardi and Raugel (1985). This
proposal, in connection with the discontinuous pressure space, can be considered
as the extension of a pair of spaces introduced in Crouzeix and Raviart (1973) for
two dimensions. The degrees of freedom of PBR

2 .K/ are the values at the vertices and
at the midpoints of the edges (from P2: 30 degrees of freedom), the flux across the
faces (from span fvbub;ig: four degrees of freedom), and the moments

R
K xir � vh dx,

i D 1; 2; 3. Thus, the dimension of the local space is 37.
With the same arguments as in Remark 3.138, one can show that the correspond-

ing global velocity space consists of continuous functions. The satisfaction of the
discrete inf-sup condition (3.51) can be proved with the construction of a Fortin
operator, in a similar way as sketched in Remark 3.138.

Numerical simulations with the PBR
2 =Pdisc

1 pair of finite element spaces can be
found in John et al. (2010). In this paper, the main reason given for the preference
of this pair to the Taylor–Hood pair P2=P1 is that the used multigrid solver, see
Sect. 9.2.2, shows a better efficiency for pairs of spaces with discontinuous pressure.
Altogether, this pair of spaces seems to be used so far only for academic purposes.

ut

3.6.4 Spaces on Quadrilateral and Hexahedral Meshes with
Discontinuous Pressure

Remark 3.141 (The Spaces Qk=Pdisc
k�1) The most common pairs of spaces with

conforming velocity and discontinuous pressure on quadrilateral and hexahedral
meshes are the spaces Qk=Pdisc

k�1, k � 2. It was already shown in Example 3.71 that
Q1=P0 D Q1=Q0 is in general not inf-sup stable. For k � 2, one has to distinguish
two cases, the so-called mapped and the unmapped Qk=Pdisc

k�1 spaces.
In the unmapped case, the local space Qk.K/ is defined by a mapping from a

reference cell OK but the space Pdisc
k�1.K/ is defined directly on the mesh cell K.

The mapped version defines both spaces with the reference transformation. Since
the reference transformation from a quadrilateral or hexahedral reference cell is
in general a bilinear or trilinear mapping, it gives rise to mesh cells with curved
boundaries. In addition, in general it does not preserve the type of mapped functions,
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i.e., the images of polynomials are in general not polynomials. Thus, the mapped
and unmapped version of Qk=Pdisc

k�1 are generally different on arbitrary meshes.
All simulations with Qk=Pdisc

k�1, k � 2, presented in this monograph were
performed with the mapped version. ut
Remark 3.142 (On the Interpolation Error of Mapped Qk=Pdisc

k�1 Pairs of Spaces)
Since the mapped functions are no longer polynomials for arbitrary mesh cells,
the application of the Bramble–Hilbert lemma, see Lemma C.5, is affected and
optimal interpolation estimates cannot be proved, as shown in Arnold et al. (2002).
In the same paper, examples of numerical simulations are presented where the
corresponding reduction of the order of convergence can be observed.

In Arnold et al. (2002), Matthies (2001) optimal interpolation error estimates for
mapped finite elements on quadrilaterals and hexahedra were studied. It turned out
that the optimality is given for special families of triangulations. In two and three
dimensions, families of meshes, which are obtained by a regular uniform refinement
of an initial coarse grid, are among these special families. ut
Remark 3.143 (The Unmapped Qk=Pdisc

k�1 Pairs of Spaces in Two Dimensions) The
proof of the fulfillment of the discrete inf-sup condition (3.51) for the unmapped
Qk=Pdisc

k�1, k � 2, finite element spaces in two dimensions can be found in Girault
and Raviart (1986, Chap. II, Theorem. 3.2). It uses the macroelement technique from
Boland and Nicolaides (1983), see Theorem 3.101. The application of this theorem

requires the choice of an appropriate space V
h � Vh. In Girault and Raviart (1986),

the Bernardi–Raugel space of first order for quadrilateral mesh cells was chosen,
see Remark 3.139. ut
Example 3.144 (The Discrete Inf-Sup Condition for the Unmapped Q2=Pdisc

1

Finite Element in Two Dimensions) The satisfaction of the discrete inf-sup
condition (3.51) for the unmapped Q2=Pdisc

1 finite element in two dimensions
can be proved also easily with the macroelement technique of Stenberg (1984), as
it was shown in this paper.

One has to prove that the macroelement condition, see Definition 3.107, is
satisfied. To this end, take as macroelement just one mesh cell. Thus, there is just
one class of macroelements and the macroelement decomposition of the domain
coincides with its triangulation. The pressure is linear on the macroelement

Qh
M D ˚

qh W qh
ˇ̌
M

D a C bxx C byy; a; bx; by 2 R
�
:

The only degrees of freedom of Vh
0;M are at the interior node. Taking the basis

function �.x/ D .'.x/; 0/T which has the value .1; 0/ in this node, one obtains

�r � vh; qh
�

M
D � �vh;rqh

�
M

D �bx

Z
M
'.x/ dx:

Since the integral of the basis function is positive, the condition 0 D �r � vh; qh
�

M
implies that bx D 0. Applying the basis function .0; '.x// leads in the same way to
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by D 0. It follows that

Qh
grad;M D ˚

qh W qh
ˇ̌
M D a; a 2 R

�

and consequently condition (3.110) is also satisfied. ut
Remark 3.145 (The Mapped Qk=Pdisc

k�1 Pairs of Spaces) The discrete inf-sup con-
dition (3.51) for the mapped Qk=Pdisc

k�1 pairs of spaces was proved for any space
dimension d in Matthies and Tobiska (2002). The proof relies on the macroelement
technique of Boland and Nicolaides (1983), see Theorem 3.101. For the construction
of the subspace, which is required in the assumptions of this lemma, the proof of
the discrete inf-sup condition for the extension of the two-dimensional Bernardi–
Raugel element from triangles to quadrilaterals, mentioned in Remark 3.139, was
extended to quadrilateral-type mesh cells of any space dimension. ut

3.6.5 Non-conforming Finite Element Spaces of Lowest Order

Remark 3.146 (Non-conforming Finite Element Spaces) In the most general sense,
non-conforming finite element methods are all methods where the finite element
space is not a subspace of the function space used in the variational problem. This
property might be caused, e.g., if for a problem, the domain ˝ with curvilinear
parts of the boundary is approximated by a domain˝h with polygonal or polyhedral
boundary. But usually, one speaks of non-conforming finite element methods only
if the non-inclusion of the spaces comes from the construction of the finite element
space and it is independent of the special problem.

For incompressible flow models, the consideration of non-conforming discreti-
zations will allow to define pairs of lowest order finite element spaces that satisfy
the discrete inf-sup condition (3.51). The non-conformity is present only for the
velocity but not for the pressure, i.e., Vh 6� V and Qh � Q.

Here, it will be concentrated on lowest order non-conforming discretizations
because these are the most important non-conforming methods for incompressible
flow problems. On simplicial meshes, this discretization is the so-called Crouzeix–
Raviart finite element Pnc

1 =P0. That means, the velocity is approximated by a
piecewise linear function that is continuous at the barycenters of the faces of
the mesh cells, see Example B.43 for a detailed description, and the pressure is
approximated by a piecewise constant function, see Example B.37.

The extension of this approach to quadrilateral and hexahedral meshes is the
Rannacher–Turek element Qrot

1 =Q0. For this element, the velocity approximation is
achieved by rotated d-linear functions that have continuous degrees of freedom on
the faces of the mesh cells, see Example B.53. The pressure is discretized by a
piecewise constant function, see Example B.49.

Besides the possibility of using lowest order spaces, non-conforming finite
element of lowest order possess some additional advantages. They can be used for



118 3 Finite Element Spaces for Linear Saddle Point Problems

the construction of efficient multigrid solvers or preconditioners for higher order
discretizations of incompressible flow problems, see Sect. 9.2.2. Implementing
the code for solving the Navier–Stokes equations on parallel computers, non-
conforming discretizations generally require less communication overhead than
conforming finite element methods. However, non-conforming finite elements are
often more complicated from the point of view of numerical analysis.

The discrete inf-sup condition is proved with the construction of an operator
V ! Vh such that for each function v 2 V analogs to the conditions (3.82) of a
Fortin operator are satisfied. ut
Remark 3.147 (The Non-conforming Qrot

1 =Q0 Pairs of Finite Element Spaces)
These pairs of finite element spaces were introduced and analyzed in Rannacher
and Turek (1992) and later studied comprehensively in Schieweck (1997). They are
defined on quadrilateral or hexahedral mesh cells. The local velocity spaces, called
rotated bilinear finite element spaces, are defined as follows

Qrot
1

	 OK



D ˚Op W Op 2 spanf1; Ox1; Ox2; Ox21 � Ox22g
�

if d D 2;

Qrot
1

	 OK



D ˚Op W Op 2 spanf1; Ox1; Ox2; Ox3; Ox21 � Ox22; Ox22 � Ox23g
�

if d D 3;

Qrot
1 .K/ D

n
p D Op ı F�1

K W Op 2 Qrot
1

	 OK

o
;

where OK D Œ�1; 1�d. There are two types of the Qrot
1 spaces, depending on the choice

of the local functionals. Let E .K/ be the set of all .d � 1/-dimensional faces of K
and let K0 be a neigbor cell of K. Then, the mean-value-oriented finite element space
Qrot
1 is given by

Qrot
1 D

n
v 2 L2 .˝/ W vjK 2 Qrot

1 .K/ ; (3.142)
Z

E
vjK .s/ ds D

Z
E
vjK0 .s/ ds 8 E 2 E .K/ \ E

�
K0� o;

and the point-value-oriented finite element space Qrot
1 by

Qrot
1 D ˚

v 2 L2 .˝/ W vjK 2 Qrot
1 .K/ ; v is continuous at the barycenters

of the faces of Kg :

The mean-value-oriented and the point-value-oriented Qrot
1 are in general not

equivalent.
The pressure is approximated by a piecewise constant function. ut

Remark 3.148 (Extension of the Bilinear Form b.�; �/) For non-conforming spaces
Vh 6� V , the bilinear form b.�; �/ from (3.34) is not defined for all vh 2 Vh.
Its domain of definition has to be extended appropriately. Since also the non-
conforming finite element functions are piecewise polynomials, a natural approach
consists in considering the bilinear form on each mesh cell and to define the
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extension by the sum over all mesh cells. Hence, for non-conforming finite element
approximations, the bilinear form bh.�; �/ as given in (3.53) has to be used. ut
Remark 3.149 (Imposing Dirichlet Boundary Conditions) For the point-value-
oriented non-conforming finite element spaces, the value of the Dirichlet boundary
condition in the barycenter of the faces at the boundary is taken. Using the mean-
value-oriented spaces, one computes the integrals of the boundary condition on
these faces and normalizes with the area of the faces to set the boundary values.
In the case of homogeneous Dirichlet boundary conditions, the boundary values
computed in both ways are zero. ut
Lemma 3.150 (A Norm in Pnc

1 and Qrot
1 ) Consider the case of homogeneous

Dirichlet boundary conditions. Then, the map .ah.�; �//1=2 with

ah
�
vh;wh

� D
X

K2T h

�rvh;rwh
�

K

defines a norm in Pnc
1 and Qrot

1 .

Proof One has to check the properties of Definition A.6.

i). If vh D 0 in ˝ , then

�
ah
�
vh; vh

��1=2 D
 X

K2T h

�rvh;rvh
�

K

!1=2
D
 X

K2T h

.0; 0/K

!1=2
D 0:

Let
�
ah
�
vh; vh

��1=2 D 0. Then vh is a piecewise constant function, since the
gradient in each mesh cell vanishes. The value of this constant in a mesh cell is
known if the value of vh in one point of the mesh cell is known.

The degrees of freedom of the Pnc
1 and the point value-oriented Qrot

1 finite
element functions are the values in the barycenter of the faces. On the boundary,
these are just the values of the boundary condition, i.e., these values are zero.
Hence, the constant is zero on all mesh cells, which have a face at the boundary.
Consequently, the value is zero in all other barycenters of faces of these mesh
cells. Since the finite element functions are continuous in the barycenters of
the faces, the constant is zero also in the neighboring mesh cells. By induction,
one obtains that the constant is zero in all mesh cells, i.e., vh D 0 in ˝ .

For the mean value-oriented Qrot
1 finite element, the integral on the faces

which belong to 
 must vanish because of the homogeneous Dirichlet
boundary condition. The only constant which fulfills this requirement is zero.
That means, the constant is zero on all mesh cells with faces on the boundary.
It follows that the integral on the other faces of these mesh cell is zero, too.
By the definition of the mean value-oriented Qrot

1 finite element (3.142), the
integrals on these faces of the functions from the neighboring mesh cells must
also vanish. Since vh is also constant on these mesh cells, the constant must be
always zero. Again, it follows by induction that vh D 0 in ˝ .
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ii). This property follows by a straightforward calculation

�
ah
�
˛vh; ˛vh

��1=2 D
 X

K2T h

�r �
˛vh

�
;r �

˛vh
��

K

!1=2

D j˛j
 X

K2T h

�rvh;rvh
�

K

!1=2
D j˛j �ah

�
vh; vh

��1=2

for all ˛ 2 R.
iii). The proof of the triangle inequality uses the triangle inequality on the

individual mesh cells and the Cauchy–Schwarz inequality for sums (A.2)

�
ah
�
vh C wh; vh C wh

��1=2

D
 X

K2T h

��r.vh C wh/
��2

L2.K/

!1=2

�
 X

K2T h

	��rvh
��

L2.K/
C ��rwh

��
L2.K/


2!1=2

D
 X

K2T h

��rvh
��2

L2.K/
C 2

��rvh
��

L2.K/

��rwh
��

L2.K/
C ��rwh

��2
L2.K/

!1=2

�
0
@X

K2T h

��rvh
��2

L2.K/
C 2

 X
K2T h

��rvh
��2

L2.K/

!1=2  X
K2T h

��rwh
��2

L2.K/

!1=2

C
X

K2T h

��rwh
��2

L2.K/

!1=2

D

8̂
<
:̂

2
4
 X

K2T h

��rvh
��2

L2.K/

!1=2
C
 X

K2T h

��rwh
��2

L2.K/

!1=23
5
2
9>=
>;

1=2

D
 X

K2T h

��rvh
��2

L2.K/

!1=2
C
 X

K2T h

��rwh
��2

L2.K/

!1=2

D �
ah
�
vh; vh

��1=2 C �
ah
�
wh;wh

��1=2

for all vh;wh 2 Vh. �
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Theorem 3.151 (Inf-Sup Condition for the Lowest Order Crouzeix–Raviart
Finite Element Pnc

1 =P0) The lowest order Crouzeix–Raviart pair of finite element
spaces Pnc

1 =P0 satisfies the discrete inf-sup condition (3.51) or equivalently (3.52).
The constant ˇh

is in (3.51) can be chosen as ˇh
is D ˇis, where ˇis is the constant of

the continuous inf-sup condition (3.14).

Proof The proof uses the properties that the functions from Pnc
1 are piecewise linear

and the functions from P0 are piecewise constant.
Let v 2 V be an arbitrary function. In the first step of the proof, an appropriate

interpolation of v to a function Ph
Ev 2 Vh D Pnc

1 is constructed. The functions from
Pnc
1 are determined by their values in the barycenters of the faces of the mesh cells.

Let
n
Eh
o

be the set of faces, fmEg be the corresponding set of barycenters, and
˚
Eh
�

be the set of all interior faces, then the values of Ph
Ev at fmEg are defined as follows

Ph
Ev .mE/ D

8<
:
1

jEj
Z

E
v.s/ ds if E 2 Eh;

0 if E 2 Eh n Eh:

(3.143)

This construction is just an interpolation using the global functionals of the
definition of the finite element space, see (B.20) for the space Pnc

1 . These functionals
are continuous.

In the second step of the proof, a relation between bh
�
Ph

Ev; q
h
�

and b
�
v; qh

�
is

shown for arbitrary qh 2 Qh. Using that qh is constant and integration by parts, one
obtains

bh
�
Ph

Ev; q
h
� D �

X
K2T h

Z
K

�r � Ph
Ev qh

�
.x/ dx

D �
X

K2T h

qh
ˇ̌
K

Z
K

r � Ph
Ev.x/ dx

D �
X

K2T h

qh
ˇ̌
K

 X
E�@K

Z
E

�
Ph

Ev � nE
�
.s/ ds

!
:

Since
�
Ph

Ev � nE
�ˇ̌

E
is linear, the integral is computed exactly with the mid point

rule, such that

bh
�
Ph

Ev; q
h
� D �

X
K2T h

qh
ˇ̌
K

 X
E�@K

jEj Ph
Ev.mE/ � nE

!

D �
X

K2T h

qh
ˇ̌
K

 X
E�@K

Z
E
.v � nE/ .s/ ds

!
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D �
X

K2T h

qh
ˇ̌
K

Z
K

r � v.x/ dx

D �
X

K2T h

Z
K

�r � v qh
�
.x/ dx

D bh
�
v; qh

� D b
�
v; qh

�
;

where in the second step the definition of Ph
Ev.mE/ was used and then again

integration by parts was applied. Altogether, this step gives

bh
�
Ph

Ev; q
h
� D b

�
v; qh

� 8 v 2 V; 8 qh 2 Qh: (3.144)

This equation is the analog of the first condition for a Fortin operator in (3.82).
The next step of the proof bounds

��Ph
Ev
��

Vh by kvkV . Let K 2 T h be an arbitrary
mesh cell, then one obtains with integration by parts, using that �Ph

Ev
ˇ̌
K

D 0 and�rPh
Ev � nE

�ˇ̌
E

is constant,

��rPh
Ev
��2

L2.K/
D
Z

K

�rPh
Ev W rPh

Ev
�
.x/ dx

D
X

E�@K

Z
E

�
Ph

Ev � rPh
EvnE

�
.s/ ds �

Z
K

�
Ph

Ev ��Ph
Ev
�
.x/ dx

D
X

E�@K

�rPh
EvnE

�ˇ̌
E

�
Z

E
Ph

Ev.s/ ds:

Since the function in the integral is linear, the midpoint rule of integration computes
its exact value. Applying then the definition (3.143) of Ph

Ev .mE/, again integration
by parts, �Ph

Ev
ˇ̌
K

D 0, and finally the Cauchy–Schwarz inequality (A.10), one gets

��rPh
Ev
��2

L2.K/ D
X

E�@K

�rPh
EvnE

�ˇ̌
E � jEj Ph

Ev.mE/

D
X

E�@K

�rPh
EvnE

�ˇ̌
E �
Z

E
v.s/ ds

D
X

E�@K

Z
E

�
v � rPh

EvnE
�
.s/ ds

D
Z

K

�rPh
Ev W rv� .x/ dx C

Z
K

�
v ��Ph

Ev
�
.x/ dx

� ��rPh
Ev
��

L2.K/ krvkL2.K/ :
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Using this estimate and the Cauchy–Schwarz inequality for sums (A.2) yields

��Ph
Ev
��2

Vh D
X

K2T h

��rPh
Ev
��2

L2.K/

�
X

K2T h

��rPh
Ev
��

L2.K/ krvkL2.K/ � ��Ph
Ev
��

Vh kvkV :

The result of this step is that

��Ph
Ev
��

Vh � kvkV 8 v 2 V: (3.145)

This estimate corresponds to the second condition for a Fortin operator in (3.82).
From (3.144) and (3.145), one gets

b
�
v; qh

�
kvkV

� bh
�
Ph

Ev; q
h
�

��Ph
Ev
��

Vh

8 v 2 V;8 qh 2 Qh:

Next, applying the inf-sup condition (3.14) of the continuous problem yields, since
Qh � Q,

ˇis

��qh
��

Q � sup
v2V;v¤0

b
�
v; qh

�
kvkV

� sup
v2V;v¤0

bh
�
Ph

Ev; q
h
�

��Ph
Ev
��

Vh

� sup
vh2Vh;vh¤0

bh
�
vh; qh

�
kvhkVh

8 qh 2 Qh;

where the final estimate uses that the set of projections is a subset of Vh. The
supremum in this subset cannot be larger than the supremum in Vh. This inequality
is exactly the discrete inf-sup condition (3.52) with ˇh

is D ˇis. �

Remark 3.152 (Anisotropic Mesh Cells) Note that the proof of Theorem 3.151 does
not impose any special requirement on the aspect ratio of the simplicial mesh cells.
In addition, the discrete inf-sup constant equals the continuous one, thus the discrete
inf-sup constant does not depend on the mesh. Consequently, even for grids with
anisotropic mesh cells, i.e., mesh cells K where hK=�K is very large, the discrete
inf-sup condition is satisfied uniformly with ˇh

is D ˇis and one has a well-posed
finite element problem. ut
Remark 3.153 (The Discrete Inf-Sup Condition for the Qrot

1 =Q0 Finite Element) The
fulfillment of the discrete inf-sup condition (3.51) was proved in Rannacher and
Turek (1992) with the construction of a Fortin operator, see Lemma 3.78. To this
end, the global interpolation operators to Qrot

1 were used, which are generated by
the canonical local interpolation operators to Qrot

1 .K/. For the mean-value-oriented
version, the proof of the properties (3.82) of the Fortin operator is similar to the
proof of Theorem 3.151.
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A comprehensive analysis for several realizations of the Qrot
1 =Q0 pair of finite

element spaces can be found in Schieweck (1997). This analysis relaxes the
assumptions on the meshes for proving the inf-sup condition compared with the
analysis from Rannacher and Turek (1992). ut
Remark 3.154 (The Unmapped Version of the Qrot

1 =Q0 Finite Element Spaces)
There are also unmapped (non-parametric) versions of these finite element spaces,
which define the polynomials directly on the mesh cell K. It is shown in Rannacher
and Turek (1992) that these versions are inf-sup stable on more general meshes than
the mapped (parametric) version of the Qrot

1 =Q0 finite element, e.g., on strongly
nonuniform meshes. Considering all four types of Qrot

1 =Q0 finite elements, the
optimal order of convergence on perturbed meshes is achieved only by the mean-
value-oriented version of the unmapped Qrot

1 =Q0 finite element. ut
Remark 3.155 (Practical Use of the Qrot

1 =Q0 Finite Element Spaces) In the sim-
ulations presented in this monograph, the mapped mean-value-oriented Qrot

1 finite
element space was used in two dimensions and the mapped point-value-oriented
Qrot
1 finite element space in three dimensions. For d D 3, the integrals on the faces

of mesh cells, whose equality is required in the mapped mean-value-oriented Qrot
1

finite element space, involve a weighting function which depends on the particular
mesh cell K. The computation of these weighting functions for all mesh cells is an
additional computational overhead such that Schieweck (1997, p. 21) recommended
to use for d D 3 the simpler mapped point-value-oriented form of the Qrot

1 finite
element. ut
Remark 3.156 (Non-conforming Finite Element Spaces of Higher Order) The
paper Matthies and Tobiska (2005) presents a generalization of the Pnc

1 =P0 pair of
spaces in two dimensions to arbitrary order. The satisfaction of the discrete inf-sup
condition for the proposed pairs of spaces is proved. ut

3.6.6 Computing the Discrete Inf-Sup Constant

Remark 3.157 (The Constant in the Discrete Inf-Sup Condition) The actual size of
the constant ˇh

is in the discrete inf-sup condition (3.51) is of some interest since it
enters, e.g., finite element error estimates. Of course, this constant depends on the
concrete spaces, i.e., in particular on the domain and on the used mesh. ut
Remark 3.158 (On the Supremum) Consider a fixed qh 2 Qh, then bh

�
vh; qh

�
,

defined in (3.53), is a linear functional in
�
Vh
�0

. The linearity follows from the
linearity of integration and the boundedness follows with the application of the
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triangle inequality, the Cauchy–Schwarz inequality (A.10), the Cauchy–Schwarz
inequality for sums (A.2), and (3.40) for˝ D K

ˇ̌
bh
�
vh; qh

�ˇ̌ �
X

K2T h

ˇ̌�r � vh; qh
�

K

ˇ̌ �
X

K2T h

��r � vh
��

L2.K/

��qh
��

L2.K/

�
 X

K2T h

��r � vh
��2

L2.K/

!1=2  X
K2T h

��qh
��2

L2.K/

!1=2

� C

 X
K2T h

��rvh
��2

L2.K/

!1=2 ��qh
��

L2.˝/
D C

��vh
��

Vh :

Due to the Representation Theorem of Riesz, Theorem B.3, there is an element
vh

b 2 Vh such that
�
vh

b; v
h
�

Vh D bh
�
vh; qh

� 8 vh 2 Vh: (3.146)

It follows that

bh
�
vh; qh

� D �
vh

b; v
h
�

Vh � ��vh
b

��
Vh

��vh
��

Vh 8 vh 2 Vh;

such that one obtains an upper bound for the supremum

sup
vh2Vhnf0g

bh
�
vh; qh

�
kvhkVh

� sup
vh2Vhnf0g

��vh
b

��
Vh

��vh
��

Vh

kvhkVh

D ��vh
b

��
Vh : (3.147)

The upper bound is even attained. Choosing in particular vh D vh
b yields,

with (3.146),

bh
�
vh

b; q
h
�

��vh
b

��
Vh

D
��vh

b

��2
Vh��vh

b

��
Vh

D ��vh
b

��
Vh : (3.148)

Combining (3.147) and (3.148) shows that

vh
b D arg sup

vh2Vhnf0g
bh
�
vh; qh

�
kvhkVh

:

With these considerations, one finds that the discrete inf-sup constant is given by

�
ˇh

is

�2 D inf
qh2Qhnf0g

sup
vh2Vhnf0g

�
bh
�
vh; qh

��2
kvhk2Vh kqhk2Q

D inf
qh2Qhnf0g

��vh
b

��2
Vh

kqhk2Q
: (3.149)

Up to this point, one can argue analogously for the continuous inf-sup condition.
ut



126 3 Finite Element Spaces for Linear Saddle Point Problems

Remark 3.159 (Generalized Eigenvalue Problem for Computing the Value of the
Discrete Inf-Sup Constant) Let f�h

i gNu
iD1 and f h

i gNp

iD1 be bases of Vh and Qh,
respectively. Then, one can define the Gramian matrices or mass matrices

MV D
	�
�h

j ;�
h
i

�
Vh


Nu

i;jD1 ; MQ D
	�
 h

j ;  
h
i

�
Qh


Np

i;jD1

and the matrix

B D bh
�
�h

j ;  
h
i

�
; i D 1; : : : ;Np; j D 1; : : : ;Nu:

With the bases, one has also representations of the finite element functions in terms
of vectors

vh D
NuX

iD1
vi�

h
i ; vh

b D
NuX

iD1
bi�

h
i ; qh D

NpX
iD1

qi 
h
i ;

with the vectors v; b, and q, respectively. The inner products in Vh and Qh and the
bilinear form bh.�; �/ can be written now in terms of matrices and vectors, e.g.,

�
vh

b; v
h
�

Vh D bTMT
Vv; bh

�
vh; qh

� D vTBTq;
��vh

b

��2
Vh D bTMT

V b:

In this way, one obtains for (3.146)

bTMT
Vv D vTBTq ” vTMVb D vTBTq 8 v 2 R

Nu ;

from what follows that

MV b D BTq H) b D M�1
V BTq:

Inserting this expression in (3.149) yields

�
ˇh

is

�2 D inf
q2RNq nf0g

bTMT
V b

qTMT
Qq

D inf
q2RNq nf0g

qTBM�T
V MT

VM�1
V BTq

qTMT
Qq

D inf
q2RNq nf0g

qTBM�1
V BTq

qTMT
Qq

:

Using that MV and MQ are symmetric and positive definite, one can rewrite the
right-hand side in the form

	
qTM1=2

Q


 	
M�1=2

Q BM�T=2
V


 	
M�1=2

V BTM�T=2
Q


 	
MT=2

Q q



	
qTM1=2

Q


 	
MT=2

Q q

 ;



3.7 The Helmholtz Decomposition 127

which shows that this expression is a Rayleigh quotient. It is known, see
Lemma A.19, that the infimum of the Rayleigh quotient is attained and it is the
smallest eigenvalue of the eigenvalue problem

	
M�1=2

Q BM�T=2
V


 	
M�1=2

V BTM�T=2
Q


 	
MT=2

Q q



D �
	

MT=2
Q q



:

Multiplying this problem with M1=2
Q shows that it is equivalent to computing the

smallest eigenvalue of the generalized eigenvalue problem

BM�1
V BTq D �MT

Qq: (3.150)

The square root of this eigenvalue is the discrete inf-sup constant ˇh
is. ut

Remark 3.160 (A Practical Aspect) The usual approach consists in using a sub-
space of L2.˝/ for the discrete pressure and not of L20.˝/, see Remark 4.70, and to
fix the additive constant for the pressure in a different way. Applying this approach,
the kernel of the matrix B is spanned by the constant vectors and the matrix has rank
deficiency one, see Lemma 4.71. Consequently, the smallest eigenvalue of (3.150)
is zero. In this case, the square root of the second smallest eigenvalue of (3.150) is
the discrete inf-sup constant ˇh

is. ut

3.7 The Helmholtz Decomposition

Remark 3.161 (Contents) This section introduces a decomposition of vector fields
in L2.˝/ which is of importance for incompressible flow problems. With the help
of this decomposition, one can describe, e.g., the impact of certain body forces on
the velocity and pressure precisely, compare Remark 4.12. ut
Definition 3.162 (Rotation and Curl) There are different operators which are
called rotation or curl operator. Their definition depends on the dimension of the
vector field.

Let v.x/ D .v1.x/; v2.x/; v3.x//T , x D .x; y; z/T , be a vector field in a domain
˝ � R

3 which is sufficiently regular. Then the rotation or the curl of v.x/ is defined
by

r � v.x/ D det

0
@ i j k

@x @y @z

v1.x/ v2.x/ v3.x/

1
A D

0
@@yv3 � @zv2
@zv1 � @xv3
@xv2 � @yv1

1
A .x/: (3.151)

A vector field v.x/ D .v1.x/; v2.x//T , x D .x; y/T , in a two-dimensional
domain ˝ can be extended formally to a vector field with three values by v.x/ D
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.v1.x/; v2.x/; 0/T . Then, the first two components in (3.151) vanish. The third
component of the right-hand side in (3.151) is denoted by

curl v.x/ D �
@xv2 � @yv1

�
.x/: (3.152)

The curl of a scalar field v.x/, x D .x; y/T , given in a two-dimensional domain,
is defined by

curl v.x/ D
��@yv

@xv

�
.x/: (3.153)

ut
Remark 3.163 (Properties of the Rotation or Curl Operator) Straightforward cal-
culations show that it holds in two dimensions for a sufficiently smooth function

curl .curl v/ .x/ D ��v.x/: (3.154)

In three dimensions, one has

r � .r � v/ .x/ D ��v.x/C r .r � v/ .x/: (3.155)

Extending a two-dimensional vector field formally to a three-dimensional field, then
also (3.155) is valid. Furthermore, on has

curl rv.x/ D 0; r � rv.x/ D 0 (3.156)

and

r � .curl v/ .x/ D 0; r � .r � v/ .x/ D 0: (3.157)

Because of property (3.156), gradient fields are called irrotational. Other identities
are given by

.r � v/ � w D .w � r/ v � r .v � w/C .rw/T v (3.158)

and

r � .v � w/ D .w � r/v � .v � r/w C .r � w/v � .r � v/w: (3.159)

ut
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Remark 3.164 (Spaces with the Curl Operator and Integration by Parts) Spaces
that take into account curl operators are defined by

H .curl ;˝/ D ˚
v 2 L2.˝/ W curl v 2 L2.˝/

�
if d D 2;

H .curl ;˝/ D ˚
v 2 L2.˝/ W r � v 2 L2.˝/

�
if d D 3:

If ˝ is a bounded domain with Lipschitz boundary, then an integration by
parts formula holds, see Girault and Raviart (1986, p. 34). Consider first the two-
dimensional case. Let v 2 H.curl ;˝/, then it is

.curl v; �/ D .v; curl �/C
Z
@˝

.v � t1�/ .s/ ds 8 � 2 H1.˝/; (3.160)

where t1.s/ is the unit tangential vector at the boundary defined by t1 D .�n2; n1/T ,
with n D .n1; n2/T being the unit outer normal. In three dimensions, one has for all
v 2 H.curl ;˝/

.r � v;�/ D .v;r � �/C
Z
@˝

..v � n/ � �/ .s/ ds 8 � 2 H1.˝/: (3.161)

From (3.158), one obtains for u 2 Vdiv and v;w such that v � w 2 L2.˝/, using
integration by parts,

..r � v/ � w;u/ D ..w � r/v;u/� ..u � r/ v;w/ :

ut
Lemma 3.165 (Criterion for a Vector-valued Distribution to be the Gradient of
a Function from L2.˝/) Let ˝ � R

d, d � 2, be a bounded Lipschitz domain and
let ˝0 	 ˝ , ˝0 ¤ ;, be any subdomain. Suppose v 2 W�1;2.˝/ satisfies

v. / D 0 8  2 C1
0;div.˝/;

where C1
0;div.˝/ is defined in (A.7). Then there exists a unique r 2 L2.˝/ which

satisfies

Z
˝0

r.x/ dx D 0 and v D rr

in the sense of distributions. It holds

krkL2.˝/ � C1 kvkW�1;2.˝/ � C1C2 krkL2.˝/ ;

where C1 D C1.˝0;˝/ > 0 and C2 D C2.d/ > 0.

Proof The proof can be found in Sohr (2001, p. 76). �
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Lemma 3.166 (Existence of a Solution of the Equation r � v D g) Let ˝ � R
d,

d � 2, be a bounded domain with Lipschitz boundary.
For each g 2 W�1;2.˝/ there exists at least one v 2 L2.˝/ with r � v D g in the

sense of distributions and

kvkL2.˝/ � C kgkW�1;2.˝/

with C D C.˝/ > 0.
For each g 2 L2.˝/ with

R
˝

g.x/ dx D 0, there is at least one v 2 L2.˝/ with
r � v D g in the sense of distributions, v � nj@˝ D 0 in the sense of (generalized)
traces, and

kvkL2.˝/ � C kgkL2.˝/ D C kr � vkL2.˝/

with C D C.˝/ > 0.

Proof The proof can be found in Sohr (2001, p. 80). �

Remark 3.167 (On Lemma 3.166)

• The statements of Lemma 3.166 are generalizations of Corollary 3.44 in the sense
that less regularity is assumed.

• In Sohr (2001), the results of the two previous lemmas are formulated for spaces
W�1;q.˝/ and Lq.˝/ with q 2 .1;1/. Then, some of the constants in the
estimates of Lemmas 3.165 and 3.166 depend on q.

ut
Theorem 3.168 (Helmholtz Decomposition of a Vector Field in L2.˝/) Let˝ �
R

d, d � 2, be a bounded Lipschitz domain. Then, each v 2 L2.˝/ has a unique
decomposition

v D w C rr; (3.162)

with w 2 Hdiv.˝/ and rr 2 G.˝/, where the space Hdiv.˝/ is defined in (3.39)
and

G.˝/ D ˚
v 2 L2.˝/ W 9r 2 L2.˝/ W v D rr

�
:

The spaces Hdiv.˝/ and G.˝/ are orthogonal in L2.˝/, i.e.,

G.˝/ D Hdiv.˝/
?:

Consequently, it is .w;rr/ D 0 and it holds

kvk2L2.˝/ D kwk2L2.˝/ C krrk2L2.˝/ : (3.163)

Proof For the proof it is referred to Sohr (2001, p. 82). �
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Remark 3.169 (Arbitrary Domains) The Helmholtz decomposition exists also for
arbitrary domains, see Sohr (2001, Lemma 2.5.1), however the characterization of
the space G changes, it is less special. ut
Definition 3.170 (Helmholtz Projection) Using the Helmholtz decomposi-
tion (3.162), the Helmholtz projection is defined by

Phelm W L2.˝/ ! Hdiv.˝/; v 7! w:

ut
Lemma 3.171 (Properties of the Helmholtz Projection) The Helmholtz projec-
tion is a uniquely determined, bounded linear operator with kPhelmk � 1, i.e.,

kPhelmvkL2.˝/ � kvkL2.˝/ 8 v 2 L2.˝/: (3.164)

It has the following properties

Phelm.rr/ D 0; .I � Phelm/ v D rr;
P2helmv D Phelmv; .I � Phelm/

2 v D .I � Phelm/ v;

for all v 2 L2.˝/. Furthermore, the operator Phelm is selfadjoint, i.e.,

.Phelmv; g/ D .v;Phelmg/ 8 v; g 2 L2.˝/:

Proof By Hilbert space theory, the projection operator Phelm is uniquely determined.
The boundedness (3.164) follows directly from (3.163)

kvk2L2.˝/ � kwk2L2.˝/ D kPhelmvk2L2.˝/ :

Then, the next four properties follow from (3.162) and the uniqueness of the
Helmholtz decomposition. Finally, the last property follows from the orthogonality
of Hdiv.˝/ and G.˝/. Let v D w C rr and g D wg C rrg with w;wg 2 Hdiv.˝/,
r; rg 2 G.˝/, be the Helmholtz decompositions of v and g, respectively. Then it
follows that

.Phelmv; g/ D �
w;wg C rrg

� D �
w;wg

�C �
w;rrg

� D �
w;wg

�
D �

w C rr;wg
� D .v;Phelmg/ :

�
Remark 3.172 (Computation of the Helmholtz Decomposition) So far, the existence
and uniqueness of the Helmholtz decomposition is known from Theorem 3.168.
The next question is how the decomposition can be computed. It will turn out
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that under certain conditions on the domain ˝ , the functions w.x/ and r.x/ can
be characterized as the solution of boundary value problems. ut
Lemma 3.173 (Definition of r) Let ˝ � R

d, d 2 f2; 3g, be a bounded Lipschitz
domain with boundary 
 D [iD0;:::;k
i, where 
0 is the exterior boundary of˝ and

1; : : : ; 
k are other components. Then, r 2 H1.˝/=R is the unique solution of

.rr;r�/ D .v;r�/ 8 � 2 H1.˝/;

where

H1.˝/=R D
�
v 2 H1.˝/ W

Z
˝

v.x/ dx D 0


:

If v 2 H.div;˝/, then this problem can be interpreted as the following Poisson
problem with Neumann boundary conditions

��r D �r � v in ˝;

rr � n D v � n on 
:
(3.165)

Proof The proof can be found in Girault and Raviart (1986, p. 41). �

Lemma 3.174 (Definition of w in Two Dimensions) Let ˝ � R
2 be a bounded,

simply connected domain with Lipschitz boundary. Then it is

w D curl �;

where � 2 V is the unique solution of

.curl �; curl  / D .v � rr; curl  / 8  2 V: (3.166)

The function �.x/ is called stream function. This problem has the following
interpretation

��� D curl v in ˝;

� D 0 on 
;
(3.167)

where the equation has to be understood in H�1.˝/.

Proof Also the proof of this statement can be found in Girault and Raviart (1986,
p. 40). Here, only the correspondence of the variational and the formulation (3.167)
will be illustrated. Considering first the left-hand side of (3.166), then the integration
by parts formula (3.160) and (3.154) yields

.curl �; curl  / D .curl curl �; /C
Z
@˝

..curl � � t1/  / .s/ ds D .���; /
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for all  2 V . The boundary integral vanishes since the trace of  .x/ is zero.
Similarly, one gets for the right-hand side of (3.166), using (3.156),

.v � rr; curl  / D .curl v � curl rr;  / D .curl v;  /

for all  2 V . Hence, the formulation (3.167) follows. �
Remark 3.175 (Stream Function) Let v 2 H.div;˝/ and let v.x/ be weakly
divergence-free. Then, integration by parts gives

0 D
Z
˝

r � v.x/ dx D
Z



.v � n/ .s/ ds:

That means, for a simply connected Lipschitz domain, problem (3.165) has a
homogeneous right-hand side. It is known that this Neumann problem has a unique
solution in the quotient space H1.˝/=R, see Girault and Raviart (1986, p. 14).
Obviously, the solution is r.x/ D 0 and hence it is in two dimensions

v D w D curl �: (3.168)

Given a weakly divergence-free vector field in two dimensions, the stream function
can be computed with (3.168), which is often used for visualization purposes. ut
Lemma 3.176 (Definition of w in Three Dimensions) Let˝ � R

3 be a bounded,
simply connected domain with Lipschitz boundary. Then

w D r � �;

where � 2 H D fr � � W � 2 Vg is the unique solution of the boundary value
problem

��� D r � v in ˝;

.r � � � v/ � n D 0 on 
;

where the equation has to be understood in the sense of H�1.˝/. The function � is
called vector potential.

Proof For the proof, see Girault and Raviart (1986, p. 48). �
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Remark 3.177 (Multiple Connected Domains) The statement of Lemma 3.174 can
be extended to domains with the properties from the assumptions of Lemma 3.173
and with the boundary conditions

Z

i

.v � n/ .s/ ds D 0; i D 0; : : : ; k:

However, then the ansatz and test space are somewhat more complicated as well
as the boundary condition of the corresponding problem, see Girault and Raviart
(1986, p. 40). The definition of a stream function is still possible.

The statement of Lemma 3.176 is not true for multiple connected domains. There,
w is not necessarily a curl vector. It may be the sum of a curl vector and some special
vector which belongs to a finite-dimensional space, see Temam (1984, Appendix I).

ut
Remark 3.178 (Summary for Simply Connected Lipschitz Domains) For simply
connected Lipschitz domains in R

d, d 2 f2; 3g, every vector field in L2.˝/ is the
sum of the curl of a stream function (in two dimension) or vector potential (in three
dimensions) and a gradient. ut
Lemma 3.179 (Estimating the Divergence by the Gradient for Functions from
H1
0.˝/) Let ˝ � R

d, d 2 f2; 3g, and let v 2 H1
0.˝/, then it holds

krvk2L2.˝/ D kr � vk2L2.˝/ C kr � vk2L2.˝/ (3.169)

and consequently

kr � vkL2.˝/ � krvkL2.˝/ 8 v 2 H1
0.˝/: (3.170)

Proof The proof is based on the identity (3.155). Considering v 2 H1
0.˝/, this

identity can be transformed into a weak form by multiplication with a test function
w 2 H1

0.˝/ and applying integration by parts

.rv;rw/ D .r � v;r � w/C .r � v;r � w/ 8 w 2 H1
0.˝/: (3.171)

The derivation of the first two terms is standard. For deriving the last term, the
integration by parts formula (3.161) can be applied. However, the derivation can be
also checked with a straightforward calculation. Using (3.151) gives

r � r � v D
0
@@y

�
@xv2 � @yv1

� � @z .@zv1 � @xv3/

@z
�
@yv3 � @zv2

� � @x
�
@xv2 � @yv1

�
@x .@zv1 � @xv3/ � @y

�
@yv3 � @zv2

�
1
A :
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Applying integration by parts, boundary integrals will not appear for test functions
w 2 H1

0.˝/. One obtains, considering the individual terms,

.r � r � v;w/ D � �@xv2 � @yv1; @yw1
�C .@zv1 � @xv3; @zw1/ � �

@yv3 � @zv2; @zw2
�

C �
@xv2 � @yv1; @xw2

� � .@zv1 � @xv3; @xw3/C �
@yv3 � @zv2; @yw3

�
D �

@yv3 � @zv2; @yw3 � @zw2
�C .@zv1 � @xv3; @zw1 � @xw3/

C �
@xv2 � @yv1; @xw2 � @yw1

�
D .r � v;r � w/ :

Inserting now w D v 2 H1
0.˝/ in (3.171) gives (3.169). �



Chapter 4
The Stokes Equations

Remark 4.1 (Motivation) The Stokes equations model the simplest incompressible
flow problems. These problems are steady-state and the convective term can be
neglected. Hence, the arising model is linear. Thus, the only difficulty which remains
from the problems mentioned in Remark 2.19 is the coupling of velocity and
pressure.

The analysis of the Stokes equations and of finite element discretizations of these
equations introduces already important techniques which will be used also in the
analysis of more complicated problems. ut

4.1 The Continuous Equations

Remark 4.2 (The Stokes Equations) Consider a stationary flow, i.e., @tu D 0. If
the flow is in addition very slow, i.e., the Reynolds number is very small, then the
viscous term Re�1�u dominates the convective term .u�r/u and the convective term
can be neglected. The resulting momentum equation can be scaled by the Reynolds
number, defining a new pressure and right-hand side in this way. One obtains the
so-called Stokes equations

��u C rp D f in ˝;
r � u D 0 in ˝;

(4.1)

that has to be equipped with appropriate boundary conditions.
The theory from Sects. 3.1 and 3.2 will be applied here to study system (4.1).

For simplicity of presentation, the Stokes equations will be considered with
homogeneous Dirichlet boundary conditions u D 0 on 
 . ut
Remark 4.3 (The Weak Form of Stokes Equations) The weak form of the Stokes
equations equipped with homogeneous Dirichlet boundary conditions is obtained
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in the usual way by multiplying the equations with test functions, integrating
these equations on ˝ , and applying integration by parts to transfer derivatives
from the solution to the test functions. One obtains the following problem: Given
f 2 H�1.˝/, find .u; p/ 2 H1

0.˝/ � L20.˝/ such that

.ru;rv/� .r � v; p/ D h f ; viH�1.˝/;H1
0.˝/

8 v 2 H1
0.˝/;

�.r � u; q/ D 0 8 q 2 L20.˝/:
(4.2)

This weak form can be cast into the framework of the abstract linear saddle point
problem by setting V D H1

0.˝/ and Q D L20.˝/ in (3.4), equipped with the norms
k�kV D j�jH1.˝/ and k�kQ D k�kL2.˝/,

a.u; v/ D .ru;rv/; b.v; q/ D �.r � v; q/; r D 0:

An equivalent formulation of (4.2) is as follows: Find .u; p/ 2 V � Q such that

a.u; v/C b.v; p/� b.u; q/ D h f ; viV0;V 8 .v; q/ 2 V � Q: (4.3)

If (4.2) holds, one gets (4.3) by subtracting the second equation from the first
equation in (4.2). In turn, if (4.3) is valid, then the individual equations of (4.2)
are obtained by considering in (4.3) the sets f.v; 0/g and f.0; q/g as test functions.

Let V0 D Vdiv, the space of weakly divergence-free functions defined in (3.38).
Then, the associated problem to (4.2), which corresponds to (3.12), is: Find u 2 Vdiv

such that

.ru;rv/ D h f ; viV0;V 8 v 2 Vdiv: (4.4)

ut
Remark 4.4 (The Deformation Tensor Form of the Viscous Term) Starting point for
a variational formulation of the viscous term might be also the term �2r � .D .u//
which is equivalent to ��u, see Remark 2.20. Multiplying this term with a test
function v 2 V , applying integration by parts, utilizing that the L2.˝/ inner product
of tensors is defined component by component, and using that D .u/ is symmetric
yields

� 2 .r � .D .u// ; v/ D 2 .D .u/ ;rv/ D .D .u/ ;rv/C .D .u/ ;rv/
D .D .u/ ;rv/C �

.D .u//T ; .rv/T�
D .D .u/ ;rv/C �

D .u/ ; .rv/T�
D 2 .D .u/ ;D .v// : (4.5)

ut
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Lemma 4.5 (The Norm of the Bilinear Form a.�; �/) For the bilinear form a.�; �/
associated with the Stokes problem it holds kak D 1.

Proof One gets with the Cauchy–Schwarz inequality (A.10)

kak D sup
v;w2Vnf0g

.rv;rw/
krvkL2.˝/ krwkL2.˝/

� sup
v;w2Vnf0g

krvkL2.˝/ krwkL2.˝/

krvkL2.˝/ krwkL2.˝/

D 1:

Choosing v D w shows that the supremum is not smaller than 1. �

Theorem 4.6 (Existence and Uniqueness of a Solution of the Stokes Equations)
Let ˝ be a bounded domain in R

d, d 2 f2; 3g, with a Lipschitz continuous
boundary 
 and let f 2 H�1.˝/. Then, there exists a unique pair .u; p/ 2
H1
0.˝/ � L20.˝/ that solves (4.2).

Proof The bilinear form b.�; �/ satisfies the inf-sup condition, see Theorem 3.46. In
addition, the bilinear form a.�; �/ is Vdiv-elliptic since

a.v; v/ D jvj2H1.˝/ D kvk2V 8 v 2 V � Vdiv: (4.6)

The statement of the theorem follows now from Lemma 3.19. �

Lemma 4.7 (Stability of the Solution) Let the conditions of Theorem 4.6 be given.
Then, the solution .u; p/ of the Stokes problem (4.2) depends continuously on the
right-hand side

kukV D krukL2.˝/ � k fkH�1.˝/ ; (4.7)

kpkQ D kpkL2.˝/ � 2

ˇis
k fkH�1.˝/ : (4.8)

If f 2 L2.˝/, then it holds

kukV � C kPhelm fkL2.˝/ ; (4.9)

where the constant comes from the Poincaré inequality (A.12).

Proof Inserting u as test function in (4.4) gives

.ru;ru/ D h f ;uiV0;V :

Applying the dual estimate yields

kruk2L2.˝/ � k fkH�1.˝/ krukL2.˝/ :
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In the case krukL2.˝/ D 0, the estimate for the velocity is trivially true. Otherwise,
division with krukL2.˝/ leads to (4.7).

For the estimate of the pressure, the inf-sup condition (3.48), the equation (4.2),
the estimate of the dual pairing, and the Cauchy–Schwarz inequality (A.10) are
utilized

kpkL2.˝/ � 1

ˇis
sup

v2Vnf0g
�.r � v; p/
krvkL2.˝/

D 1

ˇis
sup

v2Vnf0g
h f ; viV0;V � .ru;rv/

krvkL2.˝/

� 1

ˇis
sup

v2Vnf0g
k fkH�1.˝/ krvkL2.˝/ C krukL2.˝/ krvkL2.˝/

krvkL2.˝/

D 1

ˇis

�k fkH�1.˝/ C krukL2.˝/

�
:

Inserting now the stability estimate (4.7) for the velocity gives the estimate (4.8) for
the pressure.

Let f 2 L2.˝/, then the application of Helmholtz decomposition (3.162)

f D Phelm f C rr;

using the Helmholtz projection from Definition 3.170, integration by parts, u 2 Vdiv,
the Cauchy–Schwarz inequality, and Poincaré inequality yields

kruk2L2.˝/ D .Phelm f ;u/C .rr;u/ D .Phelm f ;u/

� kPhelm fkL2.˝/ kukL2.˝/ � C kPhelm fkL2.˝/ krukL2.˝/ :

Division by krukL2.˝/ proves the last statement (4.9) of the lemma. �

Remark 4.8 (On the Implication of the Inf-Sup Condition) It can be shown with a
straightforward calculation that the inf-sup condition guarantees the uniqueness of
the pressure.

Since the weak form of the homogeneous Stokes equations

a.u; v/ C b.v; p/ D 0 8 v 2 V;
b.u; q/ D 0 8 q 2 Q;

(4.10)

is a linear system, one has to show for uniqueness of a solution that f D 0 implies
u D 0 and p D 0. Assume there is a solution .u; p/ 2 V � Q of (4.10). Taking .u; p/
as test functions gives

a.u;u/ C b.u; p/ D 0;

b.u; p/ D 0:
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Including the second equation in the first one leads to a.u;u/ D 0. The ellipticity of
a.�; �/ in V , see (4.6), implies u D 0. Up to this point, the inf-sup condition was not
needed.

Considering now the first equation of (4.10) with u D 0 gives

b.v; p/ D 0 8 v 2 V:

It follows that

sup
v2Vnf0g

b.v; p/

kvkV

D 0:

The inf-sup condition written in the form (3.47) implies now immediately p D 0 in
L20.˝/ since ˇis > 0. ut
Remark 4.9 (Non-homogeneous Dirichlet Boundary Conditions) Consider the
Stokes equations with the boundary conditions

u D g on 
;

with g 2 H1=2.
 / such that the compatibility condition (2.33) is satisfied.
The existence and uniqueness of a solution of the Stokes equations with non-

homogeneous Dirichlet boundary condition can be proved also with Theorem 4.6.
From the Trace Theorem, Theorem A.34, it follows that there is a function u0 2
H1.˝/ with u0 D g on 
 . The function u � u0 fulfills the Stokes equations
with homogeneous Dirichlet boundary conditions and a modified right-hand side.
The right-hand side of the momentum equation is still in H�1.˝/ and the right-
hand side of the mass balance might be inhomogeneous. Note that the theory of
Sects. 3.1 and 3.2 does not require the homogeneity of the right-hand side of the
second equation of the saddle point problem. Theorem 4.6 shows the existence
and uniqueness of a solution to this Stokes equations with new right-hand side.
Adding u0 to this solution gives the existence of a solution to the Stokes problem
with inhomogeneous Dirichlet boundary conditions.

The uniqueness is proved in an indirect way by assuming the existence of two
different solutions. The difference of these solutions solves a Stokes problem with
homogeneous right-hand side and homogeneous Dirichlet boundary conditions.
Theorem 4.6 shows that the solution of this problem is .0; 0/. Hence, the existence
of two different solutions is not possible. ut
Remark 4.10 (Other Boundary Conditions) Investigations of the well-posedness of
the Stokes problem with others than Dirichlet boundary conditions can be found,
e.g., in Ern and Guermond (2004, §4.1.4). ut
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Lemma 4.11 (Babuška Inf-Sup Condition for the Stokes Problem) It holds

inf
.w;r/2.V�Q/
.w;r/¤.0;0/

sup
.v;q/2.V�Q/
.v;q/¤.0;0/

.rw;rv/� .r � v; r/C .r � w; q/�krwkL2.˝/ C krkL2.˝/

� �krvkL2.˝/ C kqkL2.˝/

�

� ˇis;Bab > 0 (4.11)

with

1

ˇis;Bab
D
�
1C 2

ˇis

�
C 1

ˇis

�
1C 1

ˇis

�
:

Proof Let .w; r/ 2 V � Q be arbitrary. Inserting this pair in the left-hand side
operator of the Stokes equations gives

.rw;rv/ � .r � v; r/ D h f ; viV0;V ; .r � w; q/ D .g; q/ 8 .v; q/ 2 V � Q
(4.12)

for some pair .f ; g/ 2 V 0 � Q. Let wdiv 2 Vdiv be the orthogonal projection of w with
respect to the inner product of V . Hence, .w � wdiv/ 2 .Vdiv/

?. From Corollary 3.44,
it follows that r � .w � wdiv/ 2 Q and one gets from (4.12), r � wdiv D 0, and the
Cauchy–Schwarz inequality (A.10)

.r � w;r � .w � wdiv// D .r � .w � wdiv/ ;r � .w � wdiv//

D kr � .w � wdiv/k2L2.˝/
D .g;r � .w � wdiv//

� kgkL2.˝/ kr � .w � wdiv/kL2.˝/ :

Using this estimate and (3.49), one obtains

kr .w � wdiv/kL2.˝/ � 1

ˇis
kr � .w � wdiv/kL2.˝/ � 1

ˇis
kgkL2.˝/ :

Choosing v D wdiv in (4.12) gives

.rw;rwdiv/ � .r � wdiv; r/ D .rw;rwdiv/ D h f ;wdiviV0;V :

From the orthogonality, it follows that

.rw;rwdiv/ D .r.w � wdiv/;rwdiv/C .rwdiv;rwdiv/ D .rwdiv;rwdiv/

such that one obtains with the estimate for the dual pairing

krwdivkL2.˝/ � k fkH�1.˝/ :
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Now, one gets with the triangle inequality

krwkL2.˝/ � kr .w � wdiv/kL2.˝/ C krwdivkL2.˝/ � 1

ˇis
kgkL2.˝/ C k fkH�1.˝/ :

(4.13)
Using the same techniques like for the stability estimate for the pressure in
Lemma 4.7 yields, together with (4.13),

krkL2.˝/ � 1

ˇis

�k fkH�1.˝/ C krwkL2.˝/

� � 2

ˇis
k fkH�1.˝/ C 1

ˇ2is
kgkL2.˝/ :

(4.14)
Applying (4.12) gives

k fkH�1.˝/ D sup
v2Vnf0g

h f ; viV0;V

krvkL2.˝/

D sup
v2Vnf0g

.rw;rv/ � .r � v; r/
krvkL2.˝/

and using in addition that .r � w; c/ D 0 for all c 2 R yields

kgkL2.˝/ D sup
q2L2.˝/nf0g

.g; q/

kqkL2.˝/

D sup
q2L2.˝/nf0g

.r � w; q/
kqkL2.˝/

D sup
q2Qnf0g

.r � w; q/
kqkL2.˝/

:

Adding (4.13) and (4.14) leads to

krwkL2.˝/ C krkL2.˝/

�
�
1C 2

ˇis

�
sup

v2Vnf0g
.rw;rv/ � .r � v; r/

krvkL2.˝/

C
�
1

ˇis
C 1

ˇ2is

�
sup

q2Qnf0g
.r � w; q/
kqkL2.˝/

�
��
1C 2

ˇis

�
C 1

ˇis

�
1C 1

ˇis

��
sup

.v;q/2.V�Q/
.v;q/¤.0;0/

.rw;rv/� .r � v; r/C .r � w; q/�krvkL2.˝/ C kqkL2.˝/

� ;

where in the last step it was used that

sup
v2Vnf0g

.rw;rv/ � .r � v; r/
krvkL2.˝/

� sup
.v;q/2.V�Q/
.v;q/¤f0;0g

.rw;rv/� .r � v; r/C .r � w; q/�krvkL2.˝/ C kqkL2.˝/

�

because for q D 0 there already holds the equal sign. The same argument is
applied to the other supremum. Since .w; r/ 2 V � Q was arbitrary, the inf-sup
condition (4.11) follows from this estimate. �

Remark 4.12 (On the Balance of Different Parts of the Source Term in the Momen-
tum Equation) Let f 2 L2.˝/. According to Theorem 3.168, the right-hand side
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admits a Helmholtz decomposition of the form f D Phelm f C rr; with Phelm f 2
Hdiv.˝/ and rr 2 .Hdiv.˝//

?. Inserting this decomposition in the momentum
balance of the Stokes equations (4.1) yields

��u C rp D Phelm f C rr: (4.15)

Assume that �u;rp 2 L2.˝/, then it is even �u 2 Hdiv.˝/. This property can
be checked by a direct calculation, utilizing that weak derivatives can be always
interchanged, see Evans (2010, Sect. 5.2.3, Theorem 1), and using r � u D 0

�r ��u D @x
�
@xxu1 C @yyu1

�C @y
�
@xxu2 C @yyu2

�
D @xx

�
@xu1 C @yu2

�C @yy
�
@xu1 C @yu2

� D 0;

and analogously in three dimensions.
Consider now not only the momentum balance but the complete boundary

value problem. Inserting the decomposition of f in the weak formulation (4.2) and
assuming that the solution is sufficiently smooth gives, applying integration by parts,

� .�u; v/� .r � v; p/ D .Phelm f ; v/ � .r � v; r/ 8 v 2 V: (4.16)

It can be seen that the irrotational forces rr are balanced completely by the pressure.
Already the stability estimate (4.9) shows that irrotational forces do not possess an
impact on the velocity. Altogether, one finds that if f is changed to f C rr, then the
pressure solution of the Stokes equations changes to p C r. Likewise, divergence-
free forces are balanced by the velocity, more precisely by ��u. Thus, there is a
separate balance of irrotational and divergence-free forces.

Note that for the integration by parts leading to (4.16) the respective boundary
integrals have to vanish. This situation is given if the test space is V D H1

0.˝/,
i.e., if the Stokes equations are equipped with Dirichlet conditions on the whole
boundary. There is not such a clear separation of the impact of different kinds of the
forces in the case of other boundary conditions, in particular, in the case of boundary
conditions which involve also the pressure, like the do-nothing condition (2.37). ut

4.2 Finite Element Error Analysis

Remark 4.13 (The Finite Element Formulation) Let Vh be a velocity finite element
space and let Qh be a pressure finite element space. The finite element discretization
of the Stokes equations (4.2) reads as follows: Let f be given, find .uh; ph/ 2 Vh�Qh

such that

ah
�
uh; vh

�C bh
�
vh; ph

� D
X

K2T h

Z
K

�
fvh

�
.x/ dx 8 vh 2 Vh;

bh
�
uh; qh

� D 0 8 qh 2 Qh;

(4.17)
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with

ah
�
vh;wh

� D
X

K2T h

�rvh;rwh
�

K ; bh
�
vh; qh

� D �
X

K2T h

�r � vh; qh
�

K ;

(4.18)
and the right-hand side f is assumed to be sufficiently smooth such that the right-
hand side of the momentum equation in (4.17) is well defined. ut
Theorem 4.14 (Existence and Uniqueness of a Solution of the Finite Element
Stokes Equations) Let .ah.�; �//1=2 define a norm in Vh and let the discrete inf-sup
condition (3.51) hold. Then, (4.17) has a unique solution.

Proof If .ah.�; �//1=2 is a norm in Vh, then this bilinear form is Vh-elliptic and in
particular Vh

div-elliptic. Then, the proof is performed analogously to the proof of
Theorem 4.6. �

Remark 4.15 (Goal and Approach) The goal of the finite element error analysis
consists in getting information on the order of convergence of the finite element
solution to the solution of the weak problem in norms of interest. To this end,
families of triangulations fT hg with corresponding finite element spaces fVh � Qhg
are considered. A general approach of obtaining finite element error estimates
consists in the following steps, e.g., see the proof of Theorem 4.21:

• derive an equation or an inequality for the considered norm of the error,
• modify the equation or the inequality in such a way that approximation errors to

the finite element spaces appear,
• estimate the considered norm of the error by constants times best approximation

errors.

In the second step, one has usually to add and subtract terms in a clever way. The
best approximation errors are independent of the considered problem. They can be
estimated by interpolation errors. Interpolation error estimates are known from the
general theory of finite element methods, see Appendix C. ut

4.2.1 Conforming Inf-Sup Stable Pairs of Finite Element
Spaces

Remark 4.16 (Conforming Inf-Sup Stable Finite Element Spaces) This section
studies conforming inf-sup stable finite element spaces, i.e., besides the discrete inf-
sup condition (3.51) it holds Vh � V and Qh � Q. The bilinear forms are identical to
the forms of the continuous problem, i.e., it is ah.�; �/ D a.�; �/ and bh.�; �/ D b.�; �/.

ut
Corollary 4.17 (Unique Solvability of the Finite Element Problem) Let Vh and
Qh be conforming finite element spaces that satisfy the discrete inf-sup condi-
tion (3.51). Then, the finite element problem (4.17) has a unique solution.
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Proof Based on Theorem 4.14, it is sufficient to show that .a.�; �//1=2 defines a norm
in Vh. This property is given, because .a.�; �//1=2 defines a norm in V , see (4.6), it
defines also a norm in every subspace Vh � V . �

Lemma 4.18 (Stability of the Finite Element Solution) Let Vh � Qh be a pair of
inf-sup stable finite element spaces. Then, the solution of (4.17) fulfills

��ruh
��

L2.˝/ � k fkH�1.˝/ ;
��ph

��
L2.˝/ � 2

ˇh
is

k fkH�1.˝/ :

Proof The proof follows the lines of the proof of Lemma 4.7. �
Remark 4.19 (Reduction to a Problem in the Space of Discretely Divergence-Free
Functions) From the abstract theory of linear saddle point problems, Sect. 3.1,
Remark 3.11, it follows that the finite element approximation of the velocity can
be computed by solving the following problem: Find uh 2 Vh

div such that

a
�
uh; vh

� D �ruh;rvh
� D h f ; vhiV0;V 8 vh 2 Vh

div: (4.19)

ut

4.2.1.1 The Case Vh
div 6� Vdiv

Remark 4.20 (The Case Vh
div 6� Vdiv) This case applies for most pairs of inf-sup

stable finite element spaces. ut
Theorem 4.21 (Finite Element Error Estimate for the L2.˝/ Norm of the
Gradient of the Velocity) Let ˝ � R

d, d 2 f2; 3g, be a bounded domain with
polyhedral and Lipschitz continuous boundary and let .u; p/ 2 V � Q be the unique
solution of the Stokes problem (4.2). Assume that this problem is discretized with
inf-sup stable conforming finite element spaces Vh � Qh and denote by uh 2 Vh

div the
velocity solution. Then, the following error estimate holds

��r.u � uh/
��

L2.˝/
� 2 inf

vh2Vh
div

��r.u � vh/
��

L2.˝/
C inf

qh2Qh

��p � qh
��

L2.˝/
: (4.20)

Proof The proof starts by formulating the error equation. Since Vh
div � V , functions

from Vh
div can be used as test function in the continuous Stokes equations (4.3),

which is equivalent to (4.2). Using that the velocity solution of the continuous
equation is weakly divergence-free, one obtains by subtracting (4.19) from (4.3)

�r.u � uh/;rvh
� � �r � vh; p

� D 0 8 vh 2 Vh
div: (4.21)

The pressure term appears since in general Vh
div 6� Vdiv. Equation (4.21) is the error

equation.
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Now, the pressure term will be modified such that an approximation term with
respect to the pressure is obtained. Observing that

�r � vh; qh
� D 0 for all qh 2 Qh

leads to

�r.u � uh/;rvh
� � �r � vh; p � qh

� D 0 8 vh 2 Vh
div; 8 qh 2 Qh: (4.22)

In the next step, the approximation error for the velocity will be introduced. To
this end, the error is decomposed into

u � uh D �
u � Ihu

�� �
uh � Ihu

� D � � �h:

Here, Ihu denotes an arbitrary interpolant of u in Vh
div. Hence, � is just an

approximation error which depends only on the finite element space Vh
div but not on

the considered equation. The goal is to estimate �h 2 Vh
div by approximation errors

as well. To this end, this decomposition is inserted in (4.22) and the test function
vh D �h is chosen. It follows that

��r�h
��2

L2.˝/ D �r�h;r�h
� D �r�;r�h

� � �r � �h; p � qh
� 8 qh 2 Qh:

(4.23)
Now, the terms on the right-hand side are estimated using the Cauchy–Schwarz
inequality (A.10)

ˇ̌�r�;r�h
�ˇ̌ � kr�kL2.˝/

��r�h
��

L2.˝/

and, using in addition (3.170),

ˇ̌� �r � �h; p � qh
�ˇ̌ � ��p � qh

��
L2.˝/

��r � �h
��

L2.˝/

� ��p � qh
��

L2.˝/

��r�h
��

L2.˝/
: (4.24)

Inserting these estimates in (4.23) and dividing by
��r�h

��
L2.˝/

¤ 0 yields

��r�h
��

L2.˝/
� kr�kL2.˝/ C ��p � qh

��
L2.˝/

:

In the case that
��r�h

��
L2.˝/ D 0, this estimate trivially holds.

With the triangle inequality it follows that

��r.u � uh/
��

L2.˝/
� ��r�h

��
L2.˝/

C kr�kL2.˝/

� 2 kr�kL2.˝/ C ��p � qh
��

L2.˝/

for all Ihu 2 Vh
div and for all qh 2 Qh, from what (4.20) follows. �
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Remark 4.22 (On Error Estimates (4.20)) The error in the V norm of the velocity
is estimated with (4.20) by best approximation errors for both, the velocity and
the pressure. The occurrence of the best approximation error for the velocity is
natural, since the velocity finite element space has certainly an impact on the error.
Inspecting the proof of Theorem 4.21, one finds that the reason for the appearance of
the best approximation error for the pressure is the property Vh

div 6� Vdiv. Otherwise,
the second term on the left-hand side of (4.3) would vanish and the pressure would
have been eliminated from the estimate. The case Vh

div � Vdiv will be studied in
more detail in Sect. 4.2.1.2. ut

Remark 4.23 (Conditions on the Domain) A polyhedral domain is assumed for
the reason that no error is committed in approximating the boundary with the
triangulations. The assumption of the Lipschitz continuity of the boundary is
necessary, e.g., for the validity of Sobolev imbeddings on the considered domain.
A domain with Lipschitz boundary lies only on one side of the boundary, see
Adams (1975, p. 67). Under this condition, a polyhedral (polygonal) domain in two
dimensions is a Lipschitz domain. However, the same implication does not hold for
a polyhedral domain in three dimensions. For instance, if the domain is build of
two bricks that are laying on each other like in Fig. 4.1, then the boundary is not
Lipschitz continuous where the edge of one brick meets the edge of the other brick,
see Král and Wendland (1986), Verchota and Vogel (2003) for details. ut
Corollary 4.24 (Finite Element Error Estimate for the L2.˝/ Norm of the
Divergence of the Velocity) Let the assumptions of Theorem 4.21 be fulfilled, then

��r � uh
��

L2.˝/
� 2 inf

vh2Vh
div

��r.u � vh/
��

L2.˝/
C inf

qh2Qh

��p � qh
��

L2.˝/
: (4.25)

Proof The estimate follows easily from r � u D 0, (3.170), and the estimate (4.20)

��r � uh
��

L2.˝/
D ��r � .u � uh/

��
L2.˝/

� ��r.u � uh/
��

L2.˝/
:

�

Theorem 4.25 (Finite Element Error Estimate for the L2.˝/ Norm of the
Pressure) Let the assumption of Theorem 4.21 be satisfied. Then the following

Fig. 4.1 Polyhedral domain
in three dimensions that is not
Lipschitz continuous (at the
corner where the arrow points
to)



4.2 Finite Element Error Analysis 149

error estimate holds

��p � ph
��

L2.˝/
� 2

ˇh
is

inf
vh2Vh

div

��r.u � vh/
��

L2.˝/

C
�
1C 2

ˇh
is

�
inf

qh2Qh

��p � qh
��

L2.˝/
: (4.26)

Proof Let qh 2 Qh be arbitrary, then one gets with the triangle inequality

��p � ph
��

L2.˝/
� ��p � qh

��
L2.˝/

C ��ph � qh
��

L2.˝/
:

Replacing the right-hand side of momentum equation of the finite element
Stokes problem (4.17) by the left-hand side of the the momentum equation of the
continuous Stokes problem (4.2) for vh 2 Vh gives

b
�
vh; ph � qh

� D �a
�
uh; vh

�C h f ; vhiV0;V � b
�
vh; qh

�
D a

�
u � uh; vh

�C b
�
vh; p � qh

� 8 vh 2 Vh;8 qh 2 Qh:

With the inf-sup condition (3.51), the Cauchy–Schwarz inequality (A.10),
and (3.170), it follows now that

��ph � qh
��

L2.˝/

� 1

ˇh
is

sup
vh2Vhnf0g

b
�
vh; ph � qh

�
krvhkL2.˝/

D 1

ˇh
is

sup
vh2Vhnf0g

a
�
u � uh; vh

�C b
�
vh; p � qh

�
krvhkL2.˝/

� 1

ˇh
is

sup
vh2Vhnf0g

��r �u � uh
���

L2.˝/

��rvh
��

L2.˝/
C ��p � qh

��
L2.˝/

��rvh
��

L2.˝/

krvhkL2.˝/

D 1

ˇh
is

	��r �
u � uh

���
L2.˝/

C ��p � qh
��

L2.˝/



8 qh 2 Qh:

Inserting the error estimate (4.20) for the velocity yields the error estimate for the
pressure. �

Remark 4.26 (Error of the Velocity in the L2.˝/ Norm) A simple error estimate of
the velocity error in the L2.˝/ can be obtained with the Poincaré inequality (A.12)

��u � uh
��

L2.˝/
� C

��r.u � uh/
��

L2.˝/
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and the application of (4.20). However, the resulting estimate is not optimal.
The derivation of an optimal error estimate for

��u � uh
��

L2.˝/
requires additional

assumptions and analytical tools. ut
Remark 4.27 (Regular Dual Stokes Problem) To obtain an estimate for the velocity
error in L2.˝/, the classical argument by Aubin (1967) and Nitsche (1968) is
applied. To this end, a dual problem of the Stokes equations has to be considered.
The dual or adjoint operator is obtained by bringing the test function of the weak
formulation of the Stokes equations (4.3) in the place of the solution and vice versa.
Using the symmetry of the viscous term and changing position of terms, one gets
from the left-hand side of (4.3)

.rv;ru/C .r � u; q/� .r � v; p/:

Now, the test function is replaced by the solution of the dual problem
	
� Of ;  Of



and

the solution .u; p/ by the test function, leading to the following left-hand side of the
weak form of the dual problem

	
r� Of ;rv



C
	
r � v;  Of



�
	
r � � Of ; q



:

Using integration by parts one gets the strong form of the dual Stokes problem for a
velocity in Vdiv: For given Of 2 L2.˝/, find .� Of ;  Of / 2 V � Q such that

��� Of � r Of D Of in ˝;

r � � Of D 0 in ˝:
(4.27)

Note that in the general dual problem, the right-hand side of the divergence
constraint might be different than zero.

Problem (4.27) is said to be regular, if the mapping

	
� Of ;  Of



7! ��� Of � r Of (4.28)

is an isomorphism from
�
H2.˝/\ V

� � �H1.˝/\ Q
�

onto L2.˝/. That means, in
comparison with the Stokes equations, the higher regularity conditions � Of 2 H2.˝/

and  Of 2 H1.˝/ are required. It can be proved that this regularity is given, e.g., for
bounded convex polyhedral domains in two and three dimensions, see Kellogg and
Osborn (1976), Dauge (1989). ut
Theorem 4.28 (Finite Element Error Estimate for the L2.˝/ Norm of the
Velocity) Let the assumption of Theorem 4.21 hold and let .� Of ;  Of / be the solution
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of (4.27). Then, the L2.˝/ error of the velocity can be estimated as follows

��u � uh
��

L2.˝/
�
���r �

u � uh
���

L2.˝/
C inf

qh2Qh

��p � qh
��

L2.˝/

�

� sup
Of2L2.˝/nf0g

1��� Of
���

L2.˝/

"
inf

�h2Vh
div

���r
	
� Of � �h


���
L2.˝/

C inf
rh2Qh

��� Of � rh
���

L2.˝/

�
: (4.29)

Proof It is, by definition,

��u � uh
��

L2.˝/
D sup

Of2L2.˝/nf0g

	 Of ;u � uh



��� Of
���

L2.˝/

: (4.30)

The weak form of the dual problem (4.27) is: Find .� Of ;  Of / 2 V � Q such that

	
rv;r� Of



C
	
r � v;  Of



D
	 Of ; v



8 v 2 V;	

r � � Of ; q



D 0 8 q 2 Q:

Choosing v D u � uh 2 V gives for the numerator of (4.30)

	 Of ;u � uh



D
	
r �

u � uh
�
;r� Of



C
	
r � �u � uh

�
;  Of


: (4.31)

The aim consists now in adding terms to this equation such that approximation errors
are obtained. For all �h 2 Vh

div � V and qh 2 Qh it holds, using the weak form of
the Stokes problem (4.2) and the finite element problem (4.19),

�r �
u � uh

�
;r�h

� D �r � �h; p
�C h f ;�hiV0;V � �r � �h; ph

�� h f ;�hiV0;V

D �r � �h; p
� D �r � �h; p � qh

� 8 qh 2 Qh: (4.32)

In addition, it is

	
r � � Of ; p � qh



D 0 8 qh 2 Qh;

and

�r � �u � uh
�
; rh
� D 0 8 rh 2 Qh;
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since Qh � Q. Inserting these terms in (4.31) leads to

	 Of ;u � uh



D
	
r �

u � uh
�
;r
	
� Of � �h




C
	
r �

	
� Of � �h



; p � qh




C
	
r � �u � uh

�
;  Of � rh



(4.33)

for all �h 2 Vh
div and all qh; rh 2 Qh. The application of the Cauchy–Schwarz

inequality (A.10) and of (3.170) yields

ˇ̌
ˇ
	 Of ;u � uh


ˇ̌
ˇ � ��r �

u � uh
���

L2.˝/

���r
	
� Of � �h


���
L2.˝/

C ��p � qh
��

L2.˝/

���r
	
� Of � �h


���
L2.˝/

C
��� Of � rh

���
L2.˝/

��r �
u � uh

���
L2.˝/

�
	��r �

u � uh
���

L2.˝/
C ��p � qh

��
L2.˝/




�
����r

	
� Of � �h


���
L2.˝/

C
��� Of � rh

���
L2.˝/

�
(4.34)

for all �h 2 Vh
div and all qh; rh 2 Qh. Taking the infimum of all approximation errors

gives (4.29). �
Remark 4.29 (On the Dependency of the Error Bounds on the Discrete Inf-Sup
Constant) One can estimate the best approximation error with respect to Vh

div

in (4.20), (4.25), (4.26), and (4.29) with (3.65) giving a term with
�
ˇh

is

��1
. The

obtained estimates are worst case estimates.
For finite element spaces where the local interpolation operator that preserves the

discrete divergence, studied in Girault and Scott (2003), can be constructed, (3.71)
can be used instead of (3.65). Then, the constants in the velocity estimates depend
on the inverse of local discrete inf-sup constants, compare Remark 3.62. In contrast
to the error estimates with respect to the velocity, the error bound (4.26) for the
pressure depends always on

�
ˇh

is

��1
.

In all cases, if the local inf-sup constants or ˇh
is depend on the mesh width, then

an optimal order of convergence cannot be expected. ut
Corollary 4.30 (Finite Element Error Estimates for Conforming Inf-Sup Stable
Pairs of Finite Element Spaces) Let ˝ � R

d, d 2 f2; 3g, be a bounded domain
with polyhedral and Lipschitz continuous boundary which is decomposed by a
regular and quasi-uniform family of triangulations fT hg. Let .u; p/ be the solution
of the Stokes equations (4.2) with u 2 HkC1.˝/\ V and p 2 Hk.˝/\ Q. Then for
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the inf-sup stable pairs of finite element spaces

• Pbubble
k =Pk, k D 1 (MINI element),

• Pk=Pk�1, Qk=Qk�1, k � 2 (Taylor–Hood element),
• Pbubble

2 =Pdisc
1 , Pbubble

3 =Pdisc
2 , PBR

2 =Pdisc
1 , Qk=Pdisc

k�1, k � 2,

the following error estimates hold

��r.u � uh/
��

L2.˝/
� Chk

�kukHkC1.˝/ C kpkHk.˝/

�
; (4.35)

��r � uh
��

L2.˝/ � Chk
�kukHkC1.˝/ C kpkHk.˝/

�
; (4.36)

��p � ph
��

L2.˝/
� Chk

�kukHkC1.˝/ C kpkHk.˝/

�
: (4.37)

If the dual Stokes problem (4.27) possesses a regular solution .� Of ;  Of / in the sense
of Remark 4.27, then it holds in addition

��u � uh
��

L2.˝/
� ChkC1 �kukHkC1.˝/ C kpkHk.˝/

�
: (4.38)

The constants C depend either on the inverse of the discrete inf-sup constant ˇh
is or

on the inverse of local inf-sup constants, compare Remark 4.29.

Proof The best approximation errors in estimates (4.20), (4.25), (4.26), and (4.29)
can be estimated by interpolation errors, since an interpolation error cannot be lower
than the best approximation error. Then, estimates (4.35)–(4.37) follow directly
from interpolation error estimates for finite element spaces, see (3.65) or (3.71) for
the velocity.

The additional power of h in estimate (4.38) comes from the application of the
interpolation estimates (3.65) or (3.71) and for the pressure to the second factor
of (4.29) and the regularity of .� Of ;  Of /

inf
�h2Vh

div

���r
	
� Of � �h


���
L2.˝/

C inf
rh2Qh

��� Of � rh
���

L2.˝/

� Ch

����� Of
���

H2.˝/
C
��� Of
���

H1.˝/

�
: (4.39)

Since (4.28) is an isomorphism from
�
H2.˝/\ V

���H1.˝/\ Q
�

onto L2.˝/ there
is a constant C such that

���� Of
���

H2.˝/
C
��� Of
���

H1.˝/
� C

��� Of
���

L2.˝/
: (4.40)

Inserting (4.39) and (4.40) in (4.29) proves (4.38). �
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Fig. 4.2 Example 4.31.
Initial grids (level 0)

Example 4.31 (Analytical Example Which Supports the Error Estimates (4.35)–
(4.38)) Error estimates of form (4.35)–(4.38) are usually supported by using
problems with a known (prescribed) solution and by measuring the errors to this
solution on a sequence of subsequently refined grids. Here, Example D.3 will be
considered, which is defined on the unit square. Initial grids (level 0) of the form
presented in Fig. 4.2 were used in the simulations. On such unstructured or distorted
grids, it is not likely to obtain superconvergence effects in the numerical results.
The right-hand side was integrated with a quadrature rule of high order to reduce
the influence of quadrature errors.

The errors in different norms are presented in Figs. 4.3, 4.4, 4.5, and 4.6.1 It
can be observed that in the most cases the orders of convergence predicted by
the numerical analysis coincide with the orders of convergence in the numerical
simulations. Generally, different discretizations of the same order show a similar
accuracy. Only the pressure error obtained with Pbubble

2 =Pdisc
1 , see Fig. 4.5, is much

higher than with all other discretizations with second order velocity and first order
pressure.

For the Pbubble
1 =P1 pair of finite element spaces, the order of convergence for the

L2.˝/ error of the pressure is higher by 0:5 than predicted by the analysis. ut

Remark 4.32 (Local Mass Conservation for Discontinuous Pressure Approxima-
tions) An argument for using discontinuous pressure approximations, which can
be found sometimes in the literature, is that one has at least a local (mesh cell by
mesh cell) divergence-free finite element solution or local conservation of mass.

Consider meshes with affinely mapped grid cells. Since the piecewise constant
functions are usually a subspace of a discontinuous pressure finite element space,
one obtains from the second equation in (4.17)

0 D
X

K2T h

Z
K

�r � uh
�

qh.x/ dx D
X

K2T h

qh
Z

K

�r � uh
�
.x/ dx (4.41)

12D graphics were plotted with Matplotlib, Hunter (2007), http://matplotlib.org.

http://matplotlib.org
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Fig. 4.3 Example 4.31. Convergence of the errors
��r.u � uh/

��
L2.˝/ for different discretizations

with different orders k. In the top right and bottom left pictures, the magenta line is on top of the
green line

for all qh 2 P0 or qh 2 Q0. Considering an arbitrary mesh cell K1 and another
arbitrary mesh cell K2 ¤ K1. Then one can choose

qh D

8̂
ˆ̂<
ˆ̂̂:

1 in K1;

�jK1j
jK2j in K2;

0 else:

With this choice it is qh 2 L20.˝/. One gets with (4.41)

Z
K2

r � uh.x/ dx D jK2j
jK1j

Z
K1

r � uh.x/ dx 8 K2 2 T h:
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Fig. 4.4 Example 4.31. Convergence of the errors
��r � uh

��
L2.˝/ for different discretizations with

different orders k. In the top right and bottom left pictures, the magenta line is on top of the green
line

It follows that
Z
˝

r � uh.x/ dx D
X

K2T h

Z
K

r � uh.x/ dx D
X

K2T h

jKj
jK1j

Z
K1

r � uh.x/ dx

D 1

jK1j
Z

K1

r � uh.x/ dx
X

K2T h

jKj

D j˝j
jK1j

Z
K1

r � uh.x/ dx: (4.42)

Since by integration by parts one has

Z
˝

r � uh.x/ dx D
Z
@˝

uh � n.s/ ds D 0;
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Fig. 4.5 Example 4.31. Convergence of the errors
��p � ph

��
L2.˝/ for different discretizations with

different orders k

one concludes that the last factor on the right-hand side of (4.42) vanishes. Since K1
was chosen to be arbitrary, one obtains the local mass conservation

Z
K

r � uh.x/ dx D 0 8 K 2 T h: (4.43)

However, one can observe in Fig. 4.4 that despite the local mass conserva-
tion (4.43) for discretizations with discontinuous pressure approximations, the
order of magnitude of the error

��r � uh
��

L2.˝/ is the same for both, finite element
discretizations with continuous and discontinuous pressure space. ut
Remark 4.33 (Scaled Stokes Problem) A scaled Stokes problem of the form

�	�u C rp D f in ˝;
r � u D 0 in ˝;

(4.44)

	 > 0, is sometimes of interest for academic purposes, since in (4.44), the viscous
term is scaled in the same form as for the Navier–Stokes equations. Dividing the
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Fig. 4.6 Example 4.31. Convergence of the errors
��u � uh

��
L2.˝/ for different discretizations with

different orders k

momentum equation in (4.44) by 	 yields

��u C r
	p

	



D f
	

in ˝;

r � u D 0 in ˝;

which is of the same form as the unscaled version (4.1) with a new pres-
sure and a new source term. Now, the finite element error analysis can be
applied in the same way as presented in this section, leading to the estimates of
form (4.20), (4.25), (4.26), and (4.29), where the pressure terms (and in (4.29) the
term with the dual pressure) are scaled with 	�1. Consequently, one obtains also
estimates of the form (4.35) and (4.36) with 	�1 in front of kpkHk.˝/

��r.u � uh/
��

L2.˝/
� Chk

�kukHkC1.˝/ C 	�1 kpkHk.˝/

�
; (4.45)

��r � uh
��

L2.˝/ � Chk
�kukHkC1.˝/ C 	�1 kpkHk.˝/

�
:
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For the estimate of the L2.˝/ error of the velocity, one considers again the dual
Stokes problem (4.27). Since this problem is formulated with unit viscosity, neither
� Of nor  Of nor Of depend on 	. The error estimate is performed in the same way as in
the proof of Theorem 4.28. Instead of (4.32), one obtains

�r �
u � uh

�
;r�h

� D 1

	

�r � �h; p � qh
� 8 qh 2 Qh:

Then, the middle term on the right-hand side of (4.33) is scaled with 	�1 and one
gets the scaling 	�1 in (4.34) in front of

��p � qh
��

L2.˝/. Finally, the error estimate

��u � uh
��

L2.˝/
� ChkC1 �kukHkC1.˝/ C 	�1 kpkHk.˝/

�

�
����� Of

���
H2.˝/

C
��� Of
���

H1.˝/

�
(4.46)

is derived.
Thus, for small values of 	, the term 	�1 kpkHk.˝/ might dominate the right-hand

side of all velocity error bounds.
In estimate (4.37) for the pressure, one has to scale also the term on the left-hand

side with 	�1. Rescaling this estimate leads to

��p � ph
��

L2.˝/
� Chk

�
	 kukHkC1.˝/ C kpkHk.˝/

�
: (4.47)

ut
Example 4.34 (Scaled Stokes Problem) Again, the problem defined in Example D.3
is considered, see Example 4.31 for the simulations with the unscaled Stokes
equations. From the estimates (4.45) and (4.46), one would expect that the velocity
errors become large for small 	 and then they scale linearly with 	�1. In contrast,
from (4.47) one has the expectation that the pressure error becomes large for large
values of 	 and then it scales linearly with 	.

Representative results for the second order Taylor–Hood pair of finite element
spaces P2=P1 on the unstructured grid from Fig. 4.2 are presented in Fig. 4.7. The
dependency of the velocity errors on 	�1 and the pressure error on 	 is clearly
visible. On coarse grids, also the linear dependencies on 	�1 and 	, respectively,
can be observed. However, one can also see a higher order of decrease for the curves
with large errors until they reach the curves for which a dependency on the value of
	 cannot be observed. This decrease is higher by half an order for the velocity errors
and by one order for the L2.˝/ error of the pressure. To the best of our knowledge,
there is no explanation for this behavior so far. ut
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Fig. 4.7 Example 4.34. Convergence of the errors for the scaled Stokes problem and the P2=P1
pair of finite element spaces

4.2.1.2 The Case Vh
div � Vdiv

Remark 4.35 (Pairs of Finite Element Spaces with Vh
div � Vdiv) This section

inspects the proofs of the error estimates from Sect. 4.2.1.1 under the condition
that Vh

div � Vdiv. It turns out that some terms vanish. An important consequence
is that the error estimates for the velocity do not depend any longer on the best
approximation errors of the pressure finite element space. In addition, also a scaling
of the viscous term as discussed in Remark 4.33 does not influence the velocity error
estimates. The estimates in the case Vh

div � Vdiv reflect the physics of the problem
properly, in contrast to the estimates for the case Vh

div 6� Vdiv, compare Remark 4.12.
The most important pair of conforming inf-sup stable finite element spaces

satisfying Vh
div � Vdiv is the Scott–Vogelius pair of finite element spaces Pk=Pdisc

k�1,
k � d, on special grids, see Sect. 3.6.3. ut
Corollary 4.36 (Finite Element Error Estimates for the Velocity for Inf-Sup
Stable Pairs of Finite Element Spaces with Vh

div � Vdiv) Let the assumptions
of Theorem 4.21 be fulfilled and consider an inf-sup stable pair of finite element



4.2 Finite Element Error Analysis 161

spaces with Vh
div � Vdiv, then

��r.u � uh/
��

L2.˝/
� 2 inf

vh2Vh
div

��r.u � vh/
��

L2.˝/
(4.48)

and

��r � uh
��

L2.˝/
D 0: (4.49)

Proof The proof of (4.48) is performed in the same way as the proof of Theo-
rem 4.21. Inspecting this proof for pairs of spaces with Vh

div � Vdiv, one finds
that (4.24) equals zero since

��r � �h
��

L2.˝/
D 0 for all �h 2 Vh

div.
Property (4.49) follows directly from the definition of Vdiv. �

Corollary 4.37 (Finite Element Error Estimate for the L2.˝/ Norm of the
Velocity for Inf-Sup Stable Pairs of Finite Element Spaces with Vh

div � Vdiv)
Let the assumptions of Theorem 4.28 be fulfilled. If for an inf-sup stable pair of
finite element spaces Vh

div � Vdiv, then

��u � uh
��

L2.˝/
� ��r �

u � uh
���

L2.˝/

� sup
Of2L2.˝/

1��� Of
���

L2.˝/

inf
vh2Vh

div

���r
	
� Of � �h


���
L2.˝/

: (4.50)

Proof The proof proceeds in the same way as the proof of Theorem 4.28. In

addition, one can use in (4.33) that r �
	
�h � � Of



D 0 and r � �u � uh

� D 0 in

the weak sense. �

Remark 4.38 (Pairs of Finite Element Spaces with Vh
div � Vdiv) For pairs of finite

element spaces with the property Vh
div � Vdiv, it follows from (4.48) and (4.49) that

��r.u � uh/
��

L2.˝/ � Chk kukHkC1.˝/ ; (4.51)
��r � uh

��
L2.˝/

D 0; (4.52)
��u � uh

��
L2.˝/

� ChkC1 kukHkC1.˝/ : (4.53)

These estimates are in particular true for the Scott–Vogelius spaces Pk=Pdisc
k�1, k � d,

on barycentric-refined grids. ut
Remark 4.39 (Scaled Stokes Problem) Considering a scaled Stokes problem of
the form (4.44), one finds that the scaling 	�1 does not affect the velocity error
estimates, in contrast to pairs of finite element spaces with Vh

div 6� Vdiv, see
Remark 4.33. ut
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Example 4.40 (The Scott–Vogelius Pair of Finite Element Spaces P2=Pdisc
1 on a

Barycentric-Refined Grid for a No-flow Problem) In this example, the scaled Stokes
problem (4.44) is considered in˝ D .0; 1/2 and with the prescribed solution u D 0

and the pressure

p.x; y/ D 10

�
.x � 0:5/3y C .1 � x/2.y � 0:5/2 � 1

36

�
:

The Scott–Vogelius pair is known to satisfy the discrete inf-sup condition on
barycentric-refined grids, see Remark 3.135. The grids were constructed as follows.
The unit square was divided into two triangles by connecting the lower left and
the upper right corner. This triangulation was uniformly refined once. Then a
barycentric-refined grid as depicted in Fig. 3.9 was created, giving level 0. After
having simulated the problem on this grid, the barycentric refinements were
removed, the grid was uniformly refined once more, and again a barycentric
refinement was applied, leading to level 1. This process was continued.

The results are presented in Fig. 4.8. The velocity error is always a small constant,
independently of the value of 	. The increase of this constant is due to the increase

Fig. 4.8 Example 4.40. Convergence of the errors for the scaled Stokes problem and the P2=Pdisc
1

pair of finite element spaces on a barycentric-refined grid
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Fig. 4.9 Example 4.40. Convergence of the velocity errors for the scaled Stokes problem and the
P2=P1 pair of finite element spaces

of the condition number of the linear saddle point problems for small 	. Hence, this
increase reflects round-off errors of the solver. Since the first term on the right-hand
side of estimate (4.47) vanishes, one expects that the pressure error in L2.˝/ is
independent of 	, which can be observed very well in the computational results.

As comparison, results obtained with the Taylor–Hood finite element P2=P1
computed on the irregular grid from Fig. 4.2 are depicted in Fig. 4.9. Even for
moderate values of 	, the discrete velocity field is far away from being a no-flow
field. The dependency of the velocity errors on the viscosity can be clearly observed
in this simple example. This result reflects once more the potential impact of the
pressure on the error of the velocity for pairs of spaces that do not satisfy Vh

div � Vdiv.
Note that the order of convergence of both velocity errors is higher by 0:5 than
predicted by the analysis. ut

4.2.2 The Stokes Projection

Remark 4.41 (The Stokes Projection) Instead of using the best approximation error
in Vh

div, some approaches of the finite element error analysis of the Navier–Stokes
equations consider a concrete function in Vh

div, which is known to satisfy the required
interpolation error estimates, e.g., see the proof of Theorem 7.35. A possible
definition of a concrete function is the Stokes projection.

Given .u; p/ 2 Vdiv � Q, then the Stokes projection .Ih
Stu; I

h
Stp/ 2 Vh

div � Qh is
defined to be the solution of

a
�
Ih
Stu; v

h
�C b

�
vh; Ih

Stp
� D a

�
u; vh

�C b
�
vh; p

� 8 vh 2 Vh;

b
�
Ih
Stu; q

h
� D 0 8 qh 2 Qh;

(4.54)

where Vh � Qh � V � Q are inf-sup stable finite element spaces. ut
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Lemma 4.42 (Stability of the Stokes Projection) The Stokes projection depends
stable on the solution of the problem

��rIh
Stu
��

L2.˝/ � krukL2.˝/ C kpkL2.˝/ ; (4.55)

��Ih
Stp
��

L2.˝/
� 2

ˇh
is

�krukL2.˝/ C kpkL2.˝/

�
: (4.56)

Proof The proof starts by using the projection as test functions and it follows then
the lines of the proof of Lemma 4.7. �

Lemma 4.43 (Approximation Properties of the Stokes Projection) Let ˝ �
R

d, d 2 f2; 3g, be a bounded domain with polyhedral and Lipschitz continuous
boundary and let .u; p/ 2 V � Q. Assume that (4.54) is discretized with inf-sup
stable conforming finite element spaces Vh � Qh, then it holds

��r �
u � Ih

Stu
���

L2.˝/
� 2

�
1C 1

ˇh
is

�
inf
vh2Vh

��r.u � vh/
��

L2.˝/

C inf
qh2Qh

��p � qh
��

L2.˝/
; (4.57)

��p � Ih
Stp
��

L2.˝/ � 2

ˇh
is

"�
1C 1

ˇh
is

�
inf
vh2Vh

��r.u � vh/
��

L2.˝/

C inf
qh2Qh

��p � qh
��

L2.˝/

#
: (4.58)

Proof Reducing (4.54) to the subspace of discretely divergence-free functions
gives (4.21) with uh replaced by Ih

Stu. Now, the proof of the estimate for the velocity
continuous in the same way as the proof of Theorem 4.21. The proof of the estimate
for the approximation of the pressure follows the proof of Theorem 4.25. In both
cases, finally the estimate (3.65) of the best approximation error of Vh

div is applied.
�

Remark 4.44 (Time Derivatives of the Stokes Projection and Stokes Projection of the
Time Derivatives) Let .u; p/ be functions depending on time which are sufficiently
smooth with respect to time. Using .@tu; @tp/ as right-hand side in the Stokes
projection (4.54), one obtains the projection

�
Ih
St@tu; Ih

St@tp
�
. Differentiating the

definition of the Stokes projection with respect to time, interchanging differentiation
in time and integration in space, and interchanging differentiation in time and in
space, yields

a
�
@tI

h
Stu; v

h
�C b

�
vh; @tI

h
Stp
�� b

�
Ih
@tStu; q

h
� D a

�
@tu; vh

�C b
�
vh; @tp

�
:
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Thus,
�
@tIh

Stu; @tIh
Stp
� 2 Vh � Qh is also the solution of the Stokes projection with

right-hand side .@tu; @tp/. Since the Stokes projection is unique, it follows that�
Ih
St@tu; Ih

St@tp
� D �

@tIh
Stu; @tIh

Stp
�
.

The commutation of projection in space and differentiation in time can be proved
since all terms in the definition of the Stokes projection are linear with respect to
time. It can be extended in the same way to higher order temporal derivatives. ut

4.2.3 Lowest Order Non-conforming Inf-Sup Stable Pairs
of Finite Element Spaces

Remark 4.45 (Non-conforming Inf-Sup Stable Finite Element Spaces of Lowest
Order) Lowest order non-conforming finite element spaces are the Crouzeix–
Raviart finite element Pnc

1 =P0 on simplicial meshes, and the Rannacher–Turek
element Qrot

1 =Q0 on quadrilateral and hexahedral meshes, see Sect. 3.6.5. These
pairs are certainly the most popular non-conforming pairs of finite element spaces
used in the simulation of incompressible flows. The fulfillment of the discrete inf-
sup condition (3.51) for these pairs of spaces was shown or discussed, respectively,
in Sect. 3.6.5.

This section presents exemplary the finite element error analysis for the Pnc
1 =P0

pair of spaces. Since Vh 6� V , properties of V are not inherited by Vh, which causes
a number of technical issues in the analysis. In particular, the measure of ‘Vh being
not a subset of V’, a so-called consistency error, has to be estimated. The proof
uses that the space of conforming piecewise linear finite elements P1 is a subspace
of Pnc

1 . ut
Remark 4.46 (The Finite Element Problem) Since for non-conforming discretiza-
tions it is Vh 6� V , one has to use a definition of the finite element Stokes problem
that uses mesh cell by mesh cell definitions of the bilinear forms. Let f 2 L2.˝/,
then one considers the following problem: Find

�
uh; qh

� 2 Vh � Qh D Pnc
1 � P0 such

that

ah
�
uh; vh

�C bh
�
vh; ph

� D �
f ; vh

� 8 vh 2 Vh;

bh
�
uh; qh

� D 0 8 qh 2 Qh;
(4.59)

with the bilinear forms given in (4.18). ut
Corollary 4.47 (Unique Solvability of the Finite Element Problem) There is a
unique solution

�
uh; qh

� 2 Vh � Qh of the finite element problem (4.59).

Proof Since the discrete inf-sup condition (3.51) is satisfied, see Theorem 3.151, it
is sufficient to show, according to Theorem 4.14, that .ah.�; �//1=2 defines a norm in
Vh. This property was already established in Lemma 3.150. �
Remark 4.48 (Reduction of the Finite Element Problem to the Discretely
Divergence-free Space) As for conforming finite element methods, the error
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analysis starts by reducing the saddle point problem (4.59) to a scalar problem
in Vh

div: Find uh 2 Vh
div such that

ah
�
uh; vh

� D �
f ; vh

� 8 vh 2 Vh
div: (4.60)

One obtains the same finite element velocity solution when solving problems (4.59)
or (4.60). ut

Remark 4.49 (Poincaré Inequality) For functions vh 2 Vh D Pnc
1 a Poincaré

inequality or Poincaré–Friedrichs inequality
��vh

��
L2.˝/ � C

��vh
��

Vh (4.61)

with

��vh
��

Vh D �
ah
�
vh; vh

��1=2 D
 X

K2T h

��rvh
��2

L2.K/

!1=2

holds on regular families of triangulations fT hg, e.g., see Knobloch (2001), Brenner
(2003). ut
Lemma 4.50 (Stability of the Finite Element Solution) Let f 2 L2.˝/, then the
solution of (4.59) satisfies

��uh
��

Vh � C k fkL2.˝/ ;
��ph

��
L2.˝/

� 2C

ˇh
is

k fkL2.˝/ ;

where C is the constant from the Poincaré inequality (4.61).

Proof Using the solution of (4.59) as test function, applying the Cauchy–Schwarz
inequality (A.10), the Poincaré inequality (4.61), and Young’s inequality (A.5) gives

��uh
��2

Vh D ah
�
uh;uh

� D �
f ;uh

� � k fkL2.˝/

��uh
��

L2.˝/ � C k fkL2.˝/

��uh
��

Vh ;

which proves the velocity estimate. The estimate for the pressure is obtained with
the discrete inf-sup condition (3.51), (4.59), the Cauchy–Schwarz inequality, the
Poincaré inequality (4.61), and the stability estimate for the discrete velocity

��ph
��

L2.˝/
� 1

ˇh
is

sup
vh2Vhnf0g

bh
�
vh; qh

�
kvhkVh

D 1

ˇh
is

sup
vh2Vhnf0g

�
f ; vh

�� ah
�
uh; vh

�
kvhkVh

� 1

ˇh
is

sup
vh2Vhnf0g

C k fkL2.˝/

��vh
��

Vh C ��uh
��

Vh

��vh
��

Vh

kvhkVh

� 1

ˇh
is

�
C k fkL2.˝/ C ��uh

��
Vh

� � 1

ˇh
is

�
2C k fkL2.˝/

�
:

�
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Lemma 4.51 (Abstract Error Estimate, Second Lemma of Strang) Let u 2 V
be the solution of (4.4) and uh 2 Vh be the solution of (4.60). Then, there holds the
error estimate

��u � uh
��

Vh � 2 inf
vh2Vh

div

��u � vh
��

Vh

C inf
vh2Vh

div;kvhkVh D1
ˇ̌
ah
�
u; vh

� � �
f ; vh

�ˇ̌
: (4.62)

Proof Let vh 2 Vh
div be arbitrary and use the decomposition

u � uh D u � vh � �
uh � vh

� D u � vh � �h;

with �h 2 Vh
div. Then, one obtains, using (4.60) and the Cauchy–Schwarz inequal-

ity (A.10)

���h
��2

Vh D ah
�
�h;�h

� D ah
�
uh � vh;�h

�
D ah

�
u � vh;�h

�C ah
�
uh;�h

� � ah
�
u;�h

�
D ah

�
u � vh;�h

�C �
f ;�h

� � ah
�
u;�h

�
� ��u � vh

��
Vh

���h
��

Vh C ˇ̌�
f ;�h

� � ah
�
u;�h

�ˇ̌
:

Dividing this estimate by
���h

��
Vh ¤ 0, using the triangle inequality

��u � uh
��

Vh � ��u � vh
��

Vh C ��uh � vh
��

Vh ;

and observing that with arbitrary vh also �h is arbitrary, gives estimate (4.62).
For

���h
��

Vh D 0, estimate (4.62) follows directly from the decomposition of the
error. �

Remark 4.52 (On the Error Estimate (4.62)) Error estimate (4.62) can be consid-
ered as the non-conforming analog of the Lemma of Cea, see Lemma B.12. The
right-hand side consists of two parts that have to be estimated. The first term is the
best approximation error in Vh

div and the second term is the consistency error. This
term describes just the error which is committed by using a non-conforming test
function in the continuous problem (4.4). ut
Lemma 4.53 (Best Approximation Error Estimate for Vh

div) Let fT hg be a quasi-
uniform family of triangulations and let u 2 H2.˝/. Then, the best approximation
error for Vh

div can be estimated in the form

inf
vh2Vh

div

��u � vh
��

Vh � Ch jujH2.˝/ : (4.63)
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Proof Since u 2 Vdiv, it follows from (3.144) that Ph
Eu 2 Vh

div since

0 D b
�
u; qh

� D bh
�
Ph

Eu; q
h
� 8 qh 2 Qh:

Let Ih W V \ H2.˝/ ! P1 � Vh denote the Lagrangian interpolation operator
to the space of continuous, piecewise linear functions. Since a function from P1 is
linear on each face, the integral on the face can be computed exactly by applying
the midpoint (barycenter) rule. Hence, one obtains

Z
E

Ihu.s/ ds D jEj Ihu .mE/ ;

where mE is the barycenter of E. It follows with (3.143) that Ph
E

�
Ihu
� D Ihu,

since the values of both functions coincide at the barycenters. Using the properties
derived so far, the triangle inequality, the linearity of Ph

E, estimate (3.145), and the
interpolation error estimate (C.14) for Ih yields

inf
vh2Vh

div

��u � vh
��

Vh � ��u � Ph
Eu
��

Vh

� ��u � Ihu
��

Vh C ��Ihu � Ph
Eu
��

Vh

D ��u � Ihu
��

Vh C ��Ph
E

�
Ihu
� � Ph

Eu
��

Vh

D ��u � Ihu
��

Vh C ��Ph
E

�
Ihu � u

���
Vh

� ��u � Ihu
��

Vh C ��Ihu � u
��

Vh

� Ch jujH2.˝/ :

�

Remark 4.54 (On Estimate (4.63)) Note that the constant on the right-hand side of
estimate (4.63) does not depend on the discrete inf-sup constant. This property is
in contrast to the general best approximation error estimate (3.65) for conforming
finite element spaces. Recall, it was shown in Theorem 3.151 that the discrete inf-
sup constant for the Crouzeix–Raviart pair of finite element spaces anyway does not
depend on the concrete triangulation since it can be chosen to be the continuous
inf-sup constant. ut
Lemma 4.55 (Consistency Error Estimate) Let .u; p/ be a sufficiently smooth
solution of the Stokes equations (4.2) with u 2 C1

�
˝
�\V, p 2 C

�
˝
�\Q. Consider

a family of quasi-uniform triangulations, then it holds for all v 2 Vdiv ˚ Vh
div

ˇ̌
ah .u; v/� . f ; v/

ˇ̌ � Ch
�jujH2.˝/ C krpkL2.˝/

� kvkVh ; (4.64)

where the constant depends only on the regularity of the family of triangulations.
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Proof Let v 2 Vdiv ˚ Vh
div be arbitrary, then it is, using the momentum equation of

the Stokes problem (4.1)

ah .u; v/ � . f ; v/ D
X

K2T h

.ru;rv/K � . f ; v/K

D
X

K2T h

.ru;rv/K � .��u C rp; v/K : (4.65)

Applying integration by parts, mesh cell by mesh cell, yields
X

K2T h

.ru;rv/K C .�u; v/K

D
X
E2Eh

Z
E
Œj.runE/ � vj�E ds C

X
E2EhnEh

Z
E
.runE/ � v ds; (4.66)

where the unit normals nE for E 2 Eh were chosen arbitrarily but fixed and the

normals for E 2 Eh n Eh are the outward pointing unit normals. Note that changing
the normal for an interior face changes the both, the sign of the normal and the sign
of the jump, such that one obtains the same result as with the other normal.

Let

vE D 1

jEj
Z

E
v.s/ ds; E 2 Eh;

be the integral mean value of v on E. Note that the integral mean value is well
defined for functions on Vh, since it is the nodal functional for defining the space
Pnc
1 and this functional has to be continuous. It follows that

Z
E
.v � vE/ .s/ ds D 0: (4.67)

In addition, let Ih W V \ H2.˝/ ! P1 � Vh be the Lagrangian interpolation
operator to the space of continuous, piecewise linear functions. Then, for each mesh
cell and each face E of the mesh cell,

�rIhu
�
nE is constant. For (4.66), it follows

that

X
K2T h

.ru;rv/K C .�u; v/K

D
X
E2Eh

Z
E

�ˇ̌r �
u � Ihu

�
nE � .v � vE/

ˇ̌�
E .s/ ds

C
X

E2EhnEh

Z
E

r �
u � Ihu

�
nE � .v � vE/ .s/ ds; (4.68)
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since for the integral on the boundary faces, one has with (4.67) and vE D 0

Z
E

r �
u � Ihu

�
nE � .v � vE/ .s/ ds

D
Z

E
.runE/ � v.s/ ds �

Z
E
.runE/ � vE.s/ ds � rIhunE �

Z
E
.v � vE/ ds

D
Z

E
.runE/ � v.s/ ds:

For the interior edges, one obtains with (4.67)
Z

E

�ˇ̌r �
u � Ihu

�
nE � .v � vE/

ˇ̌�
E
.s/ ds

D
Z

E
ŒjrunE � vj�E .s/ ds �

Z
E
ŒjrunE � vEj�E .s/ ds

�
Z

E

�ˇ̌r �
Ihu
�
nE � .v � vE/

ˇ̌�
E
.s/ ds

D
Z

E
ŒjrunE � vj�E ds �

Z
E
ŒjrunE � vEj�E .s/ ds

� r �
Ihu
�
nE

ˇ̌
K1

Z
E
.v � vE/ .s/ ds C r �

Ihu
�
nE

ˇ̌
K2

Z
E
.v � vE/ .s/ ds

D
Z

E
ŒjrunE � vj�E .s/ ds:

The second term in the next to last equation vanishes because the function in the
jump is continuous almost everywhere, thus the jump is zero almost everywhere,
and the last two terms vanish because of (4.67). Both terms on the right-hand side
of (4.68) can be estimated by

ChE krvkL2.K/ jujH2.K/ ; E � K;

see Lemma 4.58 below, such that one can estimate (4.66) with
X

K2T h

.ru;rv/K C .�u; v/K � Ch jujH2.˝/ kvkVh : (4.69)

Consider now the last term on the right-hand side of (4.65). Integration by parts
yields

X
K2T h

.rp; v/K D
X
E2Eh

Z
E
Œjpv � nEj�E ds C

X
E2EhnEh

Z
E

pv � nE ds

�
X

K2T h

.r � v; p/K : (4.70)
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Let Ph
L2

W Q ! Qh be the L2.˝/ projection of pressure functions to the piecewise
constant finite element pressure. With the similar arguments as for estimating the
integrals for the velocity, see Lemma 4.58 below, one obtains

X
E2Eh

Z
E
Œjpv � nEj�E ds C

X
E2EhnEh

Z
E

pv � nE ds

D
X
E2Eh

Z
E

�ˇ̌�
p � Ph

L2p
�
.v � vE/ � nE

ˇ̌�
E

ds

C
X

E2EhnEh

Z
E

�
p � Ph

L2p
�
.v � vE/ � nE ds

� Ch krpkL2.˝/ kvkVh : (4.71)

If v 2 Vdiv, then the last term on the right-hand side of (4.70) vanishes by the
definition of this space. Thus, let v 2 Vh

div, then one obtains, using the definition
of Vh

div, the Cauchy–Schwarz inequality (A.10), the Cauchy–Schwarz inequality for
sums (A.2), estimate (3.40), and the estimate for the L2.˝/ projection (C.28)

X
K2T h

.r � v; p/K D
X

K2T h

�r � v; p � Ph
L2p
�

K

�
X

K2T h

kr � vkL2.K/

��p � Ph
L2p
��

L2.K/

� ��p � Ph
L2p
��

L2.˝/

 X
K2T h

kr � vk2L2.K/
!1=2

� Ch krpkL2.˝/ kvkVh : (4.72)

Collecting estimates (4.69), (4.71), and (4.72) gives the statement of the lemma. �

Remark 4.56 (On the Smoothness Assumption in Lemma 4.55) From the smooth-
ness assumptions in the formulation of Lemma 4.55, it follows that there are no
jumps of the gradient of the velocity and the pressure across faces. From the
Sobolev imbedding Theorem A.42 iii), it follows that these conditions are satisfied
if u 2 Hd=2C1C".˝/ and p 2 Hd=2C".˝/.

Strictly speaking, the assumption on continuity can be relax somewhat. In the
proof of Lemma 4.55 it is sufficient that the gradient of the velocity and the pressure
do not possess jump discontinuities. E.g., in the two-dimensional case, this property
is given if u 2 H2.˝/ and p 2 H1.˝/. ut
Remark 4.57 (On Test Functions from Vh in Lemma 4.55) The property of v
being (discretely) divergence-free was used only in estimating the last term
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of (4.70). Estimates (4.69) and (4.71) can be derived in the same way for functions
v 2 Vh. ut
Lemma 4.58 (Estimate of the Jump Terms in the Proof of Lemma 4.55) Let the
assumptions and notations like in Lemma 4.55, then

Z
E

�ˇ̌r �
u � Ihu

�
nE � .v � vE/

ˇ̌�
E
.s/ ds � ChE krvkL2.K/ jujH2.K/

for E 2 E and E � @K.

Proof Using the Cauchy–Schwarz inequality (A.10) and knEk2 D 1 gives

Z
E

�ˇ̌r �
u � Ihu

�
nE � .v � vE/

ˇ̌�
E
.s/ ds � ��r �

u � Ihu
���

L2.E/ kv � vEkL2.E/ :

(4.73)
Let FK W OK ! K be an affine transform which maps:

• in 2d: the edge OE with the vertices .0; 0/T and .1; 0/T of the standard reference
simplex to E,

• in 3d: the face OE with the vertices .0; 0; 0/T , .1; 0; 0/T , and .0; 1; 0/T of the
standard reference tetrahedron to E.

Setting Ow D w ı FK , one can apply the standard transform of integrals (B.32) to the
edge or to the face, respectively, to obtain

wE D 1

jEj
Z

E
w.s/ ds D 1ˇ̌

ˇ OE
ˇ̌
ˇ
Z

OE
Ow.Os/ dOs;

where (B.36) was used. Since wE 2 R, one gets

Z
OE
. Ow � wE/ .Os/ dOs D

Z
OE

Ow.Os/ dOs � wE

ˇ̌
ˇ OE
ˇ̌
ˇ D 0:

From Lemma C.3, it follows that there is a constant OC such that

��� O�
���

L2.K/
� OC

���r O�
���

L2.K/
; (4.74)

for all O� 2 H1. OK/ with
R

OE O�.Os/ dOs D 0.
Starting the estimate of the second term on the right-hand side of (4.73)

with the transform to reference configuration, applying (C.11), the trace theorem,
Theorem A.34, utilizing (4.74), using that vE is a constant, applying the back
transform, and using (C.12) together with hK � hE, which follows from the
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quasi-uniformity of the family of triangulations, gives

kv � vEkL2.E/ � hd=2�1=2
E kOv � vEkL2. OE/

� Chd=2�1=2
E

	
kOv � vEk2

L2. OK/ C kr . Ov � vE/k2L2. OK/

d=2�1=2

� C
	
1C OC



hd=2�1=2

E kr . Ov � vE/kL2. OK/

D C
	
1C OC



hd=2�1=2

E kr OvkL2. OK/

� Chd=2�1=2
E h1�d=2

E krvkL2.K/ D Ch1=2E krvkL2.K/ :

Similarly, using that cIhu is linear on OK and the interpolation estimate (C.4), one
obtains for the first term on the right-hand side of (4.73)

��r �
u � Ihu

���
L2.E/

� hd=2�3=2
E

���r
	

Ou � cIhu

���

L2. OE/

� Chd=2�3=2
E

��� Ou � cIhu
���2

H2. OK/

D Chd=2�3=2
E

���� Ou � cIhu
���2

L2. OK/ C
���r

	
Ou � cIhu


���2
L2. OK/ C jOuj2

H2. OK/

�1=2

� Chd=2�3=2
E j OujH2. OK/

� Chd=2�3=2
E h2�d=2

E jujH2.K/ D Ch1=2E jujH2.K/ :

Combining the last two estimates proves the statement of the lemma. �
Theorem 4.59 (Error Estimate for the Vh Norm of the Velocity) Let ˝ � R

d,
d 2 f2; 3g, be a bounded domain with polyhedral and Lipschitz continuous
boundary and let .u; p/, the unique solution of the Stokes problem (4.2), be
sufficiently smooth in the sense of Remark 4.56. Consider a quasi-uniform family
of triangulations and let

�
uh; ph

� 2 Pnc
1 � P0 be the unique solution of the finite

element problem (4.59), then it holds the error estimate

��u � uh
��

Vh � Ch
�jujH2.˝/ C krpkL2.˝/

�
; (4.75)

where the constant depends only on ˝ and on the regularity of the family of
triangulations.

Proof Estimate (4.75) follows by inserting (4.63) and (4.64) in (4.62). �
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Theorem 4.60 (Error Estimate for the L2.˝/ Norm of the Pressure) Let the
conditions of Theorem 4.59 be satisfied, then it holds

��p � ph
��

L2.˝/
� Ch

�
1C 1

ˇh
is

� �jujH2.˝/ C krpkL2.˝/

�
; (4.76)

where the constant C depends only on ˝ and on the regularity of the family
of triangulations and for the discrete inf-sup constant it holds ˇh

is D ˇis, see
Theorem 3.151.

Proof Let Ph
L2

p denote the L2.˝/ interpolant of p 2 Q in Qh. Then, one obtains
with the triangle inequality

��p � ph
��

L2.˝/
� ��p � Ph

L2p
��

L2.˝/
C ��ph � Ph

L2p
��

L2.˝/
:

Using (C.28), the first term on the right-hand side can be bounded in the form

��p � Ph
L2p
��

L2.˝/
� Ch krpkL2.˝/ : (4.77)

From the discrete inf-sup condition (3.51), it follows for the second term that

��ph � Ph
L2p
��

L2.˝/
� 1

ˇh
is

sup
vh2Vhnf0g

bh
�
vh; ph � Ph

L2
p
�

kvhkVh

: (4.78)

The numerator will be split into two parts

bh
�
vh; ph � Ph

L2p
� D bh

�
vh; ph � p

�C bh
�
vh; p � Ph

L2p
�
;

which are estimated separately. One gets with the Cauchy–Schwarz inequal-
ity (A.10), with (3.40), and with (4.77)

ˇ̌
bh
�
vh; p � Ph

L2p
�ˇ̌ � p

d
��vh

��
Vh

��p � Ph
L2p
��

L2.˝/

� Ch krpkL2.˝/

��vh
��

Vh : (4.79)

For the other term, one inserts the finite element problem (4.59) and the continuous
problem (4.1)

bh
�
vh; ph � p

� D �ah
�
uh; vh

�C �
f ; vh

� � bh
�
vh; p

�
D ah

�
u � uh; vh

� � ah
�
u; vh

�C �
f ; vh

� � bh
�
vh; p

�

D ah
�
u � uh; vh

�C
X

K2T h

h
� �ru;rvh

�
K

� ��u; vh
�

K
C �rp; vh

�
K

C �r � vh; p
�

K

i
: (4.80)



4.2 Finite Element Error Analysis 175

The first term of (4.80) is bounded with the Cauchy–Schwarz inequality and error
estimate (4.75)

ah
�
u � uh; vh

� � ��u � uh
��

Vh

��vh
��

Vh

� C
�jujH2.˝/ C krpkL2.˝/

� ��vh
��

Vh : (4.81)

For the second term on the right-hand side of (4.80), integration by parts is applied,
and the estimates (4.69) and (4.71) for vh 2 Vh, see Remark 4.57, are used

X
K2T h

h
� �ru;rvh

�
K

C �r � vh; p
�

K
� �
�u; vh

�
K

C �rp; vh
�

K

i

D
X
E2Eh

�
�
Z

E

�ˇ̌runE � vh
ˇ̌�

E
.s/ ds C

Z
E

�ˇ̌
pvh � nE

ˇ̌�
E
.s/ ds

�

C
X

E2EhnEh

�
�
Z

E
runE � vh.s/ ds C

Z
E

pvh � nE.s/ ds
�

� Ch
�jujH2.˝/ C krpkL2.˝/

� ��vh
��

Vh : (4.82)

Inserting (4.79)–(4.82) in (4.78) gives

��ph � Ph
L2p
��

L2.˝/
� Ch

ˇh
is

sup
vh2Vhnf0g

�jujH2.˝/ C krpkL2.˝/

� ��vh
��

Vh

kvhkVh

D Ch

ˇh
is

�jujH2.˝/ C krpkL2.˝/

�
:

Together with (4.77), one obtains the statement of the theorem. �

Theorem 4.61 (Error Estimate for the L2.˝/ Norm of the Velocity) Let .� Of ;  Of /
be the regular solution of the dual Stokes equations (4.27), then there holds the error
estimate

��u � uh
��

L2.˝/ � Ch2
�jujH2.˝/ C krpkL2.˝/

�
: (4.83)

Proof Consider the weak form of the dual problem: Find � Of 2 Vdiv such that

a
	
v;� Of



D
	 Of ; v



8 v 2 Vdiv

and its Galerkin discretization: Find �h
Of 2 Vh

div such that

ah
	
vh;�h

Of



D
	 Of ; vh



8 vh 2 Vh

div:
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By definition, it is

��u � uh
��

L2.˝/
D sup

Of2L2.˝/nf0g

	 Of ;u � uh



��� Of
���

L2.˝/

:

For the numerator, one gets, using the definition of the dual problem and its
discretization
	 Of ; u � uh



D a

	
u;�

Of



� ah

	
uh;�h

Of




D ah
	
u � uh;�

Of � �h
Of



C ah

	
uh;�

Of � �h
Of



C ah

	
u � uh;�h

Of




D ah
	
u � uh;�

Of � �h
Of



C ah

	
uh;�

Of



� ah

	
u;�

Of



C ah

	
u;�

Of




�ah
	
uh;�h

Of



C ah

	
u;�h

Of



� ah

	
u;�

Of



C ah

	
u;�

Of



� ah

	
uh;�h

Of




D ah
	
u � uh;�

Of � �h
Of



C
h
�ah

	
u � uh;�

Of



C
	 Of ; u



�
	 Of ; uh


i

C
h
�ah

	
u;�

Of � �h
Of



C
	 Of ;�

Of



�
	 Of ;�h

Of


i
:

Now, the application of the Cauchy–Schwarz inequality (A.10), the consistency
error estimate (4.64), and the finite element error estimate (4.75) (both estimates
for the primal and the dual problem) gives
��u � uh

��
L2.˝/

� sup
Of2L2.˝/nf0g

1��� Of
���

L2.˝/

 ��u � uh
��

Vh

���� Of � �h
Of
���

Vh

C
ˇ̌
ˇah

	
u � uh;� Of



�
	 Of ;u � uh


ˇ̌
ˇC

ˇ̌
ˇah
	
u;� Of � �h

Of



�
	 Of ;� Of � �h

Of

ˇ̌
ˇ
!

� sup
Of2L2.˝/nf0g

1��� Of
���

L2.˝/

 ��u � uh
��

Vh

���� Of � �h
Of
���

Vh

CCh

�ˇ̌
ˇ� Of
ˇ̌
ˇ
H2.˝/

C
���r Of

���
L2.˝/

���u � uh
��

Vh

CCh
�jujH2.˝/ C krpkL2.˝/

� ���� Of � �h
Of
���

Vh

!
(4.84)

� Ch2
�jujH2.˝/ C krpkL2.˝/

�
sup

Of2L2.˝/nf0g

1��� Of
���

L2.˝/

�ˇ̌
ˇ� Of
ˇ̌
ˇ
H2.˝/

C
���r Of

���
L2.˝/

�
:
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Since the map (4.28) is an isomorphism from
�
H2.˝/\ V

� � �
H1.˝/\ Q

�
onto

L2.˝/ there is a constant C with

���� Of
���

H2.˝/
C
��� Of
���

H1.˝/
� C

��� Of
���

L2.˝/
:

Inserting this property in (4.84) proves (4.83). �

Lemma 4.62 (Divergence-free Property of Functions From Vh
div) Functions

from Vh
div are pointwise divergence-free in the interior of mesh cells.

Proof Let vh 2 Vh
div be an arbitrary function and K1 2 T h be an arbitrary mesh cell.

In the same way as in Remark 4.32, one finds that

X
K2T h

Z
K

r � vh.x/ dx D j˝j
jK1j

Z
K1

r � vh.x/ dx: (4.85)

Using integration by parts yields

X
K2T h

Z
K

r � vh.x/ dx D
X

K2T h

X
E�@K

Z
E
vh � nE.s/ ds

D
X
E2Eh

Z
E

�ˇ̌
vh � nE

ˇ̌�
E
.s/ ds C

X
E2EhnEh

Z
E

�
vh � nE

�
.s/ ds:

The jumps
�ˇ̌
vh � nE

ˇ̌�
E

on the interior faces and
�
vh � nE

�
on boundary faces are

linear functions. Thus, the integrals can be evaluated exactly with the mid point
rule, leading to

X
K2T h

Z
K

r � vh.x/ dx D
X
E2Eh

jEj �ˇ̌vh � nE

ˇ̌�
E
.mE/C

X
E2EhnEh

jEj �vh � nE
�
.mE/ :

By definition of Vh, see (B.19), the functions are continuous in the barycenter of all
faces and the application of the homogeneous Dirichlet boundary condition gives
vh .mE/ D 0 in the barycenters of the boundary faces. It follows that

X
K2T h

Z
K

r � vh.x/ dx D 0:

Using that the restriction of r � vh to a mesh cell is a constant function, one obtains
with (4.85)

0 D j˝j
jK1j

Z
K1

r � vh.x/ dx D j˝j r � vh
ˇ̌
K1
:
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Since j˝j > 0, one finds that r � vh
ˇ̌
K1

D 0 for an arbitrarily chosen mesh cell K1.

Hence, vh is divergence-free in the interior of each mesh cell. �

Remark 4.63 (Functions from Vh
div Are Not Weakly Divergence-free) It is Vh

div 6�
Hdiv.˝/. Functions from Hdiv.˝/ belong to H .div;˝/ and it is known from
Lemma 3.66 that a necessary condition for such functions is that vh �nE is continuous
on the faces. This property is generally not given for functions from Vh D Pnc

1 . In
particular, generally divhvh 62 L2.˝/ for vh 2 Vh, see Remark 3.55 for the definition
of divh.

Thus, the divergence-free property of Lemma 4.62 is not the property of the
discrete solution to be weakly divergence-free. It is a weaker property, which is
reflected, e.g., in the dependency of the bound of the velocity error (4.75) on the
pressure. This dependency is not given for conforming weakly divergence-free finite
elements, see (4.48). A way for removing this dependency and computing weakly
divergence-free solutions based on the Crouzeix–Raviart pair of finite element
spaces is presented in Sect. 4.6.2. ut
Remark 4.64 (Scaled Stokes Equations) Error estimate for the scaled Stokes equa-
tions (4.44) can be derived from (4.75) and (4.76) with a scaling argument as already
explained in Remark 4.33. One gets

��u � uh
��

Vh � Ch

�
jujH2.˝/ C 1

	
krpkL2.˝/

�
(4.86)

and

��p � ph
��

L2.˝/
� Ch

�
1C 1

ˇh
is

� �
	 jujH2.˝/ C krpkL2.˝/

�
: (4.87)

Under the assumptions of Theorem 4.61, it holds

��u � uh
��

L2.˝/
� Ch2

�
jujH2.˝/ C 1

	
krpkL2.˝/

�
: (4.88)

ut
Example 4.65 (Scaled Stokes Equations with Analytic Solution for Inf-Sup Stable
Lowest Order Pairs of Finite Element Spaces) The scaled Stokes equations (4.44)
were considered with the prescribed solution given in Example D.3. Simulations
were performed with the Pnc

1 =P0 and the Qrot
1 =Q0 pairs of finite element spaces on

unstructured and irregular grids, respectively, see Fig. 4.2 for the coarsest grids.
The results are presented in Fig. 4.10. The dependency of the errors on the

value of the viscosity can be observed very well. In contrast to the results for the
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Fig. 4.10 Example 4.65. Convergence of the errors for the scaled Stokes problem and the pair of
finite element spaces Pnc

1 =P0 (left) and Qrot
1 =Q0 (right)
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conforming P2=P1 pair of spaces, see Fig. 4.7, there is usually no higher order of
error reduction for large errors. The only exception is the pressure error in L2.˝/
for Qrot

1 =Q0. This example already shows that for the pair Pnc
1 =P0 the dependency of

the error bounds (4.86)–(4.88) on the viscosity is sharp. ut

4.3 Implementation of Finite Element Methods

Remark 4.66 (Derivation of the Algebraic Saddle Point Problem) In order to derive
a linear algebraic system from (4.17), the spaces Vh and Qh are equipped with a
basis. A standard approach for choosing the basis of the vector-valued velocity space
is as follows

Vh D spanf�h
i g3Nv

iD1

D span

8̂
<
:̂

8<
:
0
@�

h
i

0

0

1
A
9=
;

Nv

iD1

[
8<
:
0
@ 0�h

i

0

1
A
9=
;

Nv

iD1

[
8<
:
0
@ 00
�h

i

1
A
9=
;

Nv

iD1

9>=
>; ;

i.e., each basis function does not vanish in one component only. Here, Nv is the
number of unknowns (degrees of freedom, d.o.f.) for one component of the velocity.
The pressure space is

Qh D spanf h
i gNp

iD1;

where Np is the number of pressure d.o.f.
Hence, one has the unique representation

uh D
3NvX
jD1

uh
j�

h
j ; ph D

NpX
jD1

ph
j 

h
j ; (4.89)

with unknown real coefficients u D
	

uh
j


3Nv

jD1 and p D
	

ph
j


Np

jD1. Inserting (4.89)

in (4.17) and testing with each basis function separately gives the linear system of
equations

�
A BT

B 0

� 
u
p

!
D
 

f
0

!
; (4.90)
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with

.A/ij D aij D
X

K2T h

�r�h
j ;r�h

i

�
K
; i; j D 1; : : : ; 3Nv; (4.91)

.B/ij D bij D �
X

K2T h

�r � �h
j ;  

h
i

�
K
; i D 1; : : : ;Np; j D 1; : : : ; 3Nv; (4.92)

.f /i D fi D
X

K2T h

�
f ;�h

i

�
K
; i D 1; : : : ; 3Nv:

The expression (4.91) vanishes if the non-zero component of �h
i and �h

j is different,
e.g., let �h

j D .�h
j ; 0; 0/

T and �h
i D .0; �h

i ; 0/
T , then

�r�h
j ;r�h

i

� D
X

K2T h

Z
K

0
@@x�

h
j @y�

h
j @z�

h
j

0 0 0

0 0 0

1
A W

0
@ 0 0 0

@x�
h
i @y�

h
i @z�

h
i

0 0 0

1
A dx D 0:

Similarly, one finds in the case that the non-zero components of �h
j and �h

i are the
same that one gets the same value, independent of the component. Hence, the matrix
A has the block structure

A D
0
@A11 0 0

0 A11 0

0 0 A11

1
A : (4.93)

ut
Lemma 4.67 (Properties of the Matrix A) Let .ah.�; �//1=2 define a norm in Vh.
Then, the matrix A 2 R

3Nv�3Nv is symmetric and positive definite.

Proof The symmetry of A follows directly from definition (4.91).
Let vh 2 Vh with vh ¤ 0 be arbitrary. Then, there is a unique representation

vh D P3Nv
iD1 vi�

h
i with v 2 R

3Nv n f0g. Since .ah.�; �//1=2 defines a norm in Vh, it
holds

0 <
��vh

��2
Vh D ah

�
vh; vh

� D
X

K2T h

�rvh;rvh
�

K

D
X

K2T h

0
@ 3NvX

jD1
vjr�h

j ;

3NvX
iD1

vir�h
i

1
A

K

D
3NvX

i;jD1
vjvi

X
K2T h

�r�h
j ;r�h

i

�
K

D vTAv:
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Because of the isomorphism between Vh and R
3Nv , this inequality is just the positive

definiteness of A. �

Lemma 4.68 (Properties of the Saddle Point Matrices) Let the matrices A 2
R
3Nv�3Nv and B 2 R

Np�3Nv be the matrices which are assembled with a pair of
finite element spaces that satisfies the discrete inf-sup condition (3.51). Let A be
symmetric and positive definite, then the matrix

�
A BT

B 0

�
(4.94)

is symmetric and indefinite, whereas the matrix

�
A BT

�B 0

�
(4.95)

is positive semi-definite.

Proof The symmetry of (4.94) is obvious. It is

	
v; q


�A BT

B 0

� 
v

q

!
D vTAv C vTBTq C qTBv D vTAv C 2qTBv;

since vTBTq D
	
vTBTq


T D qTBv because it is a real number. Hence, it is for

v ¤ 0

�
v; 0

� �A BT

B 0

��
v

0

�
D vTAv > 0:

Now, let v D �A�1BTq. The matrix BT represents the discrete gradient operator,

which is an isomorphism between Qh and a subspace of
�
Vh
�0

, see Lemma 3.12. In
the finite-dimensional case, the dual space of Vh can be identified with Vh, hence
the image of the discrete gradient is a subspace of Vh. Thus, BTq ¤ 0 if q ¤ 0.

Since A is symmetric and positive definite, it follows that A�1=2BTq ¤ 0 and hence

vTAv C 2qTBv D qTBA�1BTq � 2qTBA�1BTq D �qTBA�1BTq

D �
	

A�1=2BTq

T

A�1=2BTq D �
���A�1=2BTq

���2
2
< 0:

Hence, the matrix (4.94) is indefinite.
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For the matrix (4.95), one obtains

	
v; q


� A BT

�B 0

� 
v

q

!
D vTAv C vTBTq � qTBv D vTAv:

If v ¤ 0, then this bilinear form takes a positive value, otherwise is zero for all q. �
Remark 4.69 (Deformation Tensor Formulation of the Viscous Term) The equiva-
lence of the Laplacian formulation of the viscous term and the deformation tensor
formulation was derived under the condition that the velocity solution is (weakly)
divergence-free, see Remark 2.20. However, finite element velocity functions are
generally only discretely divergence-free, hence in the context of finite element
methods, one gets in general different solutions with the different formulations. The
weak formulation of with deformation tensor is given in (4.5).

Since velocity finite element basis functions are not discretely divergence-free,
the use of the deformation tensor formulation leads also to a different structure of
the matrix block A compared with (4.93):

�
2D

�
�h

j

�
;D
�
�h

i

��

D 2

 r�h
j C �r�h

j

�T

2
;

r�h
i C �r�h

i

�T

2

!

D 1

2

 X
K2T h

�r�h
j ;r�h

i

�
K

C
	
r�h

j ;
�r�h

i

�T



K
C
	�r�h

j

�T
;r�h

i



K

C
	�r�h

j

�T
;
�r�h

i

�T



K

!

D
X

K2T h

�r�h
j ;r�h

i

�
K

C
	�r�h

j

�T
;r�h

i



K
; i; j D 1; : : : ; 3Nv:

The second term on the right-hand side does not vanish any longer if the non-zero
components of �h

i and �h
j are different. Consider again �h

j D .�h
j ; 0; 0/

T and �h
i D

.0; �h
i ; 0/

T , then

	�r�h
j

�T
;r�h

i



D

X
K2T h

Z
K

0
B@
@x�

h
j 0 0

@y�
h
j 0 0

@z�
h
j 0 0

1
CA W

0
@ 0 0 0

@x�
h
i @y�

h
i @z�

h
i

0 0 0

1
A dx

D
X

K2T h

Z
K
@y�

h
j @x�

h
i .x/ dx:
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Altogether, one gets a symmetric matrix without zero blocks. The matrix for the
deformation tensor formulation has the form

A D
0
@A11 0 0

0 A11 0

0 0 A11

1
AC

0
@

QA11 A12 A13
AT
12

QA22 A23
AT
13 AT

23
QA33

1
A D

0
@A11 C QA11 A12 A13

AT
12 A11 C QA22 A23

AT
13 AT

23 A11 C QA33

1
A :

Consequently, using the deformation tensor formulation requires to store con-
siderably more matrix entries than for the Laplacian or gradient formulation.
In addition, matrix-vector products are computationally more expensive for the
deformation tensor formulation.

For Stokes flows, stationary, and laminar Navier–Stokes flows, one finds in the
literature most often the use of the Laplacian or gradient formulation of the viscous
term. ut
Remark 4.70 (The Finite Element Pressure Space Qh and Standard Finite Element
Space Qh

std) A standard implementation of finite element methods for incompress-
ible flows uses for the pressure space a standard finite element space as presented in
Appendix B.2 with the standard nodal basis. However, this basis is generally not in
L20.˝/, e.g., the integral on˝ of the standard basis function of P1, the hat function,
is positive. Thus, one cannot expect that a linear combination of such basis functions
belongs generally to L20.˝/.

Continuity Equation It will be discussed first that the standard basis functions can
be used as test functions in the finite element continuity equation although they are
not from L20.˝/. The finite element space spanned by the standard basis is denoted
by Qh

std, it will be assumed that 1 2 Qh
std, and it is Qh D Qh

std \ L20.˝/. Let  h be
such a standard basis function. Then there is a C 2 R,

C D �
R
˝
 h.x/ dxR
˝

dx
D �

R
˝
 h.x/ dx

j˝j ; (4.96)

such that  h C C 2 L20.˝/, i.e.,  h C C 2 Qh.
Consider first conforming velocity finite element spaces Vh � V . It follows

from (4.17) with integration by parts that

0 D b.uh;  h C C / D � �r � uh;  h C C 
� D � �r � uh;  h

� � �r � uh;C 
�

D � �r � uh;  h
� �

Z
@˝

C uh � n ds C �
uh;rC 

� D � �r � uh;  h
�
:

The boundary integral vanishes because of the homogeneous Dirichlet boundary
condition fulfilled by uh. This equality reveals that testing with basis functions
from Qh

std imposes the property that uh is discretely divergence-free. Thus, the basis
functions from Qh

std can be used as test functions.
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For non-conforming finite element spaces, one obtains with integration by parts

0 D bh.uh;  h C C / D �
X

K2T h

�r � uh;  h C C 
�

K

D �
X

K2T h

��r � uh;  h
�

K
C
Z
@K

C uh � n@K ds
�
:

The standard basis functions can be uses as test functions if the integrals on @K
vanish. Thus, it must hold

Z
E

�ˇ̌
uh � nE

ˇ̌�
E
.s/ ds D 0 8 E 2 Eh (4.97)

for all interior faces of the triangulation and

Z
E
uh � nE.s/ ds D 0 8 E 2 Eh n Eh (4.98)

for all faces on the boundary of the domain, where the jumps are defined in (3.72).
These conditions are satisfied, e.g., for the Crouzeix–Raviart finite element Pnc

1 and
the mean-value-oriented Rannacher–Turek element Qrot

1 .

Momentum Equation Similarly, the ansatz ph D PNp;std
jD1 pj 

h
j with the standard

basis functions can be used in the momentum equation. Again, there is a constant
such that ph C Cp 2 Qh. For the momentum equation, one gets with integration by
parts and with the homogeneous Dirichlet conditions of the velocity test functions

bh.vh; ph C Cp/ D �
X

K2T h

�r � vh; ph C Cp
�

K
D �

X
K2T h

�r � vh; ph
�

K
;

where for non-conforming finite element spaces one needs the assumptions (4.97)
and (4.98). Examples of non-conforming spaces satisfying these conditions were
already given in the discussion of the continuity equation.

In summary, it is possible to use not normalized ansatz and test functions for the
discrete pressure in the evaluation of the bilinear form bh.�; �/.

The use of a standard nodal basis for the finite element pressure has the following
advantages:

• The application of a pressure finite element space which is in L20.˝/ requires
the use of a non-standard basis. This basis will be less local than the standard
basis. Consequently, the matrices become denser and the numerical cost of matrix
operations increases.
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• A general code for solving incompressible flow problems should be able to
handle also others than Dirichlet boundary conditions. All boundary conditions
which include conditions on the stress tensor on the boundary, and therefore
conditions on the pressure on the boundary, do not need an additional normal-
ization of the pressure. Boundary conditions of such type are the do-nothing
condition (2.37) or slip boundary conditions like (2.34). In these cases, it is just
required that Qh � L2.˝/ and the application of a pressure finite element space
with a standard basis is natural.

ut
Lemma 4.71 (Dimension of Qh and Qh

std) Let Qh
std � L2.˝/ be a standard finite

element space with 1 2 Qh
std and let Qh D Qh

std \ L20.˝/. Then it holds dim
�
Qh

std

� D
dim

�
Qh
�C 1 D Np C 1.

Proof Let f h
i gN

iD1 be a basis of Qh
std. Since 1 2 Qh

std, there is a unique representation

1 D
NX

iD1
ˇi 

h
i ;

where at least one ˇi is not equal to zero. Without less of generality, it can be
assumed that ˇ1 ¤ 0. Then, a new basis of Qh

std is given by

f1g [ f h
i gN

iD2: (4.99)

i) dim
�
Qh
�

is at most dim
�
Qh

std

� � 1. By construction, it holds that Qh � Qh
std and

consequently, it follows that dim
�
Qh
� � dim

�
Qh

std

�
. Since both spaces are finite-

dimensional, they are isometric isomorph to R
n for some n, see Definition A.3.

If the dimensions of Qh and Qh
std would be the same, then they would be both

isometric isomorph to R
N and consequently the spaces would be isometric

isomorph to each other. That means, each element of one space can be identified
with an element from the other space. Since all functions of Qh belong to Qh

std,
and thus can be identified with themself, and 1 2 Qh

std but 1 62 Qh, the spaces
cannot be isometric isomorph. Therefore, it follows that dim

�
Qh
�
< dim

�
Qh

std

�
.

ii) dim
�
Qh
�

is at least dim
�
Qh

std

��1. For each h
i there is a constant Ci such that the

integral mean value of h
i CCi vanishes, see (4.96), and hence h

i CCi 2 L20.˝/,
i D 2; : : : ;N. Since 1 2 Qh

std, it follows that Ci 2 Qh
std and consequently that

 h
i C Ci 2 Qh

std. Because the integral mean value of  h
i C Ci is zero, it holds

even  h
i C Ci 2 Qh. It will be shown with a proof by contradiction that the

functions f h
i C Cig, i D 2; : : : ;N, are linearly independent. Without loss of
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generality, assume that  h
2 C C2 can be represented by a linear combination of

the functions f h
i C Cig, i D 3; : : : ;N:

 h
2 C C2 D

NX
iD3

�i
�
 h

i C Ci
� ”  h

2 D
NX

iD3
�i 

h
i C C � 1;

where all constants �iCi were absorbed by the constant C 2 R. Thus, there is a
representation of  h

2 by a linear combination of f h
i C Cig, i D 3; : : : ;N, and 1.

This result is a contradiction to the fact that (4.99) is a basis of Qh
std, i.e., these

elements are in particular linearly independent. In this way
�
dim

�
Qh

std

� � 1
�

linearly independent elements were found in Qh, which proves that dim
�
Qh
� �

dim
�
Qh

std

� � 1. �

Remark 4.72 (Numbers of Matrix Entries per Row or Column) In the case of
conforming finite element discretizations, the number of matrix entries per row or
column depends usually on the local grid, e.g., on the number of mesh cells where
a vertex belongs to.

The situation is different for lowest order non-conforming finite element spaces
since in these spaces, the degrees of freedom for the velocity are defined only on the
faces of the mesh cells and the degrees of freedom for the pressure in the interior
of the mesh cells. Considering an arbitrary face and the two mesh cells sharing this
face. Then, the degree of freedom defined on the considered face leads to non-zero
entries only in combination with the degrees of freedom defined on the faces and the
interior of the two mesh cells. One finds that in each row/column of the matrix A11
from (4.93) there are at most 5=7 entries for Pnc

1 in two/three dimensions and 7=11
entries for Qrot

1 in two/three dimensions. Similarly, the constant pressure degrees of
freedom lead to at most 6=12 non-zero entries in each row of the matrix B for Pnc

1 =P0
and 8=18 non-zero entries for Qrot

1 =Q0 in two and three dimensions, respectively.
ut

4.4 Residual-Based A Posteriori Error Analysis

Remark 4.73 (Goals of A Posteriori Error Estimators) So far, so called a priori
error estimates were proved, e.g., in Corollary 4.30. The right-hand side of such
estimates depends on the unknown solution of the continuous problem and on an
unknown constant.

The goals of a posteriori error estimates are twofold. First, they should provide
computable estimates of errors between a computed solution

�
uh; ph

�
and the

unknown solution .u; p/ of the continuous problem (4.2). Usually, the errors are
measured in norms of Sobolev spaces defined on˝ . That means, estimates of global
errors from above have to be derived, which have the form, e.g., for the velocity

��u � uh
��
˝

� C�: (4.100)
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In (4.100), � is a quantity which is computable with the information available in the
numerical solution process and C is a positive constant which should be independent
of the mesh width and the solution and for which one should have an idea of its order
of magnitude.

The second task of a posteriori error estimates consists in controlling an adaptive
mesh refinement. The rationale behind this idea is that the error of the computed
solution to the solution of the continuous problem can be reduced best, or at least
significantly, if the mesh in those subregions of the domain is refined, where the
local error is largest. Then, a local a posteriori error estimate should identify these
subregions. To this end, a local lower estimate from below of the form

�K � C
��u � uh

��
!.K/ (4.101)

is necessary, where !.K/ denotes a small neighborhood of a mesh cell K and �K is
a computable quantity. For (4.101), it has to be proved that the positive constant C
can be bounded from below and above independently of K. Estimate (4.101) tells
that in subregions where the local error estimate �K is large, also the local error is
large.

There are different ways for computing a posteriori error estimates, see, e.g., the
monographs Ainsworth and Oden (2000), Verfürth (2013). Among the most popular
ones are residual-based estimates, which where presented for the Stokes equations
the first time in Verfürth (1989), and estimates which are based on the solution of
local problems, that were also introduced in Verfürth (1989).

A review of residual-based estimators can be found in Verfürth (2013). ut
Remark 4.74 (Basic Assumptions) This section considers conforming inf-sup sta-
ble pairs of finite element spaces, which are defined on a quasi-uniform family of
triangulations. ut
Lemma 4.75 (Estimate of the Supremum of the Bilinear Form) For all .w; r/ 2
V � Q it is

krwkL2.˝/ C krkL2.˝/ � 1

ˇis;Bab
sup

.v;q/2V�Q

.v;q/¤.0;0/

.rw;rv/� .r � v; r/C .r � w; q/
krvkL2.˝/ C kqkL2.˝/

� 1

ˇis;Bab

�krwkL2.˝/ C krkL2.˝/

�
: (4.102)

Proof The first estimate follows directly from the Babuška inf-sup condition (4.11).
For the second estimate, one applies the Cauchy–Schwarz inequality (A.10)
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and (3.41), which gives

sup
.v;q/2V�Q
.v;q/¤.0;0/

.rw;rv/ � .r � v; r/C .r � w; q/
krvkL2.˝/ C kqkL2.˝/

� sup
.v;q/2V�Q
.v;q/¤.0;0/

krwkL2.˝/ krvkL2.˝/ C krvkL2.˝/ krkL2.˝/ C krwkL2.˝/ kqkL2.˝/

krvkL2.˝/ C kqkL2.˝/

� sup
.v;q/2V�Q
.v;q/¤.0;0/

�krwkL2.˝/ C krkL2.˝/

� �krvkL2.˝/ C kqkL2.˝/

�
krvkL2.˝/ C kqkL2.˝/

D krwkL2.˝/ C krkL2.˝/ :

�

Remark 4.76 (To Estimate (4.102)) Estimate (4.102) states the fact that the operator
in the numerator defines an isomorphism from V � Q to V 0 � Q0. The left estimate
gives injectivity of the operator since if two different arguments would give the same
results, the term in the middle of (4.102) vanishes for the difference and the left-hand
side does not, which is a contradiction. The right estimate holds for all arguments
and thus it just gives the boundedness of the operator. Altogether, an estimate of
type (4.102) is not special for the Stokes equations but an estimate of this type holds
always for well-posed linear problems, compare (Verfürth 2013, Proposition 4.1).

ut
Corollary 4.77 (Error Estimate with the Residual) Let Vh � V and Qh � Q, let
.u; p/ be the solution of (4.2) and

�
uh; ph

� 2 Vh � Qh be arbitrary, then it holds

sup
.v;q/2V�Q
.v;q/¤.0;0/

. f ; v/� .ruh;rv/C .r � v; ph/� .r � uh; q/

krvkL2.˝/ C kqkL2.˝/

� ��r.u � uh/
��

L2.˝/
C ��p � ph

��
L2.˝/

(4.103)

� 1

ˇis;Bab
sup

.v;q/2V�Q

.v;q/¤.0;0/

. f ; v/ � .ruh;rv/C .r � v; ph/� .r � uh; q/

krvkL2.˝/ C kqkL2.˝/

:

Proof Setting w D u � uh and r D p � ph in (4.102) gives for the numerator

.r.u � uh/;rv/ � .r � v; p � ph/C .r � .u � uh/; q/

D . f ; v/� .ruh;rv/C .r � v; ph/ � .r � uh; q/: (4.104)

Now, the statement of the corollary follows from (4.102). �
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Remark 4.78 (To Estimate (4.103)) The supremum in estimate (4.103) is just the
definition of the norm of the residual in V 0 � Q0. Hence estimate (4.103) states that
the error

��r.u � uh/
��

L2.˝/
C��p � ph

��
L2.˝/

for an arbitrary pair
�
uh; ph

� 2 Vh � Qh

is bounded from below and from above by the norm of the residual in the dual space.
However, in practice one cannot compute this norm since the supremum is taken in
an infinite-dimensional space. The goal consists now in estimating this norm with
computable expressions. ut
Theorem 4.79 (Global Upper, Residual-Based, a Posteriori Error Estimate
for Conforming Inf-Sup Stable Finite Element Spaces) Let f 2 L2.˝/, let
Phf a polynomial approximation of f (which can be integrated exactly), and
consider conforming finite element spaces Vh=Qh which satisfy the discrete inf-sup
condition (3.51) on a quasi-uniform family of triangulations fT hgh>0. Let .u; p/ be
the solution of (4.2) and

�
uh; ph

�
be the solution of (4.17). Defining the mesh cell

residual

rh
K

�
uh; ph

� D �
Phf C�uh � rph

�ˇ̌
K

8 K 2 T h; (4.105)

the face residual

rh
E

�
uh; ph

� D �ˇ̌��ruh C ph
I
�
nE

ˇ̌�
E

8 E 2 Eh; (4.106)

and the local error estimator

�K D
 

h2K
��rh

K

�
uh; ph

���2
L2.K/

C ��r � uh
��2

L2.K/

C1

2

X
E�@K;E2Eh

hE

��rh
E

�
uh; ph

���2
L2.E/

!1=2
; (4.107)

then it holds the a posteriori estimate

��r.u � uh/
��

L2.˝/ C ��p � ph
��

L2.˝/

� C

 X
K2T h

�2K C h2K
�� f � Phf

��2
L2.K/

!1=2
; (4.108)

where the constant does not depend on the solution and on the mesh width.

Proof Subtracting the finite element equation (4.17) from the weak form of the
Stokes equations (4.2) and using r � u D 0 gives the error equation

�r �
u � uh

�
;rvh

� � �r � vh; p � ph
�C �r � �u � uh

�
; qh
� D 0
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for all
�
vh; qh

� 2 Vh � Qh. Using (4.104) and this equation, one gets by applying
integration by parts and using r � u D 0

.f ; v/ � .ruh;rv/C .r � v; ph/� .r � uh; q/

D �r �u � uh
�
;r �

v � vh
��� �r � �v � vh

�
; p � ph

�C �r � �u � uh
�
; q � qh

�
D �ru;r �

v � vh
�� � �r � �v � vh

�
; p
�

�
X

K2T h

Z
@K

�ruhn@K
� � �v � vh

�
ds C

X
K2T h

�
�uh; v � vh

�
K

C
X

K2T h

Z
@K

ph
�
v � vh

� � n@K ds �
X

K2T h

�rph; v � vh
�

K
� �r � uh; q � qh

�

for all .v; q/ 2 V�Q and all
�
vh; qh

� 2 Vh�Qh. Taking now vh D Ph
Clev the Clément

interpolant of v which preserves homogeneous Dirichlet boundary conditions, see
Remark C.22, using that .u; p/ solves the Stokes equations, writing the integrals on
the faces with jumps, and using that uh is discretely divergence-free leads to

.f ; v/� .ruh;rv/C .r � v; ph/� .r � uh; q/

D
X

K2T h

h 	
Phf C�uh � rph; v � Ph

Clev



K
C
	
f � Phf ; v � Ph

Clev



K
�
	
r � uh; q



K

i

C
X

E2Eh

	hˇ̌
ˇ
	
�ruh C ph

I



nE

ˇ̌
ˇ
i

E
; v � Ph

Clev



E
; (4.109)

where the jumps are defined in Remark 3.64. Note that for edges on the Dirichlet
boundary it is v D Ph

Clev. In the next step, all terms are estimated with the Cauchy–
Schwarz inequality (A.10) and the interpolation estimate (C.7)

X
K2T h

�
Phf C�uh � rph; v � Ph

Clev
�

K

� C
X

K2T h

hK

��Phf C�uh � rph
��

L2.K/ krvkL2.K/

� C

 X
K2T h

h2K
��rh

K

�
uh; ph

���2
L2.K/

!1=2
krvkL2.˝/ ;

X
K2T h

�
f � Phf ; v � Ph

Clev
�

K � C

 X
K2T h

h2K
�� f � Phf

��2
L2.K/

!1=2
krvkL2.˝/ ;

X
K2T h

�r � uh; q
�

K
�
 X

K2T h

��r � uh
��2

L2.K/

!1=2
kqkL2.˝/ ;
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and with the interpolation estimate (C.24)

X
E2Eh

��ˇ̌��ruh C ph
I
�
nE

ˇ̌�
E
; v � Ph

Clev
�

E

� C

 X
E2Eh

hE

��rh
E

�
uh; ph

���2
L2.E/

!1=2
krvkL2.˝/ :

Inserting all estimates in (4.109) and observing that interior faces belong to two
mesh cells leads to

.f ; v/� .ruh;rv/C .r � v; ph/ � .r � uh; q/

� C

 X
K2T h

h2K
��rh

K

�
uh; ph

���2
L2.K/

C ��r � uh
��2

L2.K/
C h2K

�� f � Phf
��2

L2.K/

C1

2

X
E�@K;E2Eh

hE

��rh
E

�
uh; ph

���2
L2.E/

!1=2 �krvkL2.˝/ C kqkL2.˝/

�
:

Now, the a posteriori error estimate (4.108) follows directly from (4.103). �

Remark 4.80 (On the Global Upper Estimate)

• The constant on the right-hand side of (4.108) depends on the constants of the
local interpolation estimates (C.7), (C.24), and on ˇ�1

is;Bab. The inf-sup constant is
related to the stability of the problem.

• For problems with non-homogeneous Dirichlet boundary conditions, instead
of the Clément operator, an interpolation operator is used in the analysis that
preserves these condition, usually the Scott–Zhang operator (Scott and Zhang
1990).

• In the case of do-nothing or homogeneous natural boundary conditions (2.37) on
some part 
donot of the boundary, the error estimator �K has to be extended by the
term

X
E�@K;E�
donot

hE

��rh
E

�
uh; ph

���2
L2.E/

within the parentheses, where the jump in rh
E

�
uh; ph

�
is just the difference of

the boundary condition satisfied by the finite element approximation and the
homogeneous boundary condition prescribed for the continuous problem.

• One can find the definition of the local estimator �K also without the factor 1=2
in front of the edge residuals, e.g., in Verfürth (2013, p. 243). This change of �K

changes only the constant in the estimate (4.108).
ut
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Remark 4.81 (Principal Way for Obtaining a Local Lower Estimate of Form (4.101))
For obtaining a local lower estimate of form (4.101), appropriate test functions are
used in the continuous Stokes equations (4.2). These functions are defined with the
help of mesh cell bubble functions and edge bubble functions. ut
Lemma 4.82 (Local Estimates for Bubble Functions) Let �h

K.x/ be a cell bubble
function, i.e., �K.x/ is polynomial which is positive in the interior of K, which
vanishes on @K, and whose support is K. Then, for all polynomials vh.x/ on K
the following estimates hold

C�1 ��vh
��2

L2.K/ � �
vh; vh�h

K

�
K � C

��vh
��2

L2.K/ ; (4.110)

C�1 ��vh
��

L2.K/
� ��vh�h

K

��
L2.K/

C hK

��r.vh�h
K/
��

L2.K/

� C
��vh

��
L2.K/

; (4.111)

where C is independent of vh and hK.
Let �h

E.x/ be a face bubble function, i.e., �h
E.x/ is continuous, it is a polynomial

on both mesh cells K1, K2 which share the face E, it is positive in !E D K1 [ K2, it
vanishes on the boundary of !E, and its support is !E. Then, for all polynomials vh

on Ki, i 2 f1; 2g, one has the estimates

C�1 ��vh
��2

L2.E/
� �

vh; vh�h
E

�
E

� C
��vh

��2
L2.E/

; (4.112)

h�1=2
Ki

��vh�h
E

��
L2.Ki/

C h1=2Ki

��r.vh�h
E/
��

L2.Ki/
� C

��vh
��

L2.E/
; (4.113)

where C is independent of vh and hKi .

Proof The proof of these estimates can be found in Verfürth (1994), Ainsworth and
Oden (2000, Theorems 2.2, 2.4), or Verfürth (2013, Proposition 1.4). �

Lemma 4.83 (Local Estimate for the Mesh Cell Residual) Under the assumption
of Theorem 4.79, it is

hK

��rh
K

�
uh; ph

���
L2.K/

� C
	 ��r.u � uh/

��
L2.K/

C ��p � ph
��

L2.K/

ChK

�� f � Phf
��

L2.K/



; (4.114)

with C independent of the mesh width and the solution.

Proof Considering a vector-valued version of (4.110) and choosing rh
K

�
uh; ph

�
as

polynomial, which will be abbreviated in the proof by rh
K , gives

��rh
K

��2
L2.K/

� C
�
rh

K ; �
h
Kr

h
K

�
K
: (4.115)
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Now, �h
Kr

h
K can be extended off K by zero which gives a function in V and which

will be denoted by the same symbol. Using
�
�h

Kr
h
K ; 0

�
as test function in (4.2) gives

�ru;r �
�h

Kr
h
K

�� � �r � ��h
Kr

h
K

�
; p
� D �

f ; �h
Kr

h
K

�
:

Adding and subtracting terms and applying integration by parts, using the defini-
tion (4.105) of the mesh cell residual, and observing that �h

Kr
h
K vanishes on @K

yields

�r.u � uh/;r.�h
Kr

h
K/
� � �r � ��h

Kr
h
K

�
; p � ph

�
D �

Phf ; �h
Kr

h
K

�C �
f � Phf ; �h

Kr
h
K

� � �ruh;r.�h
Kr

h
K

�C �r � ��h
Kr

h
K

�
; ph
�

D .rh
K ; �

h
Kr

h
K/K C �

f � Phf ; �h
Kr

h
K

�
K
:

Inserting this identity in (4.115), applying the Cauchy–Schwarz inequal-
ity (A.10), (3.41), and (4.111) leads to

��rh
K

��2
L2.K/

� C
	 ��r.u � uh/

��
L2.K/

��r.�h
Kr

h
K/
��

L2.K/
C ��p � ph

��
L2.K/

��r.�h
Kr

h
K/
��

L2.K/

C �� f � Phf
��

L2.K/

���h
Kr

h
K

��
L2.K/




� C
	

h�1
K

��r.u � uh/
��

L2.K/
C h�1

K

��p � ph
��

L2.K/
C �� f � Phf

��
L2.K/


 ��rh
K

��
L2.K/

:

Dividing by h�1
K

��rh
K

��
L2.K/

gives the statement of the lemma. �

Lemma 4.84 (Local Estimate for the Face Residual) With the assumption of
Theorem 4.79, it is

h1=2E

��rh
E

�
uh; ph

���
L2.E/ � C

	 ��r.u � uh/
��

L2.!E/
C ��p � ph

��
L2.!E/

ChE

�� f � Phf
��

L2.!E/



; (4.116)

with C independent of the mesh width and the solution.

Proof Taking the face residual (4.106), abbreviating this function with rh
E, and using

a vector-valued version of (4.112) gives

��rh
E

��2
L2.E/

� C
�
rh

E; �
h
Er

h
E

�
E
: (4.117)

This function �h
Er

h
E can be extended to a function in V , which is denoted with the

same symbol, by setting �h
Er

h
E outside !E to zero. Now, the test function

�
�h

Er
h
E; 0

�
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is applied in the Stokes equations (4.2) yielding

�ru;r �
�h

Er
h
E

�� � �r � ��h
Er

h
E

�
; p
� D �

f ; �h
Er

h
E

�
:

Adding and subtracting terms and applying integration by parts, noting that �h
Er

h
E

vanishes on the boundary of !E and outside !E leads to

�r.u � uh/;r.�h
Er

h
E/
� � �r � ��h

Er
h
E

�
; p � ph

�
D �

Phf ; �h
Er

h
E

�C �
f � Phf ; �h

Er
h
E

� � �ruh;r �
�h

Er
h
E

��C �r � ��h
Er

h
E

�
; ph
�

D
X

K2!E

��
rh

K ; �
h
Er

h
E

�
K

C �
f � Phf ; �h

Er
h
E

�
K

�C �
rh

E; �
h
Er

h
E

�
E
:

This identity is inserted in (4.117). With the Cauchy–Schwarz inequality (A.10),
estimate (3.41), and (4.113), one obtains

��rh
E

��2
L2.E/

� C
	 ��r.u � uh/

��
L2.!E/

��r.�h
Er

h
E/
��

L2.!E/
C ��p � ph

��
L2.!E/

��r.�h
Er

h
E/
��

L2.!E/

C ��rh
K

��
L2.!E/

���h
Er

h
E

��
L2.!E/

C �� f � Phf
��

L2.!E/

���h
Er

h
E

��
L2.!E/




� C
	

h�1=2
E

��r.u � uh/
��

L2.!E/
C h�1=2

E

��p � ph
��

L2.!E/
C h1=2E

��rh
K

��
L2.!E/

Ch1=2E

�� f � Phf
��

L2.!E/


 ��rh
E

��
L2.!E/

:

From the quasi-uniformity of the triangulation it follows that for each mesh cell
K its diameter hK can be estimated from below and above by a constant times hE,
where the constant is independent of the triangulation, of the concrete mesh cells,
and of the edges. Using this equivalence, dividing by h�1=2

E

��rh
E

��
L2.!E/

, and inserting
estimate (4.116) gives the estimate for the face residual. �

Theorem 4.85 (Local Lower, Residual-Based, a Posteriori Error Estimate for
Conforming Inf-Sup Stable Finite Element Spaces) Let the assumptions of
Theorem 4.79 be satisfied and let

!K D
[

K02T h;E.K0/�E.K/¤;
K0;

then there holds the estimate

�K � C
	��r.u � uh/

��
L2.!K /

C ��p � ph
��

L2.!K /
C hK

�� f � Phf
��

L2.!K /



; (4.118)
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where the constant is independent of the mesh width and of the solution of the Stokes
equations.

Proof It is with (3.40)

��r � uh
��

L2.K/
D ��r � �u � uh

���
L2.K/

� p
d
��r �

u � uh
���

L2.K/
:

With this estimate, estimate (4.114), and estimate (4.116) for all faces of K, (4.118)
follows immediately. �
Remark 4.86 (On the Local Lower Estimate (4.118))

• The use of residual-based error estimators for controlling an adaptive
mesh refinement is popular in academia. Besides theoretical support, like
estimates (4.118), the rather easy implementation of such estimators is a main
reason.

• The constant in estimate (4.118) comes from the estimates for the local bubble
functions given in Lemma 4.82.

ut
Example 4.87 (Global a Posteriori Error Estimation) Exactly the same problem
and the same setup as in Example 4.31 is considered. Comparisons of the actual
errors and the error estimates for two discretizations are presented in Fig. 4.11. For
both discretizations, the error is dominated by

��r.u � uh/
��

L2.˝/
, compare Figs. 4.3

and 4.5. It can be seen that in both cases the error and the estimator possess the
same order of convergence. However, the estimator overestimates the error by a
factor of around 13 for P2=P1 and of around 20 for P3=P2. These factors represent
the unknown constant C in the estimate (4.108). ut

Fig. 4.11 Example 4.87. Convergence of the errors
��r.u � uh/

��
L2.˝/C

��p � ph
��

L2.˝/ and of the

error estimator � D �P
K2T h �2K

�1=2
with �K from (4.107) for the pairs P2=P1 and P3=P2
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Example 4.88 (Adaptive Grid Refinement) This examples considers the setup of
the regularized driven cavity problem, see Example D.4 for the Stokes equations.
The solution obtained for the Stokes equations looks similar to the solution for the
Navier–Stokes equations with 	 D 1, compare Fig. D.2. Thus, the main changes
of the solution occur at the upper two corners of the domain. The change of the
velocity is imposed by the prescribed boundary conditions and the pressure shows
a peak in each corner.

The adaptive grid refinement should start on a grid where the most essential
features of the solution are already visible. Figure 4.12 presents a typical approach
for determining the adaptively refined grid. Usually, all mesh cells K are marked for
refinement with

�K � C0�;

where � is some reference value. For the simulation presented in this example,

� D max
K2T h

�K

and C0 D 0:5 were chosen. In the case of stationary problems, it is important for
obtaining an efficient algorithm that there is a sufficient increase of the number
of degrees of freedom after an adaptive refinement. In this way, one prevents the
expensive assembling and solving of a discrete system with only few new degrees
of freedom, which generally results only in a minor improvement of the discrete
solution. In the simulation presented here, it was required that at least 10 % of the
mesh cells were marked for refinement.

estimate error

mark mesh cells

enough marked ?

refine

relax marking criterion

yes

no

Fig. 4.12 Example 4.87. Algorithm for determining the adaptively refined grid
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Fig. 4.13 Example 4.88. Adaptive grid refinement based on the local error estimators f�Kg defined
in (4.107) for the regularized driven cavity problem

An adaptive grid refinement for a simulation with the P2=P1 pair of finite element
spaces is presented in Fig. 4.13. Since the most complex part of the solution is in
the upper two corners, one expects that the adaptive grid refinement should start
there. This expectation is met. Next, the subregion with the big vortex is refined and
finally there is some refinement in the lower part of the domain where almost no
flow occurs. ut

Remark 4.89 (A Posteriori Error Analysis for the Crouzeix–Raviart Pair of Spaces
Pnc
1 =P0) The derivation of residual-based a posteriori error estimators for the

Pnc
1 =P0 pair of finite element spaces for the Stokes equations in a simply connected

two-dimensional domain is presented in Dari et al. (1995). An additional tool
compared with the conforming case is an appropriate decomposition of the errorP

K2T h r � �
u � uh

�ˇ̌
K

�
. This decomposition is similar to the Helmholtz decompo-

sition, see Theorem 3.168. ut

4.5 Stabilized Finite Element Methods Circumventing
the Discrete Inf-Sup Condition

Remark 4.90 (Motivation) The application of inf-sup stable pairs of finite elements
requires the use of different spaces for velocity and pressure. Moreover, it is not
possible to use conforming spaces of lowest order for the discrete velocity, i.e.,
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P1 or Q1 finite element spaces. However, software for solving incompressible flow
problems contains often just one finite element space and then usually P1 or Q1.
In such situations, it is necessary to modify the discrete problem such that the
satisfaction of the discrete inf-sup condition (3.51) is not longer necessary. To this
end, one has to remove the saddle point structure of the discrete problem, i.e., one
has to remove the zero matrix block in the pressure-pressure coupling of the saddle
point problem.

There are several proposals in the literature for defining appropriate pressure-
pressure couplings, so-called stabilization terms. One class are so-called pseudo-
compressibility methods. The strong form of such methods might look as follows:

• Pressure Stabilization Petrov–Galerkin (PSPG) method

�r � u C ı�p D 0;

• penalty method

�r � u � ıp D 0;

• artificial compressibility method

�r � u � ı@tp D 0;

where ı is some parameter which has to be chosen appropriately.
Note that the introduction of a pressure-pressure coupling perturbs the continuity

equation and thus the conservation of mass. In addition, each stabilization term
contains parameters. The asymptotic optimal choice of stabilization parameters can
be determined often with results from numerical analysis, e.g., with conditions
for the existence and uniqueness of a solution of the stabilized problem or from
optimal error estimates. However, the user still has to choose concrete parameters in
simulations and, depending on the parameter, different concrete choices of the same
asymptotic type might sometimes lead to rather different numerical solutions. ut
Remark 4.91 (Contents of this Section) The probably most popular approach which
circumvents the discrete inf-sup condition is the PSPG method. This method is
presented and discussed in detail in Sect. 4.5.1. Some alternative approaches are
sketched in Sect. 4.5.2. ut

4.5.1 The Pressure Stabilization Petrov–Galerkin (PSPG)
Method

Remark 4.92 (The Pressure Stabilization Petrov–Galerkin (PSPG) Method) The
PSPG method was proposed for finite element spaces with continuous discrete
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pressures in Hughes et al. (1986). In the case of piecewise polynomial but
discontinuous finite element pressure spaces, an additional term is necessary, which
was introduced in Hughes and Franca (1987), Douglas and Wang (1989).

The PSPG method has the form: Given f 2 L2.˝/, find
�
uh; ph

� 2 Vh � Qh such
that

Apspg
��
uh; ph

�
;
�
vh; qh

�� D Lpspg
��
vh; qh

�� 8 �
vh; qh

� 2 Vh � Qh; (4.119)

where the bilinear form Apspg W �V � QQ� � �V � QQ� ! R is given by

Apspg ..u; p/ ; .v; q// (4.120)

D 	 .ru;rv/� .r � v; p/C .r � u; q/
C
X
E2Eh

�E .Œjpj�E ; Œjqj�E/E C
X

K2T h

��	�u C rp; ıp
Krq

�
K

and the linear form Lpspg W V � QQ ! R by

Lpspg ..v; q// D . f ; v/C
X

K2T h

�
f ; ıp

Krq
�

K
; (4.121)

with

QQ D Q \ ˚
q 2 Q W qjK 2 H1.K/ for all K 2 T h

�
: (4.122)

The definition of QQ ensures that the jumps of the pressure across the faces of
the mesh cells are well defined. If Qh � H1.˝/, then the jumps of the pressure
vanish almost everywhere on the faces. From the practical point of view, the case of
piecewise polynomial and continuous discrete pressure functions is very important
such that then even Qh � C.˝/.

The volume integral in the stabilization term in (4.120) contains the so-called
strong residual of the Stokes equations. The basic idea behind the use of the strong
residual will be discussed in Remark 5.21.

Because of the stabilization terms, problem (4.119) is not a saddle point problem.
Appropriate choices for the stabilization parameter fıp

Kg and f�Eg will be based on
the study of the existence and uniqueness of a solution of (4.119), see Lemma 4.95,
and on finite element error estimates, see Theorem 4.98. ut
Remark 4.93 (Artificial Pressure Boundary Conditions) Consider for simplicity of
presentation the situation that Qh � H1.˝/. The additional pressure-pressure
coupling in (4.120) represents the discrete formulation of a Laplacian operator.
Thus, the PSPG method introduces a (discretization of a) second order partial
differential operator for the pressure. To obtain a well-posed problem, there have
to be appropriate boundary conditions for the corresponding continuous pressure,
i.e., one needs boundary conditions for the pressure on the whole boundary. Since
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the physical modeling of the Stokes and Navier–Stokes equations does not provide
such boundary conditions, these conditions are artificial.

Since the pressure space Qh for the PSPG method does not contain essential
boundary conditions, the artificial boundary conditions are natural ones, i.e., they are
Neumann boundary conditions. These conditions can be derived by assuming that
all functions in the Stokes equations are sufficiently smooth and then by applying
the negative of the divergence operator to these equations. One gets with r � u D 0

and

r ��u D @x
�
@xxu1 C @yyu1 C @zzu1

�C @y
�
@xxu2 C @yyu2 C @zzu2

�
C@z

�
@xxu3 C @yyu3 C @zzu3

�
D @xx

�
@xu1 C @yu2 C @zu3

�C @xx
�
@xu1 C @yu2 C @zu3

�
C@xx

�
@xu1 C @yu2 C @zu3

�
D 0; (4.123)

that

��p D �r � f in ˝:

Thus, one finds, by testing with a function q 2 Q, where for the moment q 2 H1.˝/

will be assumed, and integrating by parts that

.rp;rq/�
Z



.rp � n/ q.s/ ds D .f ;rq/�
Z



.f � n/ q.s/ ds:

Comparing this formulation with (4.120) and (4.121), one obtains that in the case
ı

p
K D ı for all K 2 T h the Neumann boundary conditions are of the form

ı .rp � f / � n D 0 on 
:

ut
Lemma 4.94 (A Norm in Vh �Qh Containing the Stabilization Terms) Let ıp

K >

0 for all K 2 T h, in the case Qh 6� H1.˝/ let �E > 0 for all E 2 Eh, and let Vh and
Qh be conforming finite element spaces. Then,

���
	
vh; qh


���
pspg

D
 
	
���rvh

���2
L2.˝/

C
X

E2Eh

�E

���
hˇ̌
ˇqh
ˇ̌
ˇ
i

E

���2
L2.E/

C
X

K2T h

ı
p
K

���rqh
���2

L2.K/

!1=2

(4.124)

defines a norm in Vh � Qh.
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Proof Expression (4.124) is the square root of a sum of squares of seminorms. Thus,
it is clearly a seminorm itself. It remains to prove that from

���vh; qh
���

pspg D 0 it

follows that vh D 0 and qh D 0, see Definition A.6.
Let

���vh; qh
���

pspg D 0, then all terms in (4.124) vanish. In particular, it holds��rvh
��

L2.˝/
D 0. Since this expression is a norm in Vh, it follows that vh D 0. With

this result, one gets

0 D
X
E2Eh

�E kŒjqj�Ek2L2.E/ C
X

K2T h

ı
p
K

��rqh
��2

L2.K/
:

Because ı
p
K is assumed to be positive for all mesh cells, it follows that��rqh

��
L2.K/

D 0 for all K 2 T h. If Qh � H1.˝/, then kŒjqj�EkL2.E/ D 0 for
all faces. Otherwise, one gets this property from the assumption �E > 0 for all
faces. Altogether, it follows that qh is constant on ˝ . The only globally constant
function in Qh is qh D 0. Hence

���vh; qh
���

pspg defines a norm on Vh � Qh. �

Lemma 4.95 (Existence and Uniqueness of a Solution, Stability Estimate) Let
the assumption of Lemma 4.94 be satisfied and let

ı
p
K � h2K

	C2
inv

; (4.125)

then the PSPG problem (4.119) possesses a unique solution. This solution satisfies
the stability estimate

���uh; ph
���

pspg � 2
p
2

0
@ C

	1=2
k fkL2.˝/ C

 X
K2T h

ı
p
K k fk2L2.K/

!1=21
A : (4.126)

Proof Since the bilinear problem (4.119) is not of saddle point type, the Theorem of
Lax–Milgram, Theorem B.4, can be used for proving the existence and uniqueness
of a solution.

First, the coercivity of the bilinear form Apspg.�; �/with respect to the norm k�kpspg
will be shown. One obtains with the Cauchy–Schwarz inequality (A.10), the defi-
nition (4.124) of the norm, the inverse inequality (C.35), Young’s inequality (A.5),
and the condition (4.125) on the stabilization parameters

Apspg
��
vh; qh

�
;
�
vh; qh

��

� 	
��rvh

��2
L2.˝/

C
X
E2Eh

�E

���ˇ̌qh
ˇ̌�

E

��2
L2.E/

C
X

K2T h

ı
p
K

��rqh
��2

L2.K/

�
X

K2T h

ı
p
K	
���vh

��
L2.K/

��rqh
��

L2.K/
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� ���vh; qh
���2

pspg �
X

K2T h

ı
p
KCinv	

hK

��rvh
��

L2.K/

��rqh
��

L2.K/

� ���vh; qh
���2

pspg �
X

K2T h

1

2

ı
p
KC2

inv	
2

h2K

��rvh
��2

L2.K/
� 1

2

X
K2T h

ı
p
K

��rqh
��2

L2.K/

� 1

2

���vh; qh
���2

pspg ; (4.127)

for all
�
vh; qh

� 2 Vh � Qh. The bilinear form Apspg is bounded since it is continuous.
All terms of Apspg are defined with integrals and the continuity follows from the
continuity of the integrals.

The boundedness of the right-hand side of (4.119) will be established with
a direct estimation, using the Cauchy–Schwarz inequality, Poincaré’s inequal-
ity (A.12), the Cauchy–Schwarz inequality for sums (A.2), the inequality abCcd �
.a C c/.b C d/ which is valid for non-negative real numbers a; b; c; d, the estimate
a C b � p

2.a2 C b2/1=2, which is a consequence of Young’s inequality, and the
definition (4.124) of the norm
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���
pspg ; (4.128)
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for all
�
vh; qh

� 2 Vh �Qh. Thus, the conditions of the Theorem of Lax–Milgram are
satisfied from which it follows that (4.119) possesses a unique solution.

The stability estimate (4.126) follows from (4.127) and (4.119), yielding

1

2

���uh; ph
���2

pspg � Apspg
��
uh; ph

�
;
�
uh; ph

�� D Lpspg
��
uh; ph

��

and from inserting (4.128) in the right-hand side of this inequality. �
Remark 4.96 (k�kpspg is a Mesh-Dependent Norm) Since the stabilization parame-
ters have to satisfy (4.125), they depend on the local mesh size. Hence, the norm
k�kpspg is a mesh-dependent norm. ut
Lemma 4.97 (Galerkin Orthogonality) Let .u; p/ be the solution of (4.44), which
is assumed to be sufficiently smooth, and let

�
uh; ph

� 2 Vh � Qh be the solution of
the PSPG problem (4.119), then

Apspg
��
u � uh; p � ph

�
;
�
vh; qh

�� D 0 8 �
vh; qh

� 2 Vh � Qh: (4.129)

Proof Using the linearity of the bilinear form, (4.119), and the smoothness assump-
tion on the solution of (4.44) yields

Apspg
��
u � uh; p � ph

�
;
�
vh; qh

��
D Apspg

�
.u; p/ ;

�
vh; qh

�� � Apspg
��
uh; ph

�
;
�
vh; qh

��

D 	 .ru;rv/ � .r � v; p/C .r � u; q/C
X

K2T h

��	�u C rp; ıp
Krqh

�
K

�Lpspg
��
vh; qh

��

D . f ; v/C
X

K2T h

�
f ; ıp

Krqh
�

K
� Lpspg

��
vh; qh

�� D 0:

�

Theorem 4.98 (Finite Element Error Estimate) Let .u; p/ be the solution
of (4.44) and let

�
uh; ph

� 2 Vh � Qh be the solution of the PSPG problem (4.119).
Assume that a quasi-uniform family of triangulations is used,

Pk or Qk 	 Vh � V; k � 1; Pl or Ql 	 Qh � Q; l � 0;

assume that u 2 HkC1.˝/, p 2 HlC1.˝/, and that the stabilization parameters are
chosen as follows

ı
p
K D C0

h2K
	
; �E D C1

hE

	
; (4.130)
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with C0 such that (4.125) is satisfied. Then, the following error estimate holds

���u � uh; p � ph
���

pspg � C

�
	1=2hk kukHkC1.˝/ C hlC1

	1=2
kpkHlC1.˝/

�
: (4.131)

Proof The triangle inequality gives

���
	
u � uh; p � ph


���
pspg

�
���
	
u � Ihu; p � Ph

L2
p

���

pspg
C
���
	
uh � Ihu; ph � Ph

L2
p

���

pspg
;

(4.132)

where Ihu 2 Vh is the Lagrangian interpolant of u and Ph
L2

p 2 Pl (or Ql) is the L2.˝/
projection. By assumption on the pressure finite element space, it is Ph

L2
p 2 Qh. Both

terms on the right-hand side of (4.132) are estimated separately.
For the interpolation error, one notes that the term with the pressure jumps

vanishes for l � 1. One obtains with the interpolation estimates (C.14), (C.34) for
l D 0, and (C.29), and with the assumptions (4.130) on the stabilization parameters

���u � Ihu; p � Ph
L2p
���2

pspg
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��r �
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���2

L2.˝/
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X
E2Eh
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E

��2
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C
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K2T h

ı
p
K

��r �
p � Ph

L2p
���2

L2.K/

� 	
��r �

u � Ihu
���2

L2.˝/
C Ch

	

X
E2Eh

���ˇ̌p � Ph
L2p
ˇ̌�

E

��2
L2.E/

CCh2
��r �

p � Ph
L2p
���2

L2.˝/

� C

�
	h2k kuk2HkC1.˝/

C h2.lC1/

	
kpk2HlC1.˝/

C h2.lC1/

	
kpk2HlC1.˝/

�

D C

�
	h2k kuk2HkC1.˝/

C h2.lC1/

	
kpk2HlC1.˝/

�
:

The estimate of the second term of (4.132) starts with the coercivity (4.127) and
the Galerkin orthogonality (4.129)

���uh � Ihu; ph � Ph
L2p
���

pspg

� 2Apspg
��
uh � Ihu; ph � Ph

L2p
�
;
�
uh � Ihu; ph � Ph

L2p
��

D 2Apspg
��
u � Ihu; p � Ph

L2p
�
;
�
uh � Ihu; ph � Ph

L2p
��
: (4.133)
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Now, each term of the right-hand side of (4.133) is estimated separately. The goal
of these estimates is to obtain interpolation errors and to hide the other terms in the
left-hand side of (4.133).

Using the Cauchy–Schwarz inequality (A.10), Young’s inequality (A.5), and the
interpolation estimate (C.14), one obtains for the viscous term

	
�r �

u � Ihu
�
;r �

uh � Ihu
��

� 	
��r �

u � Ihu
���

L2.˝/

��r �
uh � Ihu

���
L2.˝/

� 4	h2k
��r �

u � Ihu
���2

L2.˝/
C 	

16

��r �
uh � Ihu

���2
L2.˝/

� C	h2k kuk2HkC1.˝/
C 	

16

��r �
uh � Ihu

���2
L2.˝/

:

The last term can be absorbed in the left-hand side of (4.133). In a similar way,
using (3.170) and (C.28), one gets

�r � �uh � Ihu
�
; p � Ph

L2p
� � C

h2.lC1/

	
kpk2HlC1.˝/

C 	

16

��r �
uh � Ihu

���2
L2.˝/

:

The estimate of the next term requires an integration by parts

�r � �u � Ihu
�
; ph � Ph

L2p
�

(4.134)
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� � nE;
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�
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K2T h
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u � Ihu;r �

ph � Ph
L2p
��

K
:

Both terms on the right-hand side of (4.134) are estimated more or less in the
same way, e.g., one obtains for the last term with the Cauchy–Schwarz inequality,
the Cauchy–Schwarz inequality for sums (A.2), Young’s inequality, the defini-
tion (4.130) of the stabilization parameters, and the interpolation estimate (C.7)
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The estimate of the other term on the right-hand side of (4.134) uses (C.15). All
stabilization terms are estimated with the same tools used so far. One gets

X
K2T h

��	� �u � Ihu
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; ı

p
Kr �
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��
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;

and
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K2T h

�r �p � Ph
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�
; ı
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Kr �

ph � Ph
L2p
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C 1

16
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K2T h

ı
p
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��r �
ph � Ph
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L2.K/
:

The term with the pressure jump vanishes for l � 1 since in this case it is�ˇ̌
p � Ph

L2
p
ˇ̌�

E
D 0 for all faces by the choice of Ph

L2
p. For l D 0, one gets with (C.34)

X
E2Eh

�E
��ˇ̌

p � Ph
L2p
ˇ̌�

E
;
�ˇ̌

ph � Ph
L2p
ˇ̌�

E

�
E

� C
h2.lC1/

	
kpk2HlC1.˝/

C 1

16

X
E2Eh

�E

���ˇ̌ph � Ph
L2p
ˇ̌�

E

��2
L2.E/

:

Collecting all estimates proves the statement of the theorem. �

Remark 4.99 (Discussion of Estimate (4.131) and Further Analytical Results)

• It can be deduced from the error estimate (4.131) that the order of convergence
for the error in the norm k�kpspg is at least minfk; l C 1g. Small values of 	 lead
to large weights of the pressure contribution in the error bound.

• The gradient of the velocity is part of k�kpspg. By neglecting the other terms
in
���u � uh; p � ph

���
pspg and dividing by 	1=2, one obtains an estimate for��r �u � uh

���
L2.˝/

. The factor 	�1 appears in front of the pressure term in
the error bound, which is the same factor as for inf-sup stable discretizations,
compare (4.45). Applying Poincaré’s inequality (A.12) gives a bound for the
velocity error in L2.˝/, but this bound is not optimal.

• For a family of quasi-uniform triangulations, see Definition C.9, one has hK �
h � ChK for all mesh cells K and a given constant C � 1. Considering a pressure
finite element space consisting only of continuous functions, using (4.130), and
neglecting the velocity term in

���u � uh; p � ph
���

pspg (the jump term vanishes
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anyway for continuous pressure), one gets from (4.131)
��r �

p � ph
���

L2.˝/
� C

�
	hk�1 kukHkC1.˝/ C hl kpkHlC1.˝/

�
:

Thus, one expects the order of convergence to be at least minfk � 1; lg and in
addition large pressure errors for large values of 	.

• Error estimates for
��u � uh

��
L2.˝/

and
��p � ph

��
L2.˝/

were derived in Brezzi and
Douglas (1988).

• A modification of the PSPG method for continuous discrete pressure that is
stable for stabilization parameters ı D Ch2 with arbitrary C > 0, in contrast
to condition (4.125), and that allows error estimates in the standard norms of the
continuous problem will be discussed in Remark 4.106.

ut
Example 4.100 (Analytical Example Which Supports the Error Estimate (4.131))
Example D.3 with analytical solution is considered for the pairs P1=P1 and P1=P0
of finite element spaces. The simulations were performed on the unstructured
triangular grid depicted in Fig. 4.2. Instead of presenting results for the norm
k�kpspg, as in estimate (4.131), results for the standard norms will be shown, see
the comments concerning the L2.˝/ norm of the velocity and the same norm of the
pressure in Remark 4.99.

Figure 4.14 shows results for the P1=P1 pair of finite element spaces. The
stabilization parameter in the simulations was set to be ıp

K D 0:5h2K=	, where hK

is the diameter of the mesh cell K. Small values of 	 lead to large velocity errors
on coarse grids. On finer grids, the errors tend to become independent of 	. One
can see the expected first order of convergence for the gradient of the velocity error,
which is part of the norm

���u � uh; p � ph
���

pspg. The velocity error in L2.˝/ is of
second order convergent. Considering the pressure, large values of 	 lead to large
errors. One can observe an order of convergence of 1:5 in the L2.˝/ norm. For small
values of 	, the order of convergence is even higher.

Results for the P1=P0 pair of spaces and with �E D 0:5hE=	 are presented in
Fig. 4.15. With respect to the velocity, similar observations can be made as for the
P1=P1 pair of spaces. However, it is not clear if the difference of the errors for
different values of 	 tends to vanish on finer grids. One can see this behavior for
	 D 10�2 for the gradient and divergence, but for the error in L2.˝/ the distance of
the lines seems to be constant. The error for the pressure in L2.˝/ converges of first
order. Large values of 	 lead to large errors. ut

Remark 4.101 (Implementation) The PSPG term introduces a pressure-pressure
coupling, it influences the velocity (ansatz) - pressure (test) coupling, and it defines
a non-zero right-hand side for the pressure test functions. In detail, the matrix entries
are given by

.B/ij D bij D
X

K2T h

h
� �r � �h

j ;  
h
i

�
K

C ��	��h
j ; ı

p
Kr h

i

�
K

i
;
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Fig. 4.14 Example 4.100. Convergence of different errors for the PSPG method with the P1=P1
pair of finite element spaces

i D 1; : : : ;Np, j D 1; : : : ; 3Nv , and

.C/ij D cij D
X
E2Eh

�E

	�ˇ̌
 h

j

ˇ̌�
E
;
�ˇ̌
 h

i

ˇ̌�
E



E

C
X

K2T h

�r h
j ph; ı

p
Kr h

i

�
K
;

i; j D 1; : : : ;Np. On the right-hand side, the term

. fp/i D �
X

K2T h

�
f ; ıp

Kr h
i

�
K ; i D 1; : : : ;Np;

appears. The coupled system has the form

�
A D
B �C

� 
u
p

!
D
 

f
fp

!
;

where the matrix A is the same matrix as in the Stokes problem (4.91), it is of
block-diagonal form (4.93), and the matrix D is the transposed of the matrix B from
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Fig. 4.15 Example 4.100. Convergence of different errors for the PSPG method with the P1=P0
pair of finite element spaces

the Stokes problem (4.92). In summary, the PSPG method requires the additional
storage of a velocity-pressure matrix, a pressure-pressure matrix, and a right-hand
side for the pressure test functions. ut
Remark 4.102 (A Post-processed Weakly Divergence-free Velocity for P1=P0) If the
PSPG method is used with the P1=P0 finite element, then it is possible to compute a
divergence-free velocity field in Hdiv.˝/ with an inexpensive post-processing step.
The idea consists in adding to uh a correctionuh

RT0
2 RT0 such that r��uh C uh

RT0

� D
0 in L2.˝/. A post-processing of this type can be applied to certain stabilizations
of the violation of the discrete inf-sup condition, e.g., see Barrenechea and Valentin
(2010a,b, 2011). In particular, the type of stabilization which appears in the PSPG
method for the P1=P0 pair of finite element spaces was considered in Barrenechea
and Valentin (2011).

The discrete continuity equation for the Vh=Qh D P1=P0 pair stabilized with the
PSPG method (4.120), (4.121) has the form

�r � uh; qh
�C

X
E2Eh

�E
��ˇ̌

ph
ˇ̌�

E
;
�ˇ̌

qh
ˇ̌�

E

�
E

D 0; (4.135)
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since the Laplacian of uh and the gradients of ph and qh vanish. In the two-
dimensional case it is proposed in Barrenechea and Valentin (2011) to define the
correction

uh
RT0 D

X
E2Eh

�E

hE

�Z
E

�ˇ̌
ph
ˇ̌�

E
ds

�
�E (4.136)

with uh
RT0

� n@˝ D 0 and

�EjK D ˙ hE

2 jKj .x � xE/ 2 RT0.K/; (4.137)

where xE is the node opposite to the edge E and the plus sign is used if nE in (4.136)
is the outward pointing unit normal with respect to K. By the definition of the
Raviart–Thomas space of lowest order, see Example B.45, �E � nE is constant on
E and �E � nE is continuous across E.

Let nE be the outward pointing unit normal with respect to K and let QxE 2 E (or
on the straight continuation of E) be the point such that QxE � xE is perpendicular to
E. Then, the area of the triangle K is given by

jKj D hE kQxE � xEk2
2

: (4.138)

Since �E �nE is constant on E, one gets this constant by inserting any point on E (or
on its straight continuation) in (4.137), in particular QxE. One obtains, using (4.138),
the parallelism of the vectors QxE � xE and nE, and knEk2 D 1

�E � nE D hE

2 jKj .QxE � xE/ � nE D .QxE � xE/ � nE

kQxE � xEk2
D kQxE � xEk2 knEk2

kQxE � xEk2
D 1: (4.139)

Let K1 and K2 be mesh cells with the common edge E and let nE be the outward
pointing unit normal with respect to K1. Using that the discrete pressure is piecewise
constant and changing then the direction of the normal in the term coming from K2
yields

�E
��ˇ̌

ph
ˇ̌�

E
;
�ˇ̌

qh
ˇ̌�

E

�
E

ˇ̌
ˇ
nEDn@K1

(4.140)
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E
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nEDn@K2

:
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For an edge OE, it is �E � n OE D 0 for OE ¤ E since either �E vanishes on OE or
it is perpendicular to n OE, because f�Eg forms a local basis and �E � n OE are the
corresponding functionals. Hence, one obtains with (4.136) and (4.139)

uh
RT0 � n OE

ˇ̌
OE D

X
E2Eh

�E

hE

�Z
E

�ˇ̌
ph
ˇ̌�

E
ds
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ˇ OE

� n OE D � OE
h OE

Z
OE
�ˇ̌

ph
ˇ̌�

OE ds: (4.141)

Considering the contribution of K1 in (4.140), inserting (4.141) in (4.140), and using
that qh and uh

RT0
� nE are both constant leads to
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ds: (4.142)

Writing now (4.135) as a sum over the mesh cells, using (4.140), (4.142),
applying integration by parts, and using that qh is piecewise constant and that
uh C uh

RT0
2 L2.˝/ gives for all qh 2 Qh

0 D
X

K2T h
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K2T h

�r � �uh C uh
RT0

�
; qh
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K
D �r � �uh C uh

RT0

�
; qh
�
:

Hence, r � �uh C uh
RT0

�
is perpendicular to Qh. On the other hand, r � �uh C uh

RT0

�
is a piecewise constant function and integration by parts and using the continuity of
the normal components of uh C uh

RT0
across edges shows

�r � �uh C uh
RT0

�
; 1
� D 0,

such that r � �uh C uh
RT0

� 2 Qh. Consequently, it follows that r � �uh C uh
RT0

� D 0 in
˝ and since by construction

�
uh C uh

RT0

� 2 H .div;˝/, one gets that
�
uh C uh

RT0

� 2
Hdiv.˝/. ut
Example 4.103 (P1=P0 with Post-processing) This example continues Exam-
ple 4.100. Figure 4.16 presents results for the P1=P0 pair of spaces with the
post-processing described in Remark 4.102. Comparing the velocity errors of
uh C uh

RT0
in L2.˝/ with those of uh presented in Fig. 4.15, one can see that there

are almost no differences. However, the divergence of uh C uh
RT0

is almost zero, at
least for large values of 	. Even for 	 2 f10�6; 10�10g, the divergence is smaller by
more than ten orders of magnitude compared with the divergence of uh. The larger
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Fig. 4.16 Example 4.103. Convergence of errors for the post-processed velocity solution com-
puted with the PSPG method and the P1=P0 pair of finite element spaces

values for 	 2 f10�6; 10�10g are due to round-off errors coming from dealing with
the large values of the divergence of uh itself. ut

Remark 4.104 (Part of Residual-Based Stabilization for the Oseen Equations) The
PSPG method will be a part of a residual-based stabilization for the Oseen equations,
see Sect. 5.3.2. ut

4.5.2 Some Other Stabilized Methods

Remark 4.105 (Framework for Stabilizations Using the Residual) In Bochev and
Gunzburger (2004), framework is presented for stabilizations with respect to the
discrete inf-sup condition that use the residual. The PSPG method from Sect. 4.5.1,
its modification from Remark 4.106, the Galerkin least squares method from
Remark 4.107, and the method from Douglas and Wang (1989) from Remark 4.108
fit into this framework. ut
Remark 4.106 (An Absolutely Stable Modification of the PSPG Method) In Bochev
and Gunzburger (2004), a modification of the PSPG method for continuous pressure
approximations is proposed that allows to choose the stabilization parameter as
ı D Ch2 with any C > 0. This method is called absolutely stable. Recall that
for the PSPG method studied in Sect. 4.5.1 there is the upper bound (4.125). The
modification consists in using instead of

X
K2T h

��	�uh; ı
p
Krqh

�
K

(4.143)
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as in (4.120), a stabilization term of the form

X
K2T h

��	�huh; ı
p
Krqh

�
K
; (4.144)

where the discrete Laplacian zh D �huh 2 Vh is the solution of

�
zh; vh

� D �ruh;rvh
� 8 vh 2 Vh: (4.145)

Thus, the modified PSPG method requires the additional solution of prob-
lem (4.145), which is a linear system with the mass matrix as system matrix.

The numerical analysis in Bochev and Gunzburger (2004) shows the mesh-
independent absolute stability of the modified PSPG method and its optimal
convergence with respect to

��r �
u � uh

���
L2.˝/

and
��p � ph

��
L2.˝/

. In addition, it is
emphasized that in the case of piecewise linear finite elements, expression (4.143)
vanishes whereas expression (4.144) does not vanish, which might lead to a higher
accuracy of the modified method. ut
Remark 4.107 (The Galerkin Least Squares (GLS) Method) The Galerkin Least
Squares (GLS) method uses, like the PSPG method (4.119)–(4.121), the residual
of the strong form of the equation. In contrast to the PSPG method, the operator
of the strong form of the equation appears also for the test functions. Hence, the
application of a GLS method is a little bit more expensive than the use of the PSPG
method.

The GLS method was proposed in Hughes and Franca (1987). It has the form:
Find

�
uh; ph

� 2 Vh � Qh such that

Agls
��
uh; ph

�
;
�
vh; qh

�� D Lgls
��
vh; qh

�� 8 �
vh; qh

� 2 Vh � Qh; (4.146)

with

Agls ..u; p/ ; .v; q//

D 	 .ru;rv/� .r � v; p/� .r � u; q/
�
X
E2Eh

�E .Œjpj�E ; Œjqj�E/E �
X

K2T h

��	�u C rp; ıp
K .�	�vC rq/

�
K
;

Lgls ..v; q// D .f ; v/�
X

K2T h

�
f ; ıp

K .�	�vC rq/
�

K : (4.147)

This method is symmetric. Optimal error estimates can be proved for ıp
K D

O
�
h2K=	

�
and �E D O .hE=	/ (in the case of a discontinuous pressure approxi-

mation), see Hughes and Franca (1987) for details. The stability estimate for the
solution requires an upper bound of the stabilization parameter, hence this method
is not absolutely stable. ut
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Remark 4.108 (An Absolutely Stable Method from Douglas and Wang (1989)) A
method that looks similar to the GLS method (4.146), (4.147) was proposed in
Douglas and Wang (1989): Find

�
uh; ph

� 2 Vh � Qh such that

ADW
��
uh; ph

�
;
�
vh; qh

�� D LDW
��
vh; qh

�� 8 �
vh; qh

� 2 Vh � Qh; (4.148)

with

ADW ..u; p/ ; .v; q//

D 	 .ru;rv/� .r � v; p/C .r � u; q/
C
X
E2Eh

�E .Œjpj�E ; Œjqj�E/E C
X

K2T h

��	�u C rp; ıp
K .�	�vC rq/

�
K
;

LDW ..v; q// D . f ; v/C
X

K2T h

�
f ; ıp

K .�	�vC rq/
�

K
: (4.149)

The difference of (4.146), (4.147) and (4.148), (4.149) is just the sign that is used
to incorporate the discrete continuity equation in the discrete momentum equation.
Method (4.148), (4.149) corresponds to the form (4.3).

Despite the methods (4.146), (4.147) and (4.148), (4.149) look similar, their
properties differ substantially, e.g., see Franca et al. (1993), Barth et al. (2004).
Method (4.148), (4.149) is non-symmetric and it is absolutely stable. Optimal error
estimates for the parameter choices ıp

K D O
�
h2K=	

�
and �E D O .hE=	/ (in the case

of a discontinuous discrete pressure) were derived in Douglas and Wang (1989). ut
Remark 4.109 (A Framework for Stabilizations Using only the Pressure) In Brezzi
and Fortin (2001), a framework for constructing stabilizations with respect to the
discrete inf-sup condition (3.51) was derived. In this framework, the stabilization
term was chosen such that there is a minimal perturbation with respect to the
original problem. Concrete realizations given in Brezzi and Fortin (2001) consider
stabilization terms that only contain the pressure and not, e.g., the residual. several
stabilized methods presented in this section fit into this framework, e.g., the methods
from Brezzi and Pitkäranta (1984) and Codina and Blasco (1997). ut
Remark 4.110 (Stabilization from Brezzi and Pitkäranta (1984)) The first stabiliza-
tion method for circumventing the discrete inf-sup condition (3.51) was proposed in
Brezzi and Pitkäranta (1984). This proposal was for the P1=P1 pair of finite element
spaces and it has the form: Find .uh; ph/ 2 Vh � Qh D P1 � P1 such that

	
�ruh;rvh

� � �r � vh; ph
� D �

f ; vh
� 8 vh 2 Vh;

� �r � uh; qh
� �

X
K2T h

�rph; ı
p
Krqh

�
K

D 0 8 qh 2 Qh: (4.150)

In the case of a uniform family of triangulations, optimal order convergence
of (4.150) with respect to

��r �
u � uh

���
L2.˝/

and
��p � ph

��
L2.˝/

was proved for
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ı
p
K D O

�
h2
�

(for 	 D 1). Method (4.150) fits into the framework discussed in
Remark 4.109.

Consider the case ıp
K D ı and applying integration by parts of the continuity

equation of (4.150) gives

� �r � uh; qh
� �

X
K2T h

�rph; ı
p
Krqh

�
K

D ��r � uh C ı�ph; qh
� � ı

Z
@˝

�rph � n� qh ds:

With the same arguments as in Remark 4.93, one finds that the artificial boundary
condition

ı
�rph � n� D 0 on @˝

for the discrete pressure is introduced with this method. ut
Remark 4.111 (Stabilization with Fluctuations of the Pressure Gradient) It was
shown in Codina and Blasco (1997) that it is not necessary t use the full gradient
of the discrete pressure, as in (4.150), for constructing a stable method. Let Vh

be the velocity finite element space with the same polynomials as Vh but without
prescribed boundary conditions. Then, the method proposed in Codina and Blasco

(1997) has the form: Find
	
uh; ph;rph



2 Vh � Qh � Vh such that

	
�ruh;rvh

� � �r � vh; ph
� D �

f ; vh
� 8 vh 2 Vh;

� �r � uh; qh
� �

X
K2T h

	
rph � rph; ı

p
Krqh



K

D 0 8 qh 2 Qh;

	
rph � rph; vh



D 0 8 vh 2 Vh:

(4.151)

The last equation of (4.151) states that rph is the L2.˝/ projection of rph onto
Vh. Thus, rph can be interpreted to represent large scales of rph. The difference
.rph � rph is called fluctuations and these fluctuations appear in the stability term
in the discrete continuity equation. This method fits into the framework presented in
Remark 4.109.

In the case of a family of quasi-uniform triangulations, ıp
K D ı and for the ı D

O
�
h2
�
, the stability of the finite element solution, a discrete inf-sup condition of

form (3.128), and optimal error estimates for
��r �

u � uh
���

L2.˝/,
��r �

p � ph
���

L2.˝/,

and
���rp � rph

���
L2.˝/

were proved in Codina and Blasco (1997). Extensions of the

analysis that allow locally chosen stabilization parameters and to the steady-state
Navier–Stokes equations can be found in Codina and Blasco (2000). ut
Remark 4.112 (A Local Projection Stabilization (LPS) Method) The computation
of the global L2.˝/ projection in method (4.151) introduces some computational
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overhead. In Becker and Braack (2001), it was proposed to replace the global
projection by local projections, whose computation is less expensive, leading to
the so-called Local Projection Stabilization (LPS) method. Later, it was observed
that the local projection approach can be used for stabilizing further potential
instabilities that might occur in the simulation of incompressible flows. The LPS
method became popular to be applied to the Oseen equations and the Navier–Stokes
equations. This method will be discussed in some detail in the context of the Oseen
equations, starting from Remark 5.52. ut
Remark 4.113 (A Stabilization Using Fluctuations of the Pressure) A stabilization
with respect to the discrete inf-sup condition was proposed in Dohrmann and
Bochev (2004) that uses fluctuations of the pressure itself, instead of the gradient of
the pressure as the methods discussed in Remarks 4.111 and 4.112. Let Qh D Pk

or Qh D Qk with k � 1. The definition of the method uses the L2.˝/ projection
Pk�1

L2
W Qh ! Pdisc

k�1 onto the discontinuous piecewise polynomial space of degree
k � 1. Because the projection space is discontinuous, the action of Pk�1

L2
can be

computed locally, i.e., mesh cell by mesh cell. Then, the continuity equation of the
stabilized method proposed in Dohrmann and Bochev (2004) has the form

� �r � uh; qh
� � 1

	

�
ph � Pk�1

L2 ph; qh � Pk�1
L2 qh

� D 0 8 qh 2 Qh: (4.152)

Note that this method is parameter-free.
A numerical analysis of this method for the lowest order pairs P1=P1 and Q1=Q1

is presented in Bochev et al. (2006), where in contrast to (4.152) the inverse of the
viscosity does not appear in the stabilization term. In addition, an extension of the
method to the pairs P1=P0 and Q1=Q0 is introduced. It is shown that in all cases the
method is unconditionally stable and optimal error bounds, i.e., linear convergence,
for

��r �u � uh
���

L2.˝/
and

��p � ph
��

L2.˝/
are proved. ut

4.6 Improving the Conservation of Mass, Divergence-Free
Finite Element Solutions

Remark 4.114 (Motivation) The finite element velocity field is only discretely
divergence-free. The violation of the divergence-free constraint, i.e., of the conser-
vation of mass, might be quite large, e.g., see Example 4.31, and the convergence is
usually only of the same order as for the error of the gradient, see Fig. 4.4. However,
there are strong reasons why one is interested in computing weakly divergence-free
finite element velocity solutions or at least to reduce the violation of the divergence
constraint.

• A violation of the conservation of mass is not acceptable in many applications.
• The property of the finite element velocity to be not weakly divergence-free

leads to the fact that the velocity errors depend on the pressure, compare (4.35)
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and (4.38) for discretely divergence-free velocities with (4.51) and (4.53) for
weakly divergence-free velocities.

A post-processing technique for computing a weakly divergence-free solution for
a low order discretization that does not satisfy the discrete inf-sup condition was
already presented in Remark 4.102.

This section presents techniques for reducing the violation of the conservation of
mass or even for computing weakly divergence-free solutions in the case of inf-sup
stable pairs of finite element spaces. More details can be found in the review paper
(John et al. 2015). ut

4.6.1 The Grad-Div Stabilization

Remark 4.115 (Literature) The grad-div stabilization introduces a penalty term in
the Galerkin finite element formulation which penalizes the violation of mass
conservation. Its inclusion in the analysis of incompressible flow problems can
be found already in Franca and Hughes (1988), Hansbo and Szepessy (1990).
A finite element error analysis was performed often in the context of the Oseen
equations (2.32), e.g., see Tobiska and Verfürth (1996), Gelhard et al. (2005),
Roos et al. (2008), Olshanskii et al. (2009). The case of the Stokes equations was
considered in Olshanskii and Reusken (2004), Jenkins et al. (2014). ut
Remark 4.116 (The Grad-Div Stabilization) The penalty or stabilization term intro-
duces a set of user-chosen parameters. For obtaining an optimal order of conver-
gence, the stabilization parameters have to be chosen appropriately. To highlight the
dependency of these parameters not only on the mesh size but also on the data of
the problem, the scaled Stokes equations (4.44) will be studied. The weak form of
these equations is: Find .u; p/ 2 V � Q such that

	.ru;rv/� .r � v; p/ D h f ; viV0;V 8 v 2 V;
�.r � u; q/ D 0 8 q 2 Q:

(4.153)

In this section, only the case of conforming finite element spaces will be considered.
Then, the grad-div stabilization method reads as follows: Find

�
uh; ph

� 2 Vh � Qh

such that

	
�ruh;rvh

� � �r � vh; ph
�

C
X

K2T h

�K
�r � uh;r � vh

�
K

D h f ; vhiV0;V 8 vh 2 Vh;

� �r � uh; qh
� D 0 8 qh 2 Qh;

(4.154)

where f�Kg with �K � 0 are the stabilization parameters.
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Let

ah
�
uh; vh

� D 	
�ruh;rvh

�C
X

K2T h

�K
�r � uh;r � vh

�
K

8 uh; vh 2 Vh:

The first term of this bilinear form is symmetric and positive definite and the second
term is symmetric and positive semi-definite. Hence, ah.�; �/ is Vh-elliptic and in
particular Vh

div-elliptic. The existence and uniqueness of a solution for pairs of finite
element spaces that satisfy the discrete inf-sup condition (3.51) follows analogously
to the proof of Theorem 4.6.

Define

� D max
K2T h

�K :

ut

Remark 4.117 (On the Grad-Div Term)

• Applying integration by parts and noting that the boundary integral vanishes
since r � u D 0 on the boundary, one obtains for �K D � D const

0 D � .r � u;r � v/ D �� .r .r � u/ ; v/ 8 u; v 2 V:

The notation grad-div stabilization term comes from the term on the right-hand
side of this equation.

• A grad-div term appears already in the derivation of the Navier–Stokes equations,
see (2.20), which reads for constant viscosity

r �
��
� � 2�

3

�
r � vI

�
D
�
� � 2�

3

�
r .r � v/ ;

where � is here the dynamic viscosity. In the process of deriving the non-
dimensional equations, this term becomes

L

U2

�
�

�
� 2	

3

�
r .r � u/ :

The parameter in front of this grad-div term is just a constant.
• A scaled grad-div stabilization term occurs also in the so-called augmented

Lagrangian-based preconditioner for solving linear saddle point problems, see
Remark 9.35.

ut
Lemma 4.118 (Vanishing of

��r � uh
��

L2.˝/ for the Stabilization Parameters

Tending to Infinity) Consider a fixed triangulation T h and set �min D
minK2T h �K. Then it holds

lim
�min!1

��r � uh
��

L2.˝/ D 0:
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The convergence with respect to �min is of order 0:5 with a constant independent of
the mesh width and of order 1 with a constant that might depend on the mesh width.

Proof To avoid some technical details, the proof is presented for �min D � D �K

for all K 2 T h.
Using the solution uh as test function in (4.154), applying the estimate for the

dual pairing, and utilizing Young’s inequality (A.5) gives

	
��ruh

��2
L2.˝/ C �

��r � uh
��2

L2.˝/

D h f ;uhiV0;V � k fkH�1.˝/

��ruh
��

L2.˝/
� 1

4	
k fk2H�1.˝/ C 	

��ruh
��2

L2.˝/
:

Consequently, it is

��r � uh
��

L2.˝/
� 1

2	1=2�1=2
k fkH�1.˝/ ;

which yields the first statement of the lemma.
The proof of the second statement was performed in Galvin et al. (2012). It starts

with defining the space

Vh
div;div D Vdiv \ Vh

div (4.155)

and its orthogonal complement in Vh
div

�
Vh

div;div

�? D ˚
vh 2 Vh

div W �rvh;rwh
� D 0 8 wh 2 Vh

div;div

�
:

In this way, one obtains a decomposition

Vh
div D Vh

div;div ˚ �
Vh

div;div

�?
:

By construction, all non-trivial weakly divergence-free functions from Vh
div belong

to Vh
div;div. Since the only weakly divergence-free function in

�
Vh

div;div

�?
is vh D 0, it

follows that
��r � vh

��
L2.˝/

defines a norm in
�
Vh

div;div

�?
. Clearly,

��rvh
��

L2.˝/
is also

a norm in
�
Vh

div;div

�?
. Because all norms are equivalent in finite-dimensional spaces,

see Remark A.8, there is a constant C.h/, which might depend on the velocity finite
element space and with this on the mesh width h, such that

��rvh
��

L2.˝/
� C.h/

��r � vh
��

L2.˝/
8 vh 2 �Vh

div;div

�?
: (4.156)

Now, the solution uh 2 Vh
div of (4.154) is decomposed into

uh D uh
div;div C uh

div;div;?; uh
div;div 2 Vh

div;div;u
h
div;div;? 2 �Vh

div;div

�?
:
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Inserting this decomposition in (4.154), using as test function vh D uh
div;div;?,

observing that r � uh
div;div D 0 almost everywhere and that

	
ruh

div;div;ruh
div;div;?



D

0 by the definition of
�
Vh

div;div

�?
, applying the estimate of the dual pairing, and

using (4.156), one obtains

	
��ruh

div;div;?
��2

L2.˝/
C �

��r � uh
div;div;?

��2
L2.˝/

� k fkH�1.˝/

��ruh
div;div;?

��
L2.˝/

� C.h/ k fkH�1.˝/

��r � uh
div;div;?

��
L2.˝/

:

From this estimate, it follows that

��r � uh
��

L2.˝/
D ��r � uh

div;div;?
��

L2.˝/
� C.h/

�
k fkH�1.˝/ ;

which is the second statement of the lemma. �

Remark 4.119 (On the Choice of the Stabilization Parameters)

• A detailed discussion of the behavior of C.h/ can be found in Galvin et al. (2012).
• An interesting theoretical result from Case et al. (2011) is that for � ! 1

the Taylor–Hood pair P2=P1 of finite element spaces becomes equivalent to the
Scott–Vogelius pair P2=Pdisc

1 .
• However, the situation � ! 1 is generally not relevant in practice. There, a

good choice of the stabilization parameters should be governed by obtaining
optimal error estimates with respect to some norm, e.g., see Remark 4.125
below. In addition, using very large stabilization parameters might lead to other
difficulties like a large condition number of the arising matrix.

ut
Definition 4.120 (Optimal Approximation Property of a Sequence of
Divergence-free Subspaces) Consider a quasi-uniform family of triangulations
fT hgh>0 with characteristic mesh size h. If for all v 2 Vdiv \ HkC1.˝/ there exists
a sequence

˚
vh
� 2 Vh

div;div, where Vh
div;div is defined in (4.155), with

��r �
v � vh

���
L2.˝/

� Cdivhk kvkHkC1.˝/ (4.157)

and Cdiv independent of h, then the sequence of spaces
˚
Vh

div;div

�
is said to possess

optimal approximation property with respect to the space Vdiv. ut
Remark 4.121 (Existence of a Sequence of Divergence-free Subspaces with Optimal
Approximation Property) Whether or not there exists a sequence of divergence-free
subspaces with optimal approximation property depends on the pair of inf-sup stable
finite element spaces and on the underlying triangulation of the domain. Several
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Fig. 4.17 Barycentric-refined simplicial grid (left) and Union Jack grid (right) on the unit square

combinations of pairs and triangulations are known to possess such a sequence of
divergence-free subspaces. Some examples are as follows:

• Taylor–Hood pair of spaces Pk=Pk�1 with k � d on barycentric-refined simplicial
grids, Arnold and Qin (1992), Qin (1994), Zhang (2005). The starting point for
the construction of such grids is a standard grid consisting of simplices. Then,
each simplex is divided into smaller simplices by connecting its barycenter with
its vertices, see Fig. 4.17 for a two-dimensional example.

• MINI element on Union Jack grids (criss-cross grids), Zhang (2009). Union Jack
grids are two-dimensional grids that are build from four families of parallel lines,
see Fig. 4.17.

Altogether, in special cases there exists a sequence of divergence-free subspaces
with optimal approximation property. In the general situation, one cannot expect
such a sequence to exist. ut

Theorem 4.122 (Finite Element Error Estimate for the L2.˝/ Norm of the
Gradient of the Velocity) Let the assumptions of Theorem 4.21 be satisfied, let
.u; p/ be the solution of (4.153) and let

�
uh; ph

�
be the solution of (4.154). Then,

the error in the L2.˝/ norm of the gradient of the velocity is bounded by

��r �
u � uh

���2
L2.˝/

� inf
vh2Vh

div

	
4
��r �

u � vh
���2

L2.˝/
C 2

�

	

��r � vh
��2

L2.˝/




C 2

�	
inf

qh2Qh

��p � qh
��2

L2.˝/
: (4.158)

Proof The proof is similar to the proof of Theorem 4.21. It starts with the error
decomposition u � uh D �

u � vh
� � �

uh � vh
� D � � �h, where vh 2 Vh

div is
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arbitrary. First, by the triangle inequality and Young’s inequality (A.5), one obtains

��r �
u � uh

���2
L2.˝/

� 2 kr�k2L2.˝/ C 2
��r�h

��2
L2.˝/

: (4.159)

For any vh 2 Vh
div, one concludes by subtracting (4.154) from (4.153) that

	
�r�h;rvh

�C� �r � �h;r � vh
� D �	 �r�;rvh

��� �r � �;r � vh
�C�r � vh; p

�
:

Choosing vh D �h, and using that .r � �h; qh/ D 0 for any qh 2 Qh, the error
equation becomes for any qh 2 Qh

	
��r�h

��2
L2.˝/

C� ��r � �h
��2

L2.˝/
D �	.r�;r�h/��.r��;r��h/C.r��h; p�qh/:

Applying the Cauchy–Schwarz inequality (A.10) and Young’s inequality on the
right-hand side and absorbing the terms with �h in the left-hand side, one gets

	
��r�h

��2
L2.˝/

C �
��r � �h

��2
L2.˝/

� 	 kr�k2L2.˝/ C � kr � �k2L2.˝/ C 2
��p � qh

��
L2.˝/

��r � �h
��

L2.˝/
: (4.160)

The last term on the right-hand side can be estimated also with Young’s inequality

2
��p � qh

��
L2.˝/

��r � �h
��

L2.˝/
� ��1 ��p � qh

��2
L2.˝/

C� ��r � �h
��2

L2.˝/
; (4.161)

which leads to

��r�h
��2

L2.˝/
� kr�k2L2.˝/ C �

	
kr � �k2L2.˝/ C 1

�	
inf

qh2Qh

��p � qh
��2

L2.˝/
:

Finally, (4.159) gives

��r �u � uh
���2

L2.˝/
� 4 kr�k2L2.˝/ C 2

�

	
kr � �k2L2.˝/ C 2

�	
inf

qh2Qh

��p � qh
��2

L2.˝/

for all vh 2 Vh
div, which is just the statement of the theorem. �

Remark 4.123 (On Theorem 4.122) In contrast to the proof of Theorem 4.21,
the norm of the divergence of the test function was not estimated by the norm
of the gradient, see (4.24). Thus, the best approximation error with respect to
the divergence appears in estimate (4.158). Now, the consequences of the error
bound (4.158) on the choice of � can be studied for two different cases. These two
cases are characterized by whether or not the sequence of divergence-free subspaces
of the velocity space has optimal approximation property. ut
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Corollary 4.124 (Application to Taylor–Hood Pairs of Finite Elements) Con-
sider Vh=Qh D Pk=Pk�1, k � 2, on a family of quasi-uniform triangulations and
assume that for the solution of (4.153) it holds .u; p/ 2 HkC1.˝/ � Hk.˝/.

i) If
˚
Vh

div;div

�
does not possess the optimal approximation property, then the a-

priori estimate (4.158) has the form

��r �
u � uh

���2
L2.˝/ �

�
4C 2�

	

�
C2

Vh
div

h2k kuk2HkC1.˝/

C
2C2

Qh

�	
h2k kpk2Hk.˝/ : (4.162)

ii) If
˚
Vh

div;div

�
has the optimal approximation property, one obtains the a-priori

error estimate

��r �
u � uh

���2
L2.˝/

� min

��
4C 2�

	

�
C2

Vh
div
; 4C2

Vh
div;div


h2k kuk2HkC1.˝/

C
2C2

Qh

�	
h2k kpk2Hk.˝/ : (4.163)

The constants CQh ;CVh
div;div

;CVh
div

are constants coming from interpolation estimates,
where CVh

div;div
and CVh

div
depend either on the inverse of the discrete inf-sup constant

ˇh
is or on the inverse of local inf-sup constants, compare Remark 4.29.

Proof

i) For this case, one can only use (3.41), i.e., that

��r � vh
��

L2.˝/
D ��r � .u � vh/

��
L2.˝/

� ��r.u � vh/
��

L2.˝/
(4.164)

holds in this setting. Then, one applies for P2=P1 in three dimensions (3.65), for
all other pairs (3.71), and the interpolation error estimate (C.14) to prove (4.162).

ii) In this case, one gets a second estimate besides (4.164), since one can choose
vh 2 Vh

div;div in (4.158) and apply estimate (4.157). Note that choosing a special
function yields an upper bound of the infimum. Hence, the velocity error term
can be also bounded, using (3.65) for P2=P1 in three dimensions, (3.71) for all
other pairs, and the interpolation error estimate (C.14), by

inf
vh2Vh

div

	
4
��r �u � vh

���2
L2.˝/ C 2

�

	

��r � vh
��2

L2.˝/



� 4C2

Vh
div;div

h2k kuk2HkC1.˝/
;

since
��r � vh

��2
L2.˝/

vanishes. Combining both possible estimates gives (4.163).
�
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Remark 4.125 (Good Choices for the Stabilization Parameters in the Case of the
Taylor–Hood Finite Element) The two cases from Corollary 4.124 will be discussed
now in more detail.

i) If
˚
Vh

div;div

�
does not have an optimal approximation property, one can consider

the right-hand side of (4.162) as a function depending on �. This function has a
minimum which can be determined by elementary calculus, namely by checking
the necessary and a sufficient condition for a local minimum. One obtains

�opt 
 CQh

CVh
div

kpkHk.˝/

kukHkC1.˝/

: (4.165)

Hence, with respect to 	 and h, the parameter choice � D O .1/ is deduced.
However, it should be emphasized that �opt from (4.165) may be quite large,
whenever the velocity norm is small compared with the pressure norm and that
this situation can happen in practice.

Inserting �opt into the error estimate (4.162) gives

��r �
u � uh

���
L2.˝/ (4.166)

� 2hk

�
C2

Vh
div

kuk2HkC1.˝/
C 1

	
CVh

div
CQh kukHkC1.˝/ kpkHk.˝/

�1=2
:

This estimate reveals a direct dependency of the error of the gradient of the
velocity on the pressure of the form 	�1=2 kpk1=2Hk.˝/

, even for the best possible
stabilization parameter. On the one hand, this dependency on the viscosity is
weaker than for the Galerkin discretization, where the error bound depends on
	�1, see (4.45), but on the other hand, the bound of the velocity error is still
influenced by the inverse of the viscosity.

ii) If
˚
Vh

div;div

�
has the optimal approximation property, the right-hand side of

estimate (4.163) is not as easy to analyze. Numerical evidence shows, see
Jenkins et al. (2014), that, depending on the complexity of the pressure, there
may or there may be not an optimal �, since for kpkHk.˝/ � kukHkC1.˝/ one
has �opt D 1, which is not feasible in practice. Therefore, giving up the idea of
finding the optimal �, one wants to find a good �, which should not be infinity.
To this end, one can use the criterion that the contribution of the pressure in the
error bound (4.163) equals the maximum possible contribution of the velocity
4C2

Vh
div;div

h2k kuk2HkC1.˝/
, which is already asymptotically optimal. This criterion

leads to

�good 
 1

2	

 
CQh

CVh
div;div

kpkHk.˝/

kukHkC1.˝/

!2
: (4.167)
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Numerical studies in Jenkins et al. (2014) show that this value gives in fact good
results. It is interesting that only in the second case �good is depending on 	,
which could be observed in the numerical studies of Jenkins et al. (2014) as
well. Inserting �good in (4.163) gives the error estimate

��r �
u � uh

���
L2.˝/

� p
8CVh

div;div
hk kukHkC1.˝/ ; (4.168)

which does not directly depend on 	 and p. But of course kukHkC1.˝/ might still
depend on 	. If kukHkC1.˝/ does not depend on 	, (4.168) shows that the grad-
div stabilization is able to deliver optimal uniform approximations, if there exists
a sequence of subspaces of optimally converging divergence-free finite element
functions.

Both proposed stabilization parameters (4.165) and (4.167) do not depend on the
mesh width h. ut
Corollary 4.126 (Application to the MINI Element) Let Vh=Qh D Pbubble

1 =P1 on
a family of quasi-uniform meshes and assume that for the solution of (4.153) it holds
.u; p/ 2 H2.˝/ � H2.˝/.

i) If
˚
Vh

div;div

�
does not possess optimal approximation property, then the a-priori

estimate (4.158) has the form

��r �
u � uh

���2
L2.˝/

�
�
4C 2�

	

�
C2

Vh
div

h2 kuk2H2.˝/ C
2C2

Qh

�	
h4 kpk2H2.˝/ :

(4.169)

ii) If
˚
Vh

div;div

�
has optimal approximation property, one obtains the a-priori error

estimate

��r �
u � uh

���2
L2.˝/

� min

��
4C 2�

	

�
C2

Vh
div
; 4C2

Vh
div;div


h2 kuk2H2.˝/

C
2C2

Qh

�	
h4 kpk2H2.˝/ : (4.170)

The constants CQh ;CVh
div;div

;CVh
div

are constants arising from interpolation estimates,

where CVh
div;div

and CVh
div

depend on the inverse of ˇh
is.

Proof The proof is performed analogously as the proof of Corollary 4.124. Note
that for the MINI element the best approximation properties are already obtained
for .u; p/ 2 H2.˝/� H2.˝/ and that there is no improvement if a higher regularity
of the solution is assumed. In addition, one has to observe that (3.65) has to be
applied for estimating the best approximation error in Vh

div since the MINI element
does not satisfy the assumptions of estimate (3.71). �
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Remark 4.127 (Good Choices for the Stabilization Parameters in the Case of the
MINI Element) The two cases from Corollary 4.126 can be discussed in the same
way as for the Taylor–Hood pair of spaces.

i) If
˚
Vh

div;div

�
does not have an optimal approximation property, one can compute

an optimal value for the stabilization parameter from the right-hand side
of (4.169)

�opt 
 h
CQh

CVh
div

kpkH2.˝/

kukH2.˝/

:

ii) If
˚
Vh

div;div

�
possesses the optimal approximation property, the second velocity

term and the pressure term on the right-hand side of (4.170) can be equilibrated,
leading to

�good 
 h2

2	

 
CQh

CVh
div;div

kpkH2.˝/

kukH2.˝/

!2
:

In contrast to the Taylor–Hood pair of spaces, good stabilization parameters for the
MINI element depend on the mesh width h. ut
Remark 4.128 (On the Grad-Div Stabilization)

• Since Vh
div;div � Vh

div, it can be expected that CVh
div;div

is larger than CVh
div

.
• The dependency of the stabilization parameter on higher order norms of the

solution was derived in Olshanskii et al. (2009), Heister and Rapin (2013),
Jenkins et al. (2014).

• Optimal stabilization parameters on the basis of the L2.˝/ error estimate of the
pressure were also derived in Jenkins et al. (2014). These parameters differ from
the parameters obtained from the estimate for the L2.˝/ error of the velocity
gradient.

• In Jenkins et al. (2014), comprehensive numerical studies were performed
to support the analytical results with respect to the dependency of a good
stabilization parameter on 	, h, and the ratio of the norm of the pressure and the
velocity. It was shown that the conclusions from the analysis are well reflected in
the numerical results.

• The grad-div stabilization will be studied also in the context of the Oseen
equations, see Sect. 5.3.2. It turns out that the asymptotic optimal parameter
choice differs for inf-sup stable pairs of finite element spaces and for equal order
pairs where the PSPG method is used for stabilizing the violation of the discrete
inf-sup condition, compare Remark 5.42.

• A grad-div stabilization term arises also in modeling turbulent flows with some
variational multiscale (VMS) methods, see Remarks 8.226 and 8.244.

• It is reported in the literature that introducing the grad-div stabilization might
improve the performance of solvers for the arising discrete system, for details
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see Glowinski and Le Tallec (1989), Vassilevski and Lazarov (1996), Bychenkov
and Chizonkov (1999), Heister and Rapin (2013).

ut
Remark 4.129 (Implementation) The grad-div term affects only the velocity-
velocity coupling. The matrix entries have the form

� QAkl
�

ij
D �

@l�
h
j ; @k�

h
i

�
; k; l D 1; : : : ; d; i; j D 1; : : : ;Nv;

such that the matrix A is of the following structure

QA D
0
@

QA11 QA12 QA13
QAT
12

QA22 QA23
QAT
13

QAT
23

QA33

1
A :

The symmetry of the off-diagonal blocks of QA follows directly from the symmetry
of the grad-div term.

The matrix QA has to be added to the matrix A which represents the discretization
of the viscous term. The sum of both matrices, again denoted by A, forms the
velocity-velocity coupling in the linear saddle point problem. Thus, the use of the
grad-div stabilization prevents the velocity-velocity matrix A from being a block-
diagonal matrix of the form (4.93). In particular, if the gradient form of the viscous
term is used, then the grad-div stabilization introduces additional matrix blocks. A
grad-div stabilization with reduced memory requirements, a so-called sparse grad-
div stabilization, was proposed in Bowers et al. (2014). ut
Example 4.130 (Analytical Solution, Continuation of Example 4.31) Consider the
Stokes equations (4.44) with 	 D 1, the solution given by Example D.3, the Taylor–
Hood pair of finite element spaces P2=P1, and the irregular grid depicted in Fig. 4.2.
Thus, there is the same setup as in Example 4.31. Here, only the effect of the
grad-div stabilization on the violation of the incompressibility constraint will be
illustrated.

The application of the grad-div stabilization requires the choice of the stabiliza-
tion parameters f�Kg. For the irregular grid from Fig. 4.2 one would not expect
that there exists a sequence of divergence-free subspaces with optimal convergence
property. Thus, with respect to the bound of the L2.˝/ error of the velocity
gradient, (4.165) for k D 2would be the optimal parameter. However, in practice the
solution is unknown and consequently, norms of the solution are not available. For
inf-sup stable pairs of finite element spaces, one usually uses constant stabilization
parameters of the order of unity, e.g., � 2 Œ0:1; 10�. In Olshanskii (2002), good
results were obtained with � D 0:2.

Figure 4.18 shows the effect of applying the grad-div stabilization with different
parameters on

��r � uh
��

L2.˝/
. It can be seen that there is some improvement

concerning the violation of the incompressibility constraint on coarse grids. But
on finer grids, this effect becomes negligible. ut
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Fig. 4.18 Example 4.130. Convergence of the errors
��r � uh

��
L2.˝/ for P2=P1 with grad-div

stabilization and different values of the stabilization parameter

Remark 4.131 (Summary) The grad-div stabilization is a simple and popular stabi-
lization for finite element discretizations of equations modeling incompressible flow
problems. Compared with the Galerkin discretization, the impact of the inverse of
the viscosity and of the pressure on error bounds for the velocity becomes weaker.
However, the grad-div stabilization generally neither removes this impact nor leads
to (weakly) divergence-free discrete solutions. ut

4.6.2 Choosing Appropriate Test Functions

Remark 4.132 (Goal and Idea) The principle idea of this approach can be explained
easiest for the Crouzeix–Raviart finite element Pnc

1 =P0. In fact, its first presentation
in the literature in Linke (2014) was for this pair of finite element spaces.

A finite element error estimate for the scaled Stokes equations (4.44) and the
velocity error

��u � uh
��

Vh is given in (4.86). A large norm of the pressure gradient
or a small viscosity will have a large impact on the error bound. This impact can
be seen in actual simulations, see Example 4.65. The goal of the approach proposed
in Linke (2014) consists in deriving a method such that the pressure term in (4.86)
vanishes and with that also the dependency of the error bound on the viscosity.
Methods with this property are called pressure-robust.

A detailed inspection of the finite element error analysis for the Crouzeix–Raviart
finite element shows that the pressure term appears in the estimate only because the
term (4.70) does not vanish for functions v 2 Vh

div. The term (4.70) appears on
the right-hand side of (4.65) coming from the term .f ; v/K . The principal idea in
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Linke (2014) consists in using on the right-hand side of the Stokes equations a test
function such that (4.70) vanishes. To this end, the function v has to be chosen
such that v 2 Vdiv ˚ Vh

Hdiv, where Vh
Hdiv is an appropriate space. It has to be a

subspace of Hdiv.˝/, see (3.39) and in particular a subspace of H .div;˝/. The
conditions for the last property are given in Lemma 3.66. The perhaps simplest space
which satisfies these conditions is the Raviart–Thomas space of lowest order RT0,
see Example B.45. In Linke (2014) it was proposed to use on the right-hand side of
the Stokes equations a test function from RT0, which is an appropriate projection of
the Crouzeix–Raviart test function. ut
Remark 4.133 (Interpolation Operators) The definition and the analysis of the
method requires the use of two interpolation operators.

First, the interpolation operator Ph
E W V ! Vh D Pnc

1 defined in (3.143) is used.
The second interpolation operator is given by Ph

E;RT0
W V [ Vh ! RT0 with

�
Ph

E;RT0v � nE
�
.mE/ D

8<
:
1

jEj
Z

E
v � nE ds if E 2 Eh;

0 if E 2 Eh n Eh:

(4.171)

Note that (4.171) defines constant values for the normal component on each face E.
With that, the degrees of freedom for a RT0 function are determined.

From Acosta and Durán (1999), the following interpolation estimate is known

��v � Ph
E;RT0v

��
L2.˝/

� Ch kvkVh 8 v 2 V [ Vh; (4.172)

where the constant depends on the maximal angle of the mesh cells and k�kVh is
defined in (3.54).

The divergence of a function from RT0 is a piecewise constant function.
Equipping RT0 with homogeneous normal components on the boundary of ˝ ,
integration by parts gives

Z
˝

r � v dx D 0; 8 v 2 RT0;

such that the divergence of a function from RT0 belongs to Qh. ut
Lemma 4.134 (The Divergence of the Projections) Denote by Ph

L2
the L2.˝/

projection onto Qh. Then it is

divh
�
Ph

Ev
� D Ph

L2 .r � v/ 8 v 2 V (4.173)

and

r � �Ph
E;RT0v

� D Ph
L2 .r � v/ 8 v 2 V [ Vh: (4.174)
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In addition, it is

Ph
E;RT0v 2 Hdiv.˝/ 8 v 2 Vdiv [ Vh

div; (4.175)

i.e., Ph
E;RT0

v weakly divergence-free.

Proof Relation (3.144) can be written in the form

�
X

K2T h

�r � Ph
Ev; q

h
�

K
D �

X
K2T h

�r � v; qh
�

K
8 v 2 V; 8 qh 2 Qh;

which is exactly the statement (4.173).
The relation (4.174) is derived exactly in the same form as (3.144).
Using integration by parts, replacing the integrals on the faces exactly by the mid

point rule, which is possible because the functions are constant on the faces, using
definition (4.171), and applying again integration by parts gives

Z
K

r � �Ph
E;RT0v

�
dx D

X
E�@K

Z
E

�
Ph

E;RT0v
� � nE ds D

X
E�@K

jEj �Ph
E;RT0v � nE

�
.mE/

D
X

E�@K

Z
E
v � nE ds D

Z
K

r � v dx (4.176)

for an arbitrary mesh cell K 2 T h. If

Z
K

r � v dx D 0; (4.177)

one gets, using that the divergence of a function from RT0.K/ is constant,

0 D
Z

K
r � v dx D jKj r � �Ph

E;RT0v
�ˇ̌

K
:

Since jKj > 0, it follows that r � �Ph
E;RT0

v
�ˇ̌

K
D 0. Condition (4.177) is clearly

satisfied for functions v 2 Vdiv. From Lemma 4.62, it follows that also functions v 2
Vh

div fulfill (4.177). Since Ph
E;RT0

v 2 H .div;˝/, it follows that Ph
E;RT0

v 2 Hdiv.˝/.
�

Remark 4.135 (The Modified Problem) The modified problem reads as follows:
Find

�
uh; qh

� 2 Vh � Qh D Pnc
1 � P0 such that

	ah
�
uh; vh

�C bh
�
vh; ph

� D �
f ;Ph

E;RT0
vh
� 8 vh 2 Vh;

bh
�
uh; qh

� D 0 8 qh 2 Qh;
(4.178)
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with the bilinear forms given in (4.18). In comparison with the original prob-
lem (4.59), apart of the viscosity, only the projection of the test function on the
right-hand side is introduced. ut
Lemma 4.136 (Consistency Error Estimate) Let .u; p/ be a sufficiently smooth
solution of the Stokes equations (4.2) with u 2 C1

�
˝
�\V, p 2 C

�
˝
�\Q. Consider

a family of quasi-uniform triangulations, then it holds for all v 2 Vdiv ˚ Vh
div

ˇ̌
	ah .u; v/ � �

f ;Ph
E;RT0v

�ˇ̌ � C	h jujH2.˝/ kvkVh : (4.179)

Proof The proof starts exactly like the proof of Lemma 4.55.
Let v 2 Vdiv ˚ Vh

div be arbitrary. Using the momentum equation of the Stokes
problem (4.1) yields

	ah .u; v/ � �
f ;Ph

E;RT0v
�

D
X

K2T h

	 .ru;rv/K � �
f ;Ph

E;RT0v
�

K

D
X

K2T h

	 .ru;rv/K � .�	�u; v/K C
X

K2T h

��	�u; v � Ph
E;RT0v

�
K

�
X

K2T h

�rp;Ph
E;RT0v

�
K
: (4.180)

The first sum in (4.180) was already estimated in (4.69) for 	 D 1. Applying the
same techniques gives

X
K2T h

	 .ru;rv/K C .	�u; v/K � C	h jujH2.˝/ kvkVh : (4.181)

The second sum is estimated with the Cauchy–Schwarz inequality (A.10), the
Cauchy–Schwarz inequality for sums (A.2), and the interpolation estimate (4.172)

X
K2T h

��	�u; v � Ph
E;RT0v

�
K

�
X

K2T h

	 k�ukL2.K/

��v � Ph
E;RT0v

��
L2.K/

� 	 k�ukL2.˝/

��v � Ph
E;RT0v

��
L2.˝/

� C	h jujH2.˝/ kvkVh : (4.182)

Note that for estimating the first and second sum on the right-hand side of (4.180)
the property of v being (discretely) divergence-free is not needed, compare also
Remark 4.57.
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Finally, integration by parts is applied for the last sum of (4.180)

�
X

K2T h

�rp;Ph
E;RT0v

�
K

D
X

K2T h

�r � �Ph
E;RT0v

�
; p
�

K
�
Z
@K

pPh
E;RT0v � n@K ds:

The first term on the right-hand side vanishes since Ph
E;RT0

v is divergence-free,
see (4.175). The integrals on the interior faces vanish because p and Ph

E;RT0
v �n@K are

both continuous. On the boundary faces, Ph
E;RT0

v � n@K D 0, see (4.171). Altogether,
the last sum of (4.180) is zero.

Collecting all estimates proves the statement of the lemma. �

Theorem 4.137 (Error Estimate for the Vh Norm of the Velocity and the L2.˝/
Norm of the Pressure) Let ˝ � R

d, d 2 f2; 3g, be a bounded domain with
polyhedral and Lipschitz continuous boundary and let .u; p/, the unique solution of
the scaled Stokes problem (4.44), be sufficiently smooth in the sense of Remark 4.56.
Consider a quasi-uniform family of triangulations and let

�
uh; ph

� 2 Pnc
1 �P0 be the

unique solution of the finite element problem (4.178) with modified test function on
the right-hand side. Then the following error estimates are valid

��u � uh
��

Vh � Ch jujH2.˝/ ; (4.183)

��p � ph
��

L2.˝/ � Ch

�
1C 1

ˇh
is

� �
	 jujH2.˝/ C krpkL2.˝/

�
: (4.184)

Proof Exactly as in the proof of Lemma 4.51 (second lemma of Strang), one derives
for the scaled Stokes problem (4.44) and the discretization (4.178) the abstract error
estimate

��u � uh
��

Vh � 2 inf
vh2Vh

div

��u � vh
��

Vh

C1

	
inf

vh2Vh
div;kvhkVh D1

ˇ̌
	ah

�
u; vh

� � �
f ;Ph

E;RT0v
h
�ˇ̌
:

Inserting the best approximation error estimate (4.63) and the consistency error
estimate (4.179) in this abstract estimate proves the velocity estimate (4.183).

The estimate of the pressure error proceeds along the way of the proof of
Theorem 4.60. The first steps, until estimate (4.79) are exactly the same. The
estimate of the next term starts as follows

bh
�
vh; ph � p

� D �	ah
�
uh; vh

�C �
f ;Ph

E;RT0v
h
� � bh

�
vh; p

�
(4.185)

D 	ah
�
u � uh; vh

� � 	ah
�
u; vh

�C �
f ;Ph

E;RT0v
h
� � bh

�
vh; p

�
:
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Using the Cauchy–Schwarz inequality (A.10) and the error bound (4.183) for the
velocity gives

	ah
�
u � uh; vh

� � 	
��u � uh

��
Vh

��vh
��

Vh � C	h jujH2.˝/

��vh
��

Vh :

The other terms on the right-hand side of (4.185) are written in the form

�	ah
�
u; vh

�C �
f ;Ph

E;RT0v
h
� � bh

�
vh; p

�

D
X

K2T h

��	 �ru;rvh
�

K
C ��	�u;Ph

E;RT0v
h
�

K
C �rp;Ph

E;RT0v
h
�

K
C �r � vh; p

�
K

�
:

The first two terms were estimated in (4.181), (4.182), noting that for these estimates
the discrete divergence-free condition is not necessary, leading to

X
K2T h

��	 �ru;rvh
�

K
C ��	�u;Ph

E;RT0v
h
�

K

� � C	h jujH2.˝/

��vh
��

Vh :

For the terms with the pressure, integration by parts is applied, the Cauchy–Schwarz
inequality is used, estimate (4.172) is utilized, and the integrals on the faces are
estimate with (4.71)

X
K2T h

��rp;Ph
E;RT0v

h
�

K
C �r � vh; p

�
K

�

D
X

K2T h

"�rp;Ph
E;RT0v

h � vh
�

K
C
X

E2@K

Z
E

pvh � nE ds

#

� krpkL2.˝/

��Ph
E;RT0v

h � vh
��

L2.˝/
C Ch krpkL2.˝/

��vh
��

Vh

� Ch krpkL2.˝/

��vh
��

Vh :

Collecting all estimates leads in the same way as in the proof of Theorem 4.60 to
estimate (4.184). �

Remark 4.138 (On Theorem 4.137)

• The velocity solution uh of (4.178) is not divergence-free in the sense of Hdiv.˝/

since it is a function from Vh
div. Applying as post-processing the operator Ph

E;RT0
to uh gives a divergence-free velocity field Ph

E;RT0
uh, see (4.175).

• An optimal estimate for
��u � uh

��
L2.˝/

for the proposed method was derived
in Linke et al. (2016a). The proof of this estimate requires a somewhat higher
regularity of the velocity solution u than assumed in Theorem 4.137 and
Remark 4.56.

ut
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Example 4.139 (Scaled Stokes Equations with Analytic Solution for the Modified
Discretization (4.178)) This example continues Example 4.65, where the results for
the Galerkin discretization with the Crouzeix–Raviart pair of finite element spaces
are presented.

To implement the modified method (4.178), the projection Ph
E;RT0

vh has to be
computed for each basis function vh 2 Vh. Consider an arbitrary mesh cell K 2 T h,
then a function from RT0.K/ can be written in the form

vh
RT0 .x/ D a C b

d
.x � mK/ ; a 2 R

d; b 2 R; x 2 K; (4.186)

wheremK is the barycenter of K. To compute Ph
E;RT0

vh, one has to determine a and b.
With (4.176) and (4.186), it follows that

r � vh
ˇ̌
K

D r � �Ph
E;RT0v

h
�ˇ̌

K
D b

d
d D b:

For deriving a formula for a, it is used at several places that integrals of linear
functions on K and E � @K can be computed exactly with the mid point rule. This
argument gives

Z
K

Ph
E;RT0v

h dx D jKj �Ph
E;RT0v

h
�
.mK/ D jKj a: (4.187)

In addition, one obtains with the product rule

Z
K

r � �xiP
h
E;RT0v

h
�

dx D
Z

K
xir � Ph

E;RT0v
h dx C

Z
K

rxi � Ph
E;RT0v

h dx

D
Z

K
xir � Ph

E;RT0v
h dx C

Z
K

�
Ph

E;RT0v
h
�

i
dx;

i D 1; : : : ; d. Inserting (4.187), applying integration by parts, using that the
normal components and the divergence of functions from RT0.K/ are constant, and
applying (4.176) gives

ai D 1

jKj

 X
E�@K

Z
E

xiP
h
E;RT0v

h � nE ds �
Z

K
xir � Ph

E;RT0v
h dx

!

D 1

jKj

 X
E�@K

�
Ph

E;RT0v
h
� � nE

Z
E

xi ds � �r � Ph
E;RT0v

h
� Z

K
xi dx

!

D 1

jKj

 X
E�@K

�
Ph

E;RT0v
h
� � nE jEj .mE/i � r � vh jKj .mK/i

!
: (4.188)
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Using integration by parts yields

r � vh D 1

jKj
Z

K
r � vh dx D 1

jKj
X

E�@K

Z
E
vh � nE ds

D 1

jKj
X

E�@K

jEj vh.mE/ � nE:

Inserting this relation in (4.188) and using the definition (4.171) of the projection
gives

a D 1

jKj

 X
E�@K

�Z
E
vh � nE ds

�
mE � jEj �vh.mE/ � nE

�
mK

!

D 1

jKj
X

E�@K

jEj �vh.mE/ � nE
�
.mE � mK/ :

Results obtained with the modified discretization (4.178) are presented in
Fig. 4.19. They should be compared with the results in the left column of Fig. 4.10.
It can be seen that for the interesting case of small values of the viscosity 	, the
velocity errors are much smaller for the modified discretization. On sufficiently fine
grids, these errors become independent of 	. The lines depicting the asymptotics are
the same in the pictures of Fig. 4.19 as in the respective pictures of Fig. 4.10. Thus,
for large values of 	, the impact of the consistency error committed by the modified
method can be observed since the curves of the errors have a larger distance to the
lines of the asymptotics. With respect to the pressure, the results of the standard and
the modified discretization are similar. ut

Remark 4.140 (Extensions of this Approach)

• The idea presented in this section was extended to higher order inf-sup stable
pairs of finite element spaces with discontinuous pressure in Linke et al. (2016b).
On simplicial meshes, projections to Raviart–Thomas spaces were used and on
rectangular and brick-type meshes projections to Brezzi–Douglas–Marini spaces.
Optimal error estimates for the L2.˝/ norms of the (discrete) gradient of the
velocity, the velocity, and the pressure were derived. The error bounds for the
velocity do not depend on the pressure and on the viscosity.

• For the Taylor–Hood pair of spaces P2=P1, a reconstruction operator is proposed
in Lederer (2016). This operator projects to a Brezzi–Douglas–Marini space and
it is defined on a patch of mesh cells.

• An extension of this approach to the Navier–Stokes equations is also possible,
see Brennecke et al. (2015). For the stationary Navier–Stokes equations, also
a projection of the test function in the convective term has to be applied,
which leads to a modification of the stiffness matrix (in contrast to the Stokes
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Fig. 4.19 Example 4.139. Convergence of the errors for the scaled Stokes problem and the pair of
finite element spaces Pnc

1 =P0 with the modified discretization (4.178)

equations). In Brennecke et al. (2015), some numerical examples are presented
showing the potential of this approach.

ut

4.6.3 Constructing Divergence-Free and Inf-Sup Stable Pairs
of Finite Element Spaces

Remark 4.141 (Inf-Sup Stable Pairs of Finite Element Spaces with Weakly
Divergence-free Velocity Solutions) Mass conservation is ensured if the finite
element velocity is divergence-free in the sense of Definition 3.32, i.e., if��r � uh

��
L2.˝/

D 0. This property is surely given if r � Vh � Qh. In this case,

one can take the test function qh D r � uh in the discrete continuity equation which
leads to

�r � uh;r � uh
� D ��r � uh

��2
L2.˝/

D 0:
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It was already discussed in Remark 3.56 that the satisfaction of the discrete inf-sup
condition (3.51) and the property that the finite element velocity should be weakly
divergence-free act against each other. While the former condition requires the finite
element pressure space to be sufficiently small compared with the velocity space, the
latter condition requires a sufficiently large space Qh, e.g., such that Qh � r � Vh.

An advantage of getting weakly divergence-free solutions was already shown in
Sect. 4.2.1.2: the error bounds and the errors for the velocity do not depend on the
pressure and the viscosity, see Remark 4.38 and Example 4.40.

So far only one family of inf-sup stable finite element spaces with weakly
divergence-free solutions was introduced, the Scott–Vogelius family, compare
Remarks 3.135 and 3.136. The most interesting pair in two dimensions, P2=Pdisc

1 ,
satisfies the discrete inf-sup condition only on special grids, e.g., on barycentric-
refined grids, see Fig. 3.9. The violation of the discrete inf-sup condition on general
grids was shown in Example 3.73.

Since the satisfaction of the discrete inf-sup condition and the computation of
weakly divergence-free finite element velocities are in some sense conflicting goals,
the construction of pairs satisfying both requirements is involved. This section
illustrates approaches which lead to appropriate pairs of finite element spaces. ut
Remark 4.142 (The Smooth de Rham Complex or Stokes Complex in Two Dimen-
sions) A de Rham complex is a sequence of mappings. For the Stokes problem in
two dimensions, the so-called smooth de Rham complex or Stokes complex is of
interest

R ! H2.˝/
curl! H1.˝/

div! L2.˝/ ! 0; (4.189)

where the curl operator is defined in (3.153).
A de Rham complex is called to be exact if the range of each operator is the

kernel of the succeeding operator. The exactness of the de Rham complex (4.189)
implies:

• if w 2 H2.˝/ is curl-free, then w is constant function,
• if v 2 H1.˝/ is divergence-free, then v D curl w for some w 2 H2.˝/,
• the map div W H1.˝/ ! L2.˝/ is surjective, since the kernel of the last operator

in (4.189) is L2.˝/.

These properties were already studied in the case of the Stokes equations. Concern-
ing the first property, if curl w D 0 in ˝ , then both partial derivatives of w vanish
in ˝ . Hence w has to be a constant function. The second property was studied in
Lemma 3.174. Note that this lemma is formulated for simply connected domains.
The surjection of the divergence operator was proved in Lemma 3.43 for the setting
H1
0.˝/ ! L20.˝/. To extend this result to (4.189), one just needs to show that every

constant C 2 L2.˝/ is the divergence of a function from H1.˝/. For this purpose,
one can take, e.g., v D .Cx; 0/T .

Altogether, it can be shown that the smooth de Rham complex (4.189) is exact
on bounded, simply connected domains˝ � R

2 with Lipschitz boundary. ut
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Remark 4.143 (Finite Element Sub-complex) A finite element sub-complex of
(4.189) consists of finite element spaces Wh � H2.˝/, Vh � H1.˝/, and Qh �
L2.˝/ satisfying

R ! Wh curl! Vh div! Qh ! 0: (4.190)

If the finite element sub-complex (4.190) is exact, then there are two important
implications.

• The pair of finite element spaces Vh=Qh satisfies the discrete inf-sup con-
dition (3.51) provided the mapping div has a right inverse that is bounded
independently of the mesh width.

• It holds div Vh D Qh, i.e., using Vh=Qh weakly divergence-free velocity fields
are computed, see Remark 4.141.

ut
Example 4.144 (Finite Element Sub-complex for the Scott–Vogelius Pair of Finite
Element Spaces) Consider an admissible regular simplicial triangulation T h of ˝
consisting of mesh cells fKcoarseg. Each triangle is barycentric refined by connecting
its vertices with its barycenter, giving a finer triangulation consisting of mesh cells
fKfineg.

Starting point for the derivation of the finite element sub-complex for the Scott–
Vogelius pair of spaces is the Hsieh–Clough–Tocher finite element, see Clough
and Tocher (1965), Ciarlet (1978, Chap. 6.1). This finite element is a composite
finite element consisting of third order polynomials on each mesh cell Kfine, i.e.,
on the corresponding mesh cell Kcoarse one has to determine three polynomials with
ten degrees of freedom for each. It is required that the finite element function is
continuously differentiable. Since the restriction of a cubic polynomial to an edge is
a quadratic polynomial in one dimension, the satisfaction of this condition needs
three degrees of freedom on each of the six edges involved in the barycentric
refinement of Kcoarse. The other degrees of freedom are the values of the function
in the vertices of Kcoarse (three degrees of freedom), the derivatives in these vertices
(six degrees of freedom), and the integrals of the normal derivatives on the edges
of Kcoarse (three degrees of freedom). By the requirement on the regularity of the
finite element functions, it follows that Wh � H2.˝/, where Wh denotes the global
Hsieh–Clough–Tocher space. Any function from Wh is uniquely determined by this
requirement, the three degrees of freedom on each vertex, and the degree of freedom
on each edge of the coarse mesh. Hence, one finds

dim Wh D 3# verticescoarse C # edgescoarse; (4.191)

where # denotes the cardinality of a set.
Since differentiation reduces the polynomial degree by one and also the regularity

by one, it follows that Vh D curl Wh � H1.˝/ consists of continuous polynomials
of degree two with respect to the fine mesh: Vh D P2. Likewise, Qh D div Vh �
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L2.˝/ consists of discontinuous linear functions with respect to the fine mesh: Qh D
Pdisc
1 . The pair of spaces Vh=Qh is the Scott–Vogelius pair on the barycentric-refined

mesh. It remains to show the exactness of this finite element sub-complex.
Let vh 2 Vh be weakly divergence-free. From the exactness of the smooth de

Rham complex (4.189), see Remark 4.142, it can be concluded that there is a
w 2 H2.˝/ with vh D curl w. By definition of Vh, one has that @xw and @yw
are piecewise polynomials of degree two with respect to the fine mesh. Hence, w
is a piecewise polynomial of degree three on this mesh. Since curl w 2 H1.˝/, it
follows that w 2 H2.˝/. From these two properties it is concluded that w 2 Wh.

Next, one has to show that div W Vh ! Qh is a surjection. From the
considerations above, it is known that the divergence of a function from Vh is
a discontinuous piecewise linear function with respect to the fine mesh, hence
div Vh � Qh. Since Vh and Qh are finite-dimensional spaces, the surjection property
is proved if one shows that the dimensions of div Vh and Qh are equal. In Qh there
are three degrees of freedom on each cell of the fine mesh, hence

dim Qh D 3# cellsfine D 9# cellscoarse: (4.192)

The space Vh consists of vector-valued quadratic polynomials with respect to the
fine mesh such that there are two degrees of freedom on each vertex and each edge
of this mesh. Considering the coarse mesh, then each mesh cell has the degrees
of freedom on the vertices and edges and in addition the degrees of freedom on
the barycenter and the three edges connecting the vertices with the barycenter.
Altogether, one finds

dim Vh D 2 .# verticesfine C # edgesfine/

D 2 .# verticescoarse C # edgescoarse C 4# cellscoarse/ : (4.193)

Using now the already shown exactness of the map curl, the rank-nullity theorem,
Theorem A.64, Euler’s formula for the triangulation of a simple closed polygon, see
Remark C.10, (4.191), (4.192), and (4.193) yields

dim
�
div Vh

� D dim Vh � dim
�
ker

�
div Vh

�� D dim Vh � dim
�
curl Wh

�
D dim Vh � dim Wh C dim

�
ker

�
curl Wh

��
D dim Vh � dim Wh C 1

D �# verticescoarse C # edgescoarse C 8# cellscoarse C 1

D �# verticescoarse C # edgescoarse C 8# cellscoarse

C# verticescoarse � # edgescoarse C # cellscoarse

D 9# cellscoarse D dim Qh:

Hence, div W Vh ! Qh is a surjection.
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Using a macro-element technique from Arnold and Qin (1992), one can show that
the mapping div has a bounded right inverse independent of h. Hence, the discrete
inf-sup condition (3.51) is uniformly satisfied. ut
Remark 4.145 (Other Pairs of Spaces) A similar construction as presented in
Example 4.144 can be started with other H2.˝/ conforming finite element spaces.
However, the arising pairs of spaces for the Stokes equations seem to be of little
importance in practical simulations due to the high polynomial degree of the basis
functions or to the use of degrees of freedom whose implementation is involved,
like gradients. Some examples of such spaces can be found, e.g., in Falk and Neilan
(2013), Guzmán and Neilan (2014). ut
Remark 4.146 (The Three-Dimensional Case) The situation in three dimensions is
considerably more complicated than in two dimensions. Several Stokes complexes
have been proposed. Due to the needed regularity of the spaces, the polynomial
degree of the corresponding finite element spaces becomes very high, e.g., see
Neilan (2015) where a velocity space with polynomials of degree six was derived.

ut
Remark 4.147 (H .div;˝/ Conforming Finite Element Spaces with Weakly
Divergence-free Velocity Solutions) Studying sub-complexes of the smooth de
Rahm complex (4.189) leads to conforming finite element spaces since Vh � H1.˝/

and Qh � L2.˝/. It turns out that one does not find lower order pairs of conforming
spaces that are easily to implement and that can be used to compute weakly
divergence-free velocity solutions.

In order to construct low order spaces, one has to abandon the conformity of the
finite element velocity space, i.e., it has to hold Vh 6� H1.˝/. Since one likes to
have

��r � uh
��

L2.˝/
D 0, the divergence of the velocity fields has to be in L2.˝/.

This property is given if Vh � H .div;˝/. From Lemma 3.66, it is known that then
the normal velocity is continuous across the faces of the mesh cells.

The perhaps simplest choice of finite element spaces in H .div;˝/ on simplicial
meshes is Vh D RT0, the Raviart–Thomas spaces of lowest order, see Example B.45.
In fact, it can be shown that RT0=P0 satisfies a discrete inf-sup condition uniformly
with respect to h where an appropriate norm of the functions from Vh D RT0 is
used, e.g., see (Boffi et al. 2013, Sect. 7.1.2). However, the non-conformity of Vh

requires the definition of an appropriate discrete viscous term. The first idea consists
in applying a piecewise definition as for the non-conforming Crouzeix–Raviart finite
element spaces, see (4.18). However, it turns out that with this piecewise definition
the consistency error for RT0=P0 is too large and the discrete solutions do not
converge to the solution of the continuous problem. Thus, further modifications are
needed to construct a convergent method.

In the literature, one finds two approaches for such modifications. Both
approaches aim to reduce the order of the consistency error to the order of the
best approximation error.
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The first approach extends the piecewise defined bilinear form such that

• a term is introduced that accounts for the proper reduction of the consistency
error,

• a second term establishes the symmetry of the discrete viscous term,
• a third term is responsible for a weak continuity of the tangential velocity at faces

by penalizing jumps of the tangential velocity.

The second approach enriches the velocity space with local and weakly
divergence-free functions in such a way that the tangential velocity becomes in
a weak sense continuous.

More details of both approaches and references to the relevant literature can be
found in the review paper (John et al. 2015, Sect. 4.4). ut



Chapter 5
The Oseen Equations

Remark 5.1 (Motivation) Oseen equations, which are linear equations, show up
as an auxiliary problem in many numerical approaches for solving the Navier–
Stokes equations. Applying an implicit method for the temporal discretization of
the Navier–Stokes equations requires the solution of a nonlinear problem in each
discrete time. Likewise, the steady-state Navier–Stokes equations are nonlinear.
Applying in either situation a so-called Picard method (a fixed point iteration)
for solving the nonlinear problem, leads to an Oseen problem in each iteration,
compare Sect. 6.3. The application of semi-implicit time discretizations to the
Navier–Stokes equations leads directly to an Oseen problem in each discrete time,
see Remark 7.61. Altogether, Oseen problems have to be solved in many methods
for simulating the Navier–Stokes equations. In addition, some parts of the theory of
the Oseen equations are used in the analysis of the Navier–Stokes equations, e.g.,
for the uniqueness of a weak solution of the steady-state Navier–Stokes equations
in Theorem 6.20. For these reasons, the analysis and numerical analysis of Oseen
problems is of fundamental interest.

In addition to the Stokes equations, the Oseen equations possess a convective
term and a reactive term. Both of them might be dominant. Thus, besides the inf-
sup condition, the third difficulty mentioned in Remark 2.19 has to be addressed.

ut

5.1 The Continuous Equations

Remark 5.2 (The Oseen Equations) The Oseen equations are linear and stationary
equations. In comparison with the Stokes equations (4.1), they have a convective
term (first order derivative of the velocity) and they might possess also a so-called
reactive term (zeroth order derivative of the velocity) in the momentum equation.

© Springer International Publishing AG 2016
V. John, Finite Element Methods for Incompressible Flow Problems, Springer
Series in Computational Mathematics 51, DOI 10.1007/978-3-319-45750-5_5
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The Oseen equations have the form

�	�u C .b � r/u C cu C rp D f in ˝;
r � u D 0 in ˝;

(5.1)

where 	 > 0, b is a given convection field which has to be in some sense divergence-
free, see Remark 5.6 for details, c.x/ � c0 � 0 for almost all x 2 ˝ , and f 2
H�1.˝/.

For the application of the abstract theory from Chap. 3 and for the finite
element error analysis, the Oseen equations will be equipped for simplicity with
homogeneous Dirichlet boundary conditions u D 0 on 
 . ut
Remark 5.3 (On the Coefficients in (5.1))

• If the functions in (5.1) are considered with dimensions, then all terms in the
momentum equation have the unit m=s2. Hence, the function c must have the unit
1=s, i.e., if c.t; x/ > 0, then c�1.t; x/ represents a time, see also the discussion
below in this remark.

• Let b 2 L1.˝/, then it will be always assumed in this chapter that the
momentum equation is scaled such that one of the following situations is given:

ı kbkL1.˝/ � 1 if 	 � kbkL1.˝/,
ı 	 � 1 if kbkL1.˝/ � 	.

The first situation is the interesting one which appears in applications.
• The following cases for the other coefficients of (5.1) are of interest:

ı 	 is of moderate size, c D 0. The case c D 0 occurs in numerical methods for
solving the steady-state Navier–Stokes equations, e.g., if a fixed point iteration
is applied, see Remark 6.41. From the point of view of applications, the limit
	 ! 0 is not of interest for the steady-state Navier–Stokes equations since for
very small 	, or very large Reynolds numbers, a time-dependent solution is
expected.

However, strictly speaking, for finite element discretizations of the steady-
state Navier–Stokes equations, the assumptions on the coefficients of the
Oseen problem made in this chapter are usually not satisfied, e.g., see
Remark 6.41.

ı 	 is of arbitrary size, c D O
�
.�t/�1

�
. For small 	, one expects a time-

dependent solution, for very small 	 even a turbulent solution. In time-
dependent problems, a term of type cu comes from an implicit or semi-implicit
temporal discretization. Then, c D O

�
.�t/�1

�
, where �t is the length of the

time step, e.g., see (7.85). Thus, for small time steps, cu might become a
dominant term in (5.1). Altogether, this case is of interest for a wide range of
	 and a wide range of c.

• In numerical methods where Oseen problems appear, b is a computed velocity
field, often the currently available finite element approximation of the solution.
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Since generally Vh
div 6� Vdiv, this finite element approximation of the velocity

is in general not weakly divergence-free. It is discretely divergence-free if
an inf-sup stable pair of finite element spaces was used and if the algebraic
saddle point problem was solved exactly. But even an exact solving is often not
performed such that one can expect that the computed velocity field for b is only
approximately discretely divergence-free.

ut
Remark 5.4 (The Weak Form of the Oseen Equations) For the weak formulation
of the Oseen problem (5.1) with homogeneous Dirichlet boundary conditions, the
same functions spaces are used as for the weak form of the Stokes problem. Let
V D H1

0.˝/ and Q D L20.˝/. Then, the weak form of (5.1) reads as follows: Find
.u; p/ 2 V � Q such that

	.ru;rv/C ..b � r/u C cu; v/� .r � v; p/ D h f ; viV0;V 8 v 2 V;
�.r � u; q/ D 0 8 q 2 Q:

(5.2)

To cast (5.2) into the abstract framework of Sect. 3.1, the following bilinear forms
are defined:

a W V � V ! R; a.u; v/ D 	.ru;rv/C ..b � r/u C cu; v/;
b W V � Q ! R; b.v; q/ D �.r � v; q/: (5.3)

The right-hand side of the second equation of the abstract problem (3.4) is r D 0.
ut

Remark 5.5 (Minimal Regularity of b and c for (5.2) To Be Well-posed) Consider
first the two-dimensional case. From the Sobolev imbedding (A.21), it follows that
u; v 2 Lq.˝/ with q 2 Œ1;1/. Hence, it is sufficient that b 2 L2C"0.˝/ and c 2
L1C"1.˝/, "0; "1 > 0, such that all terms in (5.2) are well defined.

In three dimensions, the Sobolev imbedding (A.22) gives u; v 2 L6.˝/ such that
b 2 L3.˝/ and c 2 L3=2.˝/ have to be satisfied.

In addition to the regularity assumptions, the properties on b and c given in
Remark 5.2 have to be fulfilled. ut
Remark 5.6 (Skew-Symmetry of the Convective Term) The key property of the
convective term which will be used in the analysis is

..b � r/v; v/ D 0 8 v 2 V; (5.4)

which is also called skew-symmetry.

• This property is given, e.g., if b satisfies the regularity assumptions from
Remark 5.5, r � b 2 L2.˝/, and r � b D 0 almost everywhere in ˝ , since
integration by parts and the application of the product rule yields

..b � r/v; v/ D �.r � b; vTv/� ..b � r/v; v/: (5.5)
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The integral on 
 vanishes because v D 0 on 
 . Since r � b D 0, one
obtains (5.4).

• Property (5.4) also holds if b and r � b satisfy the same regularity assumptions as
in the previous case, b is weakly divergence-free, and

Z



.b � n/ .s/ ds D 0: (5.6)

For all v 2 V , it follows from the Sobolev imbeddings (A.21) and (A.22) that
v 2 L4.˝/. That means

Z
˝

kvk42 dx D
Z
˝

�
vTv

�2
dx < 1

and therefore that vTv 2 L2.˝/. Then, there is a constant C such that vTvC C 2
Q. If b is weakly divergence-free, it holds

0 D �r � b; vTvC C
� D �r � b; vTv

�C .r � b;C/

D �r � b; vTv
� � C

Z



b � n ds; (5.7)

where in the last step integration by parts was applied. If (5.6) holds, then (5.4)
follows from (5.5) and (5.7). A special case of this situation is that b 2 Vdiv.

• Under the same conditions on b as in the previous cases and with the same
arguments, one finds that

..b � r/v;w/ D �..b � r/w; v/ 8 v;w 2 V: (5.8)
ut

Theorem 5.7 (Existence and Uniqueness of a Weak Solution of the Oseen
Equations) Let ˝ be a bounded domain in R

d, d 2 f2; 3g, with a Lipschitz
continuous boundary 
 and let the conditions on the data of the Oseen problem
from Remarks 5.5 and 5.6 be fulfilled. Then, there exists a unique solution .u; p/ 2
H1
0.˝/ � L20.˝/ of (5.2).

Proof One has to check the conditions on a.�; �/ and b.�; �/ which are stated in Lem-
ma 3.19.

With respect to the bilinear form b.�; �/, one has the same situation as for the
Stokes problem, see Theorem 4.6. Hence, Theorem 3.46 states the fulfillment of the
inf-sup condition.

For the bilinear form a.�; �/, one has to prove that a.�; �/ is coercive in Vdiv.
Using (5.4), it follows that

a.v; v/ D 	.rv;rv/C .cv; v/ � 	 kvk2V ;
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because of c � 0, thus a.�; �/ is even coercive in V . Hence, the coercivity of a.�; �/ is
proved and the application of Lemma 3.19 gives the statement of the theorem. �

Lemma 5.8 (Stability of the Solution) Under the conditions of Theorem 5.7, the
solution of the Oseen problem (5.2) depends continuously on the data of the problem

	

2
kruk2L2.˝/ C ��c1=2u

��2
L2.˝/

� 1

2	
k fk2H�1.˝/ (5.9)

and if additionally b; c 2 L1.˝/, then

kpkL2.˝/ � 1

ˇis

"
k fkH�1.˝/ C

�
	1=2 C CPF

kbkL1.˝/

	1=2
C CPF kck1=2L1.˝/

�

�
	
	1=2 krukL2.˝/ C ��c1=2u

��
L2.˝/


#
: (5.10)

If f 2 L2.˝/ and c0 > 0, then also the stability bound

	 kruk2L2.˝/ C 1

2

��c1=2u
��2

L2.˝/
� 1

2c0
k fk2L2.˝/ (5.11)

is satisfied. If in addition b; c 2 L1.˝/, then

kpkL2.˝/ � 1

ˇis

"
CPF k fkL2.˝/ C

 
	1=2 C kbkL1.˝/

c1=20
C CPF kck1=2L1.˝/

!

�
	
	1=2 krukL2.˝/ C ��c1=2u

��
L2.˝/


#
(5.12)

holds. Here, CPF is the constant of the Poincaré–Friedrichs inequality (A.12).

Proof The proof proceeds along the same lines as the proof of Lemma 4.7. To
highlight the dependency of the stability bounds on the coefficients of the problem,
it will be presented in detail.

Inserting u 2 V as test function in (5.2), using (5.4), applying the estimate for
the dual pairing, and using Young’s inequality (A.5) leads to

	 kruk2L2.˝/ C ��c1=2u
��2

L2.˝/
� k fkH�1.˝/ krukL2.˝/

� 1

2	
k fk2H�1.˝/ C 	

2
kruk2L2.˝/ :

This inequality gives (5.9).
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If f 2 L2.˝/ and c.x/ � c0 > 0, then the velocity estimate can be performed by
applying the Cauchy–Schwarz inequality (A.10)

	 kruk2L2.˝/ C ��c1=2u
��2

L2.˝/ � k fkL2.˝/ kukL2.˝/ � k fkL2.˝/

�����
�

c

c0

�1=2
u

�����
L2.˝/

D 1

c1=20
k fkL2.˝/

��c1=2u
��

L2.˝/

� 1

2c0
k fk2L2.˝/ C 1

2

��c1=2u
��2

L2.˝/
:

Now (5.11) follows.
The stability estimate for the pressure starts with the inf-sup condition. Then,

Eq. (5.2) is inserted, (5.8) is applied, the estimate for the dual pairing, the Cauchy–
Schwarz inequality, and the Poincaré–Friedrichs inequality are applied to obtain

kpkL2.˝/ � 1

ˇis
sup

v2Vnf0g
�.r � v; p/
krvkL2.˝/

D 1

ˇis
sup

v2Vnf0g
h f ; viV0;V � 	.ru;rv/C ..b � r/v;u/ � .cu; v/

krvkL2.˝/

� 1

ˇis

 
k fkH�1.˝/ C 	 krukL2.˝/ C kbkL1.˝/ kukL2.˝/

CCPF kck1=2L1.˝/

��c1=2u
��

L2.˝/

!
:

In order to be able to apply now the stability estimate for the velocity, kukL2.˝/
is estimated with the Poincaré–Friedrichs inequality, because the term kukL2.˝/

cannot be estimated with
��c1=2u

��
L2.˝/ without the uniform positivity of c.x/. After

having applied the Poincaré–Friedrichs inequality, the bound (5.9) is inserted, which
gives (5.10).

In the case f 2 L2.˝/ and c.x/ � c0 > 0, one gets in the same way the estimate

kpkL2.˝/ � 1

ˇis

 
CPF k fkL2.˝/ C 	 krukL2.˝/ C kbkL1.˝/

c1=20

��c1=2u
��

L2.˝/

CCPF kck1=2L1.˝/

��c1=2u
��

L2.˝/

!
;

from which (5.12) follows by inserting (5.11). �
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Remark 5.9 (Discussion of the Stability Estimates) For the linearization of the
steady-state Navier–Stokes equations with a fixed point iteration, where c D 0,
estimates (5.9) and (5.10) are of interest. In particular, one has to study the
dependency of the stability bounds on the viscosity. It can be seen that the bounds for
krukL2.˝/ and kpkL2.˝/ scale like O

�
	�1�. Even replacing k fkH�1.˝/ by k fkL2.˝/,

if this regularity of the right-hand side is given, does not change the dependency of
the stability bounds on 	. Thus, for small 	, the problem loses stability. But note
that the limit 	 ! 0 is not of that much interest in applications, see Remark 5.3.

For numerical schemes applied to the time-dependent Navier–Stokes equations,
where the regularity f 2 L2.˝/ is often given in applications, estimates (5.11)
and (5.12) are relevant for c D c0 D O

�
.�t/�1

�
. In this case, the stability bound

for krukL2.˝/ scales like O
	�

�t
	

�1=2

, for kukL2.˝/ like O .�t/, and for kpkL2.˝/

like

O
  
1C �

	1=2 C .�t/1=2 C .�t/�1=2
� 
	1=2

�
�t

	

�1=2
C .�t/�1=2.�t/

!!!

D O
	
.	�t/1=2 C�t C 1



:

If the length of the time step is sufficiently small, i.e.,�t � 	 � 1, then the stability
bound for krukL2.˝/ behaves like O .1/. For small time steps, also the two other
stability bounds are small. ut

5.2 The Galerkin Finite Element Method

Remark 5.10 (Goals) Besides existence, uniqueness, and stability of a solution of
the finite element problem, finite element error estimates are the main topic of
this section. The goals and principal approach for deriving such estimates are
described in Remark 4.15. For the Oseen problem, the constants in the finite element
error estimates will depend in particular on the coefficients of the equations. This
dependency has to be tracked during performing the estimates. ut
Remark 5.11 (The Galerkin Finite Element Method for Conforming Inf-Sup Stable
Pairs of Finite Element Spaces) Let Vh � V , Qh � Q be inf-sup stable finite
element spaces. Then, the Galerkin finite element method of (5.2) reads as follows:
Find

�
uh; ph

� 2 Vh � Qh such that

a
�
uh; vh

�C b
�
vh; ph

� D h f ; vhiV0;V 8 vh 2 Vh;

b
�
uh; qh

� D 0 8 qh 2 Qh;
(5.13)

with the bilinear forms defined in (5.3). ut
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Corollary 5.12 (Unique Solvability of the Finite Element Problem) Let the
assumptions be as in Theorem 5.7, let ˝ be a domain with polyhedral boundary,
and let Vh and Qh be conforming and inf-sup stable finite element spaces. Then, the
finite element problem (5.13) has a unique solution.

Proof The statement of the corollary follows from Lemma 3.19 by combining the
coercivity of a.�; �/ in Vh, see the proof of Theorem 5.7, and the discrete inf-sup
condition. �

Lemma 5.13 (Stability of the Finite Element Solution) Let Vh � Qh be inf-sup
stable finite element spaces. Then, the solution of (5.13) fulfills

	

2

��ruh
��2

L2.˝/
C ��c1=2uh

��2
L2.˝/

� 1

2	
k fk2H�1.˝/ (5.14)

and if in addition b; c 2 L1.˝/, then

��ph
��

L2.˝/
� 1

ˇh
is

"
k fkH�1.˝/ C

�
	1=2 C CPF

kbkL1.˝/

	1=2
C CPF kck1=2L1.˝/

�

�
	
	1=2

��ruh
��

L2.˝/ C ��c1=2uh
��

L2.˝/


#
:

If f 2 L2.˝/ and c.x/ � c0 > 0, then also the following stability estimates hold

	
��ruh

��2
L2.˝/

C 1

2

��c1=2uh
��2

L2.˝/
� 1

2c0
k fk2L2.˝/

and, if b; c 2 L1.˝/, then

��ph
��

L2.˝/
� 1

ˇh
is

"
CPF k fkL2.˝/ C

 
	1=2 C kbkL1.˝/

c1=20
C CPF kck1=2L1.˝/

!

�
	
	1=2

��ruh
��

L2.˝/ C ��c1=2uh
��

L2.˝/


#
:

The constant CPF comes from the Poincaré–Friedrichs inequality.

Proof The proof is performed exactly like the proof of Lemma 5.8. �

Theorem 5.14 (Finite Element Error Estimate for the Velocity) Let ˝ � R
d,

d 2 f2; 3g, be a bounded domain with polyhedral and Lipschitz continuous
boundary. Let .u; p/ 2 V � Q be the unique solution of the Oseen problem (5.2)
where the conditions on the data from Remarks 5.5 and 5.6 are assumed to be
satisfied and let in addition b; c 2 L1.˝/. Consider inf-sup stable conforming finite
element spaces Vh � Qh for discretizing (5.2) and denote by uh 2 Vh

div the velocity
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solution. Then, the following error estimate holds

	1=2
��r �

u � uh
���

L2.˝/ C ��c1=2
�
u � uh

���
L2.˝/ (5.15)

� C

"
Cos inf

vh2Vh

��r.u � vh/
��

L2.˝/
C 1

	1=2
inf

qh2Qh

��p � qh
��

L2.˝/

#
;

where

Cos D 	1=2 C kck1=2L1.˝/ C kbkL1.˝/ min

(
1

	1=2
;
1

c1=20

)
(5.16)

and C does not depend on the coefficients of the Oseen problem.

Proof The principal ideas for proving the error estimate are the same as in the proof
of the corresponding estimate for the Stokes problem, see Theorem 4.21. For the
Oseen problem, there are some additional terms to be estimated and it is important
to study the dependency of the error bound on the coefficients of the equations.

From the abstract theory of linear saddle point problems, Remark 3.11, it is
known that the discrete velocity can be computed by solving the problem: Find
uh 2 Vh

div such that

	
�ruh;rvh

�C �
.b � r/ uh C cuh; vh

� D h f ; vhiV0;V 8 vh 2 Vh
div: (5.17)

Using the functions from Vh
div � V as test functions in the continuous equation (5.2)

and subtracting (5.17) gives the error equation

	
�r.u � uh/;rvh

�C �
.b � r/ �u � uh

�C c
�
u � uh

�
; vh
�

� �r � vh; p � qh
� D 0 8 vh 2 Vh

div; 8 qh 2 Qh: (5.18)

The error is split into a best approximation error in Vh
div and the difference of the

best approximation to the solution of (5.17)

u � uh D �
u � Ihu

� � �
uh � Ihu

� D � � �h; Ihu 2 Vh
div:

Now, �h 2 Vh
div is used as test function in (5.18). Rearranging terms and using (5.4)

yields

	
��r�h

��2
L2.˝/

C ��c1=2�h
��2

L2.˝/

D 	
�r�;r�h

�C �
.b � r/�C c�;�h

� � �r � �h; p � qh
�
: (5.19)
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The first term on the right-hand side of (5.19) is estimated by the Cauchy–Schwarz
inequality (A.10) and Young’s inequality (A.5)

	
ˇ̌�r�;r�h

�ˇ̌ � 	 kr�kL2.˝/

��r�h
��

L2.˝/
� 	 kr�k2L2.˝/ C 	

4

��r�h
��2

L2.˝/
:

Similarly, one obtains for the last term with (3.41)

ˇ̌� �r � �h; p � qh
�ˇ̌ � 2

	

��p � qh
��2

L2.˝/
C 	

8

��r�h
��2

L2.˝/
;

where in addition (3.40) was used. Also the reactive term is estimated in this way

ˇ̌�
c�;�h

�ˇ̌ � kck1=2L1.˝/ k�kL2.˝/

��c1=2�
��

L2.˝/

� kckL1.˝/ k�k2L2.˝/ C 1

4

��c1=2�
��2

L2.˝/
:

For the convective term, one obtains with (5.8)

ˇ̌�
.b � r/�;�h

�ˇ̌ D ˇ̌� �.b � r/�h;�
�ˇ̌ � kbkL1.˝/

��r�h
��

L2.˝/ k�kL2.˝/

� 2

	
kbk2L1.˝/ k�k2L2.˝/ C 	

8

��r�h
��2

L2.˝/
:

In the case c0 > 0, there is the alternative estimate

ˇ̌�
.b � r/�;�h

�ˇ̌ � kbkL1.˝/

��c�1=2��
L1.˝/

kr�kL2.˝/

��c1=2�h
��

L2.˝/

� kbk2L1.˝/ kr�k2L2.˝/
c0

C
��c1=2�h

��2
L2.˝/

4
:

Inserting all estimates in (5.19) gives

1

2

	
	
��r�h

��2
L2.˝/

C ��c1=2�h
��2

L2.˝/




� 	 kr�k2L2.˝/ C kckL1.˝/ k�k2L2.˝/ (5.20)

C min

(
2 kbk2L1.˝/ k�k2L2.˝/

	
;

kbk2L1.˝/ kr�k2L2.˝/
c0

)
C 2

	

��p � qh
��2

L2.˝/
:
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From the triangle inequality, inequality (A.4), and the Poincaré–Friedrichs
inequality (A.12), one obtains

	1=2
��r �

u � uh
���

L2.˝/ C
��c1=2

�
u � uh

���
L2.˝/

� 	1=2
��r�h

��
L2.˝/

C ��c1=2�h
��

L2.˝/
C	1=2 kr�kL2.˝/ C

��c1=2�
��

L2.˝/

� p
2
	
	
��r�h

��2
L2.˝/

C ��c1=2�h
��2

L2.˝/


1=2 C	1=2 kr�kL2.˝/ C kck1=2L1.˝/ k�kL2.˝/

� p
2
	
	
��r�h

��2
L2.˝/

C ��c1=2�h
��2

L2.˝/


1=2 C
	
	1=2CCPF kck1=2L1.˝/



kr�kL2.˝/ :

Inserting (5.20), applying once more (A.4) the Poincaré–Friedrichs inequality, and
using (3.71) if possible, or (3.65) otherwise, gives (5.15). �

Theorem 5.15 (Finite Element Error Estimate for the L2.˝/ Norm of the
Pressure) Let the assumption of Theorem 5.14 hold. Then the following error
estimate holds for the pressure

��p � ph
��

L2.˝/
� C

"
1

ˇh
is

C2
os inf
vh2Vh

��r.u � vh/
��

L2.˝/
(5.21)

C
�
1C 1

ˇh
is

C 1

ˇh
is

Cos

	1=2

�
inf

qh2Qh

��p � qh
��

L2.˝/

#
;

where Cos is defined in (5.16) and C does not depend on the coefficients of the Oseen
equations.

Proof The way of proving (5.21) follows the proof of Theorem 4.25.
Using the discrete inf-sup condition (3.51), the discrete Oseen equations (5.13)

as well as the continuous Oseen equations (5.2), one obtains in the same way as in
the proof of Theorem 4.25

��ph � qh
��

L2.˝/
� 1

ˇh
is

sup
vh2Vhnf0g

a
�
u � uh; vh

�C b
�
vh; p � qh

�
krvhkL2.˝/

(5.22)

for all qh 2 Qh. The bilinear forms are replaced by (5.3) and then the individual
terms are estimated. Using the Cauchy–Schwarz inequality (A.10), (3.41), and the
Poincaré–Friedrichs inequality (A.12) yields

ˇ̌
	
�r �

u � uh
�
;rvh

�ˇ̌ � 	
��r �

u � uh
���

L2.˝/

��rvh
��

L2.˝/
;

ˇ̌�r � vh; p � qh
�ˇ̌ � ��p � qh

��
L2.˝/

��rvh
��

L2.˝/
;

ˇ̌�
c
�
u � uh

�
; vh

�ˇ̌ � CPF kck1=2L1.˝/

��c1=2
�
u � uh

���
L2.˝/

��rvh
��

L2.˝/
:
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The convective term can be estimated with the same tools

ˇ̌�
.b � r/ �u � uh

�
; vh

�ˇ̌ � CPF kbkL1.˝/

��r �
u � uh

���
L2.˝/

��rvh
��

L2.˝/

or with applying integration by parts in the first step of the estimate, see (5.8),

ˇ̌�
.b � r/ �u � uh

�
; vh

�ˇ̌ � kbkL1.˝/

c1=20

��c1=2
�
u � uh

���
L2.˝/

��rvh
��

L2.˝/
:

Inserting these estimates in (5.22) leads for all qh 2 Qh to

��ph � qh
��

L2.˝/

� C

ˇh
is

 
	1=2 C kck1=2L1.˝/ C kbkL1.˝/ min

(
1

	1=2
;
1

c1=20

)!

�
	
	1=2

��r �
u � uh

���
L2.˝/ C ��c1=2

�
u � uh

���
L2.˝/



C C

ˇh
is

��p � qh
��

L2.˝/ :

The triangle inequality and the insertion of (5.15) conclude the proof. �

Corollary 5.16 (Finite Element Error Estimates for Conforming Pairs of Finite
Element Spaces) Let ˝ � R

d, d 2 f2; 3g, be a bounded domain with polyhedral
and Lipschitz continuous boundary which is decomposed by a regular and quasi-
uniform family of triangulations fT hg. Let .u; p/ be the solution of the Oseen
equations (5.2) with u 2 HkC1.˝/ \ V and p 2 Hk.˝/ \ Q. Then for the inf-sup
stable pairs of finite element spaces

• Pbubble
k =Pk, k D 1 (MINI element),

• Pk=Pk�1, Qk=Qk�1, k � 2 (Taylor–Hood element),
• Pbubble

2 =Pdisc
1 , Pbubble

3 =Pdisc
2 , PBR

2 =Pdisc
1 , Qk=Pdisc

k�1, k � 2,

the following error estimates hold

��r.u � uh/
��

L2.˝/ � C

	1=2
hk

�
Cos kukHkC1.˝/ C 1

	1=2
kpkHk.˝/

�
; (5.23)

where the constant depends either on the inverse of the discrete inf-sup constant ˇh
is

or on the inverse of local inf-sup constants, compare Remark 4.29, and

��p � ph
��

L2.˝/
� Chk

 
C2

os kukHkC1.˝/ C
�
1C Cos

	1=2

�
kpkHk.˝/

!
; (5.24)

where the constant depends on the inverse of the discrete inf-sup constant.
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Proof The estimates follow directly from estimating the best approximation errors
in (5.15) and (5.21) with interpolation errors which are known for the finite element
spaces, see Theorem C.13. The dependency of the constant of estimate (5.23)
follows from the application of (3.71) or (3.65) in the last step of the proof of
Theorem 5.14. �

Remark 5.17 (Discussion of the Dependency of the Error Bounds on the Coefficients
of the Problem) This discussion considers in particular the two cases of interest that
were described in Remark 5.3. Possible dependencies of kukHkC1.˝/ and kpkHk.˝/

on the coefficients of the problem are not taken into account. The dependency of
the error estimates on the coefficients of the problem will be discussed only for the
interesting case 	 � 1.

• Consider first the case c D c0 D 0, which appears in the iterative solution
of the steady-state Navier–Stokes equations with a fixed point iteration, see
Remark 6.41. In this case there is Cos D O

�
	�1=2�, see Fig. 5.1. It follows that

the constants in the estimates (5.23) and (5.24) behave both like O
�
	�1� such

that the error bounds blow up for 	 ! 0. As already mentioned in Remark 5.3,
the case 	 ! 0 is not of interest in applications. However, 	 can be nevertheless
small and in this case the constants in the estimates (5.23) and (5.24) might
become large.

• The other interesting situation is c D c0 D O
�
.�t/�1

�
. This case arises in

numerical methods for the time-dependent Navier–Stokes equations and thus also
the situation that 	 is very small is of interest.

ı If the time step is sufficiently small, i.e., �t � 	�1 and �t � .�t/�1,
then Cos D O

�
.�t/�1=2

�
. It follows that the constant in (5.23) scales like

O
�
.	�t/�1=2

� C O
�
.	�1/

�
and the constant in (5.24) like O

�
.�t/�1

� C
O
�
.	�t/�1=2

�
.
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Fig. 5.1 The constant Cos from the error bounds (5.23) and (5.24) for kbkL1.˝/ D 1
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ı For large time steps compared with the viscosity, i.e., �t > 	�1, one has
Cos D O

�
	�1=2�, which leads to constants of size O

�
	�1�.

In all cases, the error bounds become large for a small viscosity 	 (or a large
Reynolds number). They become also large if kckL1.˝/ is large, in particular for
small time steps. In summary, the error bounds are not uniform with respect to the
coefficients of the problem. Thus, it can happen that the Galerkin finite element
discretization for the Oseen problem leads to large errors, compare Example 5.18.

ut
Example 5.18 (Analytical Example Which Supports the Error Estimates (5.23)
and (5.24)) The numerical results that will be presented were obtained for Exam-
ple D.3. That means, the solution and Sobolev norms of the solution do not depend
on the viscosity. Of course, any divergence-free vector field can be chosen as
convection field in the Oseen equations (5.1). Form the point of view of applications,
the most important case is that the convection field is the velocity solution of the
Oseen equations itself. This case will be considered here, i.e., the convection field
is given by (D.9). Thus, kbkL1.˝/ D O .1/.

The simulations were performed for the Taylor–Hood element Q2=Q1 on the
quadrilateral grid depicted in Fig. 4.2. Results will be presented for the two
situations of interest described in Remark 5.3.

Figure 5.2 presents the errors
��r �

u � uh
���

L2.˝/
and

��p � ph
��

L2.˝/
for choosing

c D 0 and different values of 	. The second order convergence for large values of
the viscosity and the increase of the errors for small 	 on coarse grids can be clearly
seen. However, the order of error reduction for small 	 on coarse grids is larger than
two. On finer grids, the dependency of the error on 	 becomes smaller. It can be
expected that eventually, on sufficiently fine grids, the errors become independent
of 	. With respect to the pressure, similar observations as for the velocity can be
made.

Fig. 5.2 Example 5.18. Convergence of the errors
��r.u � uh/

��
L2.˝/ and

��p � ph
��

L2.˝/ for c D 0

and different values of 	
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Fig. 5.3 Example 5.18. Convergence of the errors
��r.u � uh/

��
L2.˝/ and

��p � ph
��

L2.˝/ for c D
100 and different values of 	

Fig. 5.4 Example 5.18. Convergence of the errors
��r.u � uh/

��
L2.˝/ and

��p � ph
��

L2.˝/ for 	 D
10�4 and different values of c

In the second numerical study, the coefficient of the zeroth order term was chosen
to be c D 100 and the viscosity was varied, see Fig. 5.3. With respect to the pressure,
one obtains again more or less the same accuracy for all values of the viscosity. For
the velocity, one gets larger errors for smaller values of 	. However, analogously to
the case c D 0, it can be expected from the results for 	 D 10�2 and 	 D 10�4 that
on sufficiently fine grids the errors become similar.

Finally, the case of 	 D 10�4 and different values of c was studied, see Fig. 5.4.
With respect to the error in the velocity, it can be seen that an increase of c (which
corresponds to small time steps) decreases the error on coarse grids. On finer grids,
the errors tend to become independent of c. Concerning the error in the pressure, one
obtains almost the same results for all values of c on finer grids. On coarser grids, in
the pre-asymptotic region, the largest errors can be observed for large values of c.

ut
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Remark 5.19 (Implementation) The principal approach concerning the construction
of finite element spaces is the same as for the Stokes equations, see Sect. 4.3.

The linear saddle point problem for the Galerkin finite element discretiza-
tion (5.13) has the form

�
A BT

B 0

� 
u
p

!
D
 

f

0

!
; (5.25)

where the matrix block A is a diagonal block matrix with the same blocks

0
@A11 0 0

0 A11 0

0 0 A11

1
A : (5.26)

The entries are given by

.A11/ij D aij D
X

K2T h

h�
	r�h

j ;r�h
i

�
K

C �
.b � r/�h

j C c�h
j ;�

h
i

�
K

i
;

i; j D 1; : : : ; 3Nv . Thus, if b ¤ 0, the matrix A is not symmetric. But the matrix
structure is the same as for the Stokes problem, see Remark 4.66. ut

5.3 Residual-Based Stabilizations

Remark 5.20 (Residual-Based Stabilizations) Residual-based methods are one of
the most popular approaches for obtaining stable discretizations of the Oseen
equations, or more general, of convection-dominated problems. Several types of
residual-based stabilizations for the Oseen equations can be found in the literature,
e.g., see Braack et al. (2007). In this section, a residual-based stabilization involv-
ing a Streamline-Upwind Petrov–Galerkin (SUPG) term, a pressure stabilization
Petrov–Galerkin (PSPG) term, and a grad-div stabilization term, is presented in
detail. ut

5.3.1 The Basic Idea

Remark 5.21 (The Basic Idea of Residual-Based Stabilizations) The basic idea
consists in a penalization of large values of the so-called strong residual.

Given a linear partial differential equation in strong form

Astrustr D f ; f 2 L2.˝/;
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and its Galerkin finite element discretization: Find uh 2 Vh such that

ah
�
uh; vh

� D �
f ; vh

� 8 vh 2 Vh: (5.27)

For residual-based stabilizations, a modification of Astr is needed which is well
defined for finite element functions. This modification should be also a linear
operator and it is denoted by Ah

str W Vh ! L2.˝/. The (strong) residual is now
defined by

rh
�
uh
� D Ah

stru
h � f 2 L2.˝/:

In general, it holds rh
�
uh
� ¤ 0, but a good numerical approximation of the solution

of the continuous problem should have in some sense a small residual. Now, instead
of finding the solution of (5.27), the minimizer of the residual is searched, i.e, the
following optimization problem is considered

arg min
uh2Vh

��rh
�
uh
���2

L2.˝/
D arg min

uh2Vh

�
rh
�
uh
�
; rh

�
uh
��
: (5.28)

The necessary condition for taking the minimum is the vanishing of the Gâteaux
derivative. This derivative is computed by using the linearity of Ah

str and the
bilinearity of the inner product in L2.˝/

0 D lim
"!0

�
rh
�
uh C "vh

�
; rh

�
uh C "vh

�� � �
rh
�
uh
�
; rh

�
uh
��

"

D lim
"!0

�
rh
�
uh
�C "Ah

strv
h; rh

�
uh
�C "Ah

strv
h
�� �

rh
�
uh
�
; rh

�
uh
��

"

D 2
�
rh
�
uh
�
;Ah

strv
h
� 8 vh 2 Vh:

It follows that the necessary condition for the solution of (5.28) is

�
rh
�
uh
�
;Ah

strv
h
� D 0 8 vh 2 Vh:

A generalization consists in considering the minimization problem

arg min
uh2Vh

��ı1=2rh
�
uh
���2

L2.˝/
D arg min

uh2Vh

�
ırh

�
uh
�
; rh

�
uh
��

(5.29)

with the positive weighting function ı.x/. Analogously to the derivation for the
special case, one obtains as necessary condition for the minimum

�
ırh

�
uh
�
;Ah

strv
h
� D 0 8 vh 2 Vh: (5.30)
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Fig. 5.5 Function with sharp
layer (solid line) and optimal
piecewise linear
approximation in a mesh cell
K (dashed line). The equation
that is satisfied by the
function in K is far from
being satisfied by the
piecewise linear
approximation. Hence,
despite the approximation is
considered to be optimal, the
strong residual will be large

K

The solutions of (5.28) or (5.29) will not be identical to the solution of
the Galerkin discretization (5.27). It turns out that the reason for the Galerkin
discretization to compute numerical solutions with large errors is that the solution
of the continuous problem possesses structures (scales) that are important but that
are not resolved by the used finite element space (grid), which is in particular the
main difficulty in the simulation of turbulent flows, see Sect. 8.1. For flow problems,
such structures are layers, particularly at boundaries. The numerical methods should
compute sharp layers. However the sharpness of layers in numerical solutions is
restricted by the resolution of the finite element spaces, which is generally much
coarser than the layer width. Hence, even for a numerical solution with sharp layers,
the strong residual in the layer regions is very large. In particular, a numerical
solution with sharp layers (with respect to the resolution of the finite element
space) will not be the minimizer of (5.28) or (5.29), see Fig. 5.5. The minimizer
of (5.28) or (5.29) tends to possess strongly smeared layers and these solutions are
often not useful in applications. For this reason, one considers in residual-based
stabilizations a combination of the Galerkin discretization (5.27), which possesses
too little numerical viscosity, and the minimization of the strong residual, which
introduces too much numerical viscosity,

ah
�
uh; vh

�C �
ırh

�
uh
�
;Ah

strv
h
� D �

f ; vh
� 8 vh 2 Vh: (5.31)

The goal of the numerical analysis consists in determining the weighting function
ı optimally. This goal is generally not achieved completely, only asymptotically
optimal choices for weighting functions are known, e.g. see Remark 5.42. ut

Example 5.22 (Oseen Equations) There are two equations in the Oseen equations
and these equations should be treated separately. Given a triangulation T h with mesh
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cells fKg. Then, one has for the momentum equation

Astr;m.u; p/ D �	�u C .b � r/u C cu C rp;

Ah
str;m

�
uh; ph

� D �	�uh C .b � r/uh C cuh C rph if x 2 VK;8 K 2 T h:

Thus, Ah
str;m is not defined on the faces of the mesh cells. However, the union of the

faces is a set of Lebesgue measure zero and since Ah
str;m

�
uh; ph

� 2 L2.˝/, it is not
necessary to define this function on this set. For the continuity equation, one has

Astr;c.u/ D �r � u;
Ah

str;c

�
uh
� D �r � uh if x 2 VK;8 K 2 T h:

The corresponding residuals are denoted by rh
m

�
uh; ph

�
and rh

c

�
uh
�
, respectively.

The general framework for minimizing the residual leads to the following terms
in (5.31), besides the terms coming from the Galerkin discretization,

X
K2T h

h �
ıcr

h
c

�
uh
�
;Ah

str;c.v
h/
�

K
C �

ımrh
m

�
uh; ph

�
;Ah

str;m.v
h; qh/

�
K

i

D
X

K2T h

h �
ıcr � uh;r � vh

�
K

(5.32)

C
	
ım
��	�uh C .b � r/uh C cuh C rph � f

�
;

�	�vh C .b � r/vh C cvh C rqh



K

i
:

The decomposition of the integrals is necessary since the terms are generally not
well defined on the boundaries of the mesh cells. The first term on the right-hand
side of (5.32) is the grad-div term, which was already studied in Sect. 4.6.1.

The terms in (5.32) are the prototype of residual-based stabilization terms for
the Oseen equations. The actually used residual-based stabilizations contain some
modifications. ut

5.3.2 The SUPG/PSPG/grad-div Stabilization

Remark 5.23 (Plan of this Section) The numerical analysis of stabilized methods
becomes technically much more involved than the numerical analysis of the
Galerkin discretization. The contents of this section and the main steps of the
numerical analysis are as follows:

• introduction of the stabilized method, Remark 5.24 and some general discussions
of this method,
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• consistency and Galerkin orthogonality of the method, Lemma 5.31,
• introduction of a norm for the numerical analysis, which is almost without

pressure contribution, in (5.40),
• existence and uniqueness of a solution for this method, Theorem 5.34, and

stability of the solution, Lemma 5.35,
• introduction of a norm with some pressure contribution in (5.48),
• proof of a discrete inf-sup condition for the bilinear form of the method where

the constant does not depend on the data of the problem, Lemma 5.38,
• finite element error estimate, Theorem 5.41, which is based on the discrete inf-

sup condition, and its discussion.

In summary, it will turn out that the numerical analysis can be performed for the
velocity in a norm that is stronger than the norm used in the Galerkin method.
However, for the stabilized method, it is difficult to incorporate the pressure
appropriately in the analysis. A new idea in the finite element error analysis,
compared with the Stokes equations, consists in using a discrete inf-sup condition
for the complete bilinear form as a starting point. ut
Remark 5.24 (SUPG/PSPG/grad-div (spg) Method) The SUPG/PSPG/grad-div
method for solving the Oseen problem (5.2) is obtained by adding both a control
of the strong residual of the momentum equation and the strong residual of the con-
tinuity equation on each mesh cell to the Galerkin finite element formulation (5.13).
This classical residual-based stabilization reads as follows: Given f 2 L2.˝/ and a
triangulation T h of ˝ , find

�
uh; ph

� 2 Vh � Qh such that

Aspg
��
uh; ph

�
;
�
vh; qh

�� D Lspg
��
vh; qh

�� 8 �
vh; qh

� 2 Vh � Qh; (5.33)

where the bilinear form Aspg W �V � QQ� � �V � QQ� ! R is given by

Aspg ..u; p/ ; .v; q//

D 	 .ru;rv/C ..b � r/ u C cu; v/� .r � v; p/C .r � u; q/
C
X

K2T h

�K .r � u;r � v/K C
X
E2Eh

�E .Œjpj�E ; Œjqj�E/E (5.34)

C
X

K2T h

��	�u C .b � r/u C cu C rp; ıvK .b � r/ vC ı
p
Krq

�
K

and the linear form Lspg W �V � QQ� ! R by

Lspg ..v; q// D . f ; v/C
X

K2T h

�
f ; ıvK .b � r/ vC ı

p
Krq

�
K
: (5.35)

The correct asymptotic choice of the stabilization parameters �K � 0 and �E,
ıvK ; ı

p
K > 0 in (5.34) and (5.35) will be determined by the finite element error

analysis. The space QQ is defined in (4.122).
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Individual equations for the velocity and the pressure test functions are obtained
for the test functions

�
vh; 0

�
and

�
0;�qh

�
: Find

�
uh; ph

� 2 Vh � Qh such that

	
�ruh;rvh

�C �
.b � r/uh C cuh; vh

� � �r � vh; ph
�

C
X

K2T h

�K
�r � uh;r � vh

�
K

C
X

K2T h

��	�uh C .b � r/uh C cuh C rph; ıvK .b � r/ vh
�

K

D �
f ; vh

�C
X

K2T h

�
f ; ıvK .b � r/ vh

�
K 8 vh 2 Vh;

and

� �r � uh; qh
� �

X
E2Eh

�E
��ˇ̌

ph
ˇ̌�

E
;
�ˇ̌

qh
ˇ̌�

E

�
E

�
X

K2T h

��	�uh C .b � r/uh C cuh C rph; ı
p
Krqh

�
K

D �
X

K2T h

�
f ; ıp

Krqh
�

K
8 qh 2 Qh: (5.36)

The second equation shows that for ıp
K > 0 the finite element solution is generally

not discretely divergence-free. But on the other hand, the grad-div term gives a
control on the L2.˝/ norm of the divergence.

Considering Dirichlet boundary conditions, as it is done in this section, an
additive constant of the finite element pressure has to be fixed in (5.33). For this
reason, Qh � L20.˝/ is still a correct condition for the finite element pressure space.

ut
Remark 5.25 (Comparison with the Prototype Stabilization (5.32)) In contrast to
the prototype stabilization (5.32), the following modifications are contained in the
SUPG/PSPG/grad-div (spg) method:

• The term 	�vh is missing. A motivation for this modification is that the term
is of minor importance if 	 is small, which is the interesting case for stabilized
methods.

• Likewise, the term cvh does not appear. This term does not improve important
properties of the discretization, like stability or the order of convergence.

• The term with the jumps of the finite element pressure appears. This term will be
necessary for defining an appropriate norm in the case of discontinuous pressure
approximations, see Lemma 5.33. If Qh � C.˝/, then this term vanishes anyway.

• The velocity and pressure test functions in the stabilization term for the momen-
tum balance may possess different weights. However, in practice these weights
are chosen to be the same, see Remark 5.27.

ut
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Remark 5.26 (Role of the Different Stabilization Terms) The different stabilization
terms have different functions:

• The stabilization term with the test function .b � r/ v is called Streamline-
Upwind Petrov–Galerkin (SUPG) term. Sometimes, it is referred also as stream-
line diffusion (SD) term. This term stabilizes dominating convection.

• The pressure stabilization Petrov–Galerkin (PSPG) term is the stabilization term
with the test function rq and for discontinuous discrete pressures the term with
the pressure jumps across the faces. With these terms, a violation of the discrete
inf-sup conditions (3.51) is stabilized, compare Sect. 4.5.1.

• Finally, the grad-div term is the stabilization term which involves the residual
of the continuity equation. With this term, one gets an additional control on the
violation of the conservation of mass, see Sect. 4.6.1.

ut
Remark 5.27 (On the Stabilization Parameters) In the following, it will be assumed
that ıK D ıvK D ı

p
K for all K 2 T h and it is set

ı D max
K2T h

ıK ; � D max
K2T h

�K ; � D max
E2Eh

�E: (5.37)

ut
Remark 5.28 (Stabilization Parameters with Dimensions) Considering the bilinear
form (5.34) with dimensions, i.e., u; b are velocities with Œm=s�, p a pressure divided
by density with Œm2=s2� and so on, one gets the following units for the stabilization
parameters:

• �K : Œm2=s� – �K is a viscosity scale,
• �E : Œs=m� – ��1

E is a velocity scale,
• ıK : Œs� – ıK is a time scale.

ut
Remark 5.29 (Historical Remarks to the SUPG Method) The SUPG method was
introduced in Hughes and Brooks (1979), Brooks and Hughes (1982) for stabilizing
convection-dominated convection-diffusion equations. Stabilizations of the Oseen
equations and the stationary Navier–Stokes equations which contain the SUPG term
were analyzed independently in Hansbo and Szepessy (1990), Lube and Tobiska
(1990), Tobiska and Lube (1991), Franca and Frey (1992). A finite element error
analysis of the SUPG/PSPG/grad-div method was given in Tobiska and Verfürth
(1996) and another presentation can be found in Roos et al. (2008, Chap. IV.3.1).

ut
Remark 5.30 (Inf-Sup Stable and Not Inf-Sup Stable Pairs of Finite Element
Spaces) The SUPG/PSPG/grad-div method contains in particular the PSPG
term. Hence, (5.33) is not a saddle point problem, compare Remark 4.92, and
consequently, the inf-sup stability of the finite element spaces for velocity and
pressure does not play a critical role if the SUPG/PSPG/grad-div method is used.



5.3 Residual-Based Stabilizations 265

However, the finite element error analysis will reveal that the asymptotically optimal
choice of the stabilization parameters is affected by the concrete choice of the
pair of finite element spaces. For instance, the optimal choice of the stabilization
parameters will be fundamentally different, e.g., for inf-sup stable pairs of finite
element spaces and for equal order finite element spaces for velocity and pressure.

ut
Lemma 5.31 (Consistency and Galerkin Orthogonality) Let .u; p/ 2 .V \
H2.˝// � .Q \ H1.˝// be the solution of (5.2) and let b; c 2 L1.˝/, f 2 L2.˝/.
Consider conforming finite element spaces Vh and Qh, then the SUPG/PSPG/grad-
div method (5.33) is consistent, i.e.,

Aspg
�
.u; p/ ;

�
vh; qh

�� D Lspg
��
vh; qh

��
; 8 �vh; qh

� 2 Vh � Qh; (5.38)

and the Galerkin orthogonality (projection property)

Aspg
��
u � uh; p � ph

�
;
�
vh; qh

�� D 0; 8 �
vh; qh

� 2 Vh � Qh (5.39)

holds.

Proof With the assumed regularity of the solution of (5.2), the local residuals in Aspg

and Lspg belong to L2.K/ for all K 2 T h. The pressure does not possess jumps almost
everywhere across the faces of the mesh cells. From the first property, it follows that
the local residuals vanish for the solution of (5.2). Hence, all stabilization terms
vanish if a sufficiently smooth solution of (5.2) is inserted in (5.33). The remaining
terms are identical to Eq. (5.2).

The Galerkin orthogonality follows by subtracting (5.33) from (5.38). �

Remark 5.32 (Norm for the First Part of the Analysis) Stabilized methods are
analyzed generally in a norm which is connected to the stabilization, compare
Sect. 4.5.1. This norm is in general stronger than the norm which is used in the
analysis of the Galerkin finite element method. The norm used in the finite element
error analysis for stabilized methods reveals which norms of the error are controlled
by the stabilization.

For the SUPG/PSPG/grad-div method (5.33), the following norm will be used in
the first part of the analysis

k.v; q/kspg D
 
	 krvk2L2.˝/ C ��c1=2v

��2
L2.˝/

C
X

K2T h

�K kr � vk2L2.K/ (5.40)

C
X
E2Eh

�E kŒjqj�Ek2L2.E/ C
X

K2T h

ıK k.b � r/vC rqk2L2.K/
!1=2

:

This norm is mesh-dependent. For the Galerkin finite element discretization, only
the first two terms of k�kspg are involved in the error bounds, see Theorem 5.14. The
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error estimation in the norm k.�; �/kspg will give additional control on the error of the
divergence, the term with the streamline derivative of the solution and the gradient
of the pressure, and for discontinuous pressure approximations on the jumps of the
discrete pressure. The amount of control depends on the parameters�K , ıK , and �E,
which have to be chosen such that

• the unique solvability of the finite element problem can be ensured and
• the asymptotic order of convergence of the error bounds becomes as high as

possible.
ut

Lemma 5.33 (k.�; �/kspg Defines a Norm in Vh � Qh) Let ıK > 0 for all K 2 T h,
in the case Qh 6� H1.˝/ let �E > 0 for all E 2 Eh, and let Vh;Qh be conforming
finite element spaces. Then, k.�; �/kspg defines a norm in Vh � Qh.

Proof The proof can be performed in the same way as the proof of Lemma 4.94. �

Theorem 5.34 (Existence and Uniqueness of a Solution of (5.33)) Let b; c 2
L1.˝/, let Vh and Qh be conforming finite element spaces, and let the stabilization
parameters be chosen such that

0 < ıK � min

(
h2K

3	C2
inv

;
1

3 kckL1.K/

)
; 0 � �K � � < 1; (5.41)

and

0 < �E � � < 1

if Qh 6� H1.˝/. Then, the finite element problem (5.33) possesses a unique solution.

Proof It will be shown that Aspg is coercive on Vh�Qh, that it is bounded on Vh�Qh,
and that Lspg is bounded as well. Then, the statement of the theorem follows from
the Theorem of Lax–Milgram, Theorem B.4.

First, coercivity is shown. It is

Aspg
��
vh; qh

�
;
�
vh; qh

��

D ���vh; qh
���2

spg C
X

K2T h

ıK
��	�vh C cvh; .b � r/ vh C rqh

�
K ; (5.42)

where (5.4) was used. Now, the last terms on the right-hand side are estimated
from above. One obtains with the Cauchy–Schwarz inequality (A.10), Young’s
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inequality (A.5), and (5.41)

ˇ̌
ˇ̌
ˇ
X

K2T h

ıK
�
cvh; .b � r/ vh C rqh

�
K

ˇ̌
ˇ̌
ˇ

� 3

2

X
K2T h

ıK kckL1.K/

��c1=2vh
��2

L2.K/
C 1

6

X
K2T h

ıK

��.b � r/ vh C rqh
��2

L2.K/

� 1

2

��c1=2vh
��2

L2.˝/
C 1

6

X
K2T h

ıK

��.b � r/ vh C rqh
��2

L2.K/
: (5.43)

Using in addition the inverse inequality (C.35) yields

ˇ̌
ˇ̌
ˇ
X

K2T h

ıK
��	�vh; .b � r/ vh C rqh

�
K

ˇ̌
ˇ̌
ˇ

� 3

2

X
K2T h

ıK
C2

inv

h2K
	2
��rvh

��2
L2.K/

C 1

6

X
K2T h

ıK

��.b � r/ vh C rqh
��2

L2.K/

� 	

2

��rvh
��2

L2.˝/
C 1

6

X
K2T h

ıK

��.b � r/ vh C rqh
��2

L2.K/
: (5.44)

Subtracting these upper bounds in (5.42) gives

Aspg
��
vh; qh

�
;
�
vh; qh

�� � 1

2

���vh; qh
���2

spg ; 8 �
vh; qh

� 2 Vh � Qh; (5.45)

which is the coercivity of Aspg on Vh � Qh since
���vh; qh

���
spg defines a norm on

Vh � Qh.
In the assumption of the Theorem of Lax–Milgram, the boundedness of the

bilinear form and of the right-hand side is required. The bilinear form and the right-
hand side are bounded if and only if they are continuous. Since all terms in Aspg and
the right-hand side are defined with integrals, the continuity follows directly from
the fact that all integrals in (5.34) and (5.35) are continuous. It is of course also
possible to prove the continuity with direct estimates, e.g., using the tools that were
employed for deriving estimate (4.128) for the PSPG method. �

Lemma 5.35 (Stability of the Finite Element Solution) Let the assumptions of
Theorem 5.34 be satisfied, then the solution of (5.33) fulfills

���uh; ph
���2

spg � 12

5
min

( k fk2H�1.˝/

	
;

k fk2L2.˝/
c0

)
C 4

X
K2T h

ıK k fk2L2.K/ : (5.46)
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If the finite element spaces fulfill the discrete inf-sup condition (3.51), then there
holds the stability estimate

��ph
��

L2.˝/ (5.47)

� C

ˇh
is

"
k fkH�1.˝/ C ı kbkL1.˝/ k fkL2.˝/ C

 
	1=2 C kck1=2L1.˝/ C �1=2

C kbkL1.˝/ min

(
1

	1=2
;
1

c1=20

)
C ı1=2 kbkL1.˝/

!���uh; ph
���

spg

#
;

where the constant C does not depend on the data of the problem.

Proof As usual, the solution of the equations will be used as test function. Inserting�
uh; ph

�
in (5.33) and using (5.4) gives

���uh; ph
���2

spg D �
f ;uh

�C
X

K2T h

ıK
�
f ; .b � r/ uh C rph

�
K

�
X

K2T h

ıK
��	�uh C cuh; .b � r/ uh C rph

�
K
:

The terms on the right-hand side are estimated by using the Cauchy–Schwarz
inequality (A.10) and Young’s inequality (A.5), see the proof of Lemma 5.8 for
the first term and (5.43) and (5.44) for the other terms,

ˇ̌�
f ;uh

�ˇ̌ � 3

5	
k fk2H�1.˝/ C 5	

12

��ruh
��2

L2.˝/
;

ˇ̌�
f ;uh

�ˇ̌ � 3

5c0
k fk2L2.˝/ C 5

12

��c1=2uh
��2

L2.˝/
;

ˇ̌
ˇ̌
ˇ
X

K2T h

ıK
�
cuh; .b � r/ uh C rph

�
K

ˇ̌
ˇ̌
ˇ

� 1

3

��c1=2uh
��2

L2.˝/ C 1

4

X
K2T h

ıK

��.b � r/ uh C rph
��2

L2.K/ ;

ˇ̌
ˇ̌
ˇ
X

K2T h

ıK
��	�uh; .b � r/ uh C rph

�
K

ˇ̌
ˇ̌
ˇ

� 	

3

��ruh
��2

L2.˝/
C 1

4

X
K2T h

ıK

��.b � r/uh C rph
��2

L2.K/
:
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For the remaining term, one obtains

ˇ̌
ˇ̌
ˇ
X

K2T h

ıK
�
f ; .b � r/ uh C rph

�
K

ˇ̌
ˇ̌
ˇ

�
X

K2T h

ıK k fk2L2.K/ C 1

4

X
K2T h

ıK

��.b � r/ uh C rph
��2

L2.K/
:

Absorbing all terms in the left-hand side gives the first statement of the lemma.
For inf-sup stable discretizations, the stability estimate for the finite element

pressure starts with the discrete inf-sup condition (3.51), e.g., see the proof of
Lemma 5.8. Then, �.r � vh; ph/ is substituted by (5.33). In the next step, it is noted
that the terms with qh cancel, which follows from choosing in (5.33) as test functions
.0; qh/. For the terms coming from the stabilization, the Cauchy–Schwarz inequality
for sums (A.2) is applied and the bounds for the stabilization parameters (5.41) are
used to obtain, e.g.,

X
K2T h

ıK
Cinv

hK
	
��ruh

��
L2.K/ kbkL1.K/

��rvh
��

L2.K/

� Cı1=2 kbkL1.˝/ 	
1=2
��ruh

��
L2.˝/

��rvh
��

L2.˝/
:

In this way, and by using the Poincaré–Friedrichs inequality (A.12), one gets a
factor

��rvh
��

L2.˝/ in all terms of the numerator such that these terms cancel with
the denominator. �

Remark 5.36 (On the Stability Estimate)

• The estimate (5.46) is in a stronger norm than for the Galerkin discretization,
see (5.14).

• An estimate of
��ph

��
L2.˝/

for inf-sup stable pairs of finite element spaces in terms
of the data of the problem is obtained by inserting (5.46) in the right-hand side
of (5.47).

ut
Remark 5.37 (On the Way of Proving an Error Estimate in a Norm Which Contains
the L2.˝/ Norm of the Pressure) The approach that was used in Tobiska and
Verfürth (1996) to prove an error estimate for the SUPG/PSPG/grad-div method
differs from the approach for the Galerkin discretization. This way utilizes a discrete
inf-sup condition for the bilinear form Aspg.

So far, the norm k�kspg was used in the analysis. This norm does not control the
L2.˝/ norm of the pressure. If Qh � H1.˝/, only the gradient of the pressure is
contained in a mixed term with the streamline derivative of the velocity. However,
from the analysis of the continuous problem, it is known that the natural norm for
the pressure is the L2.˝/ norm. The finite element error analysis which will be



270 5 The Oseen Equations

performed now uses a norm which, in addition to k�kspg, possesses a contribution of
the pressure

k.v; q/kspg;p D
	
k.v; q/k2spg C !�2

pres kqk2L2.˝/

1=2

(5.48)

with

!pres D max
n
1; 	�1=2; kck1=2L1.˝/

o
: (5.49)

However, for the interesting cases of small 	 and large c (small time steps), the
contribution of the pressure becomes small:

!�2
pres D min

n
1; 	; kck�1

L1.˝/

o
:

ut
Lemma 5.38 (Inf-Sup Condition for Aspg) Let the assumptions of Theorem 5.34
be satisfied, let in addition exist a positive constants ı0 such that for all triangula-
tions in the family fT hgh>0 it holds

0 < ı0h
2
K � ıK 8 K 2 T h: (5.50)

If Qh 6� H1.˝/, then let there be a positive constant �0 such that for all
triangulations in the family fT hgh>0 one has

0 < �0hE � �E 8 E 2 Eh: (5.51)

Then, there is a constant ˇh
spg > 0, such that

inf
.vh;qh/2Vh�Qh

k.vh;qh/kspg;pD1

sup
.wh;rh/2Vh�Qh

k.wh;rh/kspg;pD1

Aspg
��
vh; qh

�
;
�
wh; rh

�� � ˇh
spg: (5.52)

The inf-sup constant is independent of h and 	, see also Remark 5.39.

Proof The plan of the proof is as follows:

i) For all
�
vh; qh

� 2 Vh � Qh a function wh 2 Vh will be constructed such that one
obtains an estimate of the form

Aspg
��
vh; qh

�
;
�
wh; 0

�� � negative terms C C
��qh

��2
L2.˝/

with C > 0.
ii) A linear combination of the result of the first step and the coercivity condi-

tion (5.45) is constructed such that the negative terms from the first step are
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absorbed. The result is of the form

Aspg
��
vh; qh

�
;
�
.1 � �/vh C �wh; .1 � �/qh

�� � C
���vh; qh

���2
spg;p

with C > 0 and � 2 .0; 1/.
iii) It is proved that

���.1 � �/vh C �wh; .1 � �/qh
���

spg;p � 2
��vh; qh

��
spg;p ;

which is inserted in the right-hand side of the result from the second step. Then,
the discrete inf-sup condition (5.52) follows with straightforward arguments.

Step i). Consider an arbitrary pair
�
vh; qh

� 2 Vh � Qh and set for abbreviation

X WD
 X

K2T h

ıK

��.b � r/ vh C rqh
��2

L2.K/

!1=2
;

Y WD
 X

K2T h

�K

��r � vh
��2

L2.K/

!1=2
;

Z WD
 X

E2Eh

�E

���ˇ̌qh
ˇ̌�

E

��2
L2.E/

!1=2
:

From (5.45), it is known that

Aspg
��
vh; qh

�
;
�
vh; qh

�� � 1

2

���vh; qh
���2

spg ; 8 �
vh; qh

� 2 Vh � Qh: (5.53)

The spaces V and Q satisfy the inf-sup condition, see Theorem 3.46. From
Corollary 3.44, it follows that for qh � Q there is a w 2 V?

div � V with r � w D
�qh and krwkL2.˝/ � C

��qh
��

L2.˝/
. Let wh D Ihw be an interpolation of w

that fulfills the standard interpolation properties. In particular, the following
interpolation properties are assumed

��w � Ihw
��

Hm.K/
� Chl�m

K kwkHl.K/ 8 w 2 Hl.K/; (5.54)

��w � Ihw
��

L2.E/
� Chl�1=2

E kwkHl.K1[K2/ 8 w 2 Hl.K1 [ K2/; (5.55)

where E is the joint face of K1 and K2, H0.K/ D L2.K/, 0 � m � 2,
maxf1;mg � l. In Roos et al. (2008, Chap. IV.3.1), the interpolation operator
proposed in Scott and Zhang (1990) is used. It follows with l D m D 1 in (5.54)
that

��rwh
��

L2.˝/
� ��rw � rwh

��
L2.˝/

C krwkL2.˝/ � C krwkL2.˝/ C krwkL2.˝/

� C1
��qh

��
L2.˝/

: (5.56)
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Adding � �r � w; qh
�C �r � w; qh

�
and using integration by parts yields

Aspg
��
vh; qh

�
;
�
wh; 0

��
D 	

�rvh;rwh
�C �

.b � r/vh;wh
�C �

cvh;wh
� � �r � w; qh

�

�
X

K2T h

�
w � wh;rqh

�
K

C
X
E2Eh

��
w � wh

� � nE;
�ˇ̌

qh
ˇ̌�

E

�
E

C
X

K2T h

�K
�r � vh;r � wh

�
K

C
X

K2T h

ıK
��	�vh C .b � r/ vh C cvh C rqh; .b � r/wh

�
K
:

Now, applying the Cauchy–Schwarz inequality (A.10), adding .b � r/vh �
.b � r/vh, using the triangle inequality, the Poincaré–Friedrichs inequal-
ity (A.12), (3.41), (5.56), and r � w D �qh leads to

Aspg
��
vh; qh

�
;
�
wh; 0

��

� �C1
	
	
��rvh

��
L2.˝/C kbkL1.˝/

��rvh
��

L2.˝/C kck1=2L1.˝/

��c1=2vh
��

L2.˝/


��qh
��

L2.˝/

�
X

K2T h

��w � wh
��

L2.K/

	��.b � r/vh C rqh
��

L2.K/ C ��.b � r/vh
��

L2.K/




�
X

E2Eh

��w � wh
��

L2.E/

���̌̌ qh
ˇ̌�

E

��
L2.E/

�
X

K2T h

�K

��r � vh
��

L2.K/

��rwh
��

L2.K/

�
X

K2T h

ıK

"
	
���vh

��
L2.K/ C ��c1=2

��
L1.K/

��c1=2vh
��

L2.K/

C ��.b � r/ vh C rqh
��

L2.K/

#
kbkL1.K/

��rwh
��

L2.K/ C ��qh
��2

L2.˝/ :

The individual terms are estimated separately, always using the Cauchy–
Schwarz inequality, with the goal to get the factor

��qh
��

L2.˝/
. One obtains

with (5.54), (5.50), the Poincaré–Friedrichs inequality, and (5.56)

X
K2T h

��w � wh
��

L2.K/

	��.b � r/vh C rqh
��

L2.K/ C ��.b � r/vh
��

L2.K/




� C
X

K2T h

hK kwkH1.K/

	��.b � r/vh C rqh
��

L2.K/
C ��.b � r/vh

��
L2.K/
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� CX

 X
K2T h

h2Kı
�1
K kwk2H1.K/

!1=2

CC kbkL1.˝/

 X
K2T h

h2K
��rvh

��2
L2.K/

!1=2  X
K2T h

kwk2H1.K/

!1=2

� C
	
ı

�1=2
0 X C h kbkL1.˝/

��rvh
��

L2.˝/



krwkL2.˝/

� CC1
	
ı

�1=2
0 X C h kbkL1.˝/

��rvh
��

L2.˝/


 ��qh
��

L2.˝/
:

For the next term, one gets with (5.54), (5.51), the Poincaré–Friedrichs
inequality, and (5.56)

X
E2Eh

��w � wh
��

L2.E/

���ˇ̌qh
ˇ̌�

E

��
L2.E/

� C
X
E2Eh

kwkH1.K1[K2/

���ˇ̌qh
ˇ̌�

E

��
L2.E/

� CZ

 X
E2Eh

��1
E hE kwk2H1.K1[K2/

!1=2

� CC1�
�1=2
0 Z

��qh
��

L2.˝/
:

The estimate of the next term uses again (5.56), leading to

X
K2T h

�K

��r � vh
��

L2.K/

��rwh
��

L2.K/
� C1�

1=2Y
��qh

��
L2.˝/

:

For the SUPG/PSPG term, one obtains with the inverse estimate (C.35), (5.41),
and (5.56)

X
K2T h

ıK	
���vh

��
L2.K/ kbkL1.K/

��rwh
��

L2.K/

�
X

K2T h

CinvıKh�1
K 	

��rvh
��

L2.K/ kbkL1.K/

��rwh
��

L2.K/

� CC1h kbkL1.˝/

��rvh
��

L2.˝/

��qh
��

L2.˝/
:

Similarly, one gets

X
K2T h

ıK kck1=2L1.K/

��c1=2vh
��

L2.K/ kbkL1.K/

��rwh
��

L2.K/

� C1ı kck1=2L1.˝/ kbkL1.˝/

��c1=2vh
��

L2.˝/

��qh
��

L2.˝/



274 5 The Oseen Equations

and

X
K2T h

ıK

��.b � r/vh C rqh
��

L2.K/ kbkL1.K/

��rwh
��

L2.K/

� C1ı
1=2 kbkL1.˝/ X

��qh
��

L2.˝/
:

Collecting terms and applying Young’s inequality (A.5) term by term leads to

Aspg
��
vh; qh

�
;
�
wh; 0

��

� �
"	

C1
	

	1=2
C C1

kbkL1.˝/

	1=2
C CC1h

kbkL1.˝/

	1=2



	1=2

��rvh
��

L2.˝/

C
	

C1 kck1=2L1.˝/ C C1ı kck1=2L1.˝/ kbkL1.˝/


��c1=2vh
��

L2.˝/

CC1�
1=2Y C CC1�

�1=2
0 Z C

	
CC1ı

�1=2
0 C C1ı

1=2 kbkL1.˝/



X

#��qh
��

L2.˝/

C ��qh
��2

L2.˝/

� �!presbC
"
	1=2 krvkL2.˝/ C ��c1=2vh

��
L2.˝/ C Y C Z C X

#��qh
��

L2.˝/ C ��qh
��2

L2.˝/

� �2!2pres
bC2
���vh; qh

���2
spg C 3

8

��qh
��2

L2.˝/ ; (5.57)

where !pres is defined in (5.49) and

bC D max
n
C1	CC1 kbkL1.˝/ CCC1h kbkL1.˝/ ; (5.58)

C1CC1ı kbkL1.˝/ ;C1�
1=2;CC1�

�1=2
0 ;

	
CC1ı

�1=2
0 CC1ı

1=2 kbkL1.˝/


o
:

Step ii). Let � > 0, then adding .1 � �/ times (5.53) and � times (5.57) gives

Aspg
��
vh; qh

�
;
�
.1 � �/vh C �wh; .1 � �/qh

��

�
�
1

2
� �

2
� 2�

	
!presbC


2����vh; qh
���2

spg C 3�

8

��qh
��2

L2.˝/
:

The term in the parentheses should be positive. Requiring that

1

2
� �

2
� 2�

	
!presbC


2 � 3�

8
!2pres (5.59)
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leads to

1

2
�
�
3

8
!2pres C 1

2
C 2

	
!presbC


2�
� �

�
3

8
C 1

2
C 2bC2

�
!2pres�

because !pres � 1. The following choice satisfies the requirement (5.59)

0 < � D 4

7C 16bC2 !
�2
pres < 1: (5.60)

For the term in parentheses, one gets with this choice and !�2
pres � 1

1

2
� �

2
� 2�

	
!presbC


2 D 1

2
� 2

7C 16bC2
	
!�2

pres C 4bC2



� 1

2
� 2C 8bC2

7C 16bC2 D 1

2

 
1 � 4C 16bC2

7C 16bC2
!
> 0:

In this way, one obtains the estimate

Aspg
��
vh; qh

�
;
�
.1 � �/vh C �wh; .1 � �/qh

��

� 3

14C 32bC2
	���vh; qh

���2
spg C !�2

pres

��qh
��2

L2.˝/




D 3

14C 32bC2
���vh; qh

���2
spg;p : (5.61)

Step iii). One has by the triangle inequality, the definition of k.�; �/kspg;p, (3.41),
(5.56), (5.49), (5.58), (5.60), and once more the definition of k.�; �/kspg;p

���.1 � �/vhC�wh; .1 � �/qh
���

spg;p

� .1 � �/
��vh; qh

��
spg;p C�

 
	
��rwh

��2
L2.˝/ C	

��c1=2wh
��2

L2.˝/

C
X

K2T h

�K

��r � wh
��2

L2.K/
C
X

K2T h

ıK

��.b � r/wh
��2

L2.K/

!1=2

� ��vh; qh
��

spg;p C�
	

C2
1	CC2

1 kckL1.˝/ CC2
1�dCC2

1ı kbk2L1.˝/


1=2 ��qh
��

L2.˝/

� ��vh; qh
��

spg;p C2�max
n
1; 	�1=2; kck1=2L1.˝/

o

� max
˚
C1	;C1;C1�

1=2;C1ı
1=2 kbkL1.˝/

� ��qh
��

L2.˝/
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� ��vh; qh
��

spg;p C2�!presbC ��qh
��

L2.˝/

� ��vh; qh
��

spg;p C 8bC
7C16bC2

!�1
pres

��qh
��

L2.˝/

� .1C1/��vh; qh
��

spg;p D 2
��vh; qh

��
spg;p ;

where 8bC=.7C 16bC2/ � 1=
p
7 < 1 has been used in the last step.

Inserting this estimate in (5.61) gives for all
�
vh; qh

� 2 Vh � Qh

Aspg
��
vh; qh

�
;
�
.1 � �/vh C �wh; .1 � �/qh

��

� 3

28C 64bC2
���vh; qh

���
spg;p

���.1 � �/vh C �wh; .1 � �/qh
���

spg;p

or

Aspg

 �
vh; qh

�
k.vh; qh/kspg;p

;

�
.1 � �/vh C �wh; .1 � �/qh

�
k..1 � �/vh C �wh; .1 � �/qh/kspg;p

!

� 3

28C 64bC2
D ˇh

spg: (5.62)

The arguments of the bilinear form are normalized with respect to k�kspg;p. The
inequality stays valid if, for each

�
vh; qh

� 2 Vh � Qh, the supremum of normalized
functions with respect to the second argument of the bilinear form is considered

sup
.wh;rh/2Vh�Qh

k.wh;rh/kspg;pD1

Aspg

 �
vh; qh

�
k.vh; qh/kspg;p

;
�
wh; rh

�! � ˇh
spg:

Since this inequality holds still for all
�
vh; qh

� 2 Vh � Qh, it is valid also for the
infimum of normalized functions with respect to the first argument, such that (5.52)
is proved. �

Remark 5.39 (On ˇh
spg)

• From the assumptions on the scaling of the Oseen equations, see Remark 5.3,
it follows that the constant bC in (5.58) behaves like O .1/ with respect to the
coefficients of the Oseen problem. Therefore, one obtains from (5.62) also that
ˇh

spg D O .1/ with respect to the coefficients of the Oseen equations.
• An inf-sup condition of form (5.52) does not hold for the Galerkin discretization.

That means, one has to expect that ˇh
spg ! 0 if the stabilization terms vanish. The

vanishing of the SUPG/PSPG term is described by the size of ı0 from (5.50). It
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can be seen in (5.58) that bC D O
	
ı

�1=2
0



from what follows that ˇh

spg D O .ı0/
for ı0 ! 0.

• If Z ¤ 0, then one obtains with the same arguments that ˇh
spg D O .�0/ for

�0 ! 0.
ut

Corollary 5.40 (Existence and Uniqueness of a Solution of (5.33)) Let the
assumptions of Lemma 5.38 be satisfied, then problem (5.33) possesses a unique
solution.

Proof The statement of the corollary is a direct consequence of the inf-sup
condition (5.52) and Lemma B.15. �

Theorem 5.41 (Error Estimate) Let the assumptions of Lemma 5.38 be satisfied,
let .u; p/ be the solution of (5.2), let a quasi-uniform family of triangulations of the
domain be given with the finite element spaces

Pk or Qk 	 Vh � V; k � 1; Pl or Ql 	 Qh � Q; l � 0;

and let
�
uh; ph

� 2 Vh � Qh be the solution of (5.33). With the assumptions u 2
HkC1.˝/ and p 2 HlC1.˝/, the following error estimate holds

���u � uh; p � ph
���

spg;p

� C

"
hk

 
	1=2 C �

h C ı1=2h
� kck1=2L1.˝/ C ı1=2 kbk1=2L1.˝/ C ı1=2

Cı�1=2
0 C �

�1=2
0 C �1=2

!
kukHkC1.˝/

Chl

 
ı1=2 C h min

�
	�1=2; max

K2T h

n
�

�1=2
K

o
C h!�1

pres

C�1=2 �h C h1=2
�! kpkHlC1.˝/

#
(5.63)

with C independent of the coefficients of the problem. The terms ��1=2
0 and

�1=2
�
h C h1=2

�
are not present if Qh � H1.˝/.

Proof Let vh D Ihu be the Lagrangian interpolation of u in Vh and qh D Ph
L2

q be
the L2.˝/ projection of q onto Pl 	 Qh (or Ql 	 Qh).

The triangle inequality gives

���u � uh; p � ph
���

spg;p � ���u � vh; p � qh
���

spg;p C ���uh � vh; ph � qh
���

spg;p :

(5.64)
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First, the interpolation error will be considered. From the choice of qh, it follows
that the term with the pressure jumps vanishes for l � 1. Using the definition of
the norm, the interpolation estimates (C.14), estimate (3.41), the estimates for the
L2.˝/ projection (C.28) and (C.29), estimate (C.34) for l D 0, and (5.37) yields

���u � vh; p � qh
���

spg;p

D
 
	
��r �

u � vh
���2

L2.˝/
C ��c1=2

�
u � vh

���2
L2.˝/

C
X

K2T h

�K

��r � �u � vh
���2

L2.K/

C
X
E2Eh

�E

���ˇ̌p � qh
ˇ̌�

E

��2
L2.E/

C
X

K2T h

ıK

��.b � r/ �u � vh
�C r �

p � qh
���2

L2.K/

C!�2
pres

��p � qh
��2

L2.˝/

!1=2

� C

 
	h2k kuk2HkC1.˝/

C kckL1.˝/ h2kC2 kuk2HkC1.˝/
C �h2k kuk2HkC1.˝/

C�h2lC1 kpk2HlC1.˝/
C ı kbkL1.˝/ h2k kuk2HkC1.˝/

C ıh2l kpk2HlC1.˝/

C!�2
presh

2lC2 kpk2HlC1.˝/

!1=2

� C
�
	 C h2 kckL1.˝/ C �C ı kbkL1.˝/

�1=2
hk kukHkC1.˝/

CC
	
�h C ı C !�2

presh
2

1=2

hl kpkHlC1.˝/

� C
	
	1=2 C h kck1=2L1.˝/ C �1=2 C ı1=2 kbk1=2L1.˝/



hk kukHkC1.˝/

CC
	
�1=2h1=2 C ı1=2 C !�1

presh



hl kpkHlC1.˝/ : (5.65)

Next, the second term of (5.64) will be estimated. Scaling the inf-sup condi-
tion (5.52) and using the Galerkin orthogonality (5.39) leads to

���uh � vh; ph � qh
���

spg;p

� 1

ˇh
spg

sup
.wh;rh/2Vh�Qh

k.wh;rh/kspg;pD1

Aspg
��
uh � vh; ph � qh

�
;
�
wh; rh

��

D 1

ˇh
spg

sup
.wh;rh/2Vh�Qh

k.wh;rh/kspg;pD1

Aspg
��
u � vh; p � qh

�
;
�
wh; rh

��
: (5.66)
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With this step, one got rid of
�
uh; ph

�
in the estimate. Now, all terms on the right-

hand side of (5.66) are estimate individually. The goal is to bound the terms with�
wh; rh

�
with terms that are included in

���wh; rh
���

spg;p and then to estimate this norm
with 1.

With the Cauchy–Schwarz inequality (A.10),
���wh; rh

���
spg;p D 1, and the

interpolation estimate (C.14), one obtains

	
�r �

u � vh
�
;rwh

� � 	
��r �

u � vh
���

L2.˝/

��rwh
��

L2.˝/

� C	1=2hk kukHkC1.˝/

��.wh; rh/
��

spg;p

D C	1=2hk kukHkC1.˝/ (5.67)

and

�
c
�
u � vh

�
;wh

� � ��c1=2
�
u � vh

���
L2.˝/

��c1=2wh
��

L2.˝/

� C kck1=2L1.˝/ hkC1 kukHkC1.˝/ : (5.68)

The estimate of the next term starts with integration by parts. Then, r � b D 0

is used, the Cauchy–Schwarz inequalities for integrals (A.10) and for sums (A.2)
are applied,

���wh; rh
���

spg;p D 1 is utilized, the conditions (5.50) and (5.51)
on the stabilization parameters are used, the interpolation estimate (C.14), the
estimate (C.15), and

���wh; rh
���

spg;p D 1 are applied to get

�
b � r �u � vh

�
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C
 

C��1
0

X
E2Eh
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E h2kC1

E kuk2HkC1.K1[K2/

!1=2

� C
	
ı

�1=2
0 C �

�1=2
0



hk kukHkC1.˝/ ; (5.69)

where E D K1 \ K2. The next part of the right-hand side of (5.66) can
be estimated with the Cauchy–Schwarz inequality, (3.41), the norm property of�
wh; rh

�
, and the projection estimate (C.28)

�r � wh; p � qh
� � ��p � qh

��
L2.˝/

��r � wh
��

L2.˝/

� ��p � qh
��

L2.˝/

��rwh
��

L2.˝/

D 	�1=2 ��p � qh
��

L2.˝/
	1=2

��rwh
��

L2.˝/

� 	�1=2 ��p � qh
��

L2.˝/

� C	�1=2hlC1 kpkHlC1.˝/ :

For bounding this term, also a different part of
���wh; rh

���
spg;p can be utilized, which

gives
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� � ��p � qh

��
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��r � wh
��
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��
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X
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��
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K
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��

L2.˝/

 X
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o ��p � qh
��
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n
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o
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Altogether, one obtains

�r � wh; p � qh
� � C min

�
	�1=2; max

K2T h

n
�

�1=2
K

o
hlC1 kpkHlC1.˝/ : (5.70)

The term with the pressure jumps vanishes for l � 1 since
�ˇ̌

p � qh
ˇ̌�

E
D 0 for all

faces because of the choice of qh. For l D 0, one gets with (C.34)

X
E2Eh

�E
��ˇ̌

p � qh
ˇ̌�

E
;
�ˇ̌

rh
ˇ̌�

E

�
E

� C�1=2hlC1 kpkHlC1.˝/ : (5.71)
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Finally, the SUPG/PSPG terms have to be considered. One obtains with the
Cauchy–Schwarz inequality for integrals and for sums,

���wh; rh
���

spg;p D 1, the
condition (5.41) on the stabilization parameter, and the interpolation estimate (C.14)

X
K2T h
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���
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��2
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K2T h
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��� �u � vh

���2
L2.K/

!1=2
C ı1=2 kckL1.˝/
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� C	1=2hhk�1 kukHkC1.˝/ C Cı1=2 kckL1.˝/ hkC1 kukHkC1.˝/

� C
�
	1=2 C ı1=2 kckL1.˝/ h

�
hk kukHkC1.˝/ : (5.72)

In a similar way, one gets

X
K2T h

ıK
�
.b � r/ �u � vh

�C r �
p � qh

�
; .b � r/wh C rrh

�
K

�
2
4
 X

K2T h

ıK kbk2L1.K/

��r �u � vh
���2

L2.K/

!1=2

C
 X

K2T h

ıK

��r �
p � qh

���2
L2.K/

!1=23
5
 X

K2T h

ıK

��.b � r/wh C rrh
��2

L2.K/

!1=2

� Cı1=2 kbkL1.˝/ hk kukHkC1.˝/ C Cı1=2hl kpkHlC1.˝/ : (5.73)

Collecting the estimates (5.65) and (5.67)–(5.73) gives the error bound (5.63). �
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Remark 5.42 (Optimal Asymptotics for the Stabilization Parameters) Based on the
error estimate (5.63), one tries to determine the asymptotic form of the stabilization
parameters such that the error bound becomes asymptotically optimal. However,
one should be aware that changes of the stabilization parameters also change the
norm on the left-hand side of (5.63). Thus, small stabilization parameters provide
only a weak control on certain individual norms of k.u � uh; p � ph/kspg; p.

Let fT hg be a family of uniform triangulations.

• Consider first the case 	 < h. In this case, it is more precise to speak of order of
error reduction than of order of convergence. It will be assumed that � � 	 such
that

min
˚
	�1=2; ��1=2� D ��1=2:

ı Inf-sup stable pairs with k D lC1. The optimal order of error reduction which
can be achieved is k. Hence, the term in the first parentheses of the right-hand
side of (5.63) should be O.1/ and the term in the second parentheses O.h/.
Concentrating on the most important terms, one has to calibrate

ı1=2; �1=2;
ı1=2

h
;
1

�1=2
;
�1=2

h1=2
;

where the last three terms come from the second parentheses, which has to be
scaled by h�1 such that the order of error reduction becomes k. It can be seen
that one has to choose ı � h2, � � 1, and, if Qh 6� H1.˝/ then � � h.

ı Equal-order pairs with k D l � 1. In this case, the terms in both parentheses
on the right-hand side of (5.63) should scale the same way. The most important
terms apart of ı�1=2

0 and ��1=2
0 are

ı1=2; �1=2;
h

�1=2
; �1=2h1=2:

Thus, one gets � � h such that �1=2 � h1=2 and h=�1=2 � h1=2. Choosing
in addition ı � h and � � 1, all terms in the parentheses, apart of ı�1=2

0 and

�
�1=2
0 , are of order k C 1=2. In view of (5.50), one can think of ı0 � h�1 if

ı � h such that ı�1=2
0 � h1=2. Similarly, one has from (5.51) that �0 � h�1 if

� � 1 such that ��1=2
0 � h1=2. Altogether, one can expect an error reduction

of order k C 1=2.

The obtained parameter choices do not contradict the assumption � � 	.
• Consider now the case 	 � h. The first parentheses can be at best constant with

respect to h because of the term 	1=2, such that the optimal order of convergence
is k.
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ı Inf-sup stable pairs with k D l C 1. The situation is similar as in the case
	 < h, only for � there is more freedom. Since choosing � large leads to a
strong norm on the left-hand side of (5.63), it makes sense to choose the same
asymptotic scalings of the stabilization parameters like for 	 < h.

ı Equal-order pairs with k D l � 1. It is sufficient that both parentheses
are constant with respect to h. There is now some freedom for choosing the
parameters. Small parameters lead to a lower bound on the right-hand side of
(5.63) and large parameters to stronger norms on the left-hand side of (5.63).
To get a small error bound, within the assumptions of the numerical analysis,
like (5.50) and (5.51), one has to choose ı � h2 and � � h. Note that these
asymptotic choices correspond to the parameter choices (4.130) of the PSPG
method for the Stokes equations.

For the grad-div parameter � � h is still a correct choice, in particular if 	
is small, but for large 	 also other choices are possible, like � � 1. ut

Example 5.43 (Analytical Example Which Supports the Error Estimate (5.63)) The
same problem as in Example 5.18 is considered. Results for the inf-sup stable Q2=Q1

Taylor–Hood finite element and for the equal-order pair P1=P1 will be presented.
For both pairs it is Qh � H1.˝/ such that �E D 0 and the terms with �0 and � do
not appear on the right-hand side of (5.63). Note that the norm k�kspg changes if the
coefficients 	 and c of the problem are changed.

The Q2=Q1 Finite Element For the Q2=Q1 finite element, the optimal asymptotic
choice of stabilization parameters is ıK D O

�
h2K
�

and �K D O .1/. Numerical
studies in Matthies et al. (2009) investigated the sensitivity of the errors for wide
ranges of parameters for several examples. From these studies, it can be concluded
that �K D 0:2 is a good choice. The SUPG/PSPG parameter is not that important.
It only should be not too large. The results presented in Figs. 5.6, 5.7, and 5.8 were
obtained with ıK D 0:1h2K .

Fig. 5.6 Example 5.43. SUPG/PSPG/grad-div method with Q2=Q1, convergence of the errors��.u; p/� .uh; ph/
��

spg and
��p � ph

��
L2.˝/ for c D 0 and different values of 	



284 5 The Oseen Equations

Fig. 5.7 Example 5.43. SUPG/PSPG/grad-div method with Q2=Q1, convergence of the errors��.u; p/� .uh; ph/
��

spg and
��p � ph

��
L2.˝/ for c D 100 and different values of 	

Fig. 5.8 Example 5.43. SUPG/PSPG/grad-div method with Q2=Q1, convergence of the errors��.u; p/� .uh; ph/
��

spg and
��p � ph

��
L2.˝/ for 	 D 10�4 and different values of c

The norm on the left-hand side of the error estimate (5.63) can be split into
two parts, namely into

���u � uh; p � ph
���

spg and
��p � ph

��
L2.˝/

. Both parts will
be studied separately. Second order reduction of the error in the norm k�kspg was
predicted by the numerical analysis. This order can be clearly seen in Figs. 5.6, 5.7,
and 5.8 for different combinations of the coefficients of the Oseen equations. The
errors do not depend on the inverse of 	. In addition, one can see also a second
order error reduction for the pressure error in L2.˝/. The bound for this error is the
right-hand side of (5.63) scaled with 	�1=2. However, a dependency of the error on
	 can be observed only on coarse grids. In Fig. 5.8, larger errors on coarse grids for
large values of c can be noticed.

P1=P1 Finite Element Remark 5.42 shows that the optimal stabilization parameters
for the P1=P1 finite element are ıK D �K D O .hK/ on coarse grids, i.e., if 	 < hK ,
and ıK D O

�
h2K
�

else. For the grad-div parameter, the analysis does not lead to
a concrete asymptotic behavior. To prevent a sharp change of this parameter, the
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Fig. 5.9 Example 5.43. SUPG/PSPG/grad-div method with P1=P1, convergence of the errors��.u; p/� .uh; ph/
��

spg and
��p � ph

��
L2.˝/ for c D 0 and different values of 	

Fig. 5.10 Example 5.43. SUPG/PSPG/grad-div method with P1=P1, convergence of the errors��.u; p/� .uh; ph/
��

spg and
��p � ph

��
L2.˝/ for c D 100 and different values of 	

results presented in Figs. 5.9, 5.10, and 5.11 were computed with the same grad-
div parameter for all situations. The concrete choices of the stabilization parameters
were

ıK D
(
0:5hK if 	 < hK ;

0:5h2K else,
�K D 0:5hK: (5.74)

The predictions of the numerical analysis are an error reduction in k�kspg of order
1:5 on coarse grids, i.e., if 	 < hK , and a convergence of the error in k�kspg of order
1 on fine grids, where fine has to be understood with respect to 	. Both predictions
are supported by the results presented in Figs. 5.9, 5.10, and 5.11. The errors do not
depend on the inverse of the viscosity.

Additionally, the error of the pressure in L2.˝/ is presented in Figs. 5.9, 5.10,
and 5.11. Often, the order of error reduction is better than predicted from the theory.
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Fig. 5.11 Example 5.43. SUPG/PSPG/grad-div method with P1=P1, convergence of the errors��.u; p/� .uh; ph/
��

spg and
��p � ph

��
L2.˝/ for 	 D 10�4 and different values of c

Small values of the viscosity give in this example smaller pressure errors. The kink
in the curves for 	 D 10�2 comes from the piecewise definition (5.74) of ıK , which
changes from level 5 to level 6. ut
Remark 5.44 (Implementation) The SUPG term influences the velocity-velocity
coupling, the pressure (ansatz)—velocity (test) coupling, and the right-hand side
for the test function of the velocity. One gets the matrix entries

.A11/ij D aij D
X

K2T h

h �
	r�h

j ;r�h
i

�
K

C �
.b � r/�h

j C c�h
j ;�

h
i

�
K

C ��	��h
j C .b � r/�h

j C c�h
j ; ı

v
K .b � r/�h

i

�
K

i
;

i; j D 1; : : : ; 3Nv , and

.D/ij D dij D
X

K2T h

�
h�r � �h

i ;  
h
j

�
K

C �r h
j ; ı

v
K

�
b � r�h

i

��
K

i
;

i D 1; : : : ; 3Nv , j D 1; : : : ;Np. The matrix block of the velocity-velocity coupling
has still the diagonal form (5.26). The right-hand side becomes

. f /i D fi D
X

K2T h

��
f ;�h

i

�
K

C �
f ; ıvK .b � r/�h

i

�
K

�
; i D 1; : : : ; 3Nv:

Altogether, the coupled system has the form

�
A D
B 0

� 
u
p

!
D
 

f

0

!
;

such that the matrix D has to be stored in addition to A and B.
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For the SUPG/PSPG/grad-div method, one has to add all requirements of the
individual stabilization terms, see Remarks 4.101 and 4.129. The linear system of
equations for this method has the form

�
A D
B �C

� 
u
p

!
D
 

f
fp

!
; (5.75)

where the matrix block A is of structure

A D
0
@A11 A12 A13

AT
12 A22 A23

AT
13 AT

23 A33

1
A : (5.76)

Altogether, the memory requirements of the SUPG/PSPG/grad-div method are
considerably higher compared with the Galerkin method. ut
Remark 5.45 (Concluding Remarks on the SUPG/PSPG/grad-div Method)

• In Lube and Rapin (2006), the impact of the polynomial degree of the velocity
and pressure finite element spaces on the analytical results is studied. An inf-sup
condition similar to (5.52) is proved where the inf-sup constant is independent
of the viscosity, the mesh width, and the polynomial degree. Moreover, the
polynomial degree enters the definition of the asymptotic optimal stabilization
parameters.

• The SUPG/PSPG/grad-div method introduces an artificial nonsymmetric term.
• The SUPG/PSPG/grad-div method introduces a strong coupling of velocity

and pressure. There is no physical interpretation for the term
P

K2T h ıK��.b � r/uh C rph
��2

L2.K/.
• Since the residual contains the right-hand side f of the problem, all residual-based

stabilizations introduce a modification of the right-hand side. This modification
makes the application of these schemes difficult for time-dependent problems.

• The number of matrix blocks which has to be stored and assembled for the
SUPG/PSPG/grad-div method is quite large, see Remark 5.44.

ut

5.3.3 Other Residual-Based Stabilizations

Remark 5.46 (Neglecting the PSPG Term for Inf-Sup Stable Pairs of Finite Element
Spaces) If inf-sup stable pairs of finite element spaces are used, the PSPG term
is not necessary since it gives stability if the discrete inf-sup condition (3.51) is
not satisfied. The case of inf-sup stable pairs of finite element spaces and the
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SUPG/grad-div (sg) stabilization was investigated in Gelhard et al. (2005). It has
the form: Find

�
uh; ph

� 2 Vh � Qh such that

Asg
��
uh; ph

�
;
�
vh; qh

�� D Lsg
�
vh
� 8 �

vh; qh
� 2 Vh � Qh;

with the bilinear form Asg W �V � QQ� � �V � QQ� ! R defined by

Asg ..u; p/ ; .v; q//

D 	 .ru;rv/C ..b � r/ u C cu; v/� .r � v; p/C .r � u; q/
C
X

K2T h

�K .r � u;r � v/K

C
X

K2T h

��	�u C .b � r/ u C cu C rp; ıvK .b � r/ v�
K

and the linear form Lsg W V ! R by

Lsg .v/ D . f ; v/C
X

K2T h

�
f ; ıvK .b � r/v�

K
:

This scheme is called reduced stabilized scheme in Gelhard et al. (2005). In this
paper, error estimates are proved for families of quasi-uniform triangulations and
for discrete pressure spaces satisfying Qh � H1.˝/. The analysis from Gelhard
et al. (2005) was refined in Matthies et al. (2009) such that shape regular grids and
discontinuous discrete pressure spaces are covered. An important technical tool in
this analysis is the use of the quasi-local interpolation operator from Remark 3.62,
which preserves the discrete divergence. However, this operator requires that the
polynomial degree of the discrete velocity space is equal or higher than the
dimension of the domain ˝ . Hence, the most popular pairs of finite element
spaces in three dimensions, which use second order velocity, are not covered by
this analysis. The way of performing the error analysis of this method is similar
to the analysis presented in Sect. 5.3.2 for the SUPG/PSPG/grad-div method. The
asymptotic optimal choices of the stabilization parameters, derived from the error
analysis, are the same for both methods

ıK � h2K; �K � 1;

see Remark 5.42 for the SUPG/PSPG/grad-div method.
In numerical studies in Gelhard et al. (2005), it turned out that the full

SUPG/PSPG/grad-div stabilization and the SUPG/grad-div stabilization give almost
identical results for inf-sup stable pairs of finite element spaces. In Matthies et al.
(2009), extensive and careful numerical studies on the choice of the stabiliza-
tion parameters are presented. These studies illustrate in particular that different
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parameters of the same asymptotic type might lead to errors of different orders of
magnitude. These studies also come to the conclusion that the use of only the SUPG
stabilization might lead to instabilities and at least one of the other stabilizations,
PSPG or grad-div, should be added to the SUPG stabilization. ut
Remark 5.47 (Implementation of the SUPG/grad-div Stabilization) Compared with
the SUPG/PSPG/grad-div method, there is no block that couples test and ansatz
functions for the pressure such that the coupled system has the form

�
A D
B 0

� 
u
p

!
D
 

f

0

!
;

where the matrix block A is of structure (5.76). ut

5.4 Other Stabilized Finite Element Methods

Remark 5.48 (Motivation) Other stabilizations than residual-based ones try to
avoid the main drawbacks of the latter: the introduction of artificial nonsymmetric
terms and the strong non-physical coupling of velocity and pressure, see
Remark 5.45. In this section, alternative stabilization concepts will be presented
and discussed briefly.

A review of stabilization techniques for the Oseen equations can be found in
Braack et al. (2007). ut
Remark 5.49 (The Continuous Interior Penalty (CIP) Method) The CIP method
was already introduced in Douglas and Dupont (1976). Its basic idea consists in
increasing the stability of the Galerkin discretization by introducing a least squares
control (penalty) of gradient jumps across faces of the mesh cells. Almost three
decades later, this approach was applied, e.g., to convection-dominated convection-
diffusion equations in Burman and Hansbo (2004) and to the Oseen equations in
Burman et al. (2006).

For the Oseen equations, the CIP stabilization, as presented in Burman et al.
(2006), reads as follows: Find

�
uh; ph

� 2 Vh � Qh such that

�
	ruh;rvh

�C �
.b � r/ uh C cuh; vh

� � �r � vh; ph
�C �r � uh; qh

�

C
X

K2T h

ı0ı .ReK/ h2K

�
X

E2@K

Z
E

kb � nEkL1.E/

�ˇ̌ruhn@K

ˇ̌�
E

� �ˇ̌rvhn@K

ˇ̌�
E

ds
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C
X

K2T h

ı0ı .ReK/ kbkL1.K/ h2K
X

E2@K

Z
E

�ˇ̌r � uh
ˇ̌�

E

�ˇ̌r � vh
ˇ̌�

E
ds

C
X

K2T h

ı0ı .ReK/
h2K

kbkL1.K/

X
E2@K

Z
E

�ˇ̌rph
ˇ̌�

E � �ˇ̌rqh
ˇ̌�

E ds

D �
f ; vh

� 8 �
vh; qh

� 2 Vh � Qh; (5.77)

with

ReK D kbkL1.K/ hK

	
; ı .ReK/ D min f1;ReKg :

The first jump term in (5.77) acts as stabilization of dominating convection, the
second jump term gives some control on the violation of the divergence constraint,
and the last jump term stabilizes the violation of the discrete inf-sup condition.
The stabilization term in (5.77) is symmetric and the right-hand side of the discrete
problem is not affected by the stabilization.

The numerical analysis for the case Vh=Qh D Pk=Pk or Vh=Qh D Qk=Qk

was performed in Burman et al. (2006) for weakly imposed Dirichlet boundary
conditions. In this approach, the finite element spaces are defined with natural
boundary conditions and additional terms defined on the boundary are introduced
into the bilinear form which, e.g., penalize the violation of a Dirichlet boundary
condition. For large penalty factors, one gets a good approximation of these
boundary conditions. Error estimates were derived in a norm which contains
contributions from the stabilization terms.

In Braack et al. (2007), a modification of the CIP method is presented which is
formulated in terms of sums over the faces

�
	ruh;rvh

�C �
.b � r/ uh C cuh; vh

� � �r � vh; ph
�C �r � uh; qh

�

C
X
E2Eh

Z
E
ıuE
�ˇ̌ruhn@K

ˇ̌�
E

� �ˇ̌rvhn@K

ˇ̌�
E

ds

C
X
E2Eh

Z
E
ıdiv

E

�ˇ̌r � uh
ˇ̌�

E

�ˇ̌r � vh
ˇ̌�

E
ds

C
X
E2Eh

Z
E
ı

p
E

�ˇ̌rph � nE

ˇ̌�
E

� �ˇ̌rqh � nE

ˇ̌�
E

ds

D �
f ; vh

� 8 �
vh; qh

� 2 Vh � Qh; (5.78)

where the jumps of the gradient of the pressure are replaced by the jumps of
the normal derivatives of the pressure. In this paper, even concrete parameters
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depending on the polynomial degree k are proposed

ıuE D kb � nEkL1.E/

h2E
k˛
;

ıdiv
E D kbkL1.E/

h2E
k˛
; (5.79)

ı
p
E D min f1;ReEg h2E

kbkL1.E/ k˛
; ReE D kbkL1.E/ hE

	˛1=2
;

with ˛ D 7=2.
The CIP stabilization applied to the Crouzeix–Raviart pair of finite element

spaces Pnc
1 =P0 of the Oseen equations was analyzed in Burman and Hansbo (2006).

ut
Remark 5.50 (Implementation of the CIP Method) The appearance of jumps in the
bilinear form in (5.77) couples degrees of freedom that are not coupled in the
standard Galerkin discretization and in the velocity-velocity matrix of the residual-
based stabilizations. Consider for example P1 finite elements, two simplices with
the common face E, and the two basis functions which take the value 1 in the vertex
opposite to the common face and the value 0 in all other vertices. Then, the common
support of these basis functions is E and all integrals in the Galerkin finite element
method (5.13) where both basis functions are involved vanish. However, the jumps
of the derivatives of these basis functions across E do not vanish and consequently,
the jump terms in (5.77) couple these functions. Hence, the sparsity pattern of the
matrices of the CIP method is denser than for the Galerkin method and for the
velocity-velocity matrix of residual-based stabilizations.

The CIP method adds stabilization terms which couple either velocity test and
ansatz functions or pressure test and ansatz functions. The arising coupled system
has the form

�
A BT

B C

� 
u
p

!
D
 

f
0

!
:

Because of the grad-div term in the CIP method, the block structure of A is as given
in (5.76). ut
Remark 5.51 (Numerical Studies for the CIP Method) Comprehensive numerical
studies of the CIP method applied to the two-dimensional Oseen equations (with
c D 0) can be found in Umla (2009). In this thesis, the form (5.78) of the CIP
method was used and the stabilization parameters (5.79) were scaled with a factor
ı0 > 0. It turned out that the optimal stabilization parameters were generally not
given for ı0 D 1. In some situations, in particular for the finite element pairs P3=P3
and Q3=Q3, the errors could be reduced by one order of magnitude with the optimal
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scaling factor compared with ı0 D 1. Choosing different scaling factors for the
different stabilization terms did not lead to notable improvements of the results.

In addition, comparisons with the SUPG/PSPG/grad-div stabilization, see
Sect. 5.3.2, were performed in Umla (2009). Generally, the solutions obtained
with both stabilizations were of similar accuracy. But sometimes, the pressure was
computed somewhat more accurately with the SUPG/PSPG/grad-div stabilization.

In Umla (2009), the CIP stabilization was applied also to pairs of Taylor–Hood
finite element spaces. The observed orders of convergence are the same as for the
SUPG/PSPG/grad-div method.

The linear systems of equations in the numerical studies of Umla (2009) were
solved with the sparse direct solver umfpack, see Remark 9.5. The computing times
for the CIP method were considerably higher than for the SUPG/PSPG/grad-div
method, often by a factor of about two. The main reason is the denser sparsity pattern
of the matrices coming from the CIP stabilization. ut
Remark 5.52 (Local Projection Stabilization (LPS) Methods) The main tool of
LPS methods is a local projection Ph

loc of a finite element space onto another finite
element space, which is usually a discontinuous space. With this projection, to so-
called fluctuation operator

�
I � Ph

loc

�
is defined. Then, a stabilization of the Galerkin

finite element discretization is achieved by adding weighted L2.˝/ inner products
of fluctuations of quantities of interest.

A short review of the LPS method can be found in Braack and Lube (2009) and
a longer presentation in Roos et al. (2008, Chap. IV.4). ut
Remark 5.53 (Stabilizing the Violation of the Discrete Inf-Sup Condition with an
LPS Method) The LPS method for stabilizing the violation of the discrete inf-
sup condition was proposed in Becker and Braack (2001). Applying the general
approach of LPS methods, the difference of the gradient of the discrete pressure
and a local projection is added to the continuity equation. This idea was already
formulated in Codina and Blasco (1997), where a global projection operator was
proposed, see Remark 4.111. From the point of view of numerical efficiency, locally
computable projections should be preferred.

The numerical analysis of the LPS method requires a number of assumptions,
see Becker and Braack (2001), Braack and Lube (2009) for details. The realization
of the LPS method as proposed in Becker and Braack (2001) consists in using two
triangulations T 2h and T h of˝ , where T h is a uniform refinement of T 2h, which is
the so-called two-level method. The mesh cells on the coarse grid are called macro
cells fMg and each macro cell contains a number of mesh cells on the fine grid.
Then, the local L2.˝/ projection has the form

P2h
h W L2.˝/ ! R2h;disc;

�
qh � P2h

h qh;  h
� D 0 8  h 2 R2h;disc;
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where R2h;disc is a space of discontinuous finite element functions on the coarser
grid, e.g., R2h;disc D Qdisc

1 if Vh D Q2. Thus, the LPS term has the form

Sh
lps.p; q/ D

	
ı
1=2
lps;p

�
I � P2h

h

�rph; ı
1=2
lps;p

�
I � P2h

h

�rqh



D
	
ı
1=2
lps;p�

h
p

�rph
�
; ı
1=2
lps;p�

h
p

�rqh
�


(5.80)

for all ph; qh 2 Qh \ H1.˝/. Then, the numerical analysis for the LPS method is
performed in the norm

k.v; q/klps D
	
krvk2L2.˝/ C kpk2L2.˝/ C Sh

lps.p; p/

1=2

:

The analysis shows that in the case of using the same finite element spaces for
velocity and pressure on the fine grid, then ılps;p D O

�
h2M
�

is the asymptotic correct
choice, where hM is the diameter of a macro cell M.

A variant of the LPS method consists in using instead the fluctuation of the
gradients of the pressure as in (5.80) the gradient of the fluctuations

Sh
lps.p; q/ D

	
ı
1=2
lps;pr �

�h
p ph
�
; ı
1=2
lps;pr ��h

p qh
�

:

It is mentioned in Braack and Lube (2009) that this method remains optimal for the
Stokes equations but its extension is not optimal for the Oseen equations. ut
Remark 5.54 (LPS Schemes) An LPS scheme for the Oseen equations was studied
in Braack and Burman (2006). In this paper, a numerical analysis for low order
discretizations was presented. Concretely, the so-called two-level method was
considered with the pairs Qk=Qk, k 2 f1; 2g, for velocity and pressure and a local
projection which maps onto the space Qk�1 on the next coarser grid. In Matthies
et al. (2007), an LPS approach was proposed which is based on enrichment and
uses only one mesh, the so-called one-level method. A unified finite element error
analysis for the one-level and two-level approach and for the case of using the same
finite spaces for velocity and pressure is presented in this paper. The case of inf-sup
stable finite element spaces is studied in Lube et al. (2008), Matthies and Tobiska
(2015).

Using the general approach for constructing LPS schemes leads, see
Remark 5.52, to the stabilization term

Sh
lps ..u; p/; .v; q// D �

ılps;u�
h
u ..b � r/ u/ ; �h

u ..b � r/v/�

C �
ılps;div�

h
div .r � u/ ; �h

div .r � v/�
C �
ılps;p�

h
p

�rph
�
; �h

p

�rqh
��
:
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For practical reasons, all local projections are defined principally in the same way,
either with the one-level or the two-level method. A difference might be the actual
polynomial order of the projection space. It can be seen that the stabilization term is
symmetric and the stabilization does not affect the right-hand side of the equations.

The finite element error analysis is performed in the mesh-dependent norm

k.v; q/klps D
	

krvk2L2.˝/ C ��c1=2v
��2

L2.˝/ C 	 kpk2L2.˝/ C ��c1=2p
��2

L2.˝/

CSh
lps ..v; p/; .v; p//


1=2
:

The weights of the pressure terms are the same as in the norm k�kspg;p used in the
SUPG/PSPG/grad-div method, see (5.48). The analysis relies on the construction
of an interpolation operator between the finite element spaces and the projection
spaces with certain orthogonality properties. A discrete inf-sup condition for the
complete bilinear form can be proved. In the case of using the same finite element
spaces for velocity and pressure, both of order k, the optimal asymptotic choices of
stabilization parameters are

ılps;u D O
 

hM

kbkWk;1.M/

!
; ılps;div D O .hM/ ; ılps;p D O .hM/ ;

where hM is the diameter of a macro cell M, see Remark 5.53. With these parameters,
one obtains the same order of convergence as for the SUPG/PSPG/grad-div method.
However, one should note that only some terms in k�klps and k�kspg;p from (5.48) are
the same. ut
Remark 5.55 (Two-level vs. One-level LPS Methods) A discussion of possible
choices of finite element spaces for two-level and one-level LPS schemes can be
found in Matthies et al. (2007). For a two-level LPS scheme, an example is already
given in Remark 5.53. One-level LPS schemes rely on enriching a finite element
space of order k with mesh cell bubble functions of a sufficiently large polynomial
order. Then, the projection space can be chosen to consists of discontinuous
functions of order k � 1.

The use of a two-level method requires a coarse grid, which is not always
available in application. In addition, the matrices possess extended stencils, e.g.,
compared with the SUPG/PSPG/grad-div method. With the one-level method, one
obtains a more compact stencil than with the two-level scheme. But on the same
grid, the number of degrees of freedom is larger for the one-level method than for
other discretizations, like the SUPG/PSPG/grad-div method or the two-level LPS
method. ut
Remark 5.56 (Implementation of LPS Methods) The two-level LPS method leads
to an extended sparsity pattern of the matrices compared with the residual-based
stabilizations. All degrees of freedom on mesh cells that belong to the same macro
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cell are coupled. For the one-level LPS method, the sparsity of the matrices is
not extended by connecting degrees of freedom which are usually not connected.
However, the enrichment of the spaces leads to more degrees of freedom on the
same grid compared with the Galerkin method or other stabilized discretizations.

ut
Remark 5.57 (Different Definition of the Fluctuations) Instead of local projections,
local approximation operators or quasi interpolants can be used for defining the
fluctuations. A method of this type, called higher order term-by-term stabilization
method, was proposed and analyzed in Chacón Rebollo et al. (2013). This method
has usually a more compact matrix stencil than LPS methods while retaining the
same accuracy. ut
Remark 5.58 (Upwind Discretizations for Lowest Order Non-conforming Finite
Elements) In the case of non-conforming discretizations, the SUPG method for
stabilizing dominating convection looses the advantage of not enlarging the stencils
of the matrices, because a term which includes the jumps of the functions across the
faces is needed. This effect was already observed for the Crouzeix–Raviart finite
element Pnc

1 applied in the discretization of scalar convection-diffusion equations in
John et al. (1997). For this reason, the SUPG method is not used for non-conforming
finite elements and dominating convection is stabilized in different ways. Most
popular are upwind methods, which combine the finite element method with ideas
from finite volume methods. Finite element methods of upwind type were proposed
the first time, for scalar convection-diffusion equations, in Ohmori and Ushijima
(1984).

Consider a scalar non-conforming space of lowest order, i.e., the Crouzeix–
Raviart element Pnc

1 , see Example B.43, or the Rannacher–Turek element Qrot
1 , see

Example B.53, and a partition of ˝ into mesh cells. For Pnc
1 , the mesh cells are

triangles or tetrahedra and for Qrot
1 these are quadrilaterals or hexahedra. Let K1

and K2 be two neighboring mesh cells with the common face Ei. Then, exactly one
standard basis function �i.x/ of Pnc

1 or Qrot
1 can be assigned to this face. If mE;i is

the barycenter of Ei, then �i.mE;i/ D 1 for Pnc
1 and the point value oriented Qrot

1

element. In the first step of defining upwind methods, the domain is decomposed
into so-called dual domains f!dual;ig. A subdomain !dual;i is constructed by taking
the barycenters SK1 and SK2 of K1 and K2, respectively, and connecting them with
the vertices of Ei. The union of the two subdomains obtained in this way is !dual;i,
see Fig. 5.12 for the case of a triangular mesh. For faces on the boundary 
 of ˝ ,
the dual domain consists just of one subdomain.

Let �i be the set of all indices k ¤ i for which the faces Ek and Ei belong to the
same mesh cell. For instance, these are four indices for interior edges in triangular
meshes and ten indices for interior faces in hexahedral meshes. Denote the face of
!dual;i in between Ei and Ek by 
ik and the corresponding outer unit normal vector
by nik, see again Fig. 5.12 for an illustration.
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K1
K2

Γik

mE,k

ωdual,i

mE,i
SK2SK1

nik

Fig. 5.12 Dual domain for the upwind discretization

Next, an operator Lh is introduced which maps a continuous function v.x/ onto
a function Lhv.x/ which is constant in each dual domain

Lhv.x/ D v.mE;i/ 8 x 2 !dual;i:

To incorporate information about the direction of the convection into the scheme
appropriately, the convective term will be approximated with this operator and with
integrals on the boundaries of the dual subdomains. One obtains, using the product
rule, approximating by applying the operator Lh, utilizing that the approximation is
constant in !dual;i, and applying integration by parts

.b � ru; v/ D
X

Ei2Eh

.b � ru; v/!dual;i

D
X

Ei2Eh

h
.r � .ub/; v/!dual;i � .r � b; uv/!dual;i

i



X

Ei2Eh

h
.r � .ub/;Lhv/!dual;i � .r � b;Lh.uv//!dual;i

i

D
X

Ei2Eh

�
.r � .ub/; 1/!dual;i � u.mE;i/.r � b; 1/!dual;i

�
v.mE;i/

D
X

Ei2Eh

X
k2�i

�
.ub � nik; 1/
ik

� u.mE;i/ .b � nik; 1/
ik

�
v.mE;i/

D
X

Ei2Eh

X
k2�i

.b � nik; u � u.mE;i//
ik
v.mE;i/: (5.81)
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In upwind discretizations, u will be replaced by a convex combination of the form

u 
 �ik.b/u.mE;i/C .1 � �ik.b// u.mE;k/: (5.82)

The general upwind idea consists in taking the direction of the convection into
account in the discretization. Information which comes from where the convection
is coming from (upwind) is weighted stronger than information from where the
convection is going to (downwind). In this way, an appropriate transport of
information is incorporated in the discretization. The boundary integral .b � nik; 1/
ik

describes the convective flux across 
ik. The direction of the flux is determined with
the sign of .b � nik; 1/
ik

. If .b � nik; 1/
ik
< 0, then the normal and the convection

possess different signs, i.e., the convective flux is directed into !dual;i. That means,
the flux occurs from face Ek to face Ei. For this reason, one chooses �ik 2 Œ0; 1=2/

in (5.82) such that the impact of u.mE;k/ in the discretization of the convective term
in the node mE;i is stronger than the impact of u.mE;i/. In the case .b � nik; 1/
ik

> 0,
one chooses with analogous considerations �ik 2 .1=2; 1�. Thus, one obtains by
inserting (5.82) in (5.81) the following discretization of .b � ru; v/

�
b � ruh; vh

� 
 nh
upw

�
b; uh; vh

�

D
X

Ei2Eh

X
k2�i

�
b � nik; .1 � �ik.b//.uh.mE;k/� uh.mE;i/

�

ik
vh.mE;i/:

Defining

�ik.b/ D ˚.t/ with t D 1

2	
.b � nik; 1/
ik

;

then the function ˚.t/ has to satisfy the following conditions

i) ˚.t/ D 1 � ˚.�t/ for all t > 0 and 0 � ˚.t/ � 1 for all t 2 R,
ii) t

�
˚.t/ � 1

2

� � 0 for all t 2 R,
iii) g.t/ D t˚.t/ is Lipschitz continuous in R,

see Roos et al. (2008, Chap. III.3.1). With the ansatz

˚.t/ D 1

2
C sgn.t/�.jtj/;

one obtains

1 � ˚.�t/ D 1

2
� sgn.�t/�.j � tj/ D 1

2
C sgn.t/�.jtj/ D ˚.t/;
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Fig. 5.13 Upwind functions

such that the first part of condition i) is satisfied. Some upwind methods which are
often used are the simple or standard upwind and the Samarskij upwind given by

�.t/ D 1

2
and �.t/ D 1

2

t

t C 1
;

respectively, see Fig. 5.13.
For the Oseen equations, the upwind methodology is applied to each component

of the term
�
.b � r/ uh; vh

�
.

The convergence of the upwind method applied to the Navier–Stokes equations
and error estimates were proved in Schieweck and Tobiska (1989), Schieweck and
Tobiska (1996). An overview of the results can be also found in (Roos et al. 2008,
Chap. IV.2). Based on the construction of a divergence-preserving interpolation
operator, the error estimate

 X
K2T h

��r �
u � uh

���2
L2.K/

!1=2
C ��p � ph

��
L2.˝/

� Ch (5.83)

was proved for the stationary Navier–Stokes equations in Schieweck and Tobiska
(1996). The constant in (5.83) depends on inverse powers of 	, kukH2.˝/, and
kpkH1.˝/. ut
Example 5.59 (Numerical Results for an Upwind Discretization) The same setup
as described in Example 5.18 is considered. Results obtained with the Samarskij
upwind discretization applied for the Crouzeix–Raviart pair of finite element spaces
Pnc
1 =P0 are presented. The simulations were performed on the irregular triangular

grid depicted in Fig. 4.2.
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Fig. 5.14 Example 5.59. Samarskij upwind discretization with Pnc
1 =P0, convergence of the errors��u � uh

��
Vh D

	P
K2T h

��r �
u � uh

���2
L2.K/


1=2
and

��p � ph
��

L2.˝/ for c D 0 and different values

of 	

Fig. 5.15 Example 5.59. Samarskij upwind discretization with Pnc
1 =P0, convergence of the errors��u � uh

��
Vh D

	P
K2T h

��r �
u � uh

���2
L2.K/


1=2
and

��p � ph
��

L2.˝/ for c D 100 and different

values of 	

Results for different values of 	 and c D 0 are presented in Fig. 5.14. It can be
seen clearly that the velocity error depends on 	�1. Likewise, a dependency of the
pressure error on the inverse of 	 can be observed, which is however much smaller.
The velocity error converges of first order for all values of 	, as predicted in (5.83).
A first order convergence of the pressure error can be seen only for 	 D 1. In all
other cases, the asymptotic range of convergence does not seem to be reached yet.

The results for c D 100 are depicted in Fig. 5.15. For small 	 and coarse grids,
the velocity error increases if the grid is refined and the pressure error is more or less
constant. Only if the grid becomes sufficiently fine, where fine has to be understood
with respect to 	, both errors start to decrease. For 	 D 1, a first order convergence
of both errors can be observed.
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Fig. 5.16 Example 5.59. Samarskij upwind discretization with Pnc
1 =P0, convergence of the errors��u � uh

��
Vh D

	P
K2T h

��r �
u � uh

���2
L2.K/


1=2
and

��p � ph
��

L2.˝/ for 	 D 10�4 and different

values of c

Results for 	 D 10�4 and different values of c are presented in Fig. 5.16. One
can see that large values of c (which correspond to small time steps) lead to small
velocity errors on coarse grids but also to large pressure errors.

Evaluating the results presented in Figs. 5.15 and 5.16 from the point of view that
c represents the inverse of the time step, one can draw the following conclusions.
If the length of the time step is constant, then one needs for small values of 	 fine
grids for computing reasonably accurate results. For fixed viscosity, small time steps
improve the velocity error on coarse grids but not on finer grids. The pressure error
stays large for small time steps until the grid becomes sufficiently fine. ut
Remark 5.60 (On the Matrices of Upwind Methods for Non-conforming Finite
Element Spaces of Lowest Order) In the upwind method, one obtains the same
structure of the coupled system as for the Galerkin method, see (5.25) and (5.26).
In addition, the maximal number of entries in each row and column of the matrices
is independent of the actual meshes since the degrees of freedom can be assigned
to the faces and the number of neighboring faces does not depend on the mesh. For
instance, for the Crouzeix–Raviart element Pnc

1 =P0 there are at most five entries in
each row of A11 in two dimensions and seven entries in three dimensions. ut



Chapter 6
The Steady-State Navier–Stokes Equations

Remark 6.1 (The Steady-State Navier–Stokes Equations) The steady-state or sta-
tionary Navier–Stokes equations describe steady-state flows. Such flow fields can
be expected in practice if:

• all data of the Navier–Stokes equations (2.25) do not depend on the time,
• the viscosity 	 is sufficiently large, or equivalently, the Reynolds number Re is

sufficiently small,

see Remark 2.22.
The Navier–Stokes equations are nonlinear. That means, the second difficulty

mentioned in Remark 2.19 has to be addressed. ut

6.1 The Continuous Equations

Remark 6.2 (Monograph) A comprehensive presentation of the analysis of the
steady-state Navier–Stokes equations, and of the Stokes and Oseen equations as
well, can be found in Galdi (2011). ut

6.1.1 The Strong Form and the Variational Form

Remark 6.3 (Strong Form of the Steady-State Navier–Stokes Equations) The
steady-state Navier–Stokes equations are given by

�	�u C .u � r/u C rp D f in ˝;
r � u D 0 in ˝;

(6.1)
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where ˝ � R
d, d 2 f2; 3g, is a bounded domain with Lipschitz boundary. As for

the Stokes and Oseen equations, the numerical analysis will be presented for the
case of homogeneous Dirichlet boundary conditions u D 0 on 
 . ut
Remark 6.4 (Variational Form of the Steady-State Navier–Stokes Equations) For
the variational formulation of the steady-state Navier–Stokes equations, the same
function spaces V D H1

0.˝/ and Q D L20.˝/ as for the Stokes and Oseen equations
can be used. A variational form of (6.1) is as follows: Find .u; p/ 2 V � Q such that

.	ru;rv/C ..u � r/u; v/ � .r � v; p/ D h f ; viV0;V ;

�.r � u; q/ D 0 (6.2)

for all .v; q/ 2 V � Q. The problem can be formulated equivalently in the following
way: Find .u; p/ 2 V � Q such that

.	ru;rv/C ..u � r/u; v/� .r � v; p/C .r � u; q/ D h f ; viV0;V (6.3)

for all .v; q/ 2 V � Q.
By the Sobolev imbedding H1.˝/ ! L4.˝/, see (A.21) and (A.22), one has that

u; v 2 L4.˝/. Since ru 2 L2.˝/, it follows from the generalized Hölder inequality,
compare (6.33), that the term ..u � r/u; v/ is well defined if u; v 2 V . ut
Remark 6.5 (The Reduced Problem in Vdiv) There is also an associated problem in
the space Vdiv of weakly divergence-free functions: Find u 2 Vdiv such that

.	ru;rv/C ..u � r/u; v/ D h f ; viV0;V 8 v 2 Vdiv: (6.4)

Of course, if .u; p/ 2 V�Q is a solution of (6.3), u 2 Vdiv and u is a solution of (6.4).
The other direction can be proved as for linear saddle point problems, see Sect. 3.1.
The bilinear form which couples velocity and pressure is the same as for the Stokes
and the Oseen equations and the spaces are the same, too. Thus, given a solution u
of (6.4), there exists a unique pressure p 2 Q such that .u; p/ solves (6.3) since the
spaces V and Q satisfy the inf-sup condition (3.14), compare Theorem 3.46. Note
that in the proof of the inf-sup condition, see the proof of Lemma 3.12, the bilinear
form which couples the ansatz and test functions of the velocity space does not play
any role. ut

6.1.2 The Nonlinear Term

Remark 6.6 (Different Forms of the Convective Term in (6.1)) There are several
forms of the convective term of the incompressible Navier–Stokes equations:

.u � r/u W convective form;
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r � �uuT
� W divergence form;

r � �uuT
�C 1

2
r �

uTu
� W divergence form with modified pressure;

.r � u/ � u W rotational form (with modified pressure):

The equivalence of these forms will be established now.
Let u D .u1; u2; u3/T be weakly differentiable and weakly divergence-free, i.e.,

r � u D 0 almost everywhere.

• Convective form and divergence form. The convective form and the divergence
form are equivalent, since one gets with the product rule

r � �uuT
�

D r �
0
@u1u1 u1u2 u1u3

u2u1 u2u2 u2u3
u3u1 u3u2 u3u3

1
A D

0
@@x.u1u1/C @y.u1u2/C @z.u1u3/
@x.u2u1/C @y.u2u2/C @z.u2u3/
@x.u3u1/C @y.u3u2/C @z.u3u3/

1
A

D
0
@.u1@x C u2@y C u3@z/u1
.u1@x C u2@y C u3@z/u2
.u1@x C u2@y C u3@z/u3

1
AC

0
@u1.@x.u1/C @y.u2/C @z.u3//

u2.@x.u1/C @y.u2/C @z.u3//
u3.@x.u1/C @y.u2/C @z.u3//

1
A

D .u � r/u C .r � u/u D .u � r/u: (6.5)

• Convective form and divergence form with modified pressure. From (6.5), one
obtains

.u � r/u C rp D r � �uuT
�C 1

2
r �

uTu
� � 1

2
r �

uTu
�C rp

D r � �uuT
�C 1

2

�
uTu

�C rpmod

with

pmod D p � 1

2

�
uTu

�
:

• Convective form and rotational form. The rotational form goes also along with a
redefinition of the pressure. In contrast to the equivalence of the convective form
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and the divergence form, it is not required that u is divergence-free. It holds

.r � u/ � u C 1

2
r �

uTu
� D

0
@@yu3 � @zu2
@zu1 � @xu3
@xu2 � @yu1

1
A � u C 1

2
r �

u21 C u22 C u23
�

D
0
@u3@zu1 � u3@xu3 � u2@xu2 C u2@yu1

u1@xu2 � u1@yu1 � u3@yu3 C u3@zu2
u2@yu3 � u2@zu2 � u1@zu1 C u1@xu3

1
A

C1

2

0
@2u1@xu1 C 2u2@xu2 C 2u3@xu3
2u1@yu1 C 2u2@yu2 C 2u3@yu3
2u1@zu1 C 2u2@zu2 C 2u3@zu3

1
A

D
0
@u1@xu1 C u2@yu1 C u3@zu1

u1@xu2 C u2@yu2 C u3@zu2
u1@xu3 C u2@yu3 C u3@zu3

1
A

D .u � r/u: (6.6)

The term with the gradient is used to define a new pressure, the so-called
Bernoulli pressure

pBern D p C 1

2
uTu: (6.7)

The derivation of identity (6.6) is also possible on the basis of (3.158).
ut

Lemma 6.7 (Basic Properties of the Convective Term)

• Let v be weakly differentiable, then it is

.u � r/ v D .rv/u: (6.8)

• Let u be weakly differentiable, then it holds

.u � r/u D D .u/ u C 1

2
.r � u/ � u: (6.9)

• The variational form of the convective term is trilinear, i.e., it is linear in each
argument.

• Let u; v;w 2 H1.˝/, then

..u � r/ v;w/ D �r � �vuT
�
;w
�� ..r � u/v;w/ ; (6.10)

..u � r/ v;w/ D .u;r .v � w// � ..u � r/w; v/ ; (6.11)
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..u � r/ v;w/ D �
.rv/T w;u� ; (6.12)

..u � r/ v;w/ D
Z
@˝

.u � n/ .v � w/ ds � .r � u; v � w/� ..u � r/w; v/ ; (6.13)

where n is the outward pointing unit normal at @˝ .
• Let u; v 2 H1.˝/, w 2 Vdiv, then

..r � u/ � v;w/ D ..v � r/ u;w/� ..w � r/u; v/ : (6.14)

Proof

• Relation (6.8) is proved with a direct calculation

.u � r/ v D
0
@u1@xv1 C u2@yv1 C u3@zv1

u1@xv2 C u2@yv2 C u3@zv2

u1@xv3 C u2@yv3 C u3@zv3

1
A D

0
@@xv1 @yv1 @zv1

@xv2 @yv2 @zv2

@xv3 @yv3 @zv3

1
A
0
@u1

u2
u3

1
A D .rv/ u:

• With (6.8), one finds that

D .u/ u D .ru/ u
2

C
�ruT

�
u

2
D .u � r/ u

2
C
�ruT

�
u

2
: (6.15)

An intermediate result of (6.6) is r �
uTu

� D 2
�ruT

�
u (product rule). Then, one

gets from (6.6) and (6.15)

.u � r/u D .r � u/ � u C �ruT
�
u D .r � u/ � u C 2D .u/u � .u � r/u;

which is equivalent to (6.9).
• The trilinearity of the convective term follows by the linearity of differentiation

and integration, e.g., for a; b 2 R, one obtains

...a Qu C b Ou/ � r/ v;w/

D
Z
˝

0
B@
.aQu C bOu/1@xv1 C .aQu C bOu/2@yv1 C .aQu C Ou/3@zv1

.aQu C bOu/1@xv2 C .aQu C bOu/2@yv2 C .aQu C bOu/3@zv2

.aQu C bOu/1@xv3 C .aQu C bOu/2@yv3 C .aQu C bOu/3@zv3

1
CA
0
B@

w1
w2
w3

1
CA dx

D
Z
˝

a

0
B@

Qu1@xv1 C Qu2@yv1 C Qu3@zv1

Qu1@xv2 C Qu2@yv2 C Qu3@zv2

Qu1@xv3 C Qu2@yv3 C Qu3@zv3

1
CA dx C

Z
˝

b

0
B@

Ou1@xv1 C Ou2@yv1 C Ou3@zv1

Ou1@xv2 C Ou2@yv2 C Ou3@zv2

Ou1@xv3 C Ou2@yv3 C Ou3@zv3

1
CA dx

D a .. Qu � r/ v;w/C b .. Ou � r/ v;w/ :

The calculations for the two other arguments of the convective term are similar.
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• For u; v;w 2 H1.˝/, the relations (6.10) and (6.11) are directly proved by
straightforward calculations like in Remark 6.6. For instance, using the product
rule and rearranging terms yields

.u;r .v � w//

D
Z
˝

u � r .v1w1 C v2w2 C v3w3/ dx

D
Z
˝

h
u1v1@xw1 C u1v2@xw2 C u1v3@xw3 C u2v1@yw1 C u1v2@yw2

Cu2v3@yw3 C u3v1@zw1 C u3v2@zw2 C u3v3@zw3
i

C
h
u1w1@xv1 C u1w2@xv2 C u1w3@xv3 C u2w1@yv1 C u1w2@yv2

Cu2w3@yv3 C u3w1@zv1 C u3w2@zv2 C u3w3@zv3

i
dx

D ..u � r/w; v/C ..u � r/ v;w/ :

Equation (6.12) can be also proved by using (6.8)

..u � r/ v;w/ D ..rv/ u;w/ D �
u; .rv/T w� D �

.rv/T w;u� :
Relation (6.13) is a direct consequence of applying integration by parts for the
term .r � u; v � w/ and (6.11).

• For proving (6.14), one starts with the identity (3.158) which gives

..r � u/ � v;w/ D ..v � r/u;w/� .r .u � v/ ;w/C �
.rv/T u;w� : (6.16)

Integration by parts, using that w vanishes on the boundary and is divergence-free
in ˝ , yields

.r .u � v/ ;w/ D
Z



.u � v/ .w � n/ ds � .u � v;r � w/ D 0: (6.17)

With a direct calculation, one obtains

�
.rv/T u;w� D @xv1u1w1 C @xv2u2w1 C @xv3u3w1 C @yv1u1w2 C @yv2u2w2

C@yv3u3w2 C @zv1u1w3 C @zv2u2w3 C @zv3u3w3

D �rv;uwT
�
: (6.18)

Integration by parts, observing that the integral on 
 vanishes, and (2.28) gives

�rv;uwT
� D � �v;r � �uwT

�� D � .v; .w � r/u/� .v; .r � w/u/ : (6.19)
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The last term vanishes since w is divergence-free. Inserting (6.17) and (6.19)
in (6.16) proves (6.14).

�

Remark 6.8 (Equivalent Variational Forms of the Steady-State Navier–Stokes Equa-
tions) Formulation (6.2) utilizes the convective form of the nonlinear term

nconv.u; v;w/ D ..u � r/v;w/:
Equivalent variational forms are obtained by using the other forms of the nonlinear
term described in Remark 6.6. The divergence form is defined by

ndiv.u; v;w/ D nconv.u; v;w/C 1

2
..r � u/ v;w/ : (6.20)

The motivation for changing the factor in front of the divergence term in comparison
with (6.5) is that (6.20) will vanish if v D w even if the first argument is not weakly
divergence-free, see Lemma 6.10. This property is not true if a different factor than
1=2 is used. If the rotational form

nrot.u; v;w/ D ..r � u/ � v;w/ (6.21)

is applied, then the momentum equation in (6.2) changes to

.	ru;rv/C nrot.u;u; v/� .r � v; pBern/ D h f ; viV0;V 8 v 2 V;

where the Bernoulli pressure is defined in (6.7).
Finally, for the variational form of the Navier–Stokes equations, another form of

the convective term can be applied. Integration by parts gives for u; v;w 2 H1.˝/

.r � u; v � w/ D
Z



.v � w/.u � n/ ds � .u;r.v � w// ; (6.22)

where n is the outward pointing unit normal vector on 
 . From the Sobolev
imbeddings H1.˝/ ! L4.˝/, see (A.21) and (A.22), it follows that v;w 2 L4.˝/
and consequently that v � w 2 L2.˝/. Since ˝ is a bounded domain, it follows that
v � w 2 L1.˝/. Then, there is a constant C such that

Z
˝

.v � w C C/ dx D 0

and consequently v � w C C 2 Q. If u satisfies the second equation of (6.2), i.e., u
is weakly divergence-free, and if u � n D 0 on 
 , then it follows with integration by
parts that

0 D .r � u; v � w C C/ D .r � u; v � w/C
Z



Cu � n ds � .u;rC/

D .r � u; v � w/: (6.23)
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From (6.22), one obtains

.u;r .v � w// D 0

and inserting this identity in (6.11) gives for u being weakly divergence-free with
u � n D 0 on 
 and v;w 2 H1.˝/

nconv.u; v;w/ D �nconv.u;w; v/: (6.24)

With this relation, the skew-symmetric form of the convective term is defined by

nskew.u; v;w/ D 1

2
.nconv.u; v;w/� nconv.u;w; v// : (6.25)

ut
Remark 6.9 (Vanishing of the Convective Term) Analogously to the Oseen equa-
tions, the vanishing of the convective term in the case that the last two arguments
are identical is important for the analysis and finite element error analysis. For a
discussion of situations when this property is given, it is referred to Remark 5.6.

ut
Lemma 6.10 (Vanishing of the Convective Term) Let u; v 2 H1.˝/, then

nrot.u; v; v/ D nskew.u; v; v/ D 0: (6.26)

If additionally u � n D 0 or v D 0 on 
 , then

ndiv.u; v; v/ D 0: (6.27)

If u is weakly divergence-free and if u � n D 0 on 
 , then

nconv.u; v; v/ D 0: (6.28)

Proof Property (6.26) for nskew.�; �; �/ follows directly from the definition. A direct
calculation gives for the rotational form

nrot.u; v; v/

D
0
@
0
@v3@zu1 � v3@xu3 � v2@xu2 C v2@yu1
v1@xu2 � v1@yu1 � v3@yu3 C v3@zu2
v2@yu3 � v2@zu2 � v1@zu1 C v1@xu3

1
A ;
0
@v1v2
v3

1
A
1
A

D
Z
˝

h
@yu1.v1v2 � v1v2/C @zu1.v1v3 � v1v3/C @xu2.v1v2 � v1v2/

C@zu2.v2v3 � v2v3/C @xu3.v1v3 � v1v3/C @yu3.v2v3 � v2v3/
i

dx

D 0:
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Considering the divergence form, then one gets with (6.11) and (6.22)

ndiv.u; v; v/ D nconv.u; v; v/C 1

2
..r � u/ v; v/

D .u;r.v � v//� nconv.u; v; v/C 1

2
..r � u/ v; v/

D �nconv.u; v; v/ � .r � u; v � v/C 1

2
..r � u/ v; v/

D �ndiv.u; v; v/;

from what ndiv.u; v; v/ D 0 follows.
For the convective form, (6.28) follows from (6.24). Note that the derivation

of (6.24) used the assumptions stated in the formulation of the lemma. �

Lemma 6.11 (Estimates of the Convective Term) Let u; v;w 2 H1.˝/, where
˝ � R

d, d 2 f2; 3g, is a bounded domain with Lipschitz boundary, then there is a
C 2 R such that

jnconv.u; v;w/j � C kukH1.˝/ krvkL2.˝/ kwkH1.˝/ : (6.29)

For the skew-symmetric form, it holds

jnskew.u; v;w/j � C kukH1.˝/ kvkH1.˝/ kwkH1.˝/ (6.30)

and for the divergence form of the convective term

jndiv.u; v;w/j � C kukH1.˝/ kvkH1.˝/ kwkH1.˝/ : (6.31)

If w 2 Vdiv, then it is for the rotational form

jnrot.u; v;w/j � C krukL2.˝/ kvkH1.˝/ kwkH1.˝/ : (6.32)

Proof The estimate starts with the application of the generalized Hölder inequality

jnconv.u; v;w/j D
ˇ̌
ˇ̌Z
˝

.u � r/ v � w dx

ˇ̌
ˇ̌ � kukL p.˝/ krvkLq.˝/ kwkLr.˝/ ; (6.33)

with

1

p
C 1

q
C 1

r
D 1; 1 � p; q; r � 1:

Since v 2 H1.˝/, one can take at most q D 2. The other two terms are of the
same form such that they can treated similarly, i.e., one can take p D r D 4.
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Applying the Sobolev imbedding H1.˝/ ! L4.˝/, see (A.21) and (A.22), gives
immediately (6.29).

The statement for the skew-symmetric term follows by applying the triangle
inequality

jnskew.u; v;w/j � 1

2
.jnconv.u; v;w/j C jnconv.u;w; v/j/

and then estimate for the convective term.
For the divergence form of the convective term, one gets for the second part

of this term, using the generalized Hölder’s inequality, the Sobolev imbedding
H1.˝/ ! L4.˝/, and (3.40)

1

2
..r � u/ v;w/ � 1

2
kr � ukL2.˝/ kvkL4.˝/ kwkL4.˝/

� C kr � ukL2.˝/ kvkH1.˝/ kwkH1.˝/

� C krukL2.˝/ kvkH1.˝/ kwkH1.˝/ :

Since the first part of the divergence form is just the convective form, estimate (6.31)
follows by combining the estimate for the second part and (6.29).

If w 2 Vdiv, then it follows from (6.14) that

nrot.u; v;w/ D nconv.v;u;w/ � nconv.w;u; v/: (6.34)

Now, (6.32) is proved by applying the triangle inequality and (6.29). �

Remark 6.12 (On the Convective Term)

• If u; v;w 2 V , then the application of the Poincaré–Friedrichs inequality (A.12)
to (6.29)–(6.31) gives

jnconv.u; v;w/j � C.˝/ kukV kvkV kwkV ; (6.35)

jnskew.u; v;w/j � C.˝/ kukV kvkV kwkV ; (6.36)

jndiv.u; v;w/j � C.˝/ kukV kvkV kwkV : (6.37)

• In the proof of Lemma 6.11, other choices of the parameters in Hölder’s
inequality are possible, which may lead to different estimates of the trilinear
term. Further estimates can be derived for different regularity assumptions on the
functions, e.g., see Layton and Tobiska (1998). Several estimates of this kind,
which will be used in this monograph, are derived below.

ut
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Lemma 6.13 (Estimates of the Convective Term) Let u 2 L2.˝/, v 2 W1;1.˝/,
and w 2 H1.˝/, then

jnconv.u; v;w/j � kukL2.˝/ krvkL1.˝/ kwkL2.˝/ (6.38)

and

jnskew.u; v;w/j � 1

2

 
kukL2.˝/ krvkL1.˝/ kwkL2.˝/

C kukL2.˝/ krwkL2.˝/ kvkL1.˝/

!
: (6.39)

In particular, it is

jnskew.u; v;w/j � C kukL2.˝/ kvkW1;1.˝/ kwkH1.˝/ : (6.40)

Proof Estimates (6.38) and (6.39) follow directly from the generalized Hölder
inequality (6.33) by choosing p D r D 2; q D 1 and p D q D 2; r D 1,
respectively. Using the definitions of the norms in estimate (6.40) shows that this
estimate is a direct consequence of estimate (6.39). �

Lemma 6.14 (Estimates of the Convective Term) Let u; v;w 2 V, then it holds

n .u; v;w/ � C kuk1�s
L2.˝/ kruks

L2.˝/ krvkL2.˝/ krwkL2.˝/ (6.41)

with arbitrary s 2 .0; 1� if d D 2 and s 2 Œ1=2; 1� if d D 3. In (6.41), the trilinear
forms nconv.�; �; �/ and nskew.�; �; �/ can be used.

Proof Consider the convective form of the nonlinear term and d D 2. Then, one
obtains with the generalized Hölder inequality (6.33), the Sobolev imbedding (A.21)
(with q arbitrarily large, p D 2 C ", " > 0), Poincaré’s inequality (A.12), and the
Sobolev imbedding (A.15) (with p D 2; q D 2C ";m D "=.2C "/ D s for arbitrary
" > 0)

..u � r/ v;w/ � kukL p.˝/ krvkL2.˝/ kwkLq.˝/ with p�1 C q�1 D 1=2

� C kukL2C".˝/ krvkL2.˝/ krwkL2.˝/

� C kukHs.˝/ krvkL2.˝/ krwkL2.˝/ :

Finally, the interpolation estimate (A.13) is applied to the first factor on the right-
hand side, followed by Poincaré’s inequality, such that

..u � r/ v;w/ � C kuk1�s
L2.˝/ kruks

L2.˝/ krvkL2.˝/ krwkL2.˝/

for arbitrary small positive s.



312 6 The Steady-State Navier–Stokes Equations

For d D 3, the way to prove the estimate is similar, it will be presented in
detail only for s D 1=2. After having applied Hölder’s inequality, the Sobolev
imbedding (A.22), the Sobolev imbedding (A.15) with p D 2; q D 3;m D 1=2,
the interpolation estimate (A.13), and Poincaré’s inequality, one obtains

..u � r/ v;w/ � kukL3.˝/ krvkL2.˝/ kwkL6.˝/

� C kukL3.˝/ krvkL2.˝/ krwkL2.˝/

� C kukH1=2.˝/ krvkL2.˝/ krwkL2.˝/

� C kuk1=2L2.˝/ kruk1=2L2.˝/ krvkL2.˝/ krwkL2.˝/ :

The estimate for the skew-symmetric term follows from applying the estimate of
the convective term to both parts of the skew-symmetric term. �
Lemma 6.15 (Estimates of the Convective Term) Let u; v;w 2 V, then it holds

nconv .u; v;w/ � C krukL2.˝/ krvkL2.˝/ kwk1�s
L2.˝/ krwks

L2.˝/ (6.42)

with arbitrary s 2 .0; 1� if d D 2 and s 2 Œ1=2; 1� if d D 3.
If in addition w 2 Vdiv, then it is

jnrot.u; v;w/j � C krukL2.˝/ krvkL2.˝/ kwk1�s
L2.˝/ krwks

L2.˝/ ; (6.43)

jnrot.u; v;w/j � C krukL2.˝/ kvk1�s
L2.˝/ krvks

L2.˝/ krwkL2.˝/ : (6.44)

Proof Estimate (6.42) is derived with the same tools as estimate (6.41), just
changing the roles of p and q in the proof.

The statements for the rotational form follow from (6.34), the triangle inequality,
and estimates (6.41) and (6.42). �

6.1.3 Existence, Uniqueness, and Stability of a Solution

Remark 6.16 (Contents) This section presents results on the existence, uniqueness,
and stability of a weak solution of the Navier–Stokes equations (6.2). It turns out
that a solution always exists but it is unique only in the case of sufficiently small
external forces and sufficiently large viscosity, see (6.48) below for the concrete
requirement.

From the point of view of numerical simulations, the uniqueness case is the only
interesting one. In the non-uniqueness case, small perturbations of the data will lead
to time-dependent solutions. From the practical point of view, one should consider
and discretize in such a case the time-dependent Navier–Stokes equations. ut
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Theorem 6.17 (Existence of a Solution) Let ˝ � R
d, d 2 f2; 3g, be a bounded

domain with Lipschitz boundary @˝ and let f 2 H�1.˝/. Then there exists at least
one solution of (6.2).

Proof For the proof it is referred to Girault and Raviart (1986, Chap. IV, The-
orems 2.3 and 2.4), Galdi (2011, Chap. IX.3), or Temam (1984, Chap. II,
Theorem 1.2). Essential ideas of the proof are as follows:

• The equivalent problem (6.4) in the divergence-free subspace Vdiv is considered,
such that only the velocity appears.

• The problem is considered in finite-dimensional spaces (Galerkin method).
• A fixed point equation is constructed and the existence of a solution of the

finite-dimensional problems is proved by the fixed point theorem of Brouwer,
Theorem A.69.

• It is shown that for the dimension of the spaces going to infinity, a subsequence
of the solutions tends to a solution of problem (6.4).

• The existence of the pressure is recovered with the help of the inf-sup condi-
tion (3.14).

�

Remark 6.18 (Norms of the Trilinear Form of the Convective Term) The norm of
the convective term is denoted by

N D sup
u;v;w2Vnf0g

..u � r/v;w/
kukV kvkV kwkV

:

Note that N is the smallest constant in estimate (6.35) since

N � ..u � r/v;w/
krukL2.˝/ krvkL2.˝/ krwkL2.˝/

8 u; v;w 2 V;

which is the same inequality as (6.35). The existence of a smaller constant in (6.35)
than N contradicts the definition of N. Likewise, define

Ndiv D sup
u;v;w2Vdivnf0g

..u � r/v;w/
kukV kvkV kwkV

: (6.45)

Since Vdiv � V and the supremum in a subset cannot be larger than the supremum
in the whole set, if follows that 0 < Ndiv � N < 1. The boundedness of N is a
consequence of estimate (6.35). ut
Remark 6.19 (Definition of an Operator with the Help of an Oseen Problem) Let
b 2 Vdiv and consider the Oseen problem: Find u 2 Vdiv such that

.	ru;rv/C ..b � r/ u; v/ D h f ; viV0;V 8 v 2 Vdiv: (6.46)
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This problem has a unique solution, see Theorem 5.7, and this solution satisfies the
stability estimate

krukL2.˝/ � 1

	
k fkH�1.˝/ ; (6.47)

compare (5.9).
With the Oseen problem (6.46), an operator is defined that maps the given

convection field b to the solution u

Nconv W Vdiv ! Vdiv b 7! u:

It is obvious that each fixed point u� of Nconv is a velocity solution of the Navier–
Stokes equations (6.4), since then it follows from (6.46) that

.	ru�;rv/C ..u� � r/ u�; v/ D h f ; viV0;V 8 v 2 Vdiv:

ut
Theorem 6.20 (Existence and Uniqueness of a Solution for Small Data) Let the
assumptions of Theorem 6.17 be satisfied and let in addition

Ndiv k fkH�1.˝/

	2
< 1; (6.48)

then problem (6.4) has a unique solution u 2 Vdiv and problem (6.2) has a unique
solution .u; p/ 2 V � Q.

Proof It will be shown that Nconv defines a contraction on Vdiv. First of all, it can be
observed that Nconv is bounded independently of b, since one obtains with (6.47)

kNconvk D sup
b2Vdiv;kbkV D1

kNconvbkV D sup
b2Vdiv;kbkV D1

kukV

� sup
b2Vdiv;kbkV D1

1

	
k fkH�1.˝/ D 1

	
k fkH�1.˝/ :

Now, one chooses b1; b2 2 Vdiv arbitrarily and denotes u1 D Nconvb1;u2 D Nconvb2.
Both functions u1;u2 solve the Oseen equation (6.46) with the same right-hand side.
Subtracting these equations, one gets

0 D .	ru1;rv/C ..b1 � r/ u1; v/� .	ru2;rv/ � ..b2 � r/ u2; v/
D 	 .r .u1 � u2/ ;rv/C ...b1 � b2/ � r/ u1; v/C ..b2 � r/ .u1 � u2/ ; v/

8 v 2 Vdiv:
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Setting v D u1 � u2 2 Vdiv, the last term on the right-hand side vanishes because
of (6.28) and one obtains with (6.45), (6.47), and (6.48)

kr .u1 � u2/k2L2.˝/ D ku1 � u2k2V D �1
	
...b1 � b2/ � r/ u1;u1 � u2/

� Ndiv

	
kb1 � b2kV ku1kV ku1 � u2kV

� Ndiv k fkH�1.˝/

	2
kb1 � b2kV ku1 � u2kV

< kb1 � b2kV ku1 � u2kV :

It follows that

kNconvb1 � Nconvb2kV D ku1 � u2kV < kb1 � b2kV 8 b1; b2 2 Vdiv;

which is the contraction property for Nconv. The existence and uniqueness of a
solution of problem (6.4) follows now with the fixed point theorem of Banach,
Theorem A.68. The uniqueness of the solution of problem (6.2) is a consequence of
the fact that V and Q satisfy the inf-sup condition (3.14), see Theorem 3.46. �

Lemma 6.21 (Stability of the Solution) Let .u; p/ 2 V � Q be any solution
of (6.2), then

krukL2.˝/ � 1

	
k fkH�1.˝/ ; (6.49)

kpkL2.˝/ � 1

ˇis

�
2 k fkH�1.˝/ C C

	2
k fk2H�1.˝/

�
: (6.50)

Proof The proof starts in the usual way by choosing as test function .v; q/ D .u; p/
in (6.3)

.	ru;ru/C n.u;u;u/ D h f ;uiV0;V ;

where n.�; �; �/ is any of the convective terms introduced in Remark 6.8. With (6.26)–
(6.28), it follows that

	 kruk2L2.˝/ D h f ;uiV0;V :

The application of the inequality for the dual pairing gives

	 kruk2L2.˝/ � k fkH�1.˝/ krukL2.˝/ :

This inequality is equivalent to (6.49).
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Starting with the inf-sup condition, one obtains for the pressure with insert-
ing (6.3), the estimate for the dual pairing, the Cauchy–Schwarz inequality (A.10),
and (6.35)

kpkL2.˝/ � 1

ˇis
sup

v2Vnf0g
�.r � v; p/
krvkL2.˝/

D 1

ˇis
sup

v2Vnf0g
. f ; v/ � .	ru;rv/ � n.u;u; v/

krvkL2.˝/

� 1

ˇis

	
k fkH�1.˝/ C 	 krukL2.˝/ C C kruk2L2.˝/



:

The statement follows now by inserting the stability estimate (6.49) for the velocity.
�

Remark 6.22 (Directional Do-Nothing Condition) The Navier–Stokes equations
equipped with the directional do-nothing condition (2.41) on some part of the
domain are analyzed in Braack and Mucha (2014). In particular, the existence of
a weak solution is proved. ut

6.2 The Galerkin Finite Element Method

Remark 6.23 (Contents) This section discusses finite element error estimates. The
essential approaches were already presented for the Galerkin discretizations of the
Stokes and the Oseen problem. For the steady-state Navier–Stokes equations, in
addition an estimate of the nonlinear (trilinear) term is necessary. ut
Remark 6.24 (The Galerkin Finite Element Formulation of the Steady-State Navier–
Stokes Equations) Let Vh � V and Qh � Q be inf-sup stable finite element spaces,
i.e., (3.51) is fulfilled. Then, the Galerkin finite element discretization of the steady-
state Navier–Stokes equations reads as follows: Find .uh; ph/ 2 Vh � Qh such that

	
�ruh;rvh

�C n
�
uh;uh; vh

�� �r � vh; ph
� D h f ; vhiV0;V 8 vh 2 Vh;

� �r � uh; qh
� D 0 8 qh 2 Qh;

(6.51)

where n.�; �; �/ is any of the convective terms introduced in Remark 6.8. An
equivalent formulation is as follows: Find .uh; ph/ 2 Vh � Qh such that

	
�ruh;rvh

�C n
�
uh;uh; vh

�� �r � vh; ph
�C �r � uh; qh

� D h f ; vhiV0;V (6.52)

for all .vh; qh/ 2 Vh � Qh.
By the satisfaction of the discrete inf-sup condition, it is known that the space

Vh
div is not empty, see Remark 3.16.
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Existence and uniqueness of a solution are proved in the similar way as for
the continuous equation. In particular, a unique solution can be expected only for
small external forces (right-hand side) and a large viscosity. A discrete analog to
condition (6.48) will be assumed throughout this section. ut
Remark 6.25 (On the Convective Term for the Finite Element Error Analysis) A
main tool of the analysis of the Oseen equations is property (5.4) that states that
the convective term vanishes if the convection field is (weakly) divergence-free and
the ansatz and test functions are identical. A similar property for the different types
of the nonlinear convective term of the continuous Navier–Stokes equations was
proved in Lemma 6.10.

For nconv.�; �; �/, the proof of this property relies on the assumption that the
convection field is weakly divergence-free. Since generally Vh

div 6� Vdiv, see
Remark 3.56, finite element velocity fields will be usually not weakly divergence-
free and the convective term nconv

�
uh; vh; vh

�
will not vanish for uh 2 Vh

div and
vh 2 Vh.

In contrast, it is obvious to observe that

nskew
�
uh; vh; vh

� D 1

2

�
nconv

�
uh; vh; vh

� � nconv
�
uh; vh; vh

�� D 0 (6.53)

for all uh; vh 2 Vh. Analogously to the proof of Lemma 6.10, one finds by direct
computations that also

nrot
�
uh; vh; vh

� D 0 8 uh; vh 2 Vh (6.54)

and

ndiv
�
uh; vh; vh

� D 0 8 uh; vh 2 Vh: (6.55)

Main tools in the finite element error analysis of the convective term are
properties of the form (6.53)–(6.55), and estimates of the convective term from
above, see (6.36) and (6.37).

Usually, one finds in the literature that the analysis is carried out for the skew-
symmetric form of the convective term. The presentation below will also use this
form. ut
Theorem 6.26 (Existence and Uniqueness of the Galerkin Finite Element Solu-
tion for Small Data) Let the assumptions of Theorem 6.17 be satisfied and let in
addition

Nh
div k fkH�1.˝/

	2
< 1; (6.56)
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where

Nh
div D sup

uh;vh;wh2Vh
divnf0g

1
2

�
..uh � r/vh;wh/� ..uh � r/wh; vh/

�
kuhkV kvhkV kwhkV

: (6.57)

If a pair of finite element spaces Vh � Qh is used that satisfies the discrete inf-sup
condition (3.51), then problem (6.51) with n

�
uh;uh; vh

� D nskew
�
uh;uh; vh

�
has a

unique solution .uh; ph/ 2 Vh � Qh.

Proof The proof follows the lines for proving the uniqueness of the solution for the
continuous problem, see Theorem 6.20. One considers now an Oseen problem in
Vh

div: Given bh 2 Vh
div, find uh 2 Vh

div such that for given f 2 V 0

�
	ruh;rvh

�C 1

2

���
bh � r�uh; vh

�� ��
bh � r� vh;uh

�� D h f ; viV0;V 8 v 2 Vh
div:

Analogously to Corollary 5.12, the existence of a unique solution of this problem
is proved and a stability estimate of the form (5.14) is derived as in Lemma 5.13.
Note that for both statements it is not of importance whether the convection field
is weakly divergence-free or only discretely divergence-free, but only the vanishing
of the convective term is used in the case that the last two arguments are identical.
Then, one defines a linear operator Nh

conv W Vh
div ! Vh

div which maps bh ! uh. Now,
one shows, analogously to the proof of Theorem 6.20, that Nh

conv is bounded and that
it is a contraction. �

Lemma 6.27 (Stability of the Finite Element Solution) Let Vh � Qh be a pair of
inf-sup stable finite element spaces. Then, the finite element solution of the steady-
state Navier–Stokes equations with skew-symmetric form of the convective term is
stable

��ruh
��

L2.˝/
� 1

	
k fkH�1.˝/ ; (6.58)

��ph
��

L2.˝/
� 1

ˇh
is

�
2 k fkH�1.˝/ C C

	2
k fk2H�1.˝/

�
: (6.59)

Proof The proof is performed analogously to the proof of Lemma 6.21. �
Theorem 6.28 (Finite Element Error Estimate for the L2.˝/ Norm of the
Gradient of the Velocity) Let ˝ � R

d, d 2 f2; 3g, be a bounded domain with
polyhedral and Lipschitz continuous boundary, let (6.48) be fulfilled, and let instead
of (6.56) the stronger condition

Nh
div k fkH�1.˝/

	2
� 1

4
; (6.60)
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be satisfied. Let .u; p/ 2 V � Q be the unique solution of the Navier–Stokes
equations (6.2). Assume that this problem is discretized with inf-sup stable finite
element spaces Vh � Qh using the skew-symmetric form of the convective term and
denote by uh 2 Vh

div the velocity solution. Then, the following error estimate holds

��r.u � uh/
��

L2.˝/ � C

 �
1C 1

	2
k fkH�1.˝/

�
inf

vh2Vh
div

��r �
u � vh

���
L2.˝/

C1

	
inf

qh2Qh

��p � qh
��

L2.˝/

�
: (6.61)

The constant C does not depend on the mesh size.

Proof The principle of the proof is the same as for the Stokes equations, see
Theorem 4.21. Since the space Vh

div is not empty, one can use test functions vh 2 Vh
div

in (6.3) and (6.52) and subtract these equations to obtain the following error equation

	
�r.u � uh/;rvh

�C nskew
�
u;u; vh

� � nskew
�
uh;uh; vh

� � �r � vh; p � qh
� D 0

for all vh 2 Vh
div and all qh 2 Qh. In this step, also

�r � vh; qh
�

for all qh 2 Qh

was applied. Next, the error is decomposed in an approximation error and a discrete
remainder

u � uh D �
u � Ihu

� � �
uh � Ihu

� D �� �h; Ihu 2 Vh
div: (6.62)

Inserting this decomposition in the error equation and setting vh D �h leads to

	
��r�h

��2
L2.˝/

D 	
�r�;r�h

� � �r � �h; p � qh
�

(6.63)

Cnskew
�
u;u;�h

� � nskew
�
uh;uh;�h

� 8 qh 2 Qh:

The first two terms are estimated in a similar way as for the Oseen equations,
compare the proof of Theorem 5.14,

	
�r�;r�h

� � 2	 kr�k2L2.˝/ C 	

8

��r�h
��2

L2.˝/
;

and

�r � �h; p � qh
� � 2

	

��p � qh
��2

L2.˝/ C 	

8

��r�h
��2

L2.˝/ :



320 6 The Steady-State Navier–Stokes Equations

The new aspect for the Navier–Stokes equations is the estimate of the trilinear terms.
Such terms are written in the form

aa � bb D aa � ab C ab � bb D a.a � b/C .a � b/b:

The differences are used to introduce approximation errors in the estimate. Applying
this approach and using (6.62) yields

nskew
�
u;u;�h

� � nskew
�
uh;uh;�h

�
D nskew

�
u;u;�h

� � nskew
�
u;uh;�h

�C nskew
�
u;uh;�h

� � nskew
�
uh;uh;�h

�
D nskew

�
u;u � uh;�h

�C nskew
�
u � uh;uh;�h

�
(6.64)

D nskew
�
u;�;�h

� � nskew
�
u;�h;�h

�C nskew
�
�;uh;�h

� � nskew
�
�h;uh;�h

�
:

The term with �h in the last two arguments vanishes by (6.53). Now, all terms
are estimated separately, using (6.36), Young’s inequality (A.5), and the stability
estimates (6.49) and (6.58). For the first term, one obtains

nskew
�
u;�;�h

� � C krukL2.˝/ kr�kL2.˝/

��r�h
��

L2.˝/

� 2C

	
kr�k2L2.˝/ kruk2L2.˝/ C 	

8

��r�h
��2

L2.˝/

� C

	3
kr�k2L2.˝/ k fk2H�1.˝/ C 	

8

��r�h
��2

L2.˝/ :

The estimate for the third term is performed analogously, yielding

nskew
�
�;uh;�h

� � C

	3
kr�k2L2.˝/ k fk2H�1.˝/ C 	

8

��r�h
��2

L2.˝/
:

The problematic term, for which the assumption on the smallness of the data is
required, is the last one. With (6.57), (6.58), and (6.60), one gets

nskew
�
�h;uh;�h

� � Nh
div

��ruh
��

L2.˝/

��r�h
��2

L2.˝/

� 4Nh
div k fkH�1.˝/

	2

		
4

��r�h
��2

L2.˝/




� 	

4

��r�h
��2

L2.˝/
:

This term can be absorbed in the left-hand side of (6.63).
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Substituting all estimates in (6.63) gives

��r�h
��2

L2.˝/
� C

�
kr�k2L2.˝/ C 1

	2

��p � qh
��2

L2.˝/
C 1

	4
kr�k2L2.˝/ k fk2H�1.˝/

�
:

The application of the triangle inequality finally leads to

��r �
u � uh

���
L2.˝/

� kr�kL2.˝/ C ��r�h
��

L2.˝/

� C

��
1C 1

	2
k fkH�1.˝/

�
kr�kL2.˝/ C 1

	

��p � qh
��

L2.˝/

�

for all qh 2 Qh. This estimate gives the statement of the theorem. �

Remark 6.29 (On Theorem 6.28)

• From the proof of Theorem 6.28, it is clear that condition (6.60) can be relaxed to

Nh
div k fkH�1.˝/

	2
� q < 1

by applying different scalings in the applications of Young’s inequality. However,
large values of q in the analysis lead to a large constant C in the error
bound (6.61).

• Instead of (6.64), the difference of the nonlinear terms can be rearranged as
follows

nskew
�
u;u;�h

� � nskew
�
uh;uh;�h

�
D nskew

�
u;u;�h

� � nskew
�
uh;u;�h

�C nskew
�
uh;u;�h

�
�nskew

�
uh;uh;�h

�
D nskew

�
u � uh;u;�h

�C nskew
�
uh;u � uh;�h

�
(6.65)

D nskew
�
�;u;�h

� � nskew
�
�h;u;�h

�C nskew
�
uh;�;�h

�
�nskew

�
uh;�h;�h

�
:

The last term vanishes since the last both arguments are identical. Now, the
problematic term is the second one. This term can be hidden in the left-hand
side if a condition of the form

Ndiv k fkH�1.˝/

	2
� 1

4

is satisfied.
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• Another rearrangement of the convective terms, which can be found in the
literature, uses the definition (6.25) of the skew-symmetric form and (6.13),
leading to

nskew
�
u;u;�h

� � nskew
�
uh;uh;�h

�

D nconv
�
u � uh;u;�h

�C nconv
�
uh;�;�h

� � 1

2

�r � uh;�h � Ihu
�
:

Estimating these terms requires higher regularity assumptions, e.g., ru 2
L1.˝/, compare Arndt et al. (2015). ut

Theorem 6.30 (Finite Element Error Estimate for the L2.˝/ Norm of the
Pressure) Let the assumptions of Theorem 6.28 be fulfilled, then the following error
estimate for the pressure holds

��p � ph
��

L2.˝/ � C
	

ˇh
is

�
1C k fkH�1.˝/

	2

�2
inf

vh2Vh
div

��r �
u � vh

���
L2.˝/

CC

�
1C 1

ˇh
is

�
1C k fkH�1.˝/

	2

��
inf

qh2Qh

��p � qh
��

L2.˝/
: (6.66)

The constants do not depend on the mesh size.

Proof The proof follows the lines of the proofs of Theorems 4.25 and 5.15.
The triangle inequality gives for all qh 2 Qh

��p � ph
��

L2.˝/ � ��p � qh
��

L2.˝/ C ��ph � qh
��

L2.˝/ : (6.67)

The estimate of the second term starts with the discrete inf-sup condition (3.51) and
the insertion of the finite element problem (6.51) as well as the variational form of
the steady-state Navier–Stokes equations (6.2)

��ph � qh
��

L2.˝/

� 1

ˇh
is

sup
vh2Vhnf0g

b
�
vh; ph � qh

�
krvhkL2.˝/

(6.68)

D 1

ˇh
is

sup
vh2Vhnf0g

 
	
�r.u � uh/;rvh

� � �r � vh; p � qh
�

krvhkL2.˝/

Cnskew
�
u;u; vh

�� nskew
�
uh;uh; vh

�
krvhkL2.˝/

!
:
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In the next step, an identity like (6.64) is used

nskew
�
u;u; vh

� � nskew
�
uh;uh; vh

�
D nskew

�
u;u � uh; vh

�C nskew
�
u � uh;uh; vh

�
:

Inserting this identity, using the Cauchy–Schwarz inequality (A.10), the esti-
mate (6.36) for the trilinear term, (3.170), and the stability estimates (6.49)
and (6.58) leads to

��ph � qh
��

L2.˝/

� 1

ˇh
is

	
	
��r.u � uh/

��
L2.˝/

C C krukL2.˝/

��r.u � uh/
��

L2.˝/

CC
��ruh

��
L2.˝/

��r.u � uh/
��

L2.˝/
C ��p � qh

��
L2.˝/




D C

ˇh
is

��
	 C k fkH�1.˝/

	

���r.u � uh/
��

L2.˝/
C ��p � qh

��
L2.˝/

�
:

Using this estimate in (6.67) gives

��p � ph
��

L2.˝/

� C

ˇh
is

	

�
1C k fkH�1.˝/

	2

���r.u � uh/
��

L2.˝/ C
�
1C C

ˇh
is

���p � qh
��

L2.˝/ :

Inserting now estimate (6.61) for
��r.u � uh/

��
L2.˝/

finishes the proof. �

Remark 6.31 (Dual Linearized Problem) The application of the classical argument
by Aubin (1967) and Nitsche (1968) for proving an estimate for the L2.˝/ error
of the velocity is based on the consideration of a dual linearized problem for the
steady-state Navier–Stokes equations. The procedure for deriving the operator of
the dual problem is explained in Remark 4.27 and the linearization of the Navier–
Stokes equations will be discussed in Sect. 6.3.

Consider the Navier–Stokes equations in Vdiv and let w 2 Vdiv be an arbitrary
element. Then, the linearization of the convective term of the Navier–Stokes
equations at w is given by the left-hand side of (6.86) below, which reads as follows

n .w;u; v/C n .u;w; v/ 8 v 2 Vdiv: (6.69)

Here, u 2 Vdiv is the solution of the Navier–Stokes equations.
The first term of (6.69) can be reformulated using (6.24)

n .w;u; v/ D �n .w; v;u/ :
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For the second term, (6.12) is applied, which gives

n .u;w; v/ D �
.rw/T v;u

�
:

Denoting the velocity field of the dual linearized problems by � and applying the
approach explained in Remark 4.27 reveals that one gets as contribution of the
linearized convective terms to the dual equation

� n .w;�; v/C �
.rw/T �; v

� D �n .w;�; v/ � �
.r�/T w; v� ; (6.70)

where (6.12) and (6.24) have been used for deriving the second form. The terms
from (6.70) correspond to the strong forms

�.w � r/�C .rw/T � or � .w � r/� � .r�/T w:

These are a convective term and a reactive term. However the convection field of the
dual problem (6.70) is the negative of the convection field of the linearized Navier–
Stokes problem (6.69). Note that with (6.12) and (6.24), the terms in (6.70) can be
written in the form

� n .w;�; v/C �
.rw/T �; v

� D n .w; v;�/C n .v;w;�/ : (6.71)

Deriving the other terms for the dual linearized problem in the same way as for
the Stokes equations, compare Remark 4.27, and using the skew-symmetric form of
the convective term in (6.71), such that this form can be used in the finite element
error analysis, leads to the following dual linearized problem: For given Of 2 L2.˝/
and w 2 Vdiv, find .�Of ; Of / 2 V � Q such that

.	rv;r�Of /C nskew

	
w; v;�Of



C nskew

	
v;w;�Of



C .r � v; Of / D

	Of ; v


;

.r � �Of ; q/ D 0 (6.72)

for all .v; q/ 2 V � Q. Again, the general dual linearized problem might have a non-
vanishing right-hand side in the second equation. Problem (6.72) is called regular,
if the mapping

	
�Of ; Of



7! Of (6.73)

is an isomorphism from
�
H2.˝/\ V

���H1.˝/\ Q
�

onto L2.˝/, see Remark 4.27
for a short discussion on the regularity of such mappings. ut
Theorem 6.32 (Finite Element Error Estimate for the L2.˝/ Norm of the
Velocity) Let the assumption of Theorem 6.28 hold and let .�Of ; Of / be the solution
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of (6.72). Then, it holds for the L2.˝/ error of the velocity

��u � uh
��

L2.˝/
� sup

Of2L2.˝/nf0g

1���Of
���

L2.˝/

�
(

inf
�h2Vh

div

"	
	
��r �

u � uh
���

L2.˝/
C ��p � qh

��
L2.˝/

CC krukL2.˝/

��r �
u � uh

���
L2.˝/


 ���r
	
�Of � �h


���
L2.˝/

(6.74)

CC
��r �

u � uh
���2

L2.˝/

��r�h
��

L2.˝/

#

C inf
rh2Qh

���Of � rh
���

L2.˝/

��r �
u � uh

���
L2.˝/

)
:

Proof The proof proceeds analogously to the proof of Theorem 4.28. The only
difference is the appearance of the trilinear terms in the dual problem (6.72), which
is considered for w D u, and in introducing these expressions on the right-hand side
of (4.32). Considering only these terms, using the test function v D u � uh, and
applying (6.64) yields

nskew

	
u;u � uh;�Of



C nskew

	
u � uh;u;�Of



C nskew

�
u;u;�h

�� nskew
�
uh;uh;�h

�

D nskew

	
u;u � uh;�Of



C nskew

	
u � uh;u;�Of



C nskew

�
u;u � uh;�h

�

Cnskew
�
u � uh;uh;�h

�

D nskew

	
u;u � uh;�Of � �h



C nskew

	
u � uh;u;�Of � �h




Cnskew
�
u � uh;u � uh;�h

�
:

All these terms can be estimated with (6.36). The other terms are the same terms as
for the Stokes problem and they are estimated as shown in (4.34). Summarizing all
estimates gives the error estimate (6.74). �

Corollary 6.33 (Finite Element Error Estimates for Conforming Pairs of Finite
Element Spaces) Let the assumptions of Theorem 6.28 be fulfilled, let˝ � R

d, d 2
f2; 3g, be a bounded domain with polyhedral and Lipschitz continuous boundary
which is decomposed by a regular and quasi-uniform family of triangulations
fT hg, and let .u; p/ be the unique solution of the steady-state Navier–Stokes
equations (6.2) with u 2 HkC1.˝/ \ V and p 2 Hk.˝/ \ Q. Then for the inf-sup
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stable pairs of finite element spaces

• Pbubble
k =Pk, k D 1 (MINI element),

• Pk=Pk�1, Qk=Qk�1, k � 2 (Taylor–Hood element),
• Pbubble

2 =Pdisc
1 , Pbubble

3 =Pdisc
2 , PBR

2 =Pdisc
1 , Qk=Pdisc

k�1, k � 2,

the following error estimates hold

��r.u � uh/
��

L2.˝/ � Chk

�
1

	2
kukHkC1.˝/ C 1

	
kpkHk.˝/

�
; (6.75)

��p � ph
��

L2.˝/ � Chk

�
1

	3
kukHkC1.˝/ C 1

	2
kpkHk.˝/

�
: (6.76)

The constant in (6.75) depends either on the inverse of the discrete inf-sup constant
ˇh

is or on the inverse of local inf-sup constants, compare Remark 4.29. The constant
in (6.76) does depend on the inverse of the discrete inf-sup constant ˇh

is.
If the solution .�Of ; Of / of the dual linearized Navier–Stokes equations is regular

in the sense of Remark 6.31, then it holds additionally
��u � uh

��
L2.˝/

� ChkC1 �kukHkC1.˝/ C kpkHk.˝/

�
: (6.77)

The constant C depends on the constants of estimates (6.75), (6.76), and on inverse
powers of 	.

Proof The first two estimates follow directly from (6.61), (6.66), and the approx-
imation properties of the finite element spaces. If the constant in (6.61) depends
on local inf-sup constants or the global discrete inf-sup constant depends on
whether (3.71) can be applied or (3.65) has to be used. The dependency of the
constant in (6.76) on

�
ˇh

is

��1
follows directly from (6.66).

For deriving estimate (6.77), one uses estimate (6.74) and applies (6.75)
and (6.76). The additional power of h is a result of the regularity of the dual
linearized Navier–Stokes equations and the application of the interpolation estimate,
see Theorem C.13, compare the proof of Corallary 4.30. Note that the term
krukL2.˝/ in (6.74) is estimated in (6.49) by the right-hand side of the Navier–
Stokes equations. The other term can be bounded using the triangle inequality, the
interpolation estimate (C.7), and the regularity of the dual linearized problem by

��r�h
��

L2.˝/
�
���r�Of

���
L2.˝/

C
���r

	
�Of � �h


���
L2.˝/

� C
���Of
���

L2.˝/
:

�

Remark 6.34 (Dependency on 	 in Comparison with the Oseen Equations) It shall
be recalled that the case of very small 	 is not of practical interest for the steady-state
Navier–Stokes equations, compare Remark 6.16.

For the Oseen equations, the constants in the error bounds for the L2.˝/ errors
of the gradient of the velocity and the pressure depend only on 	�1, compare the
discussion in Remark 5.17. It follows from (6.75) and (6.66) that there is a stronger
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dependency for the Navier–Stokes equations. Formally, the difference arises on
the one hand from absorbing the term kbkL1.˝/ from the convection field in the
constants of the error bounds for the Oseen equations because kbkL1.˝/ D O .1/ is
assumed. On the other hand, the terms krukL2.˝/ and

��ruh
��

L2.˝/
are estimated

with the stability bounds (6.49) and (6.58) in the case of the Navier–Stokes
equations, which gives an extra negative power of 	. Assuming that the convection
field of the Oseen equations behaves like the convection field of the Navier–Stokes
equations, then the constant Cos from (5.16) scales like O

�
	�3=2� such that one

obtains in the error bounds (5.23) and (5.24) (for c D 0) the same dependency on
the viscosity as for the Navier–Stokes equations. ut
Example 6.35 (Analytical Example Which Supports the Error Estimates) Exam-
ple D.3 is considered, for detailed information to the simulations it is also referred
to Example 4.31.

Figures 6.1, 6.2, and 6.3 show results that were obtained for 	 D 10�2 and the
grids from Fig. 4.2. The stopping criterion for the solution of the nonlinear problems
was the requirement that the Euclidean norm of the residual vector was less than
10�10. The convective form of the convective term was used in the simulations.

Fig. 6.1 Example 6.35. Convergence of the errors
��r.u � uh/

��
L2.˝/ for different discretizations

with different orders k
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Fig. 6.2 Example 6.35. Convergence of the errors
��p � ph

��
L2.˝/ for different discretizations with

different orders k

The order of convergence for errors in different norms coincide generally with the
predictions from the numerical analysis. Only for the L2.˝/ norm of the pressure
and the MINI element Pbubble

1 =P1, a higher order than expected can be observed.
There are generally little differences with respect to the accuracy among different
pairs of spaces with the same order. Only the results obtained with Pbubble

3 =Pdisc
2

are somewhat more accurate than the results of the other pairs with third order
velocity and second order pressure. For some pairs, the nonlinear problem on the
coarsest grid could not be solved. Round-off errors, due to the choice of the stopping
criterion, can be seen for the highest order pairs on the finest meshes.

Figure 6.4 presents results for the Q2=Q1 finite element and different values of
	. One can observe on coarser grids larger velocity errors for smaller coefficients
	. For finer grids, the errors

��r �
u � uh

���
L2.˝/

and
��p � ph

��
L2.˝/

do not show

a dependency on 	. Also the curve for
��u � uh

��
L2.˝/ and 	 D 1=400 seems to

converge to the other curves. ut

Example 6.36 (Flow Around a Cylinder in Two Dimensions) This problem is
described in Example D.5.
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Fig. 6.3 Example 6.35. Convergence of the errors
��u � uh

��
L2.˝/ for different discretizations with

different orders k

Simulations were performed with the convective form nconv.�; �; �/ of the convec-
tive term and different inf-sup stable pairs of finite element spaces on triangular
and quadrilateral grids. The initial grids (level 0) are presented in Fig. 6.5. The
considered problem, with Dirichlet conditions at the outflow (D.14), was studied
comprehensively in John and Matthies (2001). In these studies, it was shown that
the use of isoparametric finite elements at the cylinder is essential for obtaining
accurate results for higher order finite element discretizations. For isoparametric
elements, the same functions are used for the construction of the finite element
spaces and the definition of the map from the reference cell to the physical mesh
cell. In this way, one obtains a better approximation of the boundary 
cyl, but not
yet the correct representation. Isoparametric finite elements were used in the studies
presented here. The approximation of the boundary of the cylinder is denoted by

 h

cyl. The solution of the nonlinear systems was stopped if the Euclidean norm of the
residual vector was less than 10�15.

For computing the drag and the lift coefficient, the volume formulations (D.16)
and (D.17) with the convective form of the convection term were used. In these
formulations, one has to specify the functions wd and wl in the interior of ˝ .
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Fig. 6.4 Example 6.35. Convergence of the errors for different values of 	, Q2=Q1 finite element

Fig. 6.5 Example 6.36. Initial grids (level 0) used for the simulations

Because these functions are up to the boundary arbitrary functions, one can use in
actual computations finite element functions with appropriate boundary values. For
the results presented below, the functions were chosen in such a way that they have
the same order as the finite element velocity, the degrees of freedom at 
 h

cyl were set
to be one in the needed component, and all other degrees of freedom were set to be
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Γcyl

Fig. 6.6 Example 6.36. Choice of wd and wl for Q2. In the filled bullets, the value 1 was set in
the respective component, in the empty bullets the finite element functions have value 0. The filled
mesh cells form the domain of integration in (D.16) and (D.17)

zero, see Fig. 6.6. With this approach, only the evaluation of volume integrals in one
layer of mesh cells around the circle is necessary for computing the coefficients.

The used grids possess nodes in the points .0:15; 0:2/ and .0:25; 0:2/. Thus, the
finite element pressure for discretizations with discontinuous pressure approxima-
tion is generally not continuous in these points. For computing the difference of the
pressure (D.18), the values of the finite element pressure coming from all mesh cells
with the node .0:15; 0:2/ or .0:25; 0:2/, respectively, were averaged.

Results for the drag coefficient, the lift coefficient, and the difference of the
pressure between the front and the back of the cylinder are presented in Figs. 6.7,
6.8, 6.9, and 6.10. It can be seen that many results show a certain order of
convergence. To the best of our knowledge, a numerical analysis of this phenomenon
is not available. A possible approach was presented in John et al. (1998). It is
however not clear if the regularity assumptions on the solution of the continuous
problem assumed in this paper are always true.

Comparing the results of discretizations with different order, the higher accuracy
of third order velocity/second order pressure compared with second order veloc-
ity/first order pressure can be observed also for quantities of interest that are not
errors in norms of Sobolev spaces. The comparatively inaccurate results for the
Pbubble
2 =Pdisc

1 pair of spaces are notable. It can be also seen that with discontinuous
pressure approximations and averaging of pressure values, comparatively inaccurate
results for the pressure difference are obtained, see Fig. 6.10. ut
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Fig. 6.7 Example 6.36. Convergence of the drag coefficient for different pairs of finite element
spaces, boundary conditions (D.15), reference value (D.19). The results for boundary condition
(D.14) are almost identical

Fig. 6.8 Example 6.36. Convergence of the lift coefficient for different pairs of finite element
spaces, Dirichlet boundary conditions (D.14), reference value (D.20)

Remark 6.37 (Convective Forms in Simulations) Despite the lack of a finite element
error analysis, the convective form of the convective term is often used in simula-
tions. But also the use of the other forms can be found in the literature. In particular,
the rotational form became somewhat popular in recent years.

Comprehensive studies on the advantages and drawbacks of the different forms
of the convective term were performed in Rockel (2013). Concerning the accuracy
of the results, generally only minor differences could be observed between using the
convective, the skew-symmetric, and the divergence form of the convective term.
The rotational form led sometimes to notably more inaccurate numerical solutions.
It is reported in Olshanskii (2002) that applying the grad-div stabilization in this
case improves the accuracy of the results. ut
Remark 6.38 (Other Discretizations) All methods that were described for the
Stokes and Oseen equations, like stabilizations with respect to the violation of the
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Fig. 6.9 Example 6.36. Convergence of the lift coefficient for different pairs of finite element
spaces, do-nothing boundary conditions (D.15), reference value (D.22)

Fig. 6.10 Example 6.36. Convergence of the pressure difference for different pairs of finite
element spaces, boundary conditions (D.15), reference value (D.21). The results for boundary
condition (D.14) are almost identical

discrete inf-sup condition, stabilizations with respect to dominating convection, and
non-conforming finite element spaces, can be applied in the numerical simulation
of the steady-state Navier–Stokes equations. The detailed discussion of all these
methods is beyond the scope of this monograph, therefore it will be referred to the
literature. ut

6.3 Iteration Schemes for Solving the Nonlinear Problem

Remark 6.39 (General Fixed Point Iteration) The Navier–Stokes equations (6.3)
can be written in operator form, see also Remark 3.4 for this concept,
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0 D f � Au � Nuu � B0p C Bu in V 0 � Q0;

where Nu W V ! V 0 is the operator for the nonlinear convective term. Applying
now an injective linear operator N�1

lin W V 0 � Q0 ! V � Q yields

0 D N�1
lin 0 D N�1

lin

�
f � Au � Nuu � B0p C Bu

�
in V � Q:

Then, the operator N�1
lin . f � Au � Nuu � B0p C Bu/ is a map from V � Q ! V � Q

and to this map, the standard approach for a fixed point iteration can be applied:
Given

�
u.m/; p.m/

� 2 V � Q, compute
�
u.mC1/; p.mC1/� 2 V � Q by

�
u.mC1/
p.mC1/

�
D
�
u.m/

p.m/

�
� #N�1

lin

�h f ; viV0;V � N
�
u.m/Iu.m/; p.m/�
0

�
; (6.78)

where

N .wIu; p/ D
�

a.u; v/C n.w;u; v/C b.v; p/
b.u; q/

�

and # 2 .0; 1� is a damping factor. For convenience of notation, the operators are
replaced by the bilinear forms.

An iteration of form (6.78) requires the solution of a linear problem. Let Nlin W
range

�
N�1

lin

� ! V 0 � Q0 be the inverse operator of N�1
lin , then the linear problem has

the form

Nlin

�
ıu.mC1/
ıp.mC1/

�
D
�h f ; viV0;V � N

�
u.m/Iu.m/; p.m/�
0

�
:

Writing the update in the form

�
ıu.mC1/
ıp.mC1/

�
D
� Qu.mC1/ � u.m/

Qp.mC1/ � p.m/

�
;

the linear system can be reformulated for a new velocity and pressure solution

Nlin

� Qu.mC1/

Qp.mC1/
�

D
�h f ; viV0;V � N

�
u.m/Iu.m/; p.m/�
0

�
C Nlin

�
u.m/

p.m/

�
: (6.79)

ut
Remark 6.40 (Fixed Point Iteration with Scaled Stokes Equations) A simple itera-
tive approach is obtained by setting

Nlin D N
	
0I Qu.mC1/; Qp.mC1/



:
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Inserting this expression in (6.79) gives

�
a. Qu.mC1/; v/C b.v; Qp.mC1//

b. Qu.mC1/; q/

�

D
�h f ; viV0;V � a.u.m/; v/� n.u.m/;u.m/; v/� b.v; p.m//

�b.u.m/; q/

�

C
�

a.u.m/; v/C b.v; p.m//
b.u.m/; q/

�

D
�h f ; viV0;V � n.u.m/;u.m/; v/

0

�
:

These equations are scaled Stokes equation, see (4.153).
This approach requires only the solution of a scaled Stokes problem with the

same matrix and with a different right-hand side in each iteration step. It is well
known for poor convergence properties in the case that 	 is not sufficiently large.
That means, it converges only with the application of strong damping or there is
even no convergence at all if the initial iterate is not sufficiently close to the solution.
Therefore, this type of fixed point iteration is in general not recommended and it will
not be considered further here. ut
Remark 6.41 (Picard Iteration) The so-called Picard iteration is obtained by setting

Nlin D N
	
u.m/I Qu.mC1/; Qp.mC1/
 :

One obtains for the linear system (6.79) to be solved

�
a. Qu.mC1/; v/C n.u.m/; Qu.mC1/; v/C b.v; Qp.mC1//

b. Qu.mC1/; q/

�

D
�h f ; viV0;V � a.u.m/; v/� n.u.m/;u.m/; v/� b.v; p.m//

�b.u.m/; q/

�

C
�

a.u.m/; v/C n.u.m/;u.m/; v/C b.v; p.m//
b.u.m/; q/

�

D
�h f ; viV0;V

0

�
: (6.80)
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The different forms of the convective terms on the left-hand side of (6.80) look as
follows:

nconv

	
u.m/; Qu.mC1/; v



D
	�
u.m/ � r� Qu.mC1/; v



;

ndiv

	
u.m/; Qu.mC1/; v



D
	�
u.m/ � r� Qu.mC1/; v



C 1

2

	�r � u.m/� Qu.mC1/; v


;

nrot

	
u.m/; Qu.mC1/; v



D
	�r � u.m/

� � Qu.mC1/; v


;

nskew

	
u.m/; Qu.mC1/; v



D 1

2

h 	�
u.m/ � r� Qu.mC1/; v



�
	�
u.m/ � r� v; Qu.mC1/
 i:

Thus, using nconv

	
u.m/; Qu.mC1/; v



, one has to solve in (6.80) Oseen equations

with b D u.m/ and c D 0. For ndiv

	
u.m/; Qu.mC1/; v



, one obtains Oseen equations

with b D u.m/ and c D r � u.m/. In both cases, the equations are dominated by con-

vection if 	 is small compared with
��u.m/��

L1.˝/
. The use of nrot

	
u.m/; Qu.mC1/; v



leads to Oseen equations with b D 0 and the matrix

�r � u.m/
�

as coefficient of the
reactive term. In this case, there is no convection term in the linear problem.

Note that, in all cases, for finite element functions, the assumptions on the
coefficients of the Oseen equations which were made in the analysis of the Oseen
equations, see Remark 5.2, are generally not satisfied by the coefficients coming
from the fixed point iteration of the steady-state Navier–Stokes equations. That
means, uh;.m/ is generally not weakly divergence-free, r � uh;.m/ might be negative,
and numerical analysis for a matrix coefficients

�r � uh;.m/
�

is even not available
in the literature. However, even if such an analysis can be performed, the natural
extension of the assumptions on the scalar reaction coefficient to a matrix coefficient
would be that the matrix is symmetric and positive semi-definite. These assumptions
are generally not fulfilled by

�r � uh;.m/
�
.

The skew-symmetric form of the convective term does not lead to an equation of
Oseen type, since in the zeroth order term with respect to Qu.mC1/, the gradient of the
test function appears instead of the test function itself.

Approximation u.m/, it changes in every iteration. ut
Remark 6.42 (Picard Method: Structure of Matrices and Memory Requirements)
After having applied an inf-sup stable finite element method, the linear sys-
tem (6.80) has the saddle point form

�
A BT

B 0

� 
u
p

!
D
 

f
0

!
: (6.81)
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• Convective form of the convective term. In the finite element equation (6.80) that
arises in the fixed point iteration for solving the nonlinearity, the term

nconv

	
uh;.m/; Quh;.mC1/; vh



D
	�
uh;.m/ � r� Quh;.mC1/; vh



(6.82)

appears on the left-hand side. Here, uh;.m/ is a known finite element function.
Using the ansatz (4.89) for Quh;.mC1/ and considering a test function �h

i , one gets
for the convective form of the convective term

	�
uh;.m/ � r� Quh;.mC1/;�h

i



D

3NvX
jD1

uh
j

��
uh;.m/ � r��h

j ;�
h
i

�
:

Thus, the .i; j/-matrix entry is

.A/ij D
Z
˝

�
uh;.m/ � r��h

j � �h
i dx D

3X
kD1

Z
˝

��
uh;.m/ � r��h

j

�
k

�
�h

i

�
k

dx: (6.83)

The product
��
uh;.m/ � r��h

j

�
k

�
�h

i

�
k vanishes if the kth component of �h

j or

the kth component of �h
i vanishes. If �h

i and �h
j possess the same non-

vanishing component, the matrix entry is independent of the component. Thus,
the convective term in (6.82) leads to a matrix block of the velocity-velocity
coupling of the form

A D
0
@A11 0 0

0 A11 0

0 0 A11

1
A : (6.84)

• Divergence form of the convective term. In addition to matrix entries of
form (6.83), the divergence form introduces the following entries to .A/ij

1

2

Z
˝

�r � uh;.m/
�
�h

j � �h
i dx D 1

2

3X
kD1

Z
˝

�r � uh;.m/
� �
�h

j

�
k

�
�h

i

�
k

dx:

A contribution of this type occurs also for the Galerkin discretization of the
Oseen equations, see Remark 5.19. It is obvious that this entry is zero if the
non-vanishing components of �i and �j are not the same. Otherwise, the value
of this entry is independent of the index k of the non-vanishing entry. Altogether,
the matrix of the velocity-velocity coupling has the form (6.84).
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• Rotational form of the convective term. The matrix entry for the rotational form
is given by

.A/ij D ��r � uh;.m/
� � �h

j ;�
h
i

�

D
Z
˝

0
B@
�r � uh;.m/

�
2

�
�h

j

�
3

� �r � uh;.m/
�
3

�
�h

j

�
2�r � uh;.m/

�
3

�
�h

j

�
1

� �r � uh;.m/
�
1

�
�h

j

�
3�r � uh;.m/

�
1

�
�h

j

�
2

� �r � uh;.m/
�
2

�
�h

j

�
1

1
CA �

0
@
�
�h

i

�
1�

�h
i

�
2�

�h
i

�
3

1
A dx:

It follows that even if the non-vanishing components of �h
i and �h

j are different,
the resulting entry will not vanish. Hence, the matrix for the velocity-velocity
coupling has the form

A D
0
@A11 A12 A13

A21 A22 A23
A31 A32 A33

1
A ; (6.85)

which is the general form of this matrix.
• Skew-symmetric form of the convective term. Besides the half of the term (6.83),

the skew-symmetric form possesses the contribution

�1
2

Z
˝

�
uh;.m/ � r��h

i � �h
j dx D �1

2

3X
kD1

Z
˝

��
uh;.m/ � r��h

i

�
k

�
�h

j

�
k

dx

in .A/ij. From the same discussion as for (6.83), it follows that the matrix of the
velocity-velocity coupling has the block-diagonal form (6.84).

Summary Using the convective form, the divergence form, or the skew-symmetric
form of the convective term leads to block-diagonal matrices of form (6.84) in the
Picard iteration. Only the rotational form requires the use of a full block matrix of
form (6.85). ut

Remark 6.43 (Newton’s Method) In Newton’s method, one takes as linear operator
the derivative of the nonlinear operator at the current iterate

Nlin D DN
�
u.m/

p.m/

�
:

Considering the Gâteaux derivative, one obtains, using the linearity of N in each
argument,

DN
�
u
p

�
D lim

"!0

N .u C "�Iu C "�; p C " / � N .uIu; p/
"

D N .�Iu; p/C N .uI�; p/C N .u;u;  / :
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Using this operator as Nlin in (6.79) leads to

N
	

Qu.mC1/Iu.m/; p.m/



C N
	
u.m/I Qu.mC1/; p.m/



C N

	
u.m/;u.m/; Qp.mC1/


D
�h f ; viV0;V

0

�
� N

	
u.m/Iu.m/; p.m/



C N

	
u.m/Iu.m/; p.m/




CN
	
u.m/Iu.m/; p.m/



C N

	
u.m/;u.m/; p.m/



:

Collecting terms gives

0
@a
	

Qu.mC1/; v



C n
	
u.m/; Qu.mC1/; v



C n

	
Qu.mC1/;u.m/; v



C b

�
v; Qp.mC1/�

b
	

Qu.mC1/; q



1
A

D
�h f ; viV0;V C n

�
u.m/;u.m/; v

�
0

�
: (6.86)

In this method, the matrix and the right-hand side change in every iteration.
Problem (6.86) is an Oseen problem with b D u.m/ and the tensor-valued
reaction ru.m/. ut
Remark 6.44 (On Newton’s Method)

• The order of convergence of Newton’s method is expected to be better than of
the Picard iteration if the linear systems (6.86) are solved sufficiently accurately.

• Newton’s method involves the reactive term
��
u.mC1/ � r� u.m/; v� on the left-

hand side. This term does not fit into the theory of the Oseen equations, since the
required non-negativity of this term stated in Remark 5.2 is generally not given.

ut
Remark 6.45 (Newton’s Method: Structure of Matrices) The application of an inf-
sup stable finite element method to (6.86) leads to a linear saddle point problem of
form (6.81).

• Convective form of the convective term. The term

n
	
uh;.m/;uh;.mC1/; vh



C n

	
uh;.mC1/;u.h;m/; vh




D ��
uh;.m/ � r�uh;.mC1/; vh

�C ��
uh;.mC1/ � r� uh;.m/; vh

�
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arises on the left-hand side of the equation. The corresponding matrix entry for
the convective form of the convective term becomes

.A/ij D
3X

kD1

Z
˝

" �
uh;.m/ � r �

�h
j

��
k

� ��h
i

�
k

C
 

3X
lD1

�
�h

j

�
l
� r �

uh;.m/
�

l

!

k

� ��h
i

�
k

#
dx; i; j D 1; : : : ; dNv:

The sum in the second term is generally not zero for each index k since generally
r �

uh;.m/
�

l
does not vanish. It follows that the second term in general does

not vanish for each pair of indices .i; j/ with
ˇ̌
supp

�
�h

i

� \ supp
�
�h

j

�ˇ̌
> 0.

Hence, the matrix blocks Akl possess in general non-zero entries for all pairs
.k; l/. Altogether, the matrix which originates from the convective and reactive
term in (6.86) has the block form (6.85), where the blocks are in general
mutually different since different derivatives of uh;.m/ have to be considered in
the assembling of each block.

• Divergence form and skew-symmetric form of the convective term. Both forms
contain the term from the convective form. Since this term leads already to the
matrix (6.85) of the velocity-velocity coupling, also the matrices for these two
forms are of this type.

• Rotational form of the convective term. Already for the Picard iteration, the
rotational form of the convective term requires the general form (6.85) of a matrix
for the velocity-velocity coupling. With the additional term that is introduced
from Newton’s method, one gets the same form.

Summary The application of Newton’s method leads always to a matrix for the
velocity-velocity coupling of form (6.85) with mutually different blocks. ut
Remark 6.46 (Memory Requirements and Computational Costs for the Velocity-
Velocity Coupling) The matrix of the velocity-velocity coupling in the linear saddle
point problems (6.80) and (6.86) is the sum of the matrix which arises in the
discretization of the viscous term, see (4.93), and the matrix from the linearization of
the convective term. Using the gradient form of the viscous term and the convective
or divergence or skew-symmetric form of the convective term, then the velocity
coupling is of form (6.84), such that only one matrix block needs to be stored.
If Newton’s method is employed, always the general form (6.85) of the velocity-
velocity coupling is obtained. Note that with the appearance of more matrix blocks,
the costs for assembling and for performing matrix-vector products increase. ut
Example 6.47 (Picard Iteration vs. Newton’s Method) In each step of the Picard
iteration, a linear system of equations of form (6.80) has to be solved and in each
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step of Newton’s method, a linear system of equations of form (6.86). There are two
ways for performing this task:

• The linear system is solved exactly (up to round-off errors), e.g., with one of the
sparse direct solvers mentioned in Remark 9.5.

• An iterative method is applied for the solution of the linear system. In this case,
a usual approach consists in stopping the iteration after a few steps or after the
reduction of the Euclidean norm of the residual vector by a prescribed factor. In
this way, one performs an inexact solution of the linear system of equations.

For illustrating the behavior of the Picard iteration and of Newton’s method with
exact and inexact solutions of the arising linear systems of equations, the regularized
driven cavity problem, Example D.4, with different values for the viscosity 	 is
considered. The simulations were performed for the Q2=Pdisc

1 pair of finite element
spaces on a grid consisting of squares (level 0 with four squares). The iteration on
each level was started with a finite element velocity that took the value zero in all
degrees of freedom in˝ . The inexact solution process stopped after having reduced
the Euclidean norm of the residual vector by the factor 10 and at most 10 iterations
were performed. The prescribed stopping criterion for the iteration required that the
Euclidean norm of the residual vector should be smaller than 10�10.

Results for the simulations are presented in Table 6.1. From the general theory of
iterative schemes for nonlinear problems, it is known that the convergence radius
of the Picard iteration (simple fixed point iteration) is generally larger than for

Table 6.1 Example 6.47

Picard iteration Newton’s method

	 Level/lin. solver Inexact Exact Inexact Exact

1=100 2 14 26 8 5

3 15 14 7 5

4 14 14 7 5

5 13 13 7 5

6 13 13 7 5

1=500 2 39 Not conv. Not conv. Not conv.

3 32 32 Not conv. Not conv.

4 30 29 35 8

5 29 28 52 8

6 28 27 Not conv. 8

1=1000 2 Not conv. Not conv. Not conv. Not conv.

3 36 57 Not conv. Not conv.

4 35 33 Not conv. Not conv.

5 35 31 Not conv. Not conv.

6 33 30 Not conv. Not conv.

Number of iterations for solving the nonlinear problem, ‘not conv.’ means that the solution was not
obtained within 100 iterations
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Newton’s method. Within the convergence radius, Newton’s method converges
faster (of second order) than the Picard method (of first order).

For a large value of the viscosity, 	 D 100, the faster convergence of Newton’s
method can be seen clearly. Using inexact solutions for the linear system of
Eq. (6.86), Newton’s method needs a few iterations more compared with using exact
solutions.

For smaller values of 	, the convergence radius of Newton’s method becomes
obviously smaller. For 	 D 1=500, one can see that the convergence radius depends
also on the fineness of the mesh. The considerably large number of iterations for
the Picard method is because the stopping criterion that only 10 iterations should be
performed became generally effective and the norm of the residual was reduced less
than by a factor of 10. Obviously, it was more difficult for the iterative methods to
solve the linear problems (6.86) of Newton’s method than the linear problems (6.80)
of the Picard method.

In the case 	 D 1=1000, it is probably not possible to resolve all important flow
structures on level 2 such that all approaches did not converge. Apart from level 2,
the Picard method worked for all considered values of the viscosity. The number of
iterations was generally similar for the inexact and the exact solution of the linear
systems of equations.

Altogether, it can be observed that in the case Newton’s method converges,
then the number of iterations is considerably smaller than for the Picard method.
However, the converge radius might be small, in particular for small values of
the viscosity. In this situation, the Picard iteration often still works. Of course, it
is possible to construct iterative schemes which start with a method with larger
convergence radius (Picard iteration, damped Newton’s method) and which change
to Newton’s method once the iterates are sufficiently close to the solution. ut

6.4 A Posteriori Error Estimation with the Dual Weighted
Residual (DWR) Method

Remark 6.48 (Motivation) A posteriori error estimates, like the residual-based
estimate (4.108) for the Stokes equations, possess two drawbacks. First, such error
estimates can be derived usually only for norms that are in some sense natural in
the setup of the problem, like the norm in V or the L2.˝/ norm of the velocity or
pressure. The error in such norms is generally not of much interest in applications.
There, rather errors of drag and lift coefficients or other quantities of interest are
important. And second, a posteriori error estimates of type (4.108) have still an
unknown factor on the right-hand side, like C in (4.108). This factor contains in
particular contributions from the stability of the problem and of local interpolation
error estimates, compare Remark 4.80. The interpolation error depends of course on
the finite element space, which in turn depends on the underlying grid. The stability
of the problem usually depends on coefficients of the problem and this dependency
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might be severe, like for convection-dominated convection-diffusion equations, see
John (2000) for numerical studies that reveal such dependencies. All these unknown
dependencies might lead to constants that differ much from 1. In such cases, the
knowledge of only the computable factor on the right-hand side of residual-based
a posteriori error estimates is solely of limited use, since it does not allow to draw
reliable conclusions on the actual size of the error.

The dual weighted residual (DWR) method is an approach which deals with both
drawbacks at the same time. It is a widely applicable approach that leads to error
estimates for functionals of interest. In a first step, an abstract representation of the
error for a functional of interest is derived, see Lemma 6.51. Then, the abstract
framework is applied to variational problems, which leads to an error representation
that contains a primal residual that involves the solution of the discretized dual of
a linearized problem, a dual residual that involves the finite element solution, and a
remainder, see Theorem 6.54. For linear problems and linear functionals, it is shown
in Remark 6.55 that the dual residual can be removed from the error representation.
In other cases, the approximation of the dual residual might be computationally
expensive since the argument is the solution of a nonlinear problem. Therefore,
a second error representation is derived in Theorem 6.58 that contains only the
primal residual and a quadratic remainder. In practice, the remainder is considered
to be of higher order and the arguments for the evaluation of the residual will
be approximated. Despite the approximations applied in this methodology, the
experience is that the obtained estimates are usually close to the errors.

The DWR method was proposed in Becker and Rannacher (1996, 1998), reviews
as well as references to previous papers considering a posteriori estimates for
functionals of interest can be found in Becker and Rannacher (2001) and Bangerth
and Rannacher (2003). ut
Remark 6.49 (Abstract Setting) First, a general paradigm of a posteriori error anal-
ysis that is based on duality will be discussed. To this end, consider a differentiable
functional L.�/ defined on some linear space X. A stationary point of this functional
is a point x 2 X for which

L0.x/.y/ D 0 8 y 2 X; (6.87)

where the prime refers to the first argument. The Galerkin approximation of this
problem reads as follows: Find xh 2 Xh � X such that

L0 �xh
� �

yh
� D 0 8 yh 2 Xh: (6.88)

The second argument of the derivative and of all higher order derivatives is linear.
ut
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Example 6.50 (Energy Functional) Let X be a Hilbert space whose inner product is
given by the bilinear form a.�; �/. Then the energy functional is defined by

L.x/ D 1

2
a.x; x/� f .x/ x 2 X;

where f .�/ is a continuous, linear functional on X. Consider the function

˚."/ D L.x C "y/ 8 y 2 X:

Then, x 2 X is a stationary point if

˚ 0.0/ D 0 ” L0.x/.y/ D 0 8 y 2 X:

A straightforward calculation, using the linearity of f .�/, gives

˚ 0.0/ D lim
"!0

˚."/ � ˚.0/

"

D lim
"!0

1
2
a.x; x/C "a.x; y/� "2

2
a.y; y/� f .x/� "f .y/� 1

2
a.x; x/C f .x/

"

D lim
"!0

	
a.x; y/� f .y/� "

2
a.y; y/




D a.x; y/� f .y/ 8 y 2 X:

Thus, a stationary point has to satisfy the equation

a.x; y/ D f .y/ 8 y 2 X ” L0.x/.y/ D 0 8 y 2 X:

Computing the second variation, one finds that the solution of the equation for a
stationary point x is a minimizer of the energy functional. ut
Lemma 6.51 (Abstract Error Representation) Let the functional L.�/ be three
times differentiable. Then, for any solutions x of (6.87) and xh of (6.88) there holds
the error representation

L.x/ � L
�
xh
� D 1

2
L0 �xh

� �
x � Ihx

�C R; (6.89)

where Ihx 2 Xh is arbitrary and with e D x � xh the remainder is given by

R D 1

2

Z 1

0

�.� � 1/L000 �xh C �e
�
.e; e; e/ d�: (6.90)
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Proof With the fundamental theorem of calculus, one obtains

Z 1

0

L0 �xh C �e
�
.e/ d� D L

�
xh C �e

� ˇ̌ˇ�D1
�D0 D L

�
xh C e

� � L
�
xh
�

D L.x/ � L
�
xh
�
: (6.91)

In the next step, the integral will be represented with the help of the trapezoidal
rule. To motivate this representation, let f be a sufficiently smooth function in Œt0; t1�.
Then, the truncation error in the trapezoidal rule is given by

Z t1

t0

f .�/ d� � f .t1/C f .t0/

2
.t1 � t0/ :

Applying twice integration by parts and denoting t D .t0 C t1/=2 yields

1

2

Z t1

t0

�
.� � t/2 �

	 t1 � t0
2


2�
f 00.�/ d� D

Z t1

t0

.t � �/ f 0.�/ d�

D
Z t1

t0

f .�/ d� � f .t1/C f .t0/

2
.t1 � t0/ :

Applying the trapezoidal rule to the left-hand side of (6.91) and using the derived
form of the truncation error, i.e., setting t1 D 1, t0 D 0, gives

Z 1

0

L0 �xh C �e
�
.e/ d� D L0 .x/ .e/C L0 �xh

�
.e/

2

C 1

2

Z 1

0

�.� � 1/L000 �xh C �e
�
.e; e; e/ d�:

Since e 2 X, one gets from (6.87) that L0 .x/ .e/ D 0. Finally, the linearity of the
second argument of the derivative and (6.88) leads for any Ihx 2 Xh to

L0 �xh
�
.e/ D L0 �xh

� �
x � Ihx

�C L0 �xh
� �

Ihx � xh
� D L0 �xh

� �
x � Ihx

�
;

which completes the proof of the lemma. �

Remark 6.52 (Interpretation of the Representation (6.89)) The identity (6.89)
shows that the error for the functional can be represented with the operator and
the solution of the Galerkin problem (6.88), and a remainder which is cubic in the
error. Note that the operator of the Galerkin problem (6.88) is linear. However,
the test function of the Galerkin operator contains the solution of the continuous
problem (6.87), which is also a linear problem. ut
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Remark 6.53 (Application of the Basic Approach to a Variational Equation) Let V
be a linear space and consider the equation: Find u 2 V such that

a.uI v/ D a.u/.v/ D f .v/ 8 v 2 V; (6.92)

where a.�/.�/ W V � V ! R is a differentiable form which is linear in the second
argument and f .�/ W V ! R is a continuous linear functional. Let Vh � V be a
subspace, then the Galerkin approximation of (6.92) reads as follows: Find uh 2 Vh

such that

a
�
uh/.vh

� D f
�
vh
� 8 vh 2 Vh: (6.93)

Denote by J.�/ W V ! R the functional of interest whose error J.u/ � J
�
uh
�

should be minimized. To imbed this problem in the general framework derived so
far, one considers the optimization problem

J.u/ ! min; a.u/.v/ D f .v/ 8 v 2 V:

If (6.92) has a unique solution, then the optimization problem is trivial since in this
case there is just one argument for the functional. This methodology can be also
applied for problems with non-unique solutions, like eigenvalue problems.

Next, the Euler–Lagrange approach for deriving conditions for the solution of
the optimization problem is applied. To this end, one considers the Lagrangian
functional

L.u; z/ D J.u/C f .z/ � a.u/.z/;

where z 2 V is called adjoint variable. A necessary condition for a minimizer is that
it is a stationary point, i.e., there holds

0 D @uL.u; z/ D J0.u/.w/� a0.u/.w; z/ 8 w 2 V;
0 D @zL.u; z/ D f .v/ � a.u/.v/ 8 v 2 V:

(6.94)

In the second relation, the linearity of f .�/ was used such that the second condition
is just (6.92). Equation (6.94) is called the dual problem associated to the functional
J.�/. Again, one considers the Galerkin approximations of the two conditions: Find�
uh; zh

� 2 Vh � Vh such that

a0 �uh/.wh; zh
� D J0 �uh

� �
wh
� 8 wh 2 Vh;

a
�
uh/.vh

� D f
�
vh
� 8 vh 2 Vh:

(6.95)

With the Galerkin solution, one defines the so-called primal residual

� W V ! V 0; �.�/ D f .�/� a
�
uh
�
.�/ ; (6.96)
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and the dual residual

�� W V ! V 0; ��.�/ D J0 �uh
�
.�/� a0 �uh

� ��; zh
�
: (6.97)

ut
Theorem 6.54 (Error Representation) Let the form a.�/.�/ and the functional J.�/
be three times differentiable, let .u; z/ be any solution of (6.94) and let

�
uh; zh

�
be

any solution of (6.95). Then there is the error representation

J.u/� J
�
uh
� D 1

2
�
�
z � Ihz

�C 1

2
�� �u � Ihu

�C Ra; (6.98)

where Ihz; Ihu 2 Vh are arbitrary functions. Denoting e D u � uh and e� D z � zh,
the remainder is given by

Ra D 1

2

Z 1

0

�.� � 1/
h
J000 �uh C �e

�
.e; e; e/� a000 �uh C �e

� �
e; e; e; zh C �e��

�3a00 �uh C �e
� �

e; e; e�� i d�:

Proof This situation will be imbedded in the general framework of Lemma 6.51.
To this end, one sets X D V � V , Xh D Vh � Vh, x D .u; z/, xh D �

uh; zh
�
, and

L.x/ D L.u; z/. Then, using the definition of the Lagrangian functional, the total
derivative at xh is given by

L0 �xh
�
.vu; vz/ D @uL

�
uh; zh

�
.vu/C @zL

�
uh; zh

�
.vz/

D J0 �uh
�
.vu/ � a0 �uh

� �
vu; z

h
�C f .vz/ � a

�
uh
�
.vz/ (6.99)

for arbitrary .vu; vz/ 2 X. Again, the linearity of f .�/ and the second argument of
a.�/.�/ was used. The application of (6.94), (6.95), (6.89), (6.99), (6.96), and (6.97)
yields

J.u/ � J
�
uh
�

D J.u/C f .z/� a.u/.z/ � �
J
�
uh
�C f

�
zh
� � a

�
uh
� �

zh
��

D L.x/ � L
�
xh�

D 1

2
L0
�
xh
� �

x � Ihx
�C R

D 1

2

	
J0
�
uh
� �

u � Ihu
� � a0

�
uh
� �

u � Ihu; zh
�C f

�
z � Ihz

�� a
�
uh
� �

z � Ihz
� 
C R

D 1

2

	
�
�
z � Ihz

�C ��
�
u � Ihu

� 
C R;
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with arbitrary
�
Ihu; Ihz

� 2 Xh. The general form (6.90) of the remainder requires to
compute the third derivative of L.x/ D L.u; z/. Formally, one has

L000 D @uuuL C 3@uuzL C @uzzL C @zzzL:

Since L depends only linearly on z, the last two terms vanish. The derivative of
the other two terms at the considered point

�
xh C � .e; e�/

�
..e; e�/ ; .e; e�/ ; .e; e�//

gives just the terms in Ra

L000 �xh C �
�
e; e��� ��e; e�� ; �e; e�� ; �e; e���

D J000 �uh C �e
�
.e; e; e/� a000 �uh C �e

� �
e; e; e; zh C �e��

� 3a00 �uh C �e
� �

e; e; e�� : (6.100)

For the second term on the left-hand side, the three derivatives with respect to u lead
to three times the argument e and for the last term, the two derivatives with respect
to u and the last derivative with respect to z lead to twice the argument e and once the
argument e�. Note that the prime refers only to the first argument of a.�/.�/, which
gives the last term in (6.100). �

Remark 6.55 (Linear Variational Problem and Linear Functional) Consider a lin-
ear variational problem

a.u/.v/ D a.u; v/ D f .v/ 8 v 2 V

and the corresponding Galerkin approximation

a
�
uh; vh

� D f
�
vh
� 8 vh 2 Vh:

Subtracting both equations, one gets the Galerkin orthogonality

a
�
u � uh; vh

� D 0 8 vh 2 Vh:

Since a0 �uh
� ��; zh

� D a
��; zh

�
and J0 �uh

�
.�/ D J.�/, one obtains with the Galerkin

orthogonality, since zh 2 Vh, the linearity of the functional, and Ihu D uh

�� �u � Ihu
� D J .u/� a

�
u; zh

� � J
�
uh
�C a

�
uh; zh

� D J
�
u � uh

� D J.e/:

Inserting this expression in the error representation (6.98) and observing that the
remainder vanishes, since all higher order derivatives of the variational form and
the functional vanish, yields

J.u/� J
�
uh
� D J.e/ D �

�
z � Ihz

�
:
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Thus, for this special case one needs to compute only the primal residual, evaluated
for the difference of the solution of the dual problem and an arbitrary interpolation.

ut
Remark 6.56 (Motivation for Removing the Dual Residual from the Error Repre-
sentation) Estimating the error J.u/� J

�
uh
�

for a nonlinear problem or a nonlinear
functional with (6.98), by neglecting Ra, requires the approximation of the primal
and the dual residual. Note that the solutions u and z of the continuous problems
are usually not available and they need to be approximated. These approximations
must not be contained in Vh since otherwise the residuals vanish. A linear problem
has to be solved for approximating z whereas the approximation of u requires the
solution of a nonlinear problem. Thus, in particular the approximation of the dual
residual might be computationally expensive and there is the desire to remove the
dual residual from the error representation. It will be shown now that it is possible to
represent the dual residual in terms of the primal residual plus a quadratic remainder
term. ut
Lemma 6.57 (Representation of the Dual Residual with the Primal Residual
and a Quadratic Remainder) Let the form a.�/.�/ and the functional J.�/ be twice
differentiable, let .u; z/ be any solution of (6.94), and let

�
uh; zh

�
be any solution

of (6.95). Then it holds for arbitrary functions Ihz; Ihu 2 Vh that

�� �u � Ihu
� D �

�
z � Ihz

�C ı�; (6.101)

with

ı� D
Z 1

0

	
a00 �uh C �e

� �
e; e; zh C �e��� J00 �uh C �e

�
.e; e/



d�

and e D u � uh, e� D z � zh.

Proof Defining the function

g.�/ D J0 �uh C �e
�
.e/� a0 �uh C �e

� �
e; zh C �e�� ;

one finds with (6.94) that

g.1/ D J0 �uh C e
�
.e/ � a0 �uh C e

� �
e; zh C e�� D J0 .u/ .e/� a0 .u/ .e; z/ D 0

(6.102)

and with (6.97) that

g.0/ D J0 �uh
�
.e/� a0 �uh

� �
e; zh

� D ��.e/: (6.103)

For computing the derivative of g.�/, one uses the definition of the second derivative
of J, the linearity of the second argument of the form a, and the definition of the
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second derivative of a

g0.�/ D lim
"!0

g.� C "/� g.�/

"

D lim
"!0

J0 �uh C .� C "/e
�
.e/� J0 �uh C �e

�
.e/

"

� lim
"!0

a0 �uh C .� C "/e
� �

e; zh C .� C "/e��� a0 �uh C �e
� �

e; zh C �e��
"

D J00 �uh C �e
�
.e; e/ � lim

"!0

"a0 �uh C .� C "/e
�
.e; e�/

"

� lim
"!0

a0 �uh C .� C "/e
� �

e; zh C �e�� � a0 �uh C �e
� �

e; zh C �e��
"

D J00 �uh C �e
�
.e; e/ � a0 �uh C �e

� �
e; e�� � a00 �uh C �e

� �
e; e; zh C �e�� :

Applying the fundamental theorem of calculus, (6.102), and (6.103) gives

��.e/ D g.0/� g.1/ D
Z 0

1

g0.�/ d�

D
Z 1

0

�J00 �uh C �e
�
.e; e/ d� C

Z 1

0

a00 �uh C �e
� �

e; e; zh C �e�� d�

C
Z 1

0

a0 �uh C �e
� �

e; e�� d�: (6.104)

For the last term, one obtains with the definition (6.92) of the form a and the
definition of the primal residual (6.96)

Z 1

0

a0
�
uh C �e

� �
e; e�

�
d� D a

�
uh C �e

� �
e�
�ˇ̌�D1

�D0
D a

�
uh C e

� �
e�
� � a

�
uh
� �

e�
�

D a .u/
�
e�
� � a

�
uh
� �

e�
� D f

�
e�
� � a

�
uh
� �

e�
�

D �
�
e�
� D �

�
z � zh

�
: (6.105)

Using the linearity of f and of the form a with respect to the second argument and
the definition (6.93) of the Galerkin approximation yields

�
�
z � zh

� D f
�
z � zh

� � a
�
uh
� �

z � zh
� D f .z/� a

�
uh
�
.z/ �

	
f
�
zh
� � a

�
uh
� �

zh
� 


D f .z/ � a
�
uh
�
.z/ �

	
f
�
Ihz
� � a

�
uh
� �

Ihz
� 
 D �

�
z � Ihz

�
(6.106)

for arbitrary Ihz 2 Vh. With the linearity of J0 and a0 with respect to the second
argument and the Galerkin formulation of the conditions for minima (6.95), one
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gets in the same way

��.e/ D �� �u � uh
� D �� �u � Ihu

� 8 Ihu 2 Vh: (6.107)

Inserting now (6.105), (6.106), and (6.107) in (6.104) gives the statement of the
lemma. �

Theorem 6.58 (Error Representation with the Primal Residual and Quadratic
Remainder) Let the assumptions of Theorem 6.54 be valid, then one has the error
representation

J.u/� J
�
uh
� D �

�
z � Ihz

�C eRa (6.108)

with e D u � uh, e� D z � zh, and

eRa D
Z 1

0

�
	

a00 �uh C �e
�
.e; e; z/� J00 �uh C �e

�
.e; e/



d�:

Proof Inserting (6.101) in (6.98) gives with a straightforward calculation

J.u/� J
�
uh
� D �

�
z � Ihz

�C Ra C 1

2
ı�:

Thus, one has to show that eRa � Ra � .ı�/=2 D 0.
Integration by parts, the linearity of the second argument of the form a, and the

product rule gives

1

2
ı� D

h�
2

	
a00 �uh C �e

� �
e; e; zh C �e�� � J00 �uh C �e

�
.e; e/


i�D1
�D0

�1
2

Z 1

0

�
h
a000 �uh C �e

� �
e; e; e; zh C �e��C a00 �uh C �e

� �
e; e; e��

�J000 �uh C �e
�
.e; e; e/

i
d�

D 1

2

�
a00 .u/ .e; e; z/ � J00 .u/ .e; e/

� � 1

2

Z 1

0

�
h
a000 �uh C �e

� �
e; e; e; zh C �e��

Ca00 �uh C �e
� �

e; e; e�� � J000 �uh C �e
�
.e; e; e/

i
d�: (6.109)

Likewise, one obtains with integration by parts

eRa D
�
�2

2

	
a00 �uh C �e

�
.e; e; z/ � J00 �uh C �e

�
.e; e/


��D1

�D0

�
Z 1

0

�2

2

	
a000 �uh C �e

�
.e; e; e; z/ � J000 �uh C �e

�
.e; e; e/



d�
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D 1

2

�
a00 .u/ .e; e; z/� J00 .z/ .e; e/

�

�
Z 1

0

�2

2

	
a000 �uh C �e

�
.e; e; e; z/ � J000 �uh C �e

�
.e; e; e/



d�:

(6.110)

The terms outside the integrals in (6.109) and (6.110) cancel. It remains to show that
the terms in the integrals of eRa � Ra � .ı�/=2 vanish. For the part with the third
derivative of the functional, it is obvious since

�2

2
J000 �uh C �e

�
.e; e; e/C �.� � 1/

2
J000 �uh C �e

�
.e; e; e/

C �

2
J000 �uh C �e

�
.e; e; e/ D 0:

For the form a, one obtains with (6.109), (6.110), �z C zh C �e� D �e� C �e�,
integration by parts, and the linearity of the a with respect to the second argument

Z 1

0

��
2

2
a000 �uh C �e

�
.e; e; e; z/C �.� � 1/

2

	
a000 �uh C �e

� �
e; e; e; zh C �e��

C3a00 �uh C �e
� �

e; e; e�� 
C �

2

	
a000 �uh C �e

� �
e; e; e; zh C �e��

Ca00 �uh C �e
� �

e; e; e�� 
 d�

D
Z 1

0

�2

2
a000 �uh C �e

� �
e; e; e;�e� C �e��C 3�2

2
a00 �uh C �e

� �
e; e; e��

��a00 �uh C �e
� �

e; e; e�� d�

D
Z 1

0

�2

2
a000 �uh C �e

� �
e; e; e;�e� C �e��

C3

2

�3

3
a00 �uh C �e

� �
e; e; e�� ˇ̌ˇ�D1

�D0 �
Z 1

0

3

2

�3

3
a000 �uh C �e

� �
e; e; e; e�� d�

��
2

2
a00 �uh C �e

� �
e; e; e�� ˇ̌ˇ�D1

�D0 C
Z 1

0

�2

2
a000 �uh C �e

� �
e; e; e; e�� d�

D
Z 1

0

�
�2

2
a000 �uh C �e

� �
e; e; e;�e� C �e�� � �2

2
a000 �uh C �e

� �
e; e; e; �e��

C �2

2
a000 �uh C �e

� �
e; e; e; e��� d� C 1

2
a00 .u/

�
e; e; e�� � 1

2
a00 .u/

�
e; e; e��

D 0:

This identity finishes the proof of the theorem. �
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Remark 6.59 (Some Practical Aspects)

• In practice, the error is approximated with the representation (6.108)

J.u/� J
�
uh
� 
 �

�
z � Ihz

�
; (6.111)

thus neglecting the quadratic remainder term. As shown in Remark 6.55, this
approximation is for linear variational problems and linear functionals the same
that is obtained from (6.98). In this case, a cubic remainder is neglected.

• The approximation of the right-hand side of (6.111) requires an approximation
of the solution z of the dual linearized problem. As already discussed in
Remark 6.56, this approximation must not be contained in Vh since in this
case the residual vanishes. There are several proposals on how to computed
this approximation, e.g., by using a higher order method or by post-processing a
discrete approximation in Vh in a higher order finite element space, see Becker
and Rannacher (2001, Sect. 5) and Bangerth and Rannacher (2003, Sect. 4.1)
for details.

• The dual linearized problem for the steady-state Navier–Stokes equations is given
in (6.72), see also (6.71), usually with a non-homogeneous right-hand side in
the second equation, depending on the functional of interest. In contrast to the
Navier–Stokes equations, the convection possesses the opposite sign, i.e., the
main flow is in the opposite direction. This issue might lead to problems if an
adaptive grid refinement is used for the Navier–Stokes equations, since a properly
adapted grid for the Navier–Stokes equations will usually not be properly adapted
for approximating the solution of the dual linearized problem.

• Typical quantities of interest for incompressible flow problems are the drag and
lift coefficients of bodies in flow fields, see Remark D.2. Examples of adaptively
refined grids with respect to these quantities of interest can be found, e.g., in
Becker (2000) and (Becker and Rannacher 2001, Sect. 8).

• Another difficulty shows up for time-dependent problems. Applying the strategy
for deriving the dual problem explained in Remark 4.27 to the term .@tu; v/ gives,
using integration by parts in time, for the dual problem � .@tz; v/. Thus, the dual
linearized problem is backward in time. Its simulation requires a computation
starting from the current discrete time back to the initial time. The backward-in-
time problem needs the computed velocity field at all former discrete times, since
these fields are the input data w of the dual linearized problem (6.72). The storage
of these velocity fields is memory-consuming. There are so-called checkpoint
techniques that only store some of the velocity fields and that reconstruct the
intermediate velocity fields between the checkpoints during the solution of
the backward-in-time problem, e.g., see Besier and Rannacher (2012) and the
references therein. ut

Remark 6.60 (Classical Residual-Based A Posteriori Error Estimators) Residual-
based a posteriori error estimators in the classical sense, compare Sect. 4.4 for the
Stokes equations, can be derived also for the steady-state Navier–Stokes equations,
e.g., see Verfürth (2013, Sect. 5.4.3). ut



Chapter 7
The Time-Dependent Navier–Stokes Equations:
Laminar Flows

Remark 7.1 (The Time-Dependent Navier–Stokes Equations) The time-dependent
Navier–Stokes equations (2.25) were derived in Chap. 2 as a model for describing
the behavior of incompressible fluids. From the point of view of numerical
simulations, one has to distinguish between laminar and turbulent flows. It does
not exist an exact definition of these terms. From the point of view of simulations,
a flow is considered to be laminar, if on reasonable grids all flow structures can be
represented or resolved. In this case, it is possible to simulate the flow with standard
discretization techniques in space, like the Galerkin finite element method.

In addition to the discretization in space, the simulation of time-dependent flows
requires a discretization of the temporal derivative of the velocity. There are a
number of so-called time stepping schemes available that lead to a variety of
different algorithms for the numerical simulation of the time-dependent Navier–
Stokes equations. ut

7.1 The Continuous Equations

Remark 7.2 (The Incompressible Navier–Stokes Equations) This chapter considers
the incompressible Navier–Stokes equations given by

@tu � 	�u C .u � r/u C rp D f in .0;T� �˝;
r � u D 0 in .0;T� �˝;
u.0; �/ D u0 in ˝;

(7.1)

where ˝ � R
d, d 2 f2; 3g, is a domain. Only the case will be studied that ˝ is

a bounded domain with Lipschitz boundary 
 . In addition, ˝ does not change in
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time. For simplicity of presentation, homogeneous Dirichlet boundary conditions

u D 0 in .0;T� � 
 (7.2)

are assumed. ut
Remark 7.3 (Notions of a Solution) In the literature, several notions of a (velocity)
solution of (7.1) that possess different properties (regularity) can be found, like
classical, strong, mild, weak, or very weak solution, e.g., see Farwig (2014). This
chapter studies the weak solution. ut
Remark 7.4 (On the Weak Equation for the Velocity) In the case of the time-
dependent incompressible Navier–Stokes equations, one restricts the analysis in
the first step to an appropriate divergence-free subspace and studies the existence
and uniqueness of an appropriate velocity. In the second step, the existence of a
corresponding pressure is studied. Different forms of a weak formulation for the
velocity can be found in the literature. ut
Remark 7.5 (First Form of a Weak Equation for the Velocity) One considers, as for
the stationary equations, test functions from Vdiv, multiplies the momentum equation
in (7.1) with these test functions, applies integration by parts in space and obtains
an ordinary differential equation for the velocity

d

dt
.u; v/C .	ru;rv/C n .u;u; v/ D h f ; viV0;V 8 v 2 Vdiv;

u.0/ D u0:
(7.3)

Here, the derivative with respect to time has to be understood in a weak sense. This
form of the weak equation can be found, e.g., in Girault and Raviart (1979, p. 158)
and Temam (1984, p. 280). ut
Definition 7.6 (Weak or Variational Velocity Solution of the Navier–Stokes
Equations (Girault and Raviart 1979, p. 158; Temam 1984, p. 280)) Let f 2
L2 .0;TI V 0/ and u0 2 Hdiv.˝/. Then u 2 L2.0;TI Vdiv/ is called weak or variational
velocity solution of the Navier–Stokes equations if u satisfies (7.3) in .C1

0 ..0;T///
0.
ut

Remark 7.7 (Second Form of a Weak Equation for the Velocity) To obtain this form,
integration with respect to time and integration by parts are applied additionally. One
can consider this approach also in the way that the momentum equation of (7.1) is
multiplied with test functions depending on time and space, it is integrated in the
time-space domain, and then integration by parts is applied.

Usually, smooth test functions are used for this purpose. The extension of the
statements to test function in appropriate Lebesgue and Sobolev spaces is then based
on the density of the smooth functions in Lebesgue and Sobolev spaces, like stated in
Theorem A.38. To be concrete, test functions from the space C1

0;div .Œ0;T/ �˝/ are
applied. Since these functions are in C1

0 .Œ0;T// with respect to time, they vanish at



7.1 The Continuous Equations 357

the final time. Applying now the approach for deriving a weak formulation yields

Z T

0

h
� .u; @t�/C 	 .ru;r�/C ..u � r/ u;�/

i
.�/ d� (7.4)

D
Z T

0

h f ;�iV0;V.�/ d� C .u0;� .0; �// 8 � 2 C1
0;div .Œ0;T/ �˝/ :

Note that the temporal derivative is applied to the test function and not to the
velocity. There is no contribution from the integration by parts in time at the final
time because the test functions vanish at this time. Equation (7.4) is an integral form
of the ordinary differential equation (7.3). A weak formulation of form (7.4) can be
found, e.g., in Galdi (2000), Amann (2000), and Sohr (2001, p. 263). ut

Definition 7.8 (Weak or Variational Solution of the Navier–Stokes Equations
(Galdi 2000; Sohr 2001, p. 263)) Let f 2 L2 .0;TI V 0/ and u0 2 Hdiv.˝/. A
function u is called weak or variational solution of the Navier–Stokes equations
if

• u satisfies (7.4),
• u has the following regularity

u 2 L2 .0;TI Vdiv/ \ L1 .0;TI Hdiv.˝// : (7.5)
ut

Remark 7.9 (General Idea for Proving Existence of a Weak Solution) The general
idea to prove the existence of a weak solution is as follows:

1. Consider a sequence of simpler problems than (7.4) which in an appropriate limit
converges to (7.4).

2. Show that each of the simpler problems has a unique solution.
3. Show that a subsequence of the sequence of the unique solutions converges to a

weak solution of the Navier–Stokes equations.
ut

Remark 7.10 (On the Definition of Simpler Problems) There are different proposals
for defining simpler problems in the literature. Some of them are the followings.

• Leray’s regularization approach. The first results using this approach were
obtained by Leray:

ı 1933:˝ D R
2, Leray (1933),

ı 1934:˝ is a fixed oval in R
2, Leray (1934a),

ı 1934:˝ D R
3, Leray (1934b).

The most remarkable one is the last paper. There, the simplified equations have
the convective term

.u" � r/ u;
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instead of .u � r/ u in the Navier–Stokes equations (7.1), with u" being an
average of u in space with averaging radius "

u".x/ WD 1

"3

Z
˝

�

 
kx � yk22
"2

!
u.y/ dy; �.s/ D �0e

1
s�1 ; s 2 .0; 1/;

where �0 is a constant for achieving an appropriate normalization. The use of
the convection field u" corresponds to a regularization of the Navier–Stokes
equations. In this approach, the limit " ! 0 is studied.

• Semidiscretization in space, Galerkin method. In Hopf (1951), a different type
of simpler problems to be considered in the first step of the general approach
was introduced. In this method, (7.3) or (7.4) is considered in finite-dimensional
spaces with dimension n, which is the so-called Galerkin method. That means,
the equation has the same form as (7.3) or (7.4) but the test functions are from
a finite-dimensional space and the solution is sought in the same space. Then,
n ! 1 is studied. The weak solution of the Navier–Stokes equations obtained
with this approach is called weak solution in the sense of Leray–Hopf.

• Semidiscretization in time. It is also possible to define the simpler problems with
a discretization in time, see Temam (1984, Chap. III.4). In the limit, one passes
from the discrete times to the continuous time.

• The semigroup method. Another approach for proving the existence of a weak
solution was developed in Sohr (1983), see also Sohr (2001). It is based on
a semigroup, see Remark 8.16. Similarly to Leray’s approach, the simpler
problems rely on a regularization of the convective term. This regularization is
performed with the Yosida approximation, which is the continuous counterpart
of the differential filter used in turbulence modeling.

• Turbulence models. Turbulence models possess a smaller complexity than the
Navier–Stokes equations to facilitate flow simulations, i.e., they define simpler
problems. The limit of a turbulence model might also provide a weak solution
of the Navier–Stokes equations, e.g., see Remark 8.203 for the Navier–Stokes-˛
model.

Below, an approach using the Galerkin method will be presented. ut
Remark 7.11 (Starting Point of the Galerkin Method: The Navier–Stokes Equations
in a Finite-Dimensional Subspace) The first step of the Galerkin method consists in
considering the weak form of the Navier–Stokes equations (7.3) or (7.4) in a finite-
dimensional space. It can be shown, see Galdi (2000, Lemma 2.3), that there is a
basis of fvlg1

lD1 of C1
0;div .˝/ where the basis functions are orthonormal with respect

to the inner product of L2.˝/. Consider now the finite-dimensional subspace

Vn
div D spanfvn

l gn
lD1 � C1

0;div .˝/ :
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In this subspace, the Galerkin method applied to (7.3) reads as follows: Find un 2
Vn

div such that

.@tun; vn/C .	run;rvn/C n .un;un; vn/ D h f ; vniV0;V 8 vn 2 Vn
div; (7.6)

and un.0/ D un
0, where un

0 is the L2.˝/ orthogonal projection of u0 into Vn
div. It is

clear that (7.6) is satisfied if this equation is satisfied for all basis functions. Using
the representation

un .t; x/ D
nX

lD1
˛n

l .t/v
n
l .x/ ; (7.7)

one obtains from (7.6) the following system of ordinary differential equations

d˛n
l

dt
C

nX
jD1

alj˛
n
j C

nX
j;kD1

nljk˛
n
j ˛

n
k D fl; l D 1; : : : ; n; (7.8)

˛n
l .0/ D u0l; ; l D 1; : : : ; n (7.9)

with

alj D �
	rvn

j ;rvn
l

�
; nljk D ��

vn
j � r� vn

k ; v
n
l

� D n
�
vn

j ; v
n
k ; v

n
l

�
;

fl D h f ; vn
l iV0;V ; u0l D �

u0; vn
l

�
:

The orthonormality of the basis functions is not essential but only simplifies
the presentation. For non-orthonormal basis functions, the Gramian matrix (mass
matrix) of Vn

div would appear at the first term of (7.8). This matrix is non-singular,
thus multiplying with its inverse gives the same first term as in (7.8) and it leads to
some changes in the other terms, e.g., see Temam (1984, p. 283). ut
Lemma 7.12 (Unique Solvability of the Problem in the Finite-Dimensional
Space) Let ˝ 2 R

d, d 2 f2; 3g, be a bounded Lipschitz domain. Let the
regularity assumptions on f and u0 from Definitions 7.6 and 7.8 be satisfied. Then
system (7.7)–(7.9) has a unique solution that is absolutely continuous in Œ0;T�.
There hold the a priori estimates

sup
t2Œ0;T�

kun .t/k2L2.˝/ � ku0k2L2.˝/ C 1

	
k fk2L2.0;TIV0/ (7.10)

and

kun .T/k2L2.˝/ C 	 krunk2L2.0;TIL2.˝// � ku0k2L2.˝/ C 1

	
k fk2L2.0;TIV0/ ; (7.11)
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which are both uniformly with respect to n. Hence,

un 2 L2 .0;TI Vdiv/\ L1 .0;TI Hdiv.˝// :

Proof The proof of the lemma is based on the application of the theorem of
Carathéodory, see Theorem A.50. Thus, one has to show a Lipschitz condition for
the right-hand side of

d˛n
l

dt
.t/ D F

�
˛n

l

�
; t 2 .0;T�; (7.12)

with F 2 L2.0;T/. If F would be continuous in Œ0;T�, one could apply the famous
theorem of Peano, but for the given regularity, the theorem of Carathéodory has to
be used.

The functions ˛n
l appear linearly and quadratically on the right-hand side

of (7.12). Hence, the Lipschitz condition is satisfied, since linear and quadratic
functions are Lipschitz continuous. Consequently, the local existence and unique-
ness of an absolutely continuous solution un .t; x/ in some maximal interval Œ0; tn�
with 0 < tn � T can be concluded from the theorem of Carathéodory. If tn < T,
then un.t/ blows up as t ! tn.

Next, the a priori estimates (7.10) and (7.11) will be proved which show that this
situation cannot happen and therefore tn D T.

Taking the solution un .t; x/, which is now known to exist, as test function in (7.6)
for some arbitrary t 2 .0;T/, using the product rule for the first term

d

dt
kun.t/k2L2.˝/ D d

dt
.un.t/;un.t// D .@tun.t/;un.t//C .un.t/; @tun.t//

D 2 .@tun.t/;un.t// ; (7.13)

the skew-symmetry (6.28) of the convective term, the estimate of the dual pairing,
and Young’s inequality (A.5) yields

1

2

d

dt
kun.t/k2L2.˝/ C 	 krun.t/k2L2.˝/ D h f .t/;un.t/iV0;V � k f .t/kV0 krun.t/kL2.˝/

� 1

2	
k f .t/k2V0 C 	

2
krun.t/k2L2.˝/ ; (7.14)

which gives

d

dt
kun.t/k2L2.˝/ C 	 krun.t/k2L2.˝/ � 1

	
k f .t/k2V0 : (7.15)
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Integrating this inequality in some time interval Œ0; t� with arbitrary t � T and
applying the estimate for the L2.˝/ projection (C.26) leads to

kun.t/k2L2.˝/ � kun
0k2L2.˝/ C 1

	

Z t

0

k f .�/k2V0 d� � ku0k2L2.˝/ C 1

	
k fk2L2.0;tIV0/ :

Taking the supremum in Œ0;T� gives the a priori estimate (7.10) and since clearly
un 2 Hdiv.˝/, it follows that un 2 L1 .0;TI Hdiv.˝//.

Integrating now (7.15) in Œ0;T� leads in the same way as used for deriving the
first estimate to

kun.T/k2L2.˝/ C 	 krunk2L2.0;TIL2.˝// � ku0k2L2.˝/ C 1

	
k fk2L2.0;TIV0/ ;

which is the a priori estimate (7.11). Since un 2 Vdiv, one obtains in particular that
un 2 L2 .0;TI Vdiv/. �
Corollary 7.13 (Weak Convergence) There is a subsequence funlg1

lD1 of fung1
nD1

and a function u 2 L2 .0;TI Vdiv/ \ L1 .0;TI Hdiv.˝// such that

unl
��* u in L1 .0;TI Hdiv.˝// ;

unl �* u in L2 .0;TI Vdiv/

as l ! 1.

Proof It is known from Lemma 7.12 that the sequence fung1
nD1 is bounded uni-

formly in L2 .0;TI Vdiv/. This space is a Hilbert space, thus in particular a reflexive
Banach space, such that the existence of a weakly convergence subsequence to some
element u1 2 L2 .0;TI Vdiv/ follows, see Remark A.58. The limit is unique.

The space L1 .0;TI Hdiv.˝// is a separable Banach space and its dual space
is L1 .0;TI Hdiv.˝//. From Lemma 7.12, it is known that fung1

nD1 is bounded
uniformly in the dual space, such that the existence of a weakly� convergent
subsequence to some function u2 2 L1 .0;TI Hdiv.˝//, follows, see Remark A.58.
Also this limit is unique.

Since

fung1
nD1 2 L2 .0;TI Vdiv/ \ L1 .0;TI Hdiv.˝//

and both spaces are complete, it follows that

u1;u2 2 L2 .0;TI Vdiv/ \ L1 .0;TI Hdiv.˝// :

The uniqueness of the limits gives finally that u1 D u2 D u. �
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Remark 7.14 (Consequences of the Weak Convergence, Convergence of the Linear
Terms) For simplicity of notation, the subsequence will be denoted again by
fung1

nD1.
Considering the solution of the Galerkin problem (7.6), taking an arbitrary v 2

Vdiv, and letting � 2 C1
0 ..0;T//, then integration by parts gives

Z T

0

.@tun.t/; v/ �.t/ dt D �
Z T

0

.un.t/; v/
d

dt
�.t/ dt:

Since un ��* u in L1 .0;TI Hdiv.˝// and d
dt� 2 L1.0;T/, one gets

lim
n!1 �

Z T

0

.un.t/; v/
d

dt
�.t/ dt D

Z T

0

.u.t/; v/
d

dt
�.t/ dt

D
Z T

0

.@tu.t/; v/ �.t/ dt

for all v 2 Vdiv. Hence, u satisfies the weak form of the first term of (7.3).
For the viscous term, it follows from un �* u in L2 .0;TI Vdiv/ and � 2 L2.0;T/

that for all v 2 Vdiv and � 2 C1
0 ..0;T//

lim
n!1

Z T

0

.	run;rv/ �.t/ dt D
Z T

0

.	ru;rv/ �.t/ dt; (7.16)

which is the weak form of the viscous term in (7.3).
In order to show that u is a weak solution of the Navier–Stokes equations, one

has to show the convergence of the nonlinear convective term

n
�
uh;un; v

� ! n .u;u; v/ :

There are different ways to prove this property, e.g., using a Fourier transform as in
Temam (1984, p. 285) or a special Friedrichs inequality as in Galdi (2000). Below,
the approach used in Girault and Raviart (1979, p. 161) will be sketched. ut
Lemma 7.15 (Estimate of the Difference of Nonlinear Convective Terms) Let
u;u 2 L2 .0;TI Vdiv/\ L1 .0;TI Hdiv.˝//, v 2 Vdiv, and r 2 Œ1; 4=3/, then

Z T

0

jn.u;u; v/ � n.u;u; v/jr dt (7.17)

� C krvkr
L2.˝/

	
kukr=4

L1.0;TIL2.˝// C kukr=4
L1.0;TIL2.˝//




� ku � ukr=4
Lr=.4�3r/.0;TIL2.˝//

	
kruk3r=2

L2.0;TIL2.˝// C kruk3r=2
L2.0;TIL2.˝//



:
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Proof By adding and subtracting the same term, applying the triangle inequality,
and using the skew-symmetry of the nonlinear convective term (6.24), one obtains

jn.u;u; v/ � n.u;u; v/j D jn.u � u;u; v/� n.u;u � u; v/j
� jn.u � u;u; v/j C jn.u;u � u; v/j
D jn.u � u; v;u/j C jn.u; v;u � u/j :

The goal of the proof is to derive an estimated where the norm of the difference
u � u is as weak as possible.

The next steps of the estimate consist in applying the generalized Hölder
inequality (6.33) with p D r D 1=4 and q D 2, using the Sobolev imbedding (A.15)
with m D 3=4, p D 2, q D 4, and using the interpolation estimate for Sobolev
spaces (A.13)

jn.u;u; v/ � n.u;u; v/j
� ku � ukL4.˝/ krvkL2.˝/ kukL4.˝/ C kukL4.˝/ krvkL2.˝/ ku � ukL4.˝/

D krvkL2.˝/ ku � ukL4.˝/

�kukL4.˝/ C kukL4.˝/

�
� C krvkL2.˝/ ku � ukH3=4.˝/

�kukH3=4.˝/ C kukH3=4.˝/

�

� C krvkL2.˝/ ku � uk1=4L2.˝/ kr .u � u/k3=4L2.˝/

�
	
kuk1=4L2.˝/ kruk3=4L2.˝/

C kuk1=4L2.˝/ kruk3=4L2.˝/



:

Note that in the application of the generalized Hölder inequality, the maximal
regularity for v was used and the other two terms are treated in the same way. Note
also that the application of Poincaré’s inequality would lead to a strong norm for the
difference u � u.

Let r 2 Œ1; 4=3/, then it follows that

Z T

0

jn.u;u; v/ � n.u;u; v/jr dt

� C krvkr
L2.˝/

Z T

0

h
ku � ukr=4

L2.˝/
kr .u � u/k3r=4

L2.˝/

�
	
kuk1=4

L2.˝/
kruk3=4

L2.˝/
C kuk1=4

L2.˝/
kruk3=4

L2.˝/


r i
dt: (7.18)

Taking the supremum in .0;T/ of two terms, using

.ab C cd/ � .a C c/.b C d/; a; b; c; d � 0;
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and applying .a C b/n � C .an C bn/ for a; b � 0, n � 1, gives for the integral

Z T

0

h
ku � ukr=4

L2.˝/ kr .u � u/k3r=4
L2.˝/

�
	
kuk1=4L2.˝/ kruk3=4L2.˝/

C kuk1=4L2.˝/ kruk3=4L2.˝/


r i
dt

�
Z T

0

h
ku � ukr=4

L2.˝/
kr .u � u/k3r=4

L2.˝/

�
	
kuk1=4L1.0;TIL2.˝// kruk3=4L2.˝/

C kuk1=4L1.0;TIL2.˝// kruk3=4L2.˝/


r i
dt

�
Z T

0

h
ku � ukr=4

L2.˝/
kr .u � u/k3r=4

L2.˝/

	
kruk3=4

L2.˝/
C kruk3=4

L2.˝/


r

�
	
kuk1=4

L1.0;TIL2.˝// C kuk1=4
L1.0;TIL2.˝//


r i
dt

� C
	
kukr=4

L1.0;TIL2.˝// C kukr=4
L1.0;TIL2.˝//



(7.19)

�
Z T

0

h
ku � ukr=4

L2.˝/
kr .u � u/k3r=4

L2.˝/

	
kruk3r=4

L2.˝/
C kruk3r=4

L2.˝/


 i
dt:

Concentrating again on the integral, using the triangle inequality (in the case of
Lebesgue spaces also called Minkowski’s inequality),

.a C b/q � aq C bq a; b � 0; q 2 .0; 1/;

which follows from the left inequality of (A.4), and Young’s inequality (A.5) yields

Z T

0

h
ku � ukr=4

L2.˝/ kr .u � u/k3r=4
L2.˝/

	
kruk3r=4

L2.˝/
C kruk3r=4

L2.˝/


 i
dt

�
Z T

0

h
ku � ukr=4

L2.˝/

	
kruk3r=4

L2.˝/
C kruk3r=4

L2.˝/


 	
kruk3r=4

L2.˝/
C kruk3r=4

L2.˝/


 i
dt

� C
Z T

0

ku � ukr=4
L2.˝/

	
kruk3r=2

L2.˝/
C kruk3r=2

L2.˝/



dt: (7.20)

Note that the integral is well defined for r � 4=3 since the first term is in L1.0;T/
by assumption and the norms with the gradient are in L2.0;T/.

Next, Hölder’s inequality (A.9) will be applied. Since u;u 2 L2 .0;TI Vdiv/, the
terms in the parentheses should get the power 2. Therefore, one chooses in (A.9) the
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values p D 4=.3r/ > 1, q D 4=.4 � 3r/ and one obtains

Z T

0

h
ku � ukr=4

L2.˝/ kr .u � u/k3r=4
L2.˝/

	
kruk3r=4

L2.˝/
C kruk3r=4

L2.˝/


 i
dt

�
�Z T

0

ku � ukr=.4�3r/
L2.˝/

dt

�.4�3r/=4

�
"�Z T

0

kruk2L2.˝/ dt

�3r=4

C
�Z T

0

kruk2L2.˝/ dt

�3r=4
#
:

Inserting this estimate in (7.18), (7.19), and (7.20) gives estimate (7.17). �

Lemma 7.16 (Convergence of the Nonlinear Convective Term) It holds for all
v 2 Vdiv and � 2 C1

0 ..0;T//

lim
n!1

Z T

0

n .un.t/;un.t/; v/ �.t/ dt D
Z T

0

n .u.t/;u.t/; v/ �.t/ dt (7.21)

in L2 .0;TI Vdiv/.

Proof Only a sketch of the proof will be presented.
In the first step, one proves that

un 2 H� .0;TI Hdiv.˝// with � 2
�
0;
1

4

�
;

where the space is equipped with the norm

kunkH� .0;TIHdiv.˝//
D
Z T

0

Z T

0

jt � sj�.1C2�/ kun.t/ � un.s/kL2.˝/ dsdt:

The proof of this property is quite lengthy and it is referred to the literature, e.g.,
Girault and Raviart (1979, Chap. V, Lemma 1.7).

Applying, e.g., the generalized theorem of Lions–Aubin, it is shown next that

L2 .0;TI Vdiv/\ H� .0;TI Hdiv.˝//

is compactly imbedded into L2 .0;TI Hdiv.˝//, e.g., see Girault and Raviart (1979,
Chap. V, Lemma 1.3) for a direct proof of this property. Because fung1

nD1 is bounded
in L2 .0;TI Vdiv/\H� .0;TI Hdiv.˝//, it follows from the compactness of the imbed-
ding that there is a subsequence that is a Cauchy sequence in L2 .0;TI Hdiv.˝//.
Since L2 .0;TI Hdiv.˝// is complete, this subsequence converges strongly to some
function u 2 L2 .0;TI Hdiv.˝//. Because of the uniqueness of the limit and because
this limit is contained in L2 .0;TI Vdiv/, it has to be the same limit as the limit from
Corollary 7.13.
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Taking u D un and r D 8=7 in (7.17) gives the term

ku � unkr=4
Lr=.4�3r/.0;TIL2.˝// D ku � unk2=7L2.0;TIL2.˝// ;

which converges to zero as n ! 1. Thus, one gets from (7.17) that

lim
n!1

Z T

0

jn.u;u; v/� n .un;un; v/j8=7 dt D 0:

Since this expression converges for the power 8=7, it converges also for the power
one, such that one obtains

lim
n!1

Z T

0

jn .un;un; v/� n .u;u; v//j dt D 0:

Finally, it follows that

lim
n!1

ˇ̌
ˇ̌Z T

0

.n .un;un; v/ � n .u;u; v/// �.t/ dt

ˇ̌
ˇ̌

� k�kL1..0;T// lim
n!1

Z T

0

jn .un;un; v/ � n .u;u; v//j dt D 0;

which is the statement of the lemma. �

Lemma 7.17 (Satisfaction of the Initial Condition) The limit u from Corol-
lary 7.13 and Lemma 7.16 satisfies the initial condition.

Proof Let vn 2 Vn
div be arbitrary, then the fundamental theorem of calculus and the

product rule yields

� .u.0/; vn/ D .u.t/; vn/
T � t

T

ˇ̌
ˇ̌T
tD0

D
Z T

0

d

dt

�
.u.t/; vn/

T � t

T

�
dt

D
Z T

0

�
d

dt
.u; vn/

�
T � t

T
dt � 1

T

Z T

0

.u; vn/ dt:

Inserting for the time derivative equation (7.3) and replacing the term with the
exterior force by (7.6) gives

� .u.0/; vn/

D
Z T

0

.h f ; vniV0;V � .	ru;rvn/� n .u;u; vn//
T � t

T
dt � 1

T

Z T

0

.u; vn/ dt
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D
Z T

0

..	run;rvn/� .	ru;rvn//
T � t

T
dt

C
Z T

0

.n .un;un; vn/ � n .u;u; vn//
T � t

T
dt

C
Z T

0

.@tun; vn/
T � t

T
dt � 1

T

Z T

0

.u; vn/ dt:

Now, one considers n ! 1. From (7.16) and (7.21), it follows that the first

two terms vanish. One obtains, using integration by parts in time and un ��* u in
L1 .0;TI Hdiv.˝//

� .u.0/; v/
D lim

n!1 � .u.0/; vn/

D lim
n!1

Z T

0

.@tun; vn/
T � t

T
dt � 1

T

Z T

0

.u; vn/ dt

D lim
n!1 .un; vn/

T � t

T

ˇ̌
ˇ̌T
tD0

C 1

T
lim

n!1

�Z T

0

.un; vn/ dt �
Z T

0

.u; vn/ dt

�

D � lim
n!1 .un.0/; vn/

D � lim
n!1

�
un
0; v

n
�
:

Hence, the limit function u satisfies the initial condition. �

Theorem 7.18 (Existence of a Weak Solution in the Sense of Leray–Hopf) Let
f 2 L2 .0;TI V 0/ and u0 2 Hdiv.˝/, then there exists a weak solution

u 2 L2 .0;TI Vdiv/\ L1 .0;TI Hdiv.˝//

of (7.3) or (7.4) in the sense of Leray–Hopf.

Proof From Remark 7.14 and Lemma 7.16, it follows that there is a subsequence
of fung1

nD1 whose limit u satisfies the weak equation. In Lemma 7.17 it was proved
that also the initial condition is satisfied from u. �

Lemma 7.19 (Regularity of the Time Derivative) Let u 2 L2 .0;TI Vdiv/ \
L1 .0;TI Hdiv.˝// be the Leray–Hopf weak solution of (7.3), then

@tu 2
(

L2 .0;TI V 0/ if d D 2;

L4=3 .0;TI V 0/ if d D 3:
(7.22)
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Proof By definition, it is

k@tukp
Lp.0;TIV0/ D

Z T

0

0
B@ sup

v2VkrvkL2.˝/D1
h@tu; viV0;V

1
CA

p

dt:

Replacing the term in the parentheses with the weak form of the Navier–Stokes
equations (7.4), applying the estimate for the dual pairing and the Cauchy–Schwarz
inequality (A.10), and using (A.4) yields

k@tukp
Lp.0;TIV0/

D
Z T

0

0
B@ sup

v2V
krvkL2.˝/D1

.h f ; viV0;V � 	 .ru;rv/� n .u;u; v//

1
CA

p

dt

�
Z T

0

0
B@ sup

v2V
krvkL2.˝/D1

�k fkV0 krvkL2.˝/ C 	 krukL2.˝/ krvkL2.˝/ C jn .u;u; v/j�
1
CA

p

dt

� C
Z T

0

k fkp
V0 C krukp

L2.˝/
C

0
B@ sup

v2V
krvkL2.˝/D1

jn .u;u; v/j

1
CA

p

dt: (7.23)

The first term is bounded for p � 2 since one obtains with Hölder’s inequal-
ity (A.9)

Z T

0

k fkp
V0 dt �

�Z T

0

k fk2V0 dt

�p=2 �Z T

0

12=.2�p/ dt

�.2�p/=2

D C k fkp=2
L2.0;TIV0/

<1;

by the regularity assumption on f . In the same way, using the regularity assump-
tion (7.5) for a weak solution, one finds that the second term of (7.23) is finite.

For the third term of (7.23), one gets with (6.24) and (6.33) with p D r D 4

Z T

0

0
B@ sup

v2VkrvkL2.˝/D1
jn .u;u; v/j

1
CA

p

dt D
Z T

0

0
B@ sup

v2VkrvkL2.˝/D1
j�n .u; v;u/j

1
CA

p

dt

�
Z T

0

0
B@ sup

v2VkrvkL2.˝/D1
kuk2L4.˝/ krvkL2.˝/

1
CA

p

dt

D
Z T

0

kuk2p
L4.˝/

dt: (7.24)
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The question, for which values of p the right-hand side of (7.24) is finite will be
studied separately for two and three dimensions.

Two-dimensional Case One has by the Sobolev imbedding H1=2 .˝/ ! L4 .˝/,
see (A.15), the interpolation theorem between Sobolev spaces (A.13), and
Poincaré’s inequality (A.12)

kuk4L4.˝/ � C kuk4H1=2.˝/
� C kuk2L2.˝/ kuk2H1.˝/ � C kuk2L2.˝/ kruk2L2.˝/ :

It follows that

Z t

0

ku .�/k4L4.˝/ d� � C
Z t

0

ku .�/k2L2.˝/ kru .�/k2L2.˝/ d�

� C kuk2
L1..0;T/IL2.˝//

Z t

0

kru .�/k2L2.˝/ d�

D C kuk2
L1..0;T/IL2.˝// kuk2L2..0;T/IV/ < 1; (7.25)

by the regularity properties of a weak solution. Together with the results for the first
two terms of (7.23), the lemma is proved for the two-dimensional case.

Three-dimensional Case In three dimensions, the Sobolev imbedding H3=4 .˝/ !
L4 .˝/ holds, see (A.15). Hence, one obtains with the interpolation theorem
between Sobolev spaces (A.13) and Poincaré’s inequality

Z T

0

kuk2p
L4.˝/

dt � C
Z T

0

kuk2p
H3=4.˝/

dt � C
Z T

0

kukp=2
L2.˝/

kruk3p=2
L2.˝/

dt

� C kukp=2

L1..0;T/IL2.˝//

Z T

0

kruk3p=2
L2.˝/

dt: (7.26)

By the regularity assumption (7.5) on a weak solution, the first factor is finite and
the second factor is finite for p D 3=4. This result finishes the proof of the lemma
for the three-dimensional case. �

Definition 7.20 (Energy Inequality) A weak solution u is said to satisfy the
energy inequality if

ku.t/k2L2.˝/ C 2	

Z t

0

kru .�/k2L2.˝/ d�

� ku .0/k2L2.˝/ C 2

Z t

0

h f ;uiV0V.�/ d� (7.27)

for all t 2 Œ0;T�. The first term on the left-hand side is (twice of) the kinetic energy
and the second term is the energy dissipation due to the viscosity of the fluid. ut
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Lemma 7.21 (Energy Inequality, Stability of the Solution) Let d D 2 and let
u be any weak solution of (7.3) or (7.4). Then, this solution satisfies an energy
equality. In addition, the following stability bound for the velocity holds

ku.t/k2L2.˝/ C 	 kruk2
L2.0;tIL2.˝// � ku.0/k2L2.˝/ C 1

	
k fk2

L2.0;tIH�1.˝// (7.28)

for all t 2 Œ0;T�.
If d D 3 and u is the weak solution of (7.3) or (7.4) in the sense of Leray–Hopf,

then this solution satisfies the energy inequality (7.27) and a stability estimate of
form (7.28).

Proof The proof is different for two and three dimensions.

Two-dimensional Case In this case, one can apply the usual approach, i.e., one can
take the weak solution u as a test function. One obtains from (7.3), (7.13), and
Lemma 6.10

1

2

d

dt
kuk2L2.˝/ C 	 kruk2L2.˝/ D h f ;uiV0;V :

Integrating in .0; t/ yields

1

2
ku.t/k2L2.˝/ C 	 kruk2

L2.0;tIL2.˝// D 1

2
ku.0/k2L2.˝/ C

Z t

0

h f ;uiV0;V .�/ d�;

which is just the energy equality. Then, using the inequality for the dual pairing and
Young’s inequality (A.5) gives

1

2
ku.t/k2L2.˝/ C 	 kruk2L2.0;tIL2.˝//

� 1

2
ku.0/k2L2.˝/ C 1

2	
k fk2L2.0;tIV0/ C 	

2
kruk2

L2.0;tIL2.˝// ;

which leads directly to (7.28).

Three-dimensional Case The difficulty in three dimensions with the usual approach
is that the term

Z t

0

.@tu;u/.�/ d�

might not be well defined, since @tu is contained in L4=3 .0; tI V 0/, see (7.22), but not
in L2 .0; tI V 0/. Thus, with respect to time, the term in the integral might not be in
L1.0; t/ such that the integral might not be well defined.
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Starting point for proving the energy inequality is the first line of (7.14), i.e.,

1

2

d

dt
kun.t/k2L2.˝/ C 	 krun.t/k2L2.˝/ D h f .t/;un.t/iV0;V :

Integration in .0; t/ gives

kun.t/k2L2.˝/ C 2	 krunk2
L2.0;tIL2.˝// D kun.0/k2L2.˝/ C 2

Z t

0

h f ;uniV0;V .�/ d�:

(7.29)

Since there is a subsequence of fung1
nD1, which will be denoted for simplicity with

the same symbol, that converges weakly to u in L2 .0;TI Vdiv/ and weakly� to u in
L1 .0;TI Hdiv/, see Corollary 7.13, it follows that, e.g., see Evans (2010, p. 723),

kukL1.0;tIL2.˝// � lim inf
n!1 kunkL1.0;tIL2.˝// ;

kukL2.0;tIV/ � lim inf
n!1 kunkL2.0;tIV/

for t 2 Œ0;T�. Taking n ! 1 in (7.29), using these estimates, noting that
ku.t/kL2.˝/ � kukL1.0;tIL2.˝//, using that the limit satisfies the initial condition

in the sense of L2.˝/, see Lemma 7.17, and using the weak convergence in
L2 .0; tI Vdiv/ leads to

ku.t/k2L2.˝/ C 2	 kruk2
L2.0;tIL2.˝//

� lim
n!1 kun.0/k2L2.˝/ C 2 lim

n!1

Z t

0

h f ;uniV0;V .�/ d�

D ku.0/k2L2.˝/ C 2

Z t

0

h f ;uiV0;V.�/ d�;

which is just the energy inequality (7.27). Estimate (7.28) is now proved analogously
to the two-dimensional case by using the estimate for the dual pairing and Young’s
inequality. �

Lemma 7.22 (Uniqueness of a Weak Solution with Stronger Regularity
Assumptions on the Solution) There is not more than one weak solution that
satisfies u 2 L8

�
0;TI L4 .˝/

�
.

Proof First of all, one finds, with the assumed regularity, that it is also in three
dimensions @tu 2 L2 .0;TI V 0/. The proof of this statement follows the lines
of the proof of Lemma 7.19. Starting with (7.26), using the Sobolev imbedding
H3=4 .˝/ ! L4 .˝/, see (A.15), the interpolation in Sobolev spaces (A.13), and
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Hölder’s inequality (A.9) yields

Z T

0

kuk2p
L4.˝/

dt

� C
Z T

0

kukp
L4.˝/

kukp
H3=4.˝/

dt

� C
Z T

0

kukp
L4.˝/

kukp=4
L2.˝/

kruk3p=4
L2.˝/

dt

� C kukp=4

L1..0;T/IL2.˝//

Z T

0

kukp
L4.˝/ kruk3p=4

L2.˝/
dt (7.30)

� C kukp=4

L1..0;T/IL2.˝//

�Z T

0

kuk8p=.8�3p/
L4.˝/

dt

�.8�3p/=8 �Z T

0

kruk2L2.˝/ dt

�3p=8

:

Applying the regularity assumptions of a weak solution and of Lemma 7.22 shows
that all terms on the right-hand side of (7.30) are finite for p D 2.

Assume now that there are two weak solutions u0;u00 2 L8
�
0;TI L4 .˝/

�
for the

same data f and u0. Subtracting the equations for both solutions, using u0�u00 2 Vdiv

as test function, and applying (7.13) yields

1

2

d

dt

��u0 � u00
��2

L2.˝/C	
��r �

u0 � u00
���2

L2.˝/ D n
�
u00;u00;u0 � u00

��n
�
u0;u0;u0 � u00

�
:

(7.31)

Note that the term .@t .u0 � u00/ ;u0 � u00/ is well defined because it was shown at
the beginning of the proof that @tu0; @tu00 2 L2 .0;TI V 0/ The terms on the right-
hand side of (7.31) will be estimated. To this end, n .u0;u00;u0 � u00/ is added and
subtracted, (6.28), (6.24), (6.33) with p D r D 4 are used, the Sobolev imbedding
H3=4 .˝/ ! L4 .˝/ is used, which holds for d D 2 and d D 3, see (A.15),
the interpolation theorem between Sobolev spaces (A.13) is applied, and Young’s
inequality (A.5) with p D 8=7 and q D 8 is used to obtain

n
�
u00;u00;u0 � u00� � n

�
u0;u0;u0 � u00�

D n
�
u00 � u0;u00;u0 � u00� � n

�
u0;u0 � u00;u0 � u00�

D n
�
u00 � u0;u00;u0 � u00�

D �n
�
u00 � u0;u0 � u00;u00�

� ��u0 � u00��
L4.˝/

��r �
u0 � u00���

L2.˝/

��u00��
L4.˝/

� C
��u0 � u00��

H3=4.˝/

��r �
u0 � u00���

L2.˝/

��u00��
L4.˝/

� C
��u0 � u00��1=4

L2.˝/

��r �u0 � u00���7=4
L2.˝/

��u00��
L4.˝/

� 	

2

��r �
u0 � u00���2

L2.˝/
C C

��u00��8
L4.˝/

��u0 � u00��2
L2.˝/

: (7.32)
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Inserting this estimate in (7.31) gives

d

dt

��u0 � u00��2
L2.˝/

C 	
��r �u0 � u00���2

L2.˝/
� C

��u00��8
L4.˝/

��u0 � u00��2
L2.˝/

:

(7.33)

The second term on the left-hand side can be estimate with zero from below. Then,
applying Gronwall’s lemma, Lemma A.54, yields for all times

���u0 � u00� .t/��2L2.˝/ � exp
	

C
��u00��8

L8.0;TIL4.˝//

 ���u0 � u00� .0/��2L2.˝/ D 0;

since both solutions satisfy the same initial condition. Hence u0 D u00
in L1 .0;TI Hdiv.˝//. Inserting this result in (7.33) gives for all times
kr .u0 � u00/kL2.˝/ D 0 such that u0 D u00 in L2 .0;TI Vdiv/. Consequently, it is
u0 D u00. �
Remark 7.23 (Generalization of Lemma 7.22) The result of Lemma 7.22 can be
generalized to the statement that there is not more than one weak solution

u 2 Ls .0;TI Lq .˝// with s > 2; q > 3;
2

s
C 3

q
D 1; (7.34)

see Serrin (1963). A solution that satisfies (7.34) is called strong solution in the
sense of Serrin.

The proof of this statement follows the lines of the proof of Lemma 7.22. First,
one has to show that @tu 2 L2 .0;TI V 0/. To this end, one modifies estimate (7.24),
using the generalized Hölder inequality (6.33), in the form

Z T

0

0
B@ sup

v2VkrvkL2.˝/D1
jn .u;u; v/j

1
CA

p

dt �
Z T

0

Z T

0

kukp
L2q=.q�2/.˝/

kukp
Lq.˝/ dt:

Now, the Sobolev imbedding H3=q .˝/ ! L2q=.q�2/ .˝/, compare (A.15), the
interpolation in Sobolev spaces (A.13), the definition of s D .2pq/=.2q � 3p/
from (7.34), the Poincaré inequality (A.12), and Hölder’s inequality (A.9) are used
to obtain

Z T

0

Z T

0

kukp
L2q=.q�2/.˝/

kukp
Lq.˝/ dt

� C
Z T

0

Z T

0

kukp
H3=q.˝/

kukp
Lq.˝/ dt
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� C
Z T

0

kuk2p=s
L2.˝/

kruk3p=q
L2.˝/

kukp
Lq.˝/ dt

� C kuk2p=s

L1..0;T/IL2.˝// kruk3p=q

L2..0;T/IL2.˝// kukp
Ls..0;T/ILq.˝//

< 1;

compare (7.30) for the special case s D 8 and q D 4.
For bounding the left-hand side of (7.32), principally the same tools are used.

Only, the Sobolev imbedding H3=q .˝/ ! L2q=.q�2/ .˝/, Young’s inequality (A.5)
with q D 2=.1 C 3=q//; p D 2q=.q � 3/, and the definition of s from (7.34) are
applied to get

�n
�
u00 � u0;u0 � u00;u00�

� ��u0 � u00��
L2q=.q�2/.˝/

��r �
u0 � u00���

L2.˝/

��u00��
Lq.˝/

� C
��u0 � u00��

H3=q.˝/

��r �
u0 � u00���

L2.˝/

��u00��
Lq.˝/

� C
��u0 � u00��2=s

L2.˝/

��r �
u0 � u00���1C3=q

L2.˝/

��u00��
Lq.˝/

� 	

2

��r �
u0 � u00���2

L2.˝/ C C
��u00��s

Lq.˝/

��u0 � u00��2
L2.˝/ :

With this estimate, the proof can be finished in the same way as the proof of
Lemma 7.22. ut
Theorem 7.24 (Uniqueness of the Weak Solution in Two Dimensions) There
is exactly one weak velocity solution of the Navier–Stokes equations in two
dimensions.

Proof The proof proceeds analogously as the proof of Lemma 7.22. The right-hand
side of (7.31) has to be estimated. Bounding the right-hand side uses more or less
the same tools as applied in (7.32). But in two dimensions, one can use the Sobolev
imbedding H1=2 .˝/ ! L4 .˝/, see (A.15), and then Young’s inequality (A.5) with
p D 4=3 and q D 4 to get

n
�
u00;u00;u0 � u00�� n

�
u0;u0;u0 � u00�

� ��u0 � u00��
L4.˝/

��r �
u0 � u00���

L2.˝/

��u00��
L4.˝/

� C
��u0 � u00��

H1=2.˝/

��r �
u0 � u00���

L2.˝/

��u00��
L4.˝/

� C
��u0 � u00��1=2

L2.˝/

��r �
u0 � u00���3=2

L2.˝/

��u00��
L4.˝/

� 	

2

��r �
u0 � u00���2

L2.˝/ C C
��u00��4

L4.˝/

��u0 � u00��2
L2.˝/ :

Since by (7.25), it is known that in two dimensions u00 2 L4
�
.0;T/ I L4 .˝/

�
, the

proof can be finished in the same way as the proof of Lemma 7.22. �
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Remark 7.25 (On the Uniqueness of the Weak Solution in Three Dimensions) The
uniqueness of a weak solution in the three-dimensional case is an open problem.
Only the uniqueness of a strong solution in the sense of Serrin is known, compare
Remark 7.23. However, the existence of a strong solution cannot be proved, only
the existence of a weak solution. These open questions are strongly linked to one
of the major mathematical challenges that were formulated in one of the so-called
Millennium Problems of the Clay Mathematics Institute, see Fefferman (2000).

From the mathematical point of view, the difference of the two- and three-
dimensional case arises from the dependency of Sobolev imbeddings on the
dimension of the domain, compare the proofs of Lemma 7.22 and Theorem 7.24.

ut
Remark 7.26 (Local Existence and Uniqueness Results for Small Data) In three
dimensions, one can prove that there exists a unique solution of the Navier–Stokes
equations with higher regularity and in a time interval .0;T 0/, T 0 > 0, if the data u0
and f are sufficiently small, e.g., see Sohr (2001, Chap. V, Theorem 4.2.2). The time
T 0 depends on the size of the data. This solution is sometimes called local solution.

ut
Remark 7.27 (The Pressure) Given a weak velocity solution u of the Navier–Stokes
equations, a pressure p can be defined such that .u; p/ satisfy a weak form of the
Navier–Stokes equations. One can find in the literature several results concerning
the regularity of the pressure, e.g., Galdi (2000, Sect. 2), Sohr (2001, Sect. V.1.7), or
Temam (1984, p. 307). ut
Remark 7.28 (An Equation for the Pressure for t > 0) A possible way to construct
an equation for the pressure, which is the most common one, starts by assuming
that all functions in the Navier–Stokes equations (7.1) are sufficiently smooth.
Then, the divergence operator is applied to the momentum equation. Using that u is
divergence-free, such that

r � @tu D @t .r � u/ D 0

and r ��u D 0, compare (4.123), gives

� r � rp D ��p D �r � f C r � ..u � r//u/ : (7.35)

This equation is a Poisson equation for the pressure, a so-called pressure Poisson
equation. To get a well-posed problem, (7.35) has to be equipped with appropriate
boundary conditions. To this end, one considers the restriction of the momentum
equation in (7.1) to the boundary 
 , multiplies this restriction with the outward
pointing unit normal vector n, and uses that u vanishes at the boundary for t > 0,
which yields

rp � n D . f C 	�u/ � n on 
: (7.36)
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Finally, the pressure is contained in L20.˝/ such that it has to satisfy

Z
˝

p.x/ dx D 0: (7.37)

Problem (7.35)–(7.37) admits a unique solution. ut
Remark 7.29 (The Pressure at the Initial Time) A pressure at the initial time is
not part of the definition of the problem. For obtaining an equation, one uses in
principal the same way as described in Remark 7.28, however, the derivation of the
boundary condition has to take into account that generally u0 does not vanish on

 . By Definition 7.6, it is u0 2 Hdiv.˝/ such that only the normal component of
u0 vanishes on 
 . Since the normal component of the velocity vanishes also for all
times t > 0, one finds that @tu0 � nj
 D 0. Hence, one gets the problem

��p0 D �r � f .0; �/C r � ..u0 � r/ u0/ in ˝;

rp0 � n D . f .0; �/C 	�u0 � .u0 � r/ u0/ � n on 
;Z
˝

p0.x/ dx D 0:

(7.38)

It was shown in Heywood and Rannacher (1982) that this problem is well-posed
under certain regularity assumptions on f and u0 and it defines a unique pressure at
the initial time. ut
Remark 7.30 (Regularity for t ! C0, Compatibility Conditions) Restricting the
momentum equation for t D 0 to the boundary, then one finds for the initial pressure
computed with (7.38) that

rp0j
 D . f .0; �/� @tu0 C 	�u0 � .u0 � r/ u0/j
 :

If one requires that there is a continuous transition for the velocity as t ! C0, then
@tu0j
 D 0 since u.t/j
 D 0 for all t > 0. In this case, the initial pressure has to
satisfy the boundary condition

rp0j
 D . f .0; �/C 	�u0 � .u0 � r/u0/j
 : (7.39)

However, the pressure Poisson equation from (7.38) together with the boundary
condition (7.39) constitute an over-determined problem. Only the normal compo-
nent of the gradient of the pressure can be prescribed at the boundary but not
the whole gradient. Note that the condition on the whole gradient can be split
in a condition on the normal component, as in (7.38), and a condition on each
of the linearly independent tangential vectors, in the same way as described in
Remark 2.25. Usually, this over-determined problem does not possess a solution.
Hence, it is generally

lim
t!C0 @tuj
 D lim

t!C0 . f C 	�u � .u � r/ u � rp/j
 ¤ 0:
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The over-determined problem is solvable only if certain compatibility conditions
of f and u0 are satisfied, see Temam (1982) for details. The difficulty is not that
generally u0 does not vanish on 
 . Even for u0 with compact support in ˝ ,
where (7.39) reduces to rp0j
 D f .0; �/j
 , such compatibility conditions are
required. These compatibility conditions are nonlocal, since they include the right-
hand side of the pressure Poisson equation, and they are virtually uncheckable for
given data, see Heywood and Rannacher (1982). They are rarely satisfied, even in
modeling simple problems, compare Heywood and Rannacher (1988).

The reduced regularity at the initial time can be quantified, e.g., it was proved in
Heywood and Rannacher (1982, Theorem 2.5) for k � 2

ku.t/kHk.˝/ C k@tu.t/kHk�2.˝/ � C .minft; 1g/1�k=2
; t > 0:

Thus, higher order norms of u and @tu blow up as t ! C0. ut

7.2 Finite Element Error Analysis:
The Time-Continuous Case

Remark 7.31 (Motivation) The error analysis in the time-continuous case does not
consider a discretization of the temporal derivative in the momentum equation
in (7.1). Thus, one concentrates on the errors that are introduced by the spatial
discretization and the dependency of the constants in the error bounds on the
viscosity 	. ut
Remark 7.32 (The Weak Formulation) In the finite element error analysis, a weak
formulation of the time-dependent Navier–Stokes equations is considered that
does not apply an integration by parts with respect to the temporal derivative.
Consider (7.1) with the boundary condition (7.2). The weak formulation reads as
follows: Find u W .0;T� ! V and p W .0;T� ! Q such that

.@tu; v/C .	ru;rv/C n .u;u; v/� .r � v; p/C .r � u; q/ D h f ; viV0;V (7.40)

for all .v; q/ 2 V � Q and u.0; x/ D u0.x/ 2 Hdiv.˝/. In (7.40), the nonlinear term
n .u;u; v/ can be chosen as any of the terms that are introduced in Remark 6.8.

By definition, the regularity (7.5) is known. The satisfaction of the energy
inequality (7.27) and the stability estimate (7.28) were proved in Lemma 7.21.
For the finite element error analysis, it will turn out that the regularity (7.5) is not
sufficient. Higher regularity assumptions are used, see Theorem 7.35. ut
Remark 7.33 (Time-Continuous Galerkin Finite Element Formulation) This section
considers inf-sup stable and conforming finite element spaces. Let Vh � V and
Qh � Q and let Vh and Qh satisfy the discrete inf-sup condition (3.51), then the
time-continuous Galerkin finite element formulation reads as follows: Find uh W
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.0;T� ! Vh and ph W .0;T� ! Qh such that

�
@tuh; vh

�C .	ruh;rvh/C n
�
uh;uh; vh

�
� �r � vh; ph

�C �r � uh; qh
� D h f ; vhiV0;V (7.41)

for all .vh; qh/ 2 Vh � Qh and uh.0; x/ D uh
0.x/ 2 Vh, where uh

0.x/ is an approxi-
mation of u0.x/, for instance an appropriate interpolation (if the initial condition is
sufficiently smooth) or a projection. For the domain, the usual assumptions have to
be made:˝ should be a bounded domain with polyhedral and Lipschitz continuous
boundary.

Like in the stability analysis of the steady-state equations, it is important that
the nonlinear term vanishes if its second and third argument are identical, see
Lemma 6.10. Thus, the nonlinear term for the stability estimates of (7.41) might
be nskew

�
uh;uh; vh

�
, nrot

�
uh;uh; vh

�
, or ndiv

�
uh;uh; vh

�
.

In contrast to the finite element error analysis of the steady-state Navier–Stokes
equations, the L2.˝/ norm of the velocity plays an important role in the error
analysis of the time-dependent problem. This fact is reflected by the use of an
estimate of the convective term that involves the L2.˝/ norm of the first argument,
see Lemma 6.14. This estimate is only true for the convective and the skew-
symmetric form. Since the results of the stability analysis are applied in the finite
element error analysis, this analysis will be carried out for nskew .�; �; �/ only.

In practical simulations, nconv .�; �; �/ is often used. ut
Lemma 7.34 (Existence, Uniqueness, and Stability of the Finite Element Solu-
tion) Let uh

0 2 Vh
div and f 2 L2.0; tI V 0/, then the finite element problem (7.41)

has a unique solution
�
uh; ph

� 2 Vh � Qh, where Vh and Qh are assumed to
satisfy the discrete inf-sup condition (3.51). If the nonlinear terms nskew

�
uh;uh; vh

�
,

nrot
�
uh;uh; vh

�
, or ndiv

�
uh;uh; vh

�
are used, then it holds for all t 2 .0;T� that

��uh.t/
��2

L2.˝/
C 	

��ruh
��2

L2.0;tIL2.˝// � ��uh
0

��2
L2.˝/

C 1

	
k fk2L2.0;tIV0/ : (7.42)

Proof Consider first the Galerkin finite element method in Vh
div: Find uh 2 Vh

div such
that

�
@tuh; vh

�C .	ruh;rvh/C n
�
uh;uh; vh

� D h f ; vhiV0;V 8 vh 2 Vh
div:

This problem is a problem in a finite-dimensional space, exactly as problem (7.6) or
equivalently (7.7)–(7.9). Now, the existence and uniqueness of a velocity solution
can be proved with the same arguments as in the proof of Lemma 7.12. The
existence and uniqueness of a corresponding pressure follows from the discrete inf-
sup condition (3.51).

Estimate (7.42) is the analog of estimate (7.11). Note that in the derivation
of (7.11) the skew-symmetry of the nonlinear term was used, which is given for
finite element spaces usually only for the forms of the convective term mentioned
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in the formulation of the lemma. In contrast to (7.11), the estimate of the projection
for the initial velocity is not yet applied in (7.42). �

Theorem 7.35 (Finite Element Error Estimate for the Velocity of the
Continuous-in-Time Galerkin Finite Element Method) Let˝ � R

d, d 2 f2; 3g,
be a bounded domain with polyhedral and Lipschitz continuous boundary, let
f 2 L2 .0;TI V 0/, u0 2 Hdiv.˝/, and uh

0 2 Vh
div. In addition, the regularities

@tu 2 L2
�
0;TI V 0� ; ru 2 L4

�
0;TI L2 .˝/

�
; p 2 L2

�
0;TI L2 .˝/

�
(7.43)

of the solution of (7.40) are assumed. Let
�
uh; ph

� 2 Vh � Qh be the solution
of (7.41), where Vh and Qh satisfy the discrete inf-sup condition (3.51) and the
skew-symmetric nonlinear term is used, then the following error estimate holds for
all t 2 .0;T�
���u � uh

�
.t/
��2

L2.˝/ C 	
��r �

u � uh
���2

L2.0;tIL2.˝//

� C

( ���u � Ih
Stu
�
.t/
��2

L2.˝/
C 	

��r �u � Ih
Stu
���2

L2.0;tIL2.˝//

C exp

�
C

	3
kruk4

L4.0;tIL2.˝//

�"��uh
0 � Ih

Stu.0/
��2

L2.˝/

C1

	

	 ��@t
�
u � Ih

Stu
���2

L2.0;tIV0/
C ��r �u � Ih

Stu
���2

L4.0;tIL2.˝// kruk2
L4.0;tIL2.˝//

C inf
qh2L2.0;tIQh/

��p � qh
��2

L2.0;tIL2.˝//



(7.44)

C 1

	3=2

���uh
0

��2
L2.˝/

C 1

	
k fk2L2.0;tIV0/

���r �
u � Ih

Stu
���2

L4.0;tIL2.˝//

#)
;

where Ih
Stu.t/ is the Stokes projection at time t with p D 0, see (4.54), for which

@tI
h
Stu 2 L2

�
0;TI V 0� (7.45)

is assumed.

Proof The proof proceeds in several steps:

1. derivation of an error equation and splitting of the error,
2. estimate all terms on the right-hand side of the error equation,
3. application of Gronwall’s lemma,
4. application of the triangle inequality.
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1. Derivation of an error equation and splitting of the error. An error equation is
derived by subtracting the weak form and the finite element formulation for test
functions that can be applied in both equations. As usual, the error is decomposed
into an interpolation error and a finite element remainder

e.t/ D u.t/ � uh.t/ D �
u.t/ � Ih

Stu.t/
�C �

Ih
Stu.t/ � uh.t/

� D �.t/ � �h.t/:
(7.46)

From the estimate (4.55) and the regularity assumptions (7.43), it follows that

rIh
Stu 2 L4

�
0;TI L2 .˝/

�
: (7.47)

For simplicity of notation, the argument will be neglected in the following.
Now, (7.40) and (7.41) are considered for test functions vh 2 Vh

div � Vh � V
and qh 2 Qh � Q. Subtracting both equations and using that uh is discretely
divergence-free leads to

�
@te; vh

�C .	re;rvh/C nskew
�
u;u; vh

� � nskew
�
uh;uh; vh

� � �r � vh; p
� D 0

for all vh 2 Vh
div. Since vh is discretely divergence-free, it is

�r � vh; qh
� D 0 for

all qh 2 Qh and this term can be added to this equation. Rearranging terms yields

�
@t�

h; vh
�C .	r�h;rvh/ (7.48)

D �
@t�; v

h
�C .	r�;rvh/C nskew

�
u;u; vh

� � nskew
�
uh;uh; vh

� � �r � vh; p � qh
�

for all
�
vh; qh

� 2 Vh
div � Qh. Note that by the definition of the Stokes projection

and by vh 2 Vh
div, it is .	r�;rvh/ D 0. Since Ih

Stu is as Stokes projection
discretely divergence-free and uh is as solution of (7.41) discretely divergence-
free, it follows that �h is also discretely divergence-free. Hence, one can choose
vh D �h and obtains the error equation

1

2

d

dt

���h
��2

L2.˝/
C 	

��r�h
��2

L2.˝/

D �
@t�;�

h
�C nskew

�
u;u;�h

� � nskew
�
uh;uh;�h

� � �r � �h; p � qh
�

(7.49)

for all qh 2 Qh.
2. Estimate all terms on the right-hand side of the error equation (7.49). The goal

of these estimates consists in absorbing in the left-hand side of (7.49) as many
terms as possible that contain �h on the right-hand side. There is not much choice
for doing this job, in principle only the second term on the left-hand side can be
used for this purpose.
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The linear terms in (7.49) are estimated with the usual tools: dual pairing or
Cauchy–Schwarz inequality (A.10), and Young’s inequality (A.5). One obtains

ˇ̌�
@t�;�

h
�ˇ̌ � k@t�kV0

��r�h
��

L2.˝/
� 2

	
k@t�k2V0 C 	

8

��r�h
��2

L2.˝/

and, using in addition (3.41),

ˇ̌�r � �h; p � qh
�ˇ̌ � ��r � �h

��
L2.˝/

��p � qh
��

L2.˝/

� ��r�h
��

L2.˝/

��p � qh
��

L2.˝/

� 2

	

��p � qh
��2

L2.˝/ C 	

8

��r�h
��2

L2.˝/ :

The nonlinear terms are decomposed as in (6.65). One obtains

ˇ̌
nskew

�
u;u;�h

� � nskew
�
uh;uh;�h

�ˇ̌

� ˇ̌
nskew

�
�;u;�h

�ˇ̌C ˇ̌
nskew

�
�h;u;�h

�ˇ̌C ˇ̌
nskew

�
uh;�;�h

�ˇ̌
:

Applying (6.41) with s D 1=2 and Young’s inequality gives

ˇ̌
nskew

�
�;u;�h

�ˇ̌ � C k�k1=2
L2.˝/

kr�k1=2
L2.˝/

krukL2.˝/

��r�h
��

L2.˝/
(7.50)

� C

	
k�kL2.˝/ kr�kL2.˝/ kruk2L2.˝/ C 	

8

��r�h
��2

L2.˝/
;

ˇ̌
nskew

�
�h;u;�h

�ˇ̌ � ���h
��1=2

L2.˝/

��r�h
��1=2

L2.˝/ krukL2.˝/

��r�h
��

L2.˝/
(7.51)

� C

	3

���h
��2

L2.˝/ kruk4L2.˝/ C 	

8

��r�h
��2

L2.˝/ ;

and

ˇ̌
nskew

�
uh;�;�h

�ˇ̌ � C
��uh

��1=2
L2.˝/

��ruh
��1=2

L2.˝/ kr�kL2.˝/

��r�h
��

L2.˝/
(7.52)

� C

	

��uh
��

L2.˝/

��ruh
��

L2.˝/ kr�k2L2.˝/ C 	

8

��r�h
��2

L2.˝/
:

Inserting all estimates in (7.49) yields

1

2

d

dt

���h
��2

L2.˝/
C 3	

8

��r�h
��2

L2.˝/

� 2

	
k@t�k2V0 C 2

	

��p � qh
��2

L2.˝/
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CC

	

	
k�kL2.˝/ kr�kL2.˝/ kruk2L2.˝/ C ��uh

��
L2.˝/

��ruh
��

L2.˝/ kr�k2L2.˝/



C C

	3
kruk4L2.˝/

���h
��2

L2.˝/

for all qh 2 Qh.
3. Application of Gronwall’s Lemma A.54. Next, this estimate is integrated in .0; t/

leading to

���h.t/
��2

L2.˝/
C 3	

4

��r�h
��2

L2.0;tIL2.˝//

� ���h.0/
��2

L2.˝/
C 2

	
k@t�k2L2.0;tIV0/ C 2

	

��p � qh
��2

L2.0;tIL2.˝//

CC

	

Z t

0

k�kL2.˝/ kr�kL2.˝/ kruk2L2.˝/ d�

CC

	

Z t

0

��uh
��

L2.˝/

��ruh
��

L2.˝/ kr�k2L2.˝/ d�

C C

	3

Z t

0

kruk4L2.˝/
���h

��2
L2.˝/

d� (7.53)

for all qh 2 Qh. Before Gronwall’s lemma can be applied to estimate (7.53),
it has to be checked if the assumptions for its application are satisfied. All
terms on the right-hand side of (7.53) are non-negative. From the regularity
assumptions (7.43) and (7.45), it follows immediately that the first two terms
on the right-hand side of (7.53) are well defined. For the third term, it follows
with Poincaré’s inequality (A.12) and the Cauchy–Schwarz inequality that

Z t

0

k�kL2.˝/ kr�kL2.˝/ kruk2L2.˝/ d�

� C
Z t

0

kr�k2L2.˝/ kruk2L2.˝/ d�

� C
Z t

0

	
kr�k4L2.˝/ d�


1=2 �Z t

0

kruk4L2.˝/ d�

�1=2

D C kr�k2L4.0;tIL2.˝// kruk2L4.0;tIL2.˝// < 1; (7.54)

because of the regularity assumptions (7.43) and of (7.47). For the fourth term
on the right-hand side of (7.53), one obtains with the stability estimate (7.42) and
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the Cauchy–Schwarz inequality

Z t

0

��uh
��

L2.˝/

��ruh
��

L2.˝/ kr�k2L2.˝/ d�

� ��uh
��

L1.0;tIL2.˝//

Z t

0

��ruh
��

L2.˝/ kr�k2L2.˝/ d�

� ��uh
��

L1.0;tIL2.˝//
��ruh

��
L2.0;tIL2.˝// kr�k2

L4.0;tIL2.˝//

� C

	1=2

���uh
0

��2
L2.˝/

C 1

	
k fk2L2.0;tIV0/

�
kr�k2

L4.0;tIL2.˝// < 1 (7.55)

as a consequence of the regularity assumptions (7.43) and of (7.47). From (7.43),
it follows that

Z t

0

kruk4L2.˝/ d� < 1:

Hence, all conditions for the application of Gronwall’s lemma are satisfied and
one obtains for all t 2 .0;T� and all qh 2 Qh

���h.t/
��2

L2.˝/
C 	

��r�h
��2

L2.0;tIL2.˝//

� C exp

�
C

	3
kruk4

L4.0;tIL2.˝//

�
(7.56)

�
" ���h.0/

��2
L2.˝/

C 	�1	 k@t�k2L2.0;tIV0/ C kr�k2
L4.0;tIL2.˝// kruk2

L4.0;tIL2.˝//

C ��p � qh
��2

L2.0;tIL2.˝//



C	�3=2
���uh

0

��2
L2.˝/

C 1

	
k fk2L2.0;tIV0/

�
kr�k2

L4.0;tIL2.˝//

#
:

4. Application of the triangle inequality. The triangle inequality gives

ke.t/k2L2.˝/ C 	 krek2
L2.0;tIL2.˝//

� 2
	
k�.t/k2L2.˝/ C 	 kr�k2

L2.0;tIL2.˝// C ���h.t/
��2

L2.˝/ C 	
��r�h

��2
L2.0;tIL2.˝//



:

Inserting (7.56) concludes the proof. �

Remark 7.36 (On Error Estimate (7.44)) Estimate (7.44) has the typical form of a
finite element error estimate. On the right-hand side one finds interpolation errors,
data of the problem, and norms of the solution of the continuous problem.
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• The term

��uh
0 � Ih

Stu.0/
��

L2.˝/ � ��u0 � Ih
Stu.0/

��
L2.˝/ C ��u0 � uh

0

��
L2.˝/

states that the initial condition has to be approximated sufficiently accurately.
• From Remark 4.44, it follows that

��@t
�
u � Ih

Stu
���

L2.0;tIV0/
D ��@tu � Ih

St .@tu/
��

L2.0;tIV0/
:

• The dominating interpolation errors are

��r �
u � Ih

Stu
���

L2.0;tIL2.˝// ;
��r �

u � Ih
Stu
���

L4.0;tIL2.˝// ;

inf
qh2L2.0;tIQh/

��p � qh
��

L2.0;tIL2.˝// ;

where the errors for the Stokes projection are estimated in (4.57) (with the
pressure term vanishing since p D 0).

ut
Remark 7.37 (On the Regularity Assumptions of Theorem 7.35) The regularity
assumptions (7.43) imply the uniqueness of the weak solution. Applying the
Sobolev imbedding H1.˝/ ! L6.˝/, see (A.22), and Poincaré’s inequality (A.12)
yields

Z T

0

kuk4L6.˝/ d� � C
Z T

0

kuk4H1.˝/ d� � C
Z T

0

kruk4L2.˝/ d� < 1;

such that u 2 L4
�
0;TI L6 .˝/

�
. Hence, condition (7.34) is satisfied with s D 4 and

q D 6. ut
Remark 7.38 (On the Proof of Theorem 7.35)

• Using the decomposition (6.64) instead of (6.65) gives in the error bound the
term

��ruh
��

L4.0;tIL2.˝//. However, the boundedness of this term is not known

and it does not follow from the stability bounds for the finite element solution.
A higher regularity, which can be assumed for the solution of the continuous
problem, cannot simply be assumed for the finite element solution.

• The Stokes projection Ih
Stu is defined in (4.54) with p D 0. If u is sufficiently

smooth, the right-hand side of the strong form of (4.54) is just ��u. Multiplying
the strong form of (4.54) with 	 and inserting the strong form of the Navier–
Stokes equations (7.1) gives an equivalent problem for the Stokes projection:
Find

�
Ih
Stu; I

h
Stp
� 2 Vh � Qh such that for all

�
vh; qh

� 2 Vh � Qh

�
	rIh

Stu;rvh
�C �r � vh; Ih

Stp
� D �

f � @tu � .u � r/ u � rp; vh
�
;

�r � Ih
Stu; q

h
� D 0: (7.57)
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This form can be found in de Frutos et al. (2016b).
Since the viscous term in (7.57) contains 	, the error estimates (4.45), (4.46),

and (4.47) of the scaled Stokes equations apply for (7.57). Because .u; 0/ is the
solution of the continuous counterpart of (7.57), the error bounds for the velocity
do not depend directly on inverse powers of the viscosity.

• Using a different projection or interpolant than Ih
Stu, the term .	r�;rvh/ will

generally not vanish in (7.48). Then, this term is estimated with the Cauchy–
Schwarz inequality (A.10) and Young’s inequality (A.5).

ut
Remark 7.39 (Decreasing the Dependency on 	 by Using Higher Regularity
Assumptions for the Velocity) Estimate (7.51) leads to 	�3 in the exponential
of the error bound (7.44). Assuming in particular higher regularity in space, e.g.,
u 2 W1;1.˝/ for the considered time t, like in Burman and Fernández (2007) and
Arndt et al. (2015), this term can be estimated as follows, using (6.39) and Young’s
inequality (A.5),

ˇ̌
nskew

�
�h;u;�h

�ˇ̌
(7.58)

� 1

2

	���h
��2

L2.˝/ krukL1.˝/ C ���h
��

L2.˝/

��r�h
��

L2.˝/ kukL1.˝/




�
�
1

2
krukL1.˝/ C 4

	
kuk2L1.˝/

����h
��2

L2.˝/ C 	

16

��r�h
��2

L2.˝/ :

The last term can be absorbed in the left-hand side of (7.49). With the assumptions
ru 2 L1 .0;TI L1.˝// and u 2 L2 .0;TI L1.˝//, Gronwall’s lemma can be
applied and the first term enters the exponential that now depends on 	�1.

If higher regularity of the solution is assumed, it was observed for the Smagorin-
sky turbulence model already in John and Layton (2002) that the dependency of
finite element error bounds on 	 can be reduced, compare Theorem 8.120. ut
Remark 7.40 (Exponential Without Explicit Viscosity in the Case of Higher Regu-
larity and Vh

div � Vdiv) Using a weakly divergence-free and inf-sup stable pair of
finite element spaces, like the Scott–Vogelius space on barycentric-refined grids,
see Remarks 3.135 and 3.136, the finite element error analysis can be performed for
nconv.�; �; �/ instead of nskew.�; �; �/, since nconv.uh; vh; vh/ D 0 for all vh 2 Vh in this
case, compare (6.28). If u 2 W1;1.˝/, one obtains with (6.38)

ˇ̌
nconv

�
�h;u;�h

�ˇ̌ � krukL1.˝/

���h
��2

L2.˝/
:

Under the assumption that ru 2 L1 .0;TI L1.˝//, Gronwall’s lemma can be
applied, leading to an argument of the exponential that does not depend explicitly
on inverse powers of 	. ut
Example 7.41 (Simulations with Analytical Solution Supporting Error Esti-
mate (7.44)) For supporting error estimate (7.44), simulations have to be performed



386 7 The Time-Dependent Navier–Stokes Equations: Laminar Flows

where the Navier–Stokes equations need to be discretized in space and time. Thus,
not only a discretization error with respect to space is committed, but also with
respect to time, e.g., compare Theorem 7.72. To support estimates that were
derived for the time-continuous case, one has to perform simulations where
the discretization error in space dominates and the error with respect to time is
negligible. To this end, one can apply a time stepping scheme, if possible of higher
order, with a very small time step.

Simulations were performed for Example D.10 with ˝ D .�1; 1/ � .�1; 1/ �
.0; 2/, ˛ D �=4, and � D �=2 in the time interval Œ0; 0:1�. As discretization
in space, the Taylor–Hood pair Q2=Q1 was used and the coarsest grid (level 0)
consisted of eight cubes. The skew-symmetric form nskew.�; �; �/ of the convective
term was utilized. For discretizing the time derivative, the Crank–Nicolson scheme,
see Example 7.49, was applied with an equidistant time step �t D 0:001.

The behavior of different errors with respect to the spatial refinement is shown
in Fig. 7.1. It can be seen that the L2.˝/ error of the velocity at the final time
converges of third order for large values of 	. Thus, estimate (7.44) seems to be
suboptimal with respect to this error. Smaller values of 	 lead to larger errors. A
second order convergence can be observed for the error of the velocity gradient in

Fig. 7.1 Example 7.41. Convergence of both parts of the error from the left-hand side of estimate
(7.44) and of the sum of these errors
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L2
�
0;TI L2.˝/

�
. Again, smaller values of 	 cause larger errors. Estimate (7.44)

holds for a linear combination of the hitherto discussed errors, where the error
for the gradient is scaled with 	1=2. It can be seen that this linear combination
converges of second order, as predicted by the error bound, and that there are only
small differences for different values of 	. Thus, the error bound is, at least for this
example, (much) too pessimistic concerning the dependency of the studied error on
the viscosity. ut
Theorem 7.42 (Finite Element Error Estimate for the Pressure of the
Continuous-in-Time Galerkin Finite Element Method) Let the assumptions
of Theorem 7.35 be satisfied and assume in addition

ru 2 L1 �
0;TI L2.˝/

�
(7.59)

and that the family of triangulations is quasi-uniform. Then, the following error
estimate holds for all t 2 .0;T�

��p � ph
��2

L2.0;tIL2.˝//

� C

�
1C 1

ˇh
is

�2
inf

qh2L2.0;tIQh/

��p � qh
��2

L2.0;tIL2.˝//

CC

�
1

ˇh
is

�2 "
	2
��r.u � uh/

��2
L2.0;tIL2.˝//

C ��u � uh
��

L1.0;tIL2.˝//
��r �

u � uh
���

L2.0;tIL2.˝// kruk2
L4.0;tIL2.˝//

C ��uh
��

L1.0;tIL2.˝//
��ruh

��
L1.0;tIL2.˝//

��r �
u � uh

���2
L2.0;tIL2.˝//

C ��@t
�
u � Ih

Stu
���2

L2.0;tIV0/

#
: (7.60)

Proof Consider t 2 .0;T�. For this time, the proof starts in the same way as for
steady-state problems by decomposing the pressure error and applying the discrete
inf-sup condition (3.51), compare the proof of Theorem 6.30. One arrives at a
formula of type (6.68) with the numerator

�
@t
�
u � uh

�
; vh

�C 	
�r.u � uh/;rvh

�
Cnskew

�
u;u; vh

� � nskew
�
uh;uh; vh

� � �r � vh; p � qh
�
: (7.61)

The viscous term and the term with the pressure are bounded in the usual way
by using the estimate for the dual pairing or the Cauchy–Schwarz inequality (A.10)
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and (3.41)

	
�r.u � uh/;rvh

� � 	
��r.u � uh/

��
L2.˝/

��rvh
��

L2.˝/ ; (7.62)
�r � vh; p � qh

� � ��p � qh
��

L2.˝/

��rvh
��

L2.˝/
: (7.63)

The second factors cancel with the denominator of the discrete inf-sup condition.
Next, the estimate of the convective terms will be discussed, which is based on the
decomposition

nskew
�
u;u; vh

� � nskew
�
uh;uh; vh

�
D nskew

�
u � uh;u; vh

�C nskew
�
uh;u � uh; vh

�
: (7.64)

Applying estimate (6.41) for s D 1=2 gives for the first term

ˇ̌
nskew

�
u � uh;u; vh

�ˇ̌
(7.65)

� C
��u � uh

��1=2
L2.˝/

��r �
u � uh

���1=2
L2.˝/ krukL2.˝/

��rvh
��

L2.˝/
:

Again, the last term cancels with the denominator of the discrete inf-sup condition.
For considering the pressure error in L2

�
0; tI L2.˝/

�
, the other terms have to be

squared and integrated in time. Using the Cauchy–Schwarz inequality yields

Z t

0

��u � uh
��

L2.˝/

��r �
u � uh

���
L2.˝/ kruk2L2.˝/ d�

� ��u � uh
��

L1.0;tIL2.˝//
��r �

u � uh
���

L2.0;tIL2.˝// kruk2
L4.0;tIL2.˝// :

The first two factors of this bound are estimated in (7.44) and the third factor is
assumed to be bounded in (7.43). Applying the same approach to the second term
in (7.64) yields

ˇ̌
nskew

�
uh;u � uh; vh

�ˇ̌
(7.66)

� C
��uh

��1=2
L2.˝/

��ruh
��1=2

L2.˝/

��r �
u � uh

���
L2.˝/

��rvh
��

L2.˝/
:

Canceling
��rvh

��
L2.˝/

, taking the square, and integrating in .0; t/ leads to

Z t

0

��uh
��

L2.˝/

��ruh
��

L2.˝/

��r �
u � uh

���2
L2.˝/

d�

� ��uh
��

L1.0;tIL2.˝//

Z t

0

��ruh
��

L2.˝/

��r �
u � uh

���2
L2.˝/

d�:
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The first term is bounded by the stability estimate (7.42). Applying the triangle
inequality with the Stokes projection Ih

Stu at time t with p D 0, (4.57) with�
vh; qh

� D .0; 0/, the inverse estimate (C.35), and the notation of the proof of
Theorem 7.35 gives

��ruh
��

L2.˝/ � ��r �
u � Ih

Stu
���

L2.˝/ C ��r �
Ih
Stu � uh

���
L2.˝/ C krukL2.˝/

� C krukL2.˝/ C Ch�1 ��Ih
Stu � uh

��
L2.˝/

C krukL2.˝/ (7.67)

D C krukL2.˝/ C Ch�1 ���h
��

L2.˝/
:

The second term is bounded in L1 �
0; tI L2.˝/

�
by (7.56) and if the convergence is

at least of first order, then the negative power of h is compensated. For the other term
on the right-hand side of (7.67), one has to assume (7.59). With this assumption, also
the second term on the right-hand side of (7.64) can be bounded.

Analyzing the term in (7.61) with the temporal derivative starts with the
decomposition

�
@t
�
u � uh

�
; vh
� D �

@t
�
u � Ih

Stu
�
; vh
�C �

@t
�
Ih
Stu � uh

�
; vh
�
:

The first term is bounded by using the estimate of the dual pairing

�
@t
�
u � Ih

Stu
�
; vh

� � ��@t
�
u � Ih

Stu
���

V0

��rvh
��

L2.˝/
: (7.68)

Bounding the other term starts in the same way. Using the notation of the proof of
Theorem 7.35, one gets

�
@t
�
Ih
Stu � uh

�
; vh
� � ��@t

�
Ih
Stu � uh

���
V0

��rvh
��

L2.˝/
D ��@t�

h
��

V0

��rvh
��

L2.˝/
:

(7.69)

For performing the estimate of the first factor, the operator Ah W Vh
div ! Vh

div
defined by

�
Ahvh;wh

� D �rvh;rwh
� 8 vh;wh 2 Vh

div (7.70)

is introduced. The operator Ah is a discrete Stokes operator. It is symmetric (self-
adjoint) and positive definite. Taking wh D vh in (7.70) gives

��rvh
��

L2.˝/ D �
Ahvh; vh

�1=2 D
	�

Ah
�1=2

vh;
�
Ah
�1=2

vh

1=2 D

����Ah
�1=2

vh
���

L2.˝/
:

(7.71)
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Setting both arguments in (7.70) to
�
Ah
��1=2

vh leads to

���r �Ah
��1=2

vh
���

L2.˝/
D
	

Ah
�
Ah
��1=2

vh;
�
Ah
��1=2

vh

1=2

D
	�

Ah
�1=2

vh;
�
Ah
��1=2

vh

1=2 D ��vh

��
L2.˝/ : (7.72)

Applying the results Ayuso et al. (2005, Lemma 3.11 and (2.15)) gives the
estimate

��@t�
h
��

V0
� Ch

��@t�
h
��

L2.˝/
C C

����Ah
��1=2

@t�
h
���

L2.˝/
:

The first term on the right-hand side can be bounded by using (7.71) and the inverse
estimate (C.35)

Ch
��@t�

h
��

L2.˝/ D Ch
����Ah

�1=2 �
Ah
��1=2

@t�
h
���

L2.˝/

D Ch
���r

	�
Ah
��1=2

@t�
h

���

L2.˝/
� C

����Ah
��1=2

@t�
h
���

L2.˝/
;

such that

��@t�
h
��

V0
� C

����Ah
��1=2

@t�
h
���

L2.˝/
: (7.73)

Bounding the right-hand side of (7.73) uses the error equation (7.48) with the test
function vh D �

Ah
��1

@t�
h 2 Vh

div. The individual terms will be considered. One
obtains

	
@t�

h;
�
Ah
��1

@t�
h



D
	�

Ah
��1=2

@t�
h;
�
Ah
��1=2

@t�
h



D
����Ah

��1=2
@t�

h
���2

L2.˝/
:

(7.74)

Using the estimate of the dual pairing and (7.72), one gets

	
@t�;

�
Ah
��1

@t�
h



� k@t�kV0

���r
	�

Ah
��1

@t�
h

���

L2.˝/

D k@t�kV0

���r
	�

Ah
��1=2 �

Ah
��1=2

@t�
h

���

L2.˝/

D ��@t
�
u � Ih

Stu
���

V0

����Ah
��1=2

@t�
h
���

L2.˝/
: (7.75)
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The viscous term is bounded by using the definition (7.70) of the discrete Stokes
operator, the Cauchy–Schwarz inequality, and (7.71)

	
	r �u � uh

�
;r �

Ah
��1

@t�
h



D 	
	

Ah
�
u � uh

�
;
�
Ah
��1

@t�
h



D 	
	�

Ah
�1=2 �

u � uh
�
;
�
Ah
��1=2

@t�
h



� 	
����Ah

�1=2 �
u � uh

����
L2.˝/

����Ah
��1=2

@t�
h
���

L2.˝/

D 	
��r �

u � uh
���

L2.˝/

����Ah
��1=2

@t�
h
���

L2.˝/
: (7.76)

The estimate of the pressure term applies the Cauchy–Schwarz inequality, (3.41),
and (7.72), where the term with the test function is handled as in estimate (7.75),

	
r �

	�
Ah
��1

@t�
h


; p � qh



� ��p � qh

��
L2.˝/

���r
	�

Ah
��1

@t�
h

���

L2.˝/

D ��p � qh
��

L2.˝/

����Ah
��1=2

@t�
h
���

L2.˝/
: (7.77)

Applying for the nonlinear term the same techniques that led to estimates (7.65)
and (7.66), and treating the term with the test function in the same way as in (7.75)
gives

nskew

	
u;u;

�
Ah
��1

@t�
h



� nskew

	
uh;uh;

�
Ah
��1

@t�
h



� C
	 ��u � uh

��1=2
L2.˝/

��r �u � uh
���1=2

L2.˝/ krukL2.˝/

C ��uh
��1=2

L2.˝/

��ruh
��1=2

L2.˝/

��r �
u � uh

���
L2.˝/


 ����Ah
��1=2

@t�
h
���

L2.˝/
: (7.78)

The second factors of estimates (7.75)–(7.78) cancel with one of the factors

of (7.74), leading to a bound for
����Ah

��1=2
@t�

h
���

L2.˝/
. This bound contains only

terms that already appeared in estimates (7.62), (7.63), (7.65), (7.66), and (7.68).

The bound for
����Ah

��1=2
@t�

h
���

L2.˝/
is inserted in (7.73) and the resulting bound

in (7.69), which finishes the estimate of the term with the temporal derivative.
Altogether, this estimate leads to the same terms that appeared already in the bounds
of the other terms of (7.61).
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Collecting all estimates, i.e., estimates (7.62), (7.63), (7.65), (7.66), (7.68),
and (7.69) yields for all qh 2 Qh

��ph � qh
��

L2.˝/

� C

ˇh
is

	
	
��r.u � uh/

��
L2.˝/ C ��u � uh

��1=2
L2.˝/

��r �
u � uh

���1=2
L2.˝/ krukL2.˝/

C ��uh
��1=2

L2.˝/

��ruh
��1=2

L2.˝/

��r �
u � uh

���
L2.˝/

C ��@t
�
u � Ih

Stu
���

V0

C ��p � qh
��

L2.˝/



: (7.79)

Applying the triangle inequality

��p � ph
��

L2.˝/
� ��p � qh

��
L2.˝/

C ��ph � qh
��

L2.˝/
;

inserting estimate (7.79), taking the square, and integrating on .0; t/ gives the error
estimate (7.60) for the pressure. �

Remark 7.43 (On Error Estimate (7.60)) The error bound on the right-hand side
of (7.60) contains velocity errors that are estimated in (7.44) and terms that appear
in the error bound of the velocity estimate. It follows that the order of convergence
for

��p � ph
��

L2.0;tIL2.˝// is the same as for the velocity errors on the left-hand side

of (7.44). ut
Example 7.44 (Simulations with Analytical Solution Supporting Error Esti-
mate (7.60)) Simulations with the Q2=Pdisc

1 pair of finite element spaces were
performed with Example D.7. The initial grid, level 0, was the irregular quadrilateral
grid presented in Fig. 4.2. As temporal discretization, the Crank–Nicolson scheme
with the equidistant time step �t D 10�4 was applied. The final time was set to be
T D 5.

Results for the pressure error are shown in Fig. 7.2. The second order conver-
gence can be clearly observed. In this example, the pressure errors do not depend
on the viscosity. ut

Remark 7.45 (Numerical Analysis for Averaged Quantities) Time-averaged or
space-time-averaged quantities are of interest in many applications. So far, however,
there are only very few results from the numerical analysis concerning such
quantities, e.g., see John et al. (2007). ut
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Fig. 7.2 Example 7.44. Convergence of the pressure error

7.3 Temporal Discretizations Leading to Coupled Problems

7.3.1 �-Schemes as Discretization in Time

Remark 7.46 (Principal Approach of the Application of �-Schemes) �-schemes use
the following strategy for the full discretization and linearization of (7.1):

1. Semi-discretization of (7.1) in time. The semi-discretization in time leads in each
discrete time to a nonlinear system of equations of saddle point type.

2. Variational formulation and linearization. The nonlinear system of equations
is reformulated as variational problem and the nonlinear variational problem is
linearized.

3. Discretization of the linear systems in space. The linear system of equations
arising in each step of the iteration for solving the nonlinear problem is
discretized by a finite element discretization using, e.g., an inf-sup stable pair
of finite element spaces.

This approach, which applies first the discretization in time and then in space, is
also called method of Rothe or horizontal method of lines. The individual steps in
this strategy are described in detail in this section. The other way, discretizing first
in space to get an ordinary differential equation and then in time, is called (vertical)
method of lines. ut
Remark 7.47 (Notation) Let tn 2 Œ0;T�, then quantities at time tn are denoted with
a subscript n. The length of the time step from a discrete time tn to the next discrete
time tnC1 is denoted by �tnC1, i.e., �tnC1 D tnC1 � tn. ut
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Remark 7.48 (One-Step �-Schemes for the Navier–Stokes Equations) Let � 2 Œ0; 1�
and consider the time step from tn to tnC1. One-step �-schemes for the Navier–
Stokes equations are of the form

unC1
�tnC1

C �
� � 	�unC1 C .unC1 � r/ unC1

�C rpnC1 (7.80)

D un

�tnC1
� .1 � �/

� � 	�un C .un � r/ un
�C .1 � �/f n C �f nC1;

0 D r � unC1:

ut
Example 7.49 (Explicit and Implicit Euler Scheme, Crank–Nicolson Scheme)
Three well known one-step �-schemes, the forward and backward Euler scheme
and the Crank–Nicolson scheme, are obtained by an appropriate choice of � :

• � D 0: forward or explicit Euler scheme,
• � D 0:5: Crank–Nicolson scheme,
• � D 1: backward or implicit Euler scheme.

A few remarks concerning these schemes should be given already here. More
detailed comments will be provided in Remark 7.59, after the presentation of a
numerical example.

• Forward or explicit Euler scheme. The appearance of the viscous term, which
has the same form as a diffusive term, leads to a stiff ordinary differential
equation with respect to time, see Hairer and Wanner (2010, p. 6). From the
numerical analysis of ordinary differential equations, it is known that explicit
schemes have to be used with very small time steps for stiff problems to obtain
stable simulations. For the Navier–Stokes equations, the time step has to be
usually so small that the simulations become very inefficient. For this reason,
the forward Euler scheme and any other explicit scheme are not recommended
for the discretization of the incompressible Navier–Stokes equations.

• Backward or implicit Euler scheme. This first order scheme is quite popular.
However, it is known from the literature, e.g., from John et al. (2006a), and
it will be demonstrated in Example 7.58, that the use of the backward Euler
scheme in combination with higher order discretizations in space might lead to
rather inaccurate results, compared with the results computed with higher order
temporal discretizations.

• Crank–Nicolson scheme, trapezoidal rule. The Crank–Nicolson scheme is a
second order scheme whose use is very popular.

• General. A defect in the pressure approximation was observed and analyzed in
Besier and Wollner (2012) for one-step schemes on adaptive grids that change
in time. Several proposals to handle this defect were studied in this paper. The
final conclusion was that the best approach consists in using a scheme like the
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fractional-step �-scheme presented in Example 7.52, at least in the time step after
the change of the grid.

ut
Remark 7.50 (Concerning the Incompressibility Constraint)

• The temporal derivative is approximated in (7.80) at tnC��tnC1, compare (7.94).
Thus, the velocity is approximated at this time and the pressure acts as a
Lagrangian multiplier for this velocity. For instance, in the case of the Crank–
Nicolson scheme, the computed solution approximates

�
unC1=2; pnC1=2

�
. If one

is interested in a good approximation of the pressure at time tnC1, one has to
modify the pressure term in the Crank–Nicolson scheme to

1

2
.pnC1 C pn/ ;

e.g., see Rang (2008). However, this scheme requires in the first step the pressure
at the initial time, see Remark 7.29 for a discussion of this topic.

• The variational form of the time step (7.80) can be written in the product space,
analogously to the form (4.3) for the Stokes equations: Find .unC1; pnC1/ 2 V�Q
such that

1

�tnC1
.unC1; v/C �

�
	 .runC1;rv/C ..unC1 � r/unC1; v/

�

C .r � unC1; q/� .r � v; pnC1/

D 1

�tnC1
.un; v/� .1 � �/�	 .run;rv/C ..un � r/ un; v/

�

C.1 � �/h f n; viV0;V C �h f nC1iV0;V ;

for .v; q/ 2 V � Q or equivalently

.unC1; v/C ��tnC1
�
	 .runC1;rv/C ..unC1 � r/ unC1; v/

�
C�tnC1 .r � unC1; q/ ��tnC1 .r � v; pnC1/ (7.81)

D .un; v/ � .1 � �/�tnC1
�
	 .run;rv/C ..un � r/un; v/

�
C.1 � �/�tnC1h f n; viV0;V C ��tnC1h fnC1; viV0;V :

Using in (7.81) .v; q/ D .u; p/, one finds that the terms with the divergence
cancel, as it was used in the analysis for steady-state problems, e.g., in the proof
of Lemma 6.21. Thus, (7.81) possesses in this respect the same properties as
the formulation for steady-state problems. The corresponding strong formulation
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of (7.81) reads as follows

unC1 C ��tnC1
� � 	�unC1 C .unC1 � r/ unC1

�C�tnC1rpnC1
D un � .1 � �/�tnC1

� � 	�un C .un � r/ un
�C .1� �/�tnC1f n

C��tnC1f nC1;

0 D �tnC1r � unC1: (7.82)

One can see that the divergence constraint is multiplied with �tnC1.
Of coarse, it is possible just to multiply the momentum equation of (7.80) with

�tnC1 and to leave the continuity equation as it is, which gives a mathematically
equivalent problem to (7.81). Apart that the scaling with�tnC1 was motivated in
this remark, the numerical solution of problem (7.81) with the scaled divergence
is more efficient in our experience.

In all simulations of time-dependent problems presented in this monograph,
the divergence constraint was scaled with the time step as in (7.81) or (7.82).

ut
Remark 7.51 (General �-Scheme for the Navier–Stokes Equations) The time step
of a general �-scheme for the Navier–Stokes equations (7.1) has the form

ukC1
�tnC1

C �1
� � 	�ukC1 C .ukC1 � r/ ukC1

�C �tkC1
�tnC1

rpkC1

D uk

�tnC1
� �2

� � 	�uk C .uk � r/ uk
�C �3f k C �4f kC1;

�tkC1r � ukC1 D 0; (7.83)

with the parameters �1; : : : ; �4. Note the different indices k and n. ut
Example 7.52 (Fractional-Step �-Scheme) The fractional-step �-scheme, devel-
oped in Bristeau et al. (1987), is obtained by three steps of form (7.83). There
exist two variants of this scheme. The two variants, FS0 and FS1, are presented
in Table 7.1, where

� D 1 �
p
2

2
; Q� D 1 � 2�; � D

Q�
1 � � ; � D 1 � �:

A fractional-step �-scheme is a clever combination of three first order one-step
schemes to achieve a strongly A-stable second order scheme.

FS1 requires the evaluation of f only at the times tn and tnC1 � ��tnC1 whereas
FS0 needs the evaluation of f in addition at tnC��tnC1 and at tnC1. Both variants are
second order schemes but FS1 does not integrate second order polynomials (with
respect to t) exactly. However, most other fundamental properties, like stability,
are the same for both variants. Results for the two-dimensional Navier–Stokes
equations, John et al. (2006a), show that FS0 is often considerable more accurate
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Table 7.1 The two variants of the fractional-step � -schemes

�1 �2 �3 �4 tk tkC1 �tkC1 Order

FS0 �� �� �� �� tn tn C ��tnC1 ��tnC1 2

� Q� � Q� � Q� � Q� tn C ��tnC1 tnC1 � ��tnC1
Q��tnC1

�� �� �� �� tnC1 � ��tnC1 tnC1 ��tnC1

FS1 �� �� � 0 tn tn C ��tnC1 ��tnC1 2

� Q� � Q� 0 Q� tn C ��tnC1 tnC1 � ��tnC1
Q��tnC1

�� �� � 0 tnC1 � ��tnC1 tnC1 ��tnC1

Table 7.2 Parameters for one-step � -schemes written as general � -scheme (7.83)

�1 �2 �3 �4 tk tkC1 �tkC1 Order

Forward Euler scheme 0 1 1 0 tn tnC1 �tnC1 1

Backward Euler scheme (BWE) 1 0 0 1 tn tnC1 �tnC1 1

Crank–Nicolson scheme (CN) 0.5 0.5 0.5 0.5 tn tnC1 �tnC1 2

than FS1. Thus, if the evaluation of the right-hand side is not very expensive, FS0
should be preferred. ut
Remark 7.53 (Representation of �-Schemes by One Formula) Note that the one-
step �-scheme (7.80) can be written as general �-scheme (7.83) with appropriate
parameters, see Table 7.2. Hence, (7.83) enables the implementation of all presented
schemes by a single formula and the choice between the schemes by setting four
parameters.

All further issues for �-schemes presented in this section will be discussed for
the general �-scheme (7.83). ut

Remark 7.54 (Variational Formulation) The solution of (7.83) will be approxi-
mated by a finite element method, with the basis of the finite element method
being a variational formulation of (7.83). The derivation of the variational problem
is performed in the usual way by multiplying the equations in (7.83) with test
functions, integrating on ˝ , and applying integration by parts, which gives after
scaling the whole problem with �tnC1 the following problem: Find .ukC1; pkC1/ 2
V � Q such that for all .v; q/ 2 V � Q

.ukC1; v/C �1�tnC1 Œ.	rukC1;rv/C ..ukC1 � r/ ukC1; v/�

��tkC1 .r � v; pkC1/

D .uk; v/� �2�tnC1Œ.2	ruk;rv/C ..uk � r/ uk; v/� (7.84)

C�3�tnC1h f k; viV0;V C �4�tnC1h f kC1; viV0;V ;

0 D �tkC1 .r � ukC1; q/ :
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Of course, any other form of the convective term discussed in Sect. 6.1.2 can be
used. For brevity, the approach will be described only for the convective form of the
convective term. ut
Remark 7.55 (Linearization of the Variational Form) The nonlinear system (7.84)
is solved iteratively starting with an initial guess

�
u0kC1; p0kC1

�
. The nonlinear

convective term has to be linearized, where the same linearizations as for the steady-
state Navier–Stokes equations can be applied, see Sect. 6.3.

Given a known velocity field u.m/kC1, the fixed point iteration or Picard iteration
uses the approximation

	
u.mC1/

kC1 � r


u.mC1/

kC1 

	
u.m/kC1 � r



u.mC1/

kC1 :

Then, the fixed point iteration for solving (7.84) has the following form: Given	
u.m/kC1; p

.m/
kC1



, the iterate
	
u.mC1/

kC1 ; p.mC1/
kC1



is computed by solving

	
u.mC1/

kC1 ; v



C �1�tnC1
h	
	ru.mC1/

kC1 ;rv



C
		

u.m/kC1 � r


u.mC1/

kC1 ; v

i

��tkC1
	
r � v; p.mC1/

kC1



D .uk; v/C �3�tnC1h f k; viV0;V C �4�tnC1h f kC1; viV0;V (7.85)

��2�tnC1
�
.	ruk;rv/C ..uk � r/ uk; v/

�
;

0 D �tkC1
	
r � u.mC1/

kC1 ; q



8 .v; q/ 2 V � Q;

m D 0; 1; 2; : : :. Equation (7.85) are of Oseen type, see (5.2). The right-hand side of
this equation does not change during the iteration.

For Newton’s method, the nonlinear convective term is linearized as follows

	
u.mC1/

kC1 � r


u.mC1/

kC1 

	
u.m/kC1 � r



u.mC1/

kC1 C
	
u.mC1/

kC1 � r


u.m/kC1 �

	
u.m/kC1 � r



u.m/kC1;

such that the iteration is of the form: Given
	
u.m/kC1; p

.m/
kC1



, the iterate	
u.mC1/

kC1 ; p.mC1/
kC1



is computed by solving

	
u.mC1/

kC1 ; v



C �1�tnC1
h 	
	ru.mC1/

kC1 ;rv



C
		

u.m/kC1 � r


u.mC1/

kC1 ; v



C
		

u.mC1/
kC1 � r



u.m/kC1; v


 i
��tkC1

	
r � v; p.mC1/

kC1



D .uk; v/C �3�tnC1h f k; viV0;V C �4�tnC1h f kC1; viV0;V (7.86)

C�1�tnC1
		

u.m/kC1 � r


u.m/kC1; v
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��2�tnC1
�
.	ruk;rv/C ..uk � r/ uk; v/

�
;

0 D �tkC1
	
r � u.mC1/

kC1 ; q



8 .v; q/ 2 V � Q;

m D 0; 1; 2; : : :.
The initial guess can be chosen to be the solution at the previous time step�

u0kC1; p0kC1
� D .uk; pk/ or some extrapolation from more than one previous times.

The numerical approximation of the Navier–Stokes equations (7.1) using the
approach described in this section requires the repeated solution of linear saddle
point problems of form (7.85) or (7.86) in each discrete time. ut
Remark 7.56 (Comparison of the Picard Iteration and Newton’s Method) For the
comparison of the Picard iteration and Newton’s method, the same statements as
given for the stationary Navier–Stokes equations in Sect. 6.3, e.g., in Remarks 6.44
and 6.46, apply.

A main difference to steady-state problems is the availability of a good initial
iterate in time-dependent problems by using the solution of the previous discrete
time or even an extrapolation from several previous solutions. Thus, the number of
iterations for computing the solution in one time step is usually considerably smaller
than the number of iterations needed for steady-state problems. The experience is
that the shorter the time step, the smaller the number of iterations becomes.

Using an approach with an iterative solver and an inexact solution of the linear
systems of equations, the numerical studies at a three-dimensional flow around
a cylinder in John (2006) revealed that for this example, the Picard iteration
was considerably more efficient then Newton’s method. It will be discussed in
Remark 9.5 that for problems in three dimensions usually iterative solvers for the
linear systems of equations should be applied, compare also Example 7.57. ut
Example 7.57 (Picard Iteration vs. Newton’s Method) This example considers a
three-dimensional problem with analytic solution, see Example D.10. The viscosity
	 D 10�3 was chosen for the simulations. A hexahedral grid consisting of cubes
was applied for triangulating the domain (eight cubes on level 0), the Q2=Q1 pair
of finite element spaces was used, the Crank–Nicolson scheme with the equidistant
time step �t D 0:01 in the time interval Œ0; 0:1� was applied, and the solution of the
previous discrete time was used as initial iterate.

Results for the described setup are presented in Table 7.3. The general observa-
tions are the same as for the steady-state problem, compare Example 6.47. Applying
Newton’s method requires generally less iterations than using the Picard method.
Using a direct solver for the linear systems of equations leads to a smaller number
of iterations in Newton’s method.

Table 7.3 provides also some information about the time for solving one linear
system of equations. The average time needed for the inexact solution in the Picard
method on level 2 was taken as basis (100% 
 3 s). The inexact solver was the
FGMRES method with a coupled multigrid preconditioner, see Remark 9.6 and
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Table 7.3 Example 7.57

Level 2 Level 3

Velocity/pressure d.o.f. 14,739/729 107,811/4913

Lin. systems Rel. time/system Lin. systems Rel. time / system

Picard/inexact 33 100 23 824

Picard/direct 33 140 22 8989

Newton/inexact 23 101 12 804

Newton/direct 11 142 11 8932

Number of solutions of linear systems of equations for computing the solution (ten time steps) and
relative computing time for solving one linear system of equations (Picard inexact as 100% � 3 s)

Table 7.4 Example 7.58 Level Velocity Pressure All

3 27,232 9984 37,216

4 107,712 39,936 147,648

5 428,416 159,744 588,160

Number of degrees of freedom in space
(including Dirichlet nodes)

Sect. 9.2.2. As sparse direct solver, umfpack was applied, see Remark 9.5. It can be
observed that the computing times on level 2 for both solvers are of the same order.
Consequently, Newton’s method with direct solver was the most efficient approach.
Refining the grid once leads to an increase of the number of unknowns by a factor
of eight. It can be seen that the inexact solver scales almost optimally whereas the
direct solver becomes very inefficient. Consequently, Newton’s method with inexact
solver was the fastest approach on level 3. ut
Example 7.58 (Accuracy Studies at Example D.9) This example considers the two-
dimensional flow around a cylinder defined in Example D.9. At the outlet, the do-
nothing boundary conditions (D.30) were applied.

Results are presented for three implicit �-schemes: the backward Euler scheme,
the Crank–Nicolson scheme, and the fractional-step �-scheme. Note that in this
problem f D 0 for all times such that FS0 and FS1 are identical. The Q2=Pdisc

1 pair
of finite element spaces was applied as spatial discretization. The quadrilateral grid
depicted in Fig. 6.5 was used as initial grid (level 0). Table 7.4 gives information
about the number of degrees of freedom for different refinement levels.

The nonlinear system in each discrete time was solved until the Euclidean norm
of the residual vector was less than 10�10. For the evaluation of the drag and lift
coefficient with (D.16) and (D.17), the same approach was applied as described in
Example 6.36. The temporal derivative in (D.16) and (D.17) was approximated by
the backward difference formula

@tuh
nC1 
 uh

nC1 � uh
n

�tnC1
:
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Fig. 7.3 Example 7.58. Error to the reference curve for the drag coefficient from Fig. D.10,
Q2=Pdisc

1 , levels 3–5 (top to bottom), left: backward Euler scheme, right: Crank–Nicolson, both
for different lengths of the time step

Figures 7.3, 7.4, 7.5, 7.6, 7.7, and 7.8 present the obtained results. It can be
observed that the use of the backward Euler scheme leads by far to the most
inaccurate results among all time stepping schemes. In the considered example, the
temporal and the spatial error are both of importance. Using the backward Euler
scheme, the temporal error dominates the error in space. Considerably smaller time
steps are necessary to reach a similar error level as obtained with the second order
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Fig. 7.4 Example 7.58. Error to the reference curve for the drag coefficient from Fig. D.10,
Q2=Pdisc

1 , left: Crank–Nicolson scheme, right: fractional-step � -scheme

Fig. 7.5 Example 7.58. Temporal evolution of the lift coefficient, Q2=Pdisc
1 , left: backward Euler

scheme, right: Crank–Nicolson scheme. Note the different scales in both pictures

time stepping schemes. The temporal evolution of the lift coefficient, Fig. 7.5, shows
that even the vortex shedding is not correctly predicted with the backward Euler
scheme with time steps larger than or equal to�t D 0:005. Altogether, this example
demonstrates the qualitative difference of using first and second order time stepping
schemes in combination with higher order discretizations in space for problems
where the error in space does not dominate.

Also for the second order schemes, the error reductions with decreasing length of
the time step can be clearly observed. Results with the second order time stepping
schemes can be compared in Figs. 7.4, 7.7, and 7.8. Despite the same order of the
Crank–Nicolson scheme and the fractional-step �-scheme, it can be observed that
the coefficients computed with the fractional-step �-scheme are considerably more
accurate. However, it will be discussed in Remark 7.59 that the numerical costs
(computing times) for simulating the flow with the fractional-step �-scheme are
usually two to three times higher than the costs for the Crank–Nicolson scheme.
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Fig. 7.6 Example 7.58. Error to the reference curve for the lift coefficient from Fig. D.10,
Q2=Pdisc

1 , levels 3–5 (top to bottom), left: backward Euler scheme, right: Crank–Nicolson, both
for different lengths of the time step

The choice of the stopping criterion for solving the nonlinear problems in
each discrete time is a delicate issue. If the stopping criterion is rather hard, the
computation of the solution in the discrete times might become time-consuming
and the overall computing time might become large. But one can expect to get
accurate results. On the other hand, using a soft stopping criterion might speed
up the simulations considerably. However, a rather inaccurate solution might be
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Fig. 7.7 Example 7.58. Error to the reference curve for the lift coefficient from Fig. D.10,
Q2=Pdisc

1 , left: Crank–Nicolson scheme, right: fractional-step � -scheme. Note the different scales
in the pictures

Fig. 7.8 Example 7.58. Error to the reference curve for the pressure difference between the front
and the back of the cylinder from Fig. D.10, Q2=Pdisc

1 , backward Euler scheme, Crank–Nicolson
scheme, fractional-step � -scheme (left to right, top to bottom)
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Fig. 7.9 Example 7.58. Dependency of the accuracy of the results on the stopping criterion for the
Picard iteration in each discrete time, Q2=Pdisc

1 , Crank–Nicolson scheme, �t D 0:01

computed in some discrete times such that the overall error increases notably. This
effect is demonstrated in Fig. 7.9. It can be seen that there is a notable gain in
accuracy if as stopping criterion an Euclidean norm of the residual vector lower
than or equal to 10�8 is used instead of 10�6. It was found that the computing time
for the tolerance 10�8 is around 2:5 times longer than for 10�6. Decreasing the
tolerance to 10�10 does not possess much impact on the accuracy compared with
the tolerance 10�8, however the computing time increased once more by a factor of
around 2:8.

What does it mean ‘hard’ and ‘soft’ stopping criterion depends on the concrete
example and on the used methods. ut

Remark 7.59 (Numerical Experience with Implicit �-Schemes for the Navier–Stokes
Equations) The Crank–Nicolson and the fractional-step �-scheme are already well
tested and compared for the Navier–Stokes equations, see Emmrich (2001) for an
overview. The Crank–Nicolson scheme is A-stable whereas the fractional-step �-
scheme is even strongly A-stable. That means, the Crank–Nicolson scheme may
lead to numerical oscillations in problems with rough initial data or boundary
conditions. These oscillations are damped out only if sufficiently small time steps
are used. Compared with the fractional-step �-scheme, a smaller time step might
be necessary for the Crank–Nicolson scheme to ensure robustness. In numerical
tests for the two-dimensional Navier–Stokes equations (John and Rang 2010;
John et al. 2006a), the results obtained with the fractional-step �-scheme were
often somewhat more accurate than the results computed with the Crank–Nicolson
scheme. However, the computing times for the fractional-step �-scheme were in
general two to three times longer than the computing times for the Crank–Nicolson
scheme. Altogether, the ratio of accuracy per CPU time presented in the diagrams
in John and Rang (2010) is somewhat better for the Crank–Nicolson scheme. ut
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Remark 7.60 (Implementation) The principal implementation of finite element
methods for �-schemes follows the same lines as the implementation for the Stokes
and Oseen equations, compare Sect. 4.3 and Remark 5.19. Only the mass matrix

.M/ij D �
�h

j ;�
h
i

�
K
; i; j D 1; : : : ; 3Nv; (7.87)

is needed for representing the discretization of the temporal derivative. Then, the
matrix of the algebraic system (7.85) for the Picard iteration, using the gradient
form of the viscous term and the convective, divergence, or skew-symmetric form
of the convective term, looks as follows

0
B@

M 0 0 0

0 M 0 0

0 0 M 0

0 0 0 0

1
CAC�tnC1

0
BBBB@

�1A11
	
u.m/kC1



0 0

�tkC1

�tnC1
BT
1

0 �1A11
	
u.m/kC1



0

�tkC1

�tnC1
BT
2

0 0 �1A11
	
u.m/kC1



�tkC1

�tnC1
BT
3

�tkC1

�tnC1
B1

�tkC1

�tnC1
B2

�tkC1

�tnC1
B3 0

1
CCCCA:

The term with �2 on the right-hand side of (7.85) has the form

� �2�tnC1

0
BB@

A11 .uk/ 0 0 0

0 A11 .uk/ 0 0

0 0 A11 .uk/ 0

0 0 0 0

1
CCA
�

uk

0

�
; (7.88)

where A11 .uk/ is the final matrix that was assembled in the Picard iteration at the
discrete time tk. Hence, the computation of (7.88) requires just a matrix-vector
multiplication. ut
Remark 7.61 (Semi-implicit Methods, IMEX Schemes) A popular approach is the
use of semi-implicit schemes, so called IMEX (implicit-explicit) schemes, that
avoid the solution of a nonlinear problem at each discrete time. Thus, performing
simulations with IMEX schemes is potentially less time-consuming than with fully
implicit schemes.

In these schemes, the nonlinear term .ukC1 � r/ ukC1, e.g., appearing in (7.83), is
replaced by

�
uprev � r�ukC1, where uprev can be obtained from already computed

solutions. The simplest way consists in using uprev D uk, but often a linear
extrapolation of the previous two time steps is used, i.e.,

uprev D �tkC1
�tk

.uk � uk�1/C uk: (7.89)

This linear extrapolation gives for � D 0:5 a similar scheme to the stabilized
extrapolated Crank–Nicolson scheme CNLE(stab) proposed and studied in Ingram
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(2013a). For constant time step, the convective term in Ingram (2013a) has the form

1

4
�t
h
...2un C un�1 � un�2/ � r/ unC1; v/

C ...2un C un�1 � un�2/ � r/ un; v/
i
; (7.90)

whereas with the extrapolation (7.89), one obtains the convective term

1

2
�t
h
...2un � un�1/ � r/ unC1; v/C ...2un�1 � un�2/ � r/ un; v/

i
: (7.91)

The second term in (7.90) and (7.91) appears in the right-hand side of the equation
at time instance tnC1. Note that

2

4
.2un C un�1 � un�2/ D 1

2
.2un � un�1/C 1

2
.2un�1 � un�2/ ;

such that (7.90) and (7.91) use a different splitting of the extrapolated velocity
field to the terms at the discrete times tnC1 and tn. The form (7.91) enables the
computation of the right-hand side of the equation at tnC1 by using the matrix that
was assembled at tn, compare Remark 7.60. ut
Example 7.62 (IMEX Schemes) To demonstrate the performance of IMEX
schemes, the two-dimensional flow around a cylinder with steady-state inflow,
Example D.8, will be considered. Simulations were performed for the Q2=Pdisc

1

pair of finite element spaces, see Fig. 6.5 for the initial grid and Table 7.4 for
information on the number of degrees of freedom. The Crank–Nicolson scheme with
�t D 0:005 was applied. The IMEX scheme was used with constant extrapolation
uprev D un and with the linear extrapolation (7.91).

Results obtained on level 4 are presented in Fig. 7.10. The results on level 3 and
level 5 are qualitatively the same. It can be seen that the results for the IMEX scheme
with constant extrapolation are quite inaccurate, e.g., the drag coefficient and the
maximal value of the lift coefficient are considerably too large. The same behavior
was observed in Caiazzo et al. (2014) for the backward Euler scheme with constant
extrapolation. In contrast, using the linear extrapolation in the IMEX scheme gives
almost the same accurate results as computed with the fully implicit scheme.

A numerical analysis for the drag and the lift coefficient computed with the
backward Euler scheme with constant extrapolation can be found in Tabata and
Tagami (2000). This analysis assumes sufficient regularity of the solution of the
Navier–Stokes equations. Since domains for flows around bodies, where drag and
lift are of importance, are usually not convex, it is not clear whether this assumption
is satisfied.

The gain in efficiency depends on many aspects, like the concrete problem, the
used solvers, details of the implementation, and others. For the numerical results
presented in this example, the sparse direct solver umfpack, see Davis (2004) and
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Fig. 7.10 Example 7.62. Quantities of interest. Reference intervals, see Table D.2, are depicted
with the dotted lines. The cross marks the middle of the period. The reference interval for the
Strouhal number is Œ0:295; 0:305�

Remark 9.5, was applied in the IMEX schemes. In the fully implicit scheme, a
Picard iteration with inexact solutions of the linear systems of equations was used.
The Euclidean norm of the residual was reduced by the factor 10 and the stopping
criterion of the Picard iteration was that this norm should be smaller than 10�8.
As solver, FGMRES with a coupled multigrid preconditioner, see Sect. 9.2.2, was
applied. The simulations with the IMEX scheme were faster, by a factor of around
40 on level 3, around 10 on level 4, and around 2:25 on level 5. The reason for the
smaller gain on finer levels is that the iterative solver scales better than the direct
sparse solver if the mesh is refined. ut
Remark 7.63 (Adaptive Time Step Control) There are well understood techniques
for an adaptive time step control in the numerical simulation of ordinary differential
equations, e.g., compare Hairer et al. (1993, Sect. II.4). These techniques rely
on comparing two solutions obtained with methods of different order and on
procedures, so-called controllers, which propose the length of the next time step.
If possible, so-called imbedded schemes are used, as an inexpensive approach, for
computing a solution with one order less than for the original time stepping scheme.
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However, there are no imbedded schemes for the class of �-schemes such that other
approaches for an adaptive time step control are necessary.

The approach proposed in Turek (1999) compares the results of the fractional-
step �-scheme and the Crank–Nicolson scheme. These schemes have a different
constant in the leading term of their error expansions. This difference, together with
the difference of the results obtained with both schemes, can be used to predict an
appropriate length of the time step. The main drawback is the high computational
effort of this approach. The step with the Crank-Nicolson scheme is used only to
determine the size of the next time step. The costs of this step are not negligible
such that the adaptive time step control increases the costs per time step notably.
A similar but less expensive approach is proposed in Kay et al. (2010). In this
approach, the step length control is based on comparing the (velocity) solutions of
the Crank–Nicolson scheme and the explicit Adams–Bashforth method of second
order. A more heuristic approach monitors just the change of the computed solution
in some norm and the length of the time step is varied due to this change, e.g., see
Berrone and Marro (2009). ut

7.3.2 Other Schemes

Remark 7.64 (BDF2) The backward difference formula of order two, called BDF2,
applied to the Navier–Stokes equations (7.1) has the form

3

2
unC1 C�tnC1

� � 	�unC1 C .unC1 � r/ unC1
�C�tnC1rpnC1

D 2un � 1

2
un�1 ��tnC1

� � 	�un C .un � r/ un
�C�tnC1f nC1;

0 D �tnC1r � unC1; (7.92)

for n � 2. The BDF2 scheme is of second order and it is strongly A-stable. Thus,
compared with the Crank–Nicolson scheme, see Example 7.49, it is of the same
order, more stable, but it requires the storage of un�1. Because of its higher order
and of its stability, BDF2 is a popular scheme, e.g., it is the standard temporal
discretization in the software package deal.II, see Bangerth et al. (2007). ut
Remark 7.65 (Higher Order Methods) Rosenbrock methods of order 3 with s D 3

or s D 4 stages were compared with �-schemes in John et al. (2006a). These
methods are linearly implicit Runge–Kutta schemes. In each discrete time, s linear
saddle point problems with the same system matrix have to be solved. Rosenbrock
methods allow an efficient time step control with imbedded schemes. The numerical
solutions for the two-dimensional problems studied in John et al. (2006a) were
generally considerably more accurate for the Rosenbrock methods compared with
the �-schemes. However, the simulations with the �-schemes were clearly more
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efficient. Rosenbrock methods up to fourth order and diagonally implicit Runge–
Kutta methods (DIRK methods) were studied and compared with �-schemes in John
and Rang (2010) at a two-dimensional flow around a cylinder, see Example D.9.
All higher order schemes, i.e., all schemes that are at least of third order, allow
an adaptive time step control via imbedded methods. If the time step control was
applied, then many of the higher order methods outperformed the �-schemes clearly
with respect to the ratio of accuracy and CPU time.

Nevertheless, the use of higher order time stepping schemes does not seem to be
popular at the moment. ut

7.4 Finite Element Error Analysis: The Fully Discrete Case

Remark 7.66 (Comparison to the Continuous-in-Time Case and Contents of this
Section) The numerical analysis of the fully discretized Navier–Stokes equations
is similar to the continuous-in-time case presented in Sect. 7.2. However, the
discretization of the temporal derivative introduces a consistency error, whose
estimate will be presented in Lemma 7.67. In the fully discrete case, sums over
the discrete times appear in the formulas instead of time-space norms. Thus, the
presentations are less compact and somewhat more involved compared with the
continuous-in-time case.

This section presents the analysis for the fully discrete case at the example of
the backward Euler discretization in time in combination with the Galerkin finite
element method in space. For brevity, the presentation of the error analysis is
restricted to estimates for the velocity. ut
Lemma 7.67 (Consistency Errors for Discretizations of Temporal Derivatives)
Let v; @tv; @ttv 2 L2

�
tn; tnC1I L2.˝/

�
, then

���@tvnC1 � vnC1 � vn

�t

���2
L2.˝/

� �t k@ttvk2
L2.tn;tnC1IL2.˝// : (7.93)

If in addition @tttv 2 L2
�
tn; tnC1I L2.˝/

�
, then

���@tvnC1=2 � vnC1 � vn

�t

���2
L2.˝/

� �t3 k@tttvk2
L2.tn;tnC1IL2.˝// : (7.94)

Proof Taylor’s formula with integral remainder or, likewise, integration by parts
gives

vn D vnC1 ��t@tvnC1 C
Z tnC1

tn

.t � tn/ @ttv dt;
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which is equivalent to

@tvnC1 � vnC1 � vn

�t
D 1

�t

Z tnC1

tn

.t � tn/ @ttv dt:

Then, one obtains with the Cauchy–Schwarz inequality (A.10), observing that one
of the arising factors does not depend on space, and the Theorem of Fubini

���@tvnC1 � vnC1 � vn

�t

���2
L2.˝/

� 1

�t2

�����
�Z tnC1

tn

.t � tn/
2 dt

�1=2 �Z tnC1

tn

.@ttv/
2 dt

�1=2�����
2

L2.˝/

D 1

�t2

�Z tnC1

tn

.t � tn/
2 dt

��Z
˝

Z tnC1

tn

.@ttv/
2 dtdx

�

D 1

�t2
�t3

3

Z tnC1

tn

Z
˝

.@ttv/
2 dxdt;

such that (7.93) follows. Note that for the sake of simplicity, the factor 1=3 is
estimated by 1.

The proof of (7.94) proceeds the same way. A Taylor series expansion or
successive integration by parts gives for � 2 Œ0; 1�

vn D vnC� � ��t@tvnC� C �2

2
�t2@ttvnC� C 1

2

Z tn

tnC�

.tn � t/2@tttv dt;

vnC1 D vnC� C .1 � �/�t@tvnC� C .1 � �/2
2

�t2@ttvnC� C 1

2

Z tnC1

tnC�

.tnC1 � t/2@tttv dt:

Subtracting the second equation from the first equation and rearranging terms yields

@tvnC� D vnC1 � vn

�t
C �t

2

�
�2 � .1 � �/2� @ttvnC�

� 1

2�t

Z tnC�

tn

.tn � t/2@tttv dt � 1

2�t

Z tnC1

tnC�

.tnC1 � t/2@tttv dt:
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The term with @ttvnC� vanishes only if � D 1=2. Considering � D 1=2, one obtains
in the same way as in the proof of (7.93)

���@tvnC1=2 � vnC1 � vn

�t

���2
L2.˝/

� 1

4�t2

"�Z tnC1=2

tn

.tn � t/4 dt

��Z
˝

Z tnC1=2

tn

.@tttv/
2 dtdx

�

C
 Z tnC1

tnC1=2

.tnC1 � t/4 dt

! Z
˝

Z tnC1

tnC1=2

.@tttv/
2 dtdx

!#
;

from which (7.94) is obtained with a straightforward calculation. �

Remark 7.68 (The Backward Euler Scheme) The backward Euler scheme with
equidistant time step has the following form: Given f nC1 2 V 0 and uh

n 2 Vh, compute�
uh

nC1; ph
nC1
� 2 Vh � Qh, n D 0; 1; 2; : : : by solving,

1

�t

�
uh

nC1 � uh
n; v

h
�C 	

�ruh
nC1;rvh

�C nskew
�
uh

nC1;uh
nC1; vh

�
(7.95)

� �r � vh; ph
nC1
�C �r � uh

nC1; qh
� D h fnC1; vhiV0;V 8 �

vh; qh
� 2 Vh � Qh:

The initial condition uh
0 is some interpolation or projection of u0 into the finite

element space, e.g., the Lagrange interpolation or the Stokes projection (4.54). ut
Lemma 7.69 (Existence, Uniqueness, and Stability of the Finite Element Solu-
tion) Let Vh and Qh be a pair of finite element spaces that satisfy the discrete
inf-sup condition (3.51). Problem (7.95) possesses a unique solution for sufficiently
small time steps. The time step restriction depends on the mesh width.

It holds for any solution of (7.95) and for all N � 0 that

��uh
NC1

��2
L2.˝/

C 	�t
NX

nD0

��ruh
nC1
��2

L2.˝/
� ��uh

0

��2
L2.˝/

C �t

	

NX
nD0

�� f nC1
��2

H�1.˝/
:

(7.96)

Proof First, the stability bound (7.96) will be proved since the result will be used
for showing existence and uniqueness of a solution.

Stability The stability proof proceeds in the usual way by taking any solution
of (7.95) as test function

�
vh; qh

� D �
uh

nC1; ph
nC1
�
. Using the skew-symmetry (6.26)

of the convective term, which gives nskew
�
uh

nC1;uh
nC1;uh

nC1
� D 0, leads to

1

�t

�
uh

nC1 � uh
n;u

h
nC1
�C 	

��ruh
nC1
��2

L2.˝/
D h f nC1;uh

nC1iV0;V : (7.97)
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Analogously to the algebraic relation a2 � ab D �
a2 C .a � b/2 � b2

�
=2 for real

numbers a and b, it holds

�
uh

nC1 � uh
n;u

h
nC1
� D 1

2

	��uh
nC1
��2

L2.˝/
C ��uh

nC1 � uh
n

��2
L2.˝/

� ��uh
n

��2
L2.˝/



:

(7.98)

Inserting (7.98) in (7.97) and using that
��uh

nC1 � uh
n

��2
L2.˝/

� 0 gives the estimate

��uh
nC1
��2

L2.˝/
C 2	�t

��ruh
nC1
��2

L2.˝/
� ��uh

n

��2
L2.˝/

C 2�th f nC1;uh
nC1iV0;V :

Applying the estimate of the dual pairing and Young’s inequality (A.5) yields

��uh
nC1
��2

L2.˝/ C 	�t
��ruh

nC1
��2

L2.˝/ � ��uh
n

��2
L2.˝/ C �t

	

�� f nC1
��2

H�1.˝/
:

Now, the stability estimate (7.96) is obtained by taking the sum from 0 to N and
observing that the first terms on both sides constitute a telescopic sum.

Existence and Uniqueness of a Solution In each discrete time of the backward Euler
scheme (7.95), a nonlinear discrete problem has to be solved which is similar to
the steady-state Navier–Stokes equations. Only the term arising from the temporal
discretization appears additionally. The proof of the existence and uniqueness of
a solution will be performed in the same way as for the steady-state Navier–Stokes
equations, compare the proof of Theorem 6.17. Consider the problem of Oseen type:
Given f nC1 2 V 0 and bh;uh

n 2 Vh
div, compute uh 2 Vh

div, by solving,

1

�t

�
uh; vh

�C 	
�ruh;rvh

�C nskew
�
bh;uh; vh

� D 1

�t

�
uh

n; v
h
�C h f nC1; vhiV0;V

(7.99)

for all vh 2 Vh
div. With this problem, the following operator is defined

Nh
conv W Vh

div ! Vh
div; bh 7! uh:

Each fixed point of Nh
conv is a velocity solution of the backward Euler problem (7.95)

at time tnC1.
The existence and uniqueness of a solution of (7.99) can be proved with the

Theorem of Lax–Milgram, see the proof of Lemma 7.77 for details. Since the
convective term in (7.99) vanishes for vh D uh, one gets analogously to the first
part of the proof of the current lemma the stability estimate

��uh
��2

L2.˝/
C 	�t

��ruh
��2

L2.˝/
� ��uh

n

��2
L2.˝/

C �t

	

�� f nC1
��2

H�1.˝/
: (7.100)
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Neglecting the first term on the left-hand side, it follows that Nh
conv is bounded

independently of bh

��Nh
conv

�� D sup
bh2Vh

div;kbhkV D1

��Nh
convb

h
��

V
D sup

bh2Vh
div;kbhkV D1

��uh
��

V

�
�
1

	�t

��uh
n

��2
L2.˝/

C 1

	2

�� f nC1
��2

H�1.˝/

�1=2
:

With the inverse inequality (C.37) applied to the first term on the left-hand side
of (7.100), one obtains

��ruh
��2

L2.˝/
� 1

C�2
inv h2 C 	�t

���uh
n

��2
L2.˝/

C �t

	

�� f nC1
��2

H�1.˝/

�
: (7.101)

Choosing bh
1; b

h
2 2 Vh

div arbitrarily, setting uh
1 D Nh

convb
h
1, uh

2 D Nh
convb

h
2, and

subtracting the corresponding problems yields for vh D uh
1 � uh

2

1

�t

��uh
1 � uh

2

��2
L2.˝/

C 	
��r �uh

1 � uh
2

���2
L2.˝/

D �nskew
�
bh
1 � bh

2;u
h
1;u

h
1 � uh

2

�
:

(7.102)

Applying the inverse inequality to the first term on the left-hand side in (7.102) and
estimate (6.29) of the convective term gives

�
C�2

inv h2

�t
C 	

���r �
uh
1 � uh

2

���2
L2.˝/

� Nh
div

��bh
1 � bh

2

��
V

��uh
1

��
V

��r �
uh
1 � uh

2

���
L2.˝/

;

with Nh
div defined in (6.57), such that, inserting (7.101),

��r �
uh
1 � uh

2

���
L2.˝/

� Nh
div�t

�
1

C�2
inv h2 C 	�t

�3=2 ���uh
n

��2
L2.˝/

C �t

	

�� f nC1
��2

H�1.˝/

�1=2 ��bh
1 � bh

2

��
V
:

For sufficiently small time steps, the factor in front of
��bh

1 � bh
2

��
V

becomes smaller
than 1. In this situation, the existence and uniqueness of a velocity solution of (7.95)
follows from the fixed point theorem of Banach, see Theorem A.68. The existence
and uniqueness of the pressure at tnC1 is a consequence of the satisfaction of the
discrete inf-sup condition. �

Remark 7.70 (To the Existence and Uniqueness of a Solution) Problem 7.95 is of
similar form as the steady-state Navier–Stokes equations. The existence of a solution
for an arbitrary length of the time step can be proved in the same way as the existence
of the solution of the steady-state Navier–Stokes equations, compare Marion and
Temam (1998, Sect. 15.2) and the references in the proof of Theorem 6.17.
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The uniqueness of a solution for sufficiently small time steps without dependency
on the mesh size can be proved with higher regularity assumptions on the solution.
For instance, based on the assumption ru 2 L1 �

.0;T/I L2.˝/
�
, it was shown

in Heywood and Rannacher (1990, (3.15)) that
��ruh

��
L1..0;T/IL2.˝// < C holds

independently of h. Using this bound in (7.101) gives a condition on the time step
that does not depend on the mesh width.

Alternatively, having proved the existence of a solution, then the uniqueness for
small time steps can be proved by assuming that there are two solutions uh

1 and uh
2,

subtracting the equations for both of them, and using as test function the difference

1

�t

��uh
1 � uh

2

��2
L2.˝/

C 	
��r �

uh
1 � uh

2

���2
L2.˝/

D �nskew
�
uh
1;u

h
1;u

h
1 � uh

2

�C nskew
�
uh
2;u

h
1;u

h
1 � uh

2

�
(7.103)

D nconv
�
uh
1 � uh

2;u
h
1;u

h
1 � uh

2

�C 1

2

�r � �uh
1 � uh

2

�
;uh

1 � �uh
1 � uh

2

��
;

where the definition of the skew-symmetric form (6.25) and (6.13) were used.
Assuming uh

1 2 L1 ..0;T/I L1.˝//, the right-hand side of (7.103) can be estimated
by

3

2

��uh
1

��
L1.˝/

��uh
1 � uh

2

��
L2.˝/

��r �
uh
1 � uh

2

���
L2.˝/ :

With this assumption,
��uh

1

��
L1.˝/

can be bounded independently of h, see de Frutos
et al. (2008, (2.16) and Remark 5.1). Then, the application of Young’s inequal-
ity (A.5) leads to an inequality that can be only satisfied if the time step is sufficiently
small, but without dependency on h. ut
Remark 7.71 (Approximation of Time-Space Norms) Let X be a Banach space with
norm k�kX . Then, the pth power of the norm of a function v 2 Lp.t0; tN I X/, p 2
Œ1;1/, 0 � t0 < tN , is given by

kvkp
Lp.t0;tN IX/ D

Z tN

t0

kvkp
X d�: (7.104)

Formula (7.104) can be approximated with the composite trapezoidal rule. To this
end, the interval Œt0; tN � is decomposed in equidistant subintervals of length �t. In
each subinterval, the trapezoidal rule

Z tnC1

tn

kvkp
X d� 
 �t

2

�kv.tnC1/kp
X C kv.tn/kp

X

�
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is applied. The sum over all subintervals gives the following approximation
of (7.104)

kvkp
Lp.t0;tN IX/ 
 �t

 
kv.t0/kp

X

2
C

N�1X
nD1

kv.tn/kp
X C kv.tN/kp

X

2

!
:

It follows that the terms with the sums in (7.96) are approximations of the composite
trapezoidal rule, e.g., one has

��ruh
��2

L2.t1;tNC1IL2.˝// 
 �t
NX

nD0

��ruh
nC1
��2

L2.˝/
:

ut
Theorem 7.72 (Finite Element Error Estimate for the Velocity Computed with
the Backward Euler Method in Combination with the Galerkin Finite Element
Method) Let ˝ � R

d, d 2 f2; 3g, be a bounded domain with polyhedral and
Lipschitz continuous boundary, let f 2 L2 .0;TI V 0/, u0 2 Hdiv.˝/, uh

0 2 Vh
div,

and assume the following regularities for the solution .u; p/ of the Navier–Stokes
equations (7.40)

@ttu 2 L2
�
0;TI H1.˝/

�
; @tu 2 L2

�
0;TI V 0� ;

ru 2 L4
�
0;TI L2 .˝/

�
; p 2 L2

�
0;TI L2 .˝/

�
: (7.105)

Consider the discretization with the backward Euler method in time and the
Galerkin finite element method in space, see (7.95), with an inf-sup stable pair of
spaces Vh � Qh and with an equidistant time step �t, where tn D n�t. Let the
assumptions of Lemma 7.69 be satisfied and let the time step be sufficiently small
such that

˛n�t D C
krunk4L2.˝/

	3
�t < 1; 8 n D 1; : : : ;N C 1; (7.106)

then the following error estimate holds for all N � 0

��uNC1 � uh
NC1

��2
L2.˝/

C 	�t
NC1X
nD1

��r �
un � uh

n

���2
L2.˝/

� C

( ��uNC1 � Ih
StuNC1

��2
L2.˝/

C 	�t
NC1X
nD1

��r �
un � Ih

Stun
���2

L2.˝/

C exp

 
�t

NC1X
nD1

˛n

1 ��t˛n

!"��uh
0 � Ih

Stu.0/
��2

L2.˝/
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C .�t/2

	

��Ih
St .@ttu/

��2
L2.0;tNC1IL2.˝// C�t

NC1X
nD1

 
1

	

	 ��@t
�
un � Ih

Stun
���2

V0

C ��un � Ih
Stun

��
L2.˝/

��r �
un � Ih

Stun
���

L2.˝/ krunk2L2.˝/

!

C inf
qh2Qh

�t

	

NC1X
nD1

��pn � qh
��2

L2.˝/

C 1

	3=2

 ��uh
0

��2
L2.˝/ C �t

	

NX
nD0

�� f nC1
��2

H�1.˝/

!
(7.107)

�
 
�t

NC1X
nD1

��r �
un � Ih

Stun
���4

L2.˝/

!1=2 #)
;

with ˛n defined in (7.106) and Ih
Stun being the Stokes projection of un with p D 0,

see (4.54), for which @tIh
Stu 2 L2 .0;TI V 0/ is assumed.

Proof The proof proceeds principally with the same steps as the proof of Theo-
rem 7.35:

1. derivation of an error equation and splitting of the error,
2. estimate all terms on the right hand-side of the error equation,
3. application of a discrete Gronwall lemma,
4. application of the triangle inequality.

1. Derivation of an error equation and splitting of the error. The error at tnC1
is decomposed in an approximation error and a finite element remainder. The
splitting is performed with the Stokes projection defined in (4.54) with p D 0

e.tnC1/ D u.tnC1/� uh.tnC1/ D �
u.tnC1/ � Ih

Stu.tnC1/
�C �

Ih
Stu.tnC1/ � uh.tnC1/

�
D �.tnC1/� �h.tnC1/ D �nC1 � �h

nC1: (7.108)

By construction, it is �h
nC1 2 Vh

div. The error equation is obtained by subtract-
ing (7.95) from (7.40). Considering only test functions vh 2 Vh

div, one obtains

 
@tunC1 � uh

nC1 � uh
n

�t
; vh

!
C 	

�r �uh
nC1 � uh

n

�
;rvh

�C nskew
�
unC1;unC1; vh

�

�nskew
�
uh

nC1;uh
nC1; vh

� � �r � vh; p � qh
� D 0 8 vh 2 Vh

div; q
h 2 Qh:
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Next, the decomposition (7.108) of the error is inserted and vh D �h
nC1 is chosen,

leading to

 
@tunC1 � uh

nC1
� uh

n

�t
;�h

nC1

!
C 	

�r�nC1;r�h
nC1

� � 	 ��r�h
nC1

��2
L2.˝/

(7.109)

Cnskew
�
unC1;unC1;�

h
nC1

� � nskew
�
uh

nC1;u
h
nC1;�

h
nC1

� � �r � �h
nC1; p � qh

� D 0

for all qh 2 Qh. From the definition (4.54) of the Stokes projection and since
�h

nC1 2 Vh
div, it follows that

�r�nC1;r�h
nC1
� D 0. The left argument of the first

term of (7.109) can be expanded in the form

@tunC1 � uh
nC1 � uh

n

�t

D @tunC1 � @tI
h
StunC1 C @tI

h
StunC1 � Ih

StunC1 � Ih
Stun

�t

C Ih
StunC1 � Ih

Stun

�t
� uh

nC1 � uh
n

�t
(7.110)

D @t
�
unC1 � Ih

StunC1
�C @tI

h
StunC1 � Ih

StunC1 � Ih
Stun

�t
� �h

nC1 � �h
n

�t
:

Inserting this decomposition in (7.109) gives a term of the form
�
�h

nC1 � �h
n;

�h
nC1
�

which can be expanded in the same way as presented in (7.98). Then, one
obtains from (7.109) the error equation

1

2�t

	���h
nC1

��2
L2.˝/

C ���h
nC1 � �h

n

��2
L2.˝/

� ���h
n

��2
L2.˝/



C 	

��r�h
nC1

��2
L2.˝/

D �
@t

�
unC1 � Ih

StunC1

�
;�h

nC1

�C
�
@tI

h
StunC1 � Ih

StunC1 � Ih
Stun

�t
;�h

nC1

�
(7.111)

Cnskew
�
unC1;unC1;�

h
nC1

� � nskew
�
uh

nC1;u
h
nC1;�

h
nC1

� � �r � �h
nC1; p � qh

�

for all qh 2 Qh.
2. Estimate all terms on the right hand-side of the error equation. The first term on

the right-hand side of (7.111) is bounded with the estimate of the dual pairing
and Young’s inequality (A.5)

�
@t
�
unC1 � Ih

StunC1
�
;�h

nC1
� � ��@t

�
unC1 � Ih

StunC1
���

V0

��r�h
nC1
��

L2.˝/

� 4

	

��@t
�
unC1 � Ih

StunC1
���2

V0
C 	

16

��r�h
nC1
��2

L2.˝/
:
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The estimate of the second term uses the Cauchy–Schwarz inequality (A.10),
Poincaré’s inequality (A.12), estimate (7.93), Young’s inequality, and the com-
mutation of temporal derivative and Stokes projection, see Remark 4.44,

�
@tI

h
StunC1 � Ih

StunC1 � Ih
Stun

�t
;�h

nC1
�

�
����@tI

h
StunC1 � Ih

StunC1 � Ih
Stun

�t

����
L2.˝/

���h
nC1
��

L2.˝/

� C.�t/1=2
��@ttI

h
Stu
��

L2.tn;tnC1IL2.˝//
��r�h

nC1
��

L2.˝/

� C�t

	

��@ttI
h
Stu
��2

L2.tn;tnC1IL2.˝// C 	

16

��r�h
nC1
��2

L2.˝/

D C�t

	

��Ih
St .@ttu/

��2
L2.tn;tnC1IL2.˝// C 	

16

��r�h
nC1
��2

L2.˝/
:

The term with the pressure on the right-hand side of (7.111) is estimated in
the same way as the corresponding term in the second step of the proof of
Theorem 7.35

ˇ̌�r � �h
nC1; pnC1 � qh

�ˇ̌ � 4

	

��pnC1 � qh
��2

L2.˝/
C 	

16

��r�h
nC1
��2

L2.˝/
:

The nonlinear terms are decomposed in the form (6.65) and then the bounds
of the arising three terms have the following form, compare the proof of
Theorem 7.35,

ˇ̌
nskew

�
�nC1;unC1;�

h
nC1

�ˇ̌ � C

	

���nC1

��
L2.˝/

��r�nC1

��
L2.˝/ krunC1k2L2.˝/

C 	

16

��r�h
nC1

��2
L2.˝/

;

ˇ̌
nskew

�
�h

nC1;unC1;�
h
nC1

�ˇ̌ � C

	3

���h
nC1

��2
L2.˝/

krunC1k4L2.˝/ C 	

16

��r�h
nC1

��2
L2.˝/

;

ˇ̌
nskew

�
uh

nC1;�nC1;�
h
nC1

�ˇ̌ � C

	

��uh
nC1

��
L2.˝/

��ruh
nC1

��
L2.˝/

��r�nC1

��2
L2.˝/

C 	

16

��r�h
nC1

��2
L2.˝/

:

Now, all bounds are inserted in (7.111) and the second term on the left-hand side
is estimated by zero from below. One gets

1

2�t

���h
nC1
��2

L2.˝/ C 	

2

��r�h
nC1
��2

L2.˝/

� 1

2�t

���h
n

��2
L2.˝/

C C

"
1

	

 ��@t
�
unC1 � Ih

StunC1
���2

V0
C ��pnC1 � qh

��2
L2.˝/
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C�t
��Ih

St .@ttu/
��2

L2.tn ;tnC1IL2.˝// C ���nC1
��

L2.˝/

��r�nC1
��

L2.˝/ krunC1k2L2.˝/

C ��uh
nC1

��
L2.˝/

��ruh
nC1
��

L2.˝/

��r�nC1
��2

L2.˝/

!

C 1

	3

���h
nC1
��2

L2.˝/ krunC1k4L2.˝/
#

for all qh 2 Qh. Taking the sum over all discrete times and using that the L2.˝/
norms of the finite element remainders form a telescopic sum gives
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(7.112)
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with Fn representing all terms on the right-hand side that do not depend on �h
n.

3. Application of a discrete Gronwall lemma. Inequality (7.112) has exactly the
form of (A.42) such that a discrete Gronwall inequality can be applied if all
terms on the right-hand side of (7.112) are well defined. All norms of the solution
and the Stokes projection for a given time tn are well defined by the regularity
assumptions on the solution. In addition, the stability estimate (4.55) of the
Stokes projection yields
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which is finite by assumption (7.105). For the term with the finite element
solution, one finds with the Cauchy–Schwarz inequality for sums (A.2) and the
stability estimate (7.96)
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� max
nD1;:::;N

��uh
n

��
L2.˝/

 
�t

NC1X
nD1

��ruh
n

��2
L2.˝/

!1=2  
�t

NC1X
nD1

kr�nk4L2.˝/
!1=2

� 1

	1=2

 ��uh
0

��2
L2.˝/ C �t

	

NX
nD0

�� f nC1
��2

H�1.˝/

! 
�t

NC1X
nD1

kr�nk4L2.˝/
!1=2

:

Thus, in the case that the time step is sufficiently small, i.e., if (7.106) is
satisfied, the discrete Gronwall lemma, Lemma A.56, can be applied and one
gets from (7.112), compare (A.43),
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; (7.114)

with ˛n defined by (7.106) and F 0
n arises from Fn with inserting estimate (7.113).

4. Application of the triangle inequality. The application of the triangle inequality
gives

keNC1k2L2.˝/ C 	�t
NC1X
nD1

krenk2L2.˝/

� 2

 ���NC1

��2
L2.˝/

C 	�t
NC1X
nD1

kr�nk2L2.˝/ C ���h
NC1

��2
L2.˝/

C 	�t
NC1X
nD1

��r�h
n

��2
L2.˝/

!
:

Inserting (7.114) and the expression for Fn from (7.112) and (7.113) finishes the
proof. �

Remark 7.73 (On Estimate (7.107))

• The error, the square root of the left-hand side of (7.107), is bounded
by a first order term in time, namely the square root of the term .�t/2��Ih

St .@ttu/
��2

L2.0;tNC1IL2.˝//. This first order convergence is the expected order

for the backward Euler scheme.
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• All other terms in the error bound contain interpolation errors in space. The most
important ones are
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:

Error estimates for the Stokes projection are provided in (4.57). Note that the
pressure term vanishes in this error bound since p D 0.

• The Stokes projection can be defined alternatively in the same way as described
in Remark 7.38.

• Consider the situation �t ! 0. Then the norms which are defined as sums over
the discrete times become time-space norms, see Remark 7.71, e.g.,
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With the Poincaré inequality (A.12) and the Cauchy–Schwarz inequality for
sums (A.2), one obtains
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For the term with the exponential, it will be assumed that a bound of form (7.106)
holds uniformly, i.e., there is a constant C0 such that

C
krunk4L2.˝/
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�t � C0 < 1 8 t 2 .0;T�:
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Then it is

exp
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(7.115)

! exp
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L4.0;TIL2.˝//

�
:

Finally, the term with .�t/2
��Ih

St .@ttu/
��2

L2.0;tNC1IL2.˝// vanishes as � ! 0.

Altogether, the terms of the error bound (7.107) converge to these of the
bound (7.44) for the time-continuous case.

ut
Remark 7.74 (Higher Regularity Assumptions) Similarly to the continuous-in-time
case, different estimates of the convective term can be performed if a higher
regularity of the solution .u; p/ of (7.40) is assumed, compare Remark 7.39. In
such cases, the time step restriction becomes weaker, e.g., using the assumptions
of Remark 7.39 and estimate (7.58) leads to the requirement

�
1

2
krunkL1.˝/ C 4

	
kunk2L1.˝/

�
�t < 1; 8 n D 1; : : : ;N C 1; (7.116)

instead of (7.106). ut
Remark 7.75 (Error Analysis for the Pressure) An error estimate for the pressure
is based on the discrete inf-sup condition (3.51) and it starts in the same way, as,
e.g., the estimate for the steady-state Navier–Stokes equations, compare the proof
of Theorem 6.30. One obtains a formula of type (6.68) with the additional term

 
@tunC1 � uh
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n
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!

in the numerator. The first component of this term can be decomposed in the
form (7.110). Then, the hardest contribution to estimate is
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�t
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:

Estimating this term uses tools from Ayuso et al. (2005) that are also applied in
the continuous-in-time case, compare the proof of Theorem 7.42. Details of this
application can be found, e.g., in de Frutos et al. (2016b). Finally, it can be proved
that
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��2
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converges with the same order as the velocity errors bounded in (7.107). ut
Remark 7.76 (Semi-implicit (IMEX) Euler Scheme) IMEX schemes approximate
the equation at the discrete time tnC1 with a linear equation by using a con-
vection field that can be computed from already known velocity fields, compare
Remark 7.61. In the case of the Euler scheme, one simply takes the velocity field
of the previous discrete time as convection field: Assume an equidistant time step,
given uh

n 2 Vh, compute
�
uh

nC1; ph
nC1
� 2 Vh � Qh, n D 0; 1; 2; : : : by solving

1

�t

�
uh

nC1 � uh
n; v

h
�C 	

�ruh
nC1;rvh

�C nskew
�
uh

n;u
h
nC1; vh

�
(7.117)

� �r � vh; ph
nC1
�C �r � uh

nC1; qh
� D h f nC1; vhiV0;V 8 �

vh; qh
� 2 Vh � Qh;

with u0 being an suitable approximation of the initial condition in the finite element
velocity space.

With the scheme (7.117), one has to solve in each discrete time only one linear
saddle point problem instead of a nonlinear saddle point problem. ut
Lemma 7.77 (Existence, Uniqueness, and Stability of the Finite Element Solu-
tion) Let Vh � Qh be conforming finite element spaces which satisfy the discrete
inf-sup condition (3.51). If uh

n 2 Vh, then (7.117) has a unique solution and for all
N > 0, it holds the stability estimate
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(7.118)

Proof The existence and uniqueness of the velocity solution is proved with Theorem
of Lax–Milgram, see Theorem B.4, which can be applied since (7.117) is a linear
problem. To this end, consider all terms with uh

nC1 on the left-hand side of (7.117)
in Vh

div and denote the corresponding bilinear form with a.�; �/. Then both terms with
the divergence vanish. The coercivity follows with a straightforward calculation,
using that the convective term vanishes if the second and third argument are the
same, see (6.26),
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The bilinear form is bounded, since one obtains with the Cauchy–Schwarz inequal-
ity (A.10), estimate (6.30), the Poincaré inequality (A.12), and
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n

��
L2.˝/ < 1,
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because by assumption uh
n 2 Vh � V ,
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:

The boundedness of the right-hand side of (7.117) follows by the estimate of the
dual pairing, the Cauchy–Schwarz inequality, and the Poincaré inequality
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:

Thus, the assumptions of the Theorem of Lax–Milgram are satisfied, such that the
existence and uniqueness of a finite element velocity solution follows. The existence
and uniqueness of a finite element pressure solution is a direct consequence of the
fact that the finite element spaces satisfy the discrete inf-sup condition.

The proof of the stability is exactly the same as for the fully implicit Euler
scheme, see the proof of Lemma 7.69. �

Theorem 7.78 (Finite Element Error Estimate for the Velocity Computed with
the IMEX Euler Scheme in Combination with the Galerkin Finite Element
Method) Let the same assumptions on the data of the problem hold as stated
in Theorem 7.72. Assume the following regularities for the solution .u; p/ of the
Navier–Stokes equations (7.40)
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: (7.119)

Consider the IMEX Euler scheme (7.117) with equidistant time steps and with pairs
of finite element spaces that satisfy the discrete inf-sup condition (3.51). Then the
following error estimate is valid for all N > 0
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(7.120)

with Fn defined to be the terms in parentheses of (7.121) below, which contains
approximation errors in time and space. In (7.120), Ih

Stun is the Stokes projection of
un with p D 0, see (4.54), for which @tIh

Stu 2 L2 .0;TI V 0/ is assumed.

Proof The proof of this theorem follows the proof of Theorem 7.72.
In the first step, only the difference of the nonlinear convective terms in the error

equation looks different. To estimate this difference in the second step, it is rewritten
in the following way
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The last term vanishes because of the skew-symmetry (6.26). The second and fourth
term are estimated in a standard way, applying (6.41) and Young’s inequality (A.5),
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For the third term, estimate (6.40) is applied, using the assumed regularity of the
velocity and Poincaré’s inequality (A.12),
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The estimate of the first term starts in the same way
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Then, the triangle inequality and the consistency error estimate (7.93) are applied to
get
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Inserting all estimates in the error equation and summing over all discrete times
gives
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This inequality is of the same type as inequality (A.44). Hence, the version (A.45)
of the discrete Gronwall lemma can be applied if all terms on the right-hand
side of (7.121) are finite. This property follows from the assumptions on the
solution (7.119), e.g., one gets with the Cauchy–Schwarz inequality for sums (A.2)
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From Remark 7.71, it follows that the first term on the right-hand side is
an approximation of k@tuk2

L4.0;tNC1IL2.˝// and the second term approximates

kuk2
L4.0;tNC1IW1;1.˝//. In the same way, one gets
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For the other terms on the right-hand side of (7.121), the same reasoning applies
as in the proof of Theorem 7.72. The application of the discrete Gronwall inequal-
ity (A.45), which does not require a restriction on the length of the time step, gives
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where Fn contains the terms in the parentheses of (7.121). The final step of the proof
is the application of the triangle inequality. �

Remark 7.79 (On Estimate (7.120))

• The approximation errors in the error bound (7.120) are of the same order as in
the bound (7.107) for the fully implicit Euler scheme. Thus, asymptotically the
fully implicit scheme and the IMEX scheme are of the same order in time and
space. A concrete example that studies the accuracy and the efficiency of IMEX
schemes is presented in Example 7.62.

• Inspecting estimates (7.122) and (7.123), it can be seen that increasing the
assumptions on the temporal regularity of @tu and @ttu, e.g., to @tu; @ttu 2
L1 �

0;TI L2.˝/
�
, allows to reduce the regularity assumptions with respect to

time on u to u 2 L2
�
0;TI W1;1 .˝/

�
.

• In order to facilitate the comparison of the error bounds for the fully implicit
scheme and the IMEX scheme, the exponential term in the bound for the
implicit scheme should be estimated as in (7.115). For a fair comparison,
similar regularity assumptions on the solution should be considered, e.g., the
assumptions used in Remark 7.74 and (7.119).

The bound (7.120) of the IMEX scheme is better in the respect that there is
no restriction on the length of the time step. This property comes from the use of
the discrete Gronwall inequality (A.45) for the IMEX scheme instead of (A.43).
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However, a severe time step restriction for the fully implicit scheme is usually
not observed in practice.

In the expression (7.116) that enters the estimate of the exponential for the
fully implicit scheme, the term with the highest assumed regularity, krunkL1.˝/,
appears only linearly whereas this term appears quadratically in (7.120) and it is
scaled with 	�1. In practice, this norm is expected to be large such that in this
respect the error bound for the fully implicit scheme is better.

ut
Remark 7.80 (Analysis of Temporal Discretizations Applied to the Navier–Stokes
Equations)

• Finite element error analysis for the fully discrete Navier–Stokes equations with
Crank–Nicolson scheme can be found in Heywood and Rannacher (1990) and
Bause (1997). Among other results, second order convergence in time of the
velocity error

��un � uh
n

��
L2.˝/ for all time steps tn was proved.

• The fractional-step �-scheme was investigated analytically in Klouček and Rys
(1994) and Müller-Urbaniak (1993). It was shown in Klouček and Rys (1994)
that the solution computed with this scheme converges to the solution of the
Navier–Stokes equation, whose uniqueness was assumed, as the mesh width and
the time step length tend to zero. A second order error estimate with respect
to time similar to the Crank–Nicolson scheme was proved in Müller-Urbaniak
(1993).

• An IMEX Crank–Nicolson scheme for the Navier–Stokes equations was already
analyzed in Baker (1976). A more refined finite element error analysis can
be found in Ingram (2013b). For a so-called stabilized IMEX Crank–Nicolson
scheme, CNLE(stab), see (7.90), stability estimates were derived in Ingram
(2013a).

• An error analysis for a IMEX versions of the BDF2 scheme applied to the
Navier–Stokes equations can be found already in Girault and Raviart (1979,
Chap. V, Sect. 3.3). The analysis was performed for the space-continuous setting.
Optimal second order estimates for

sup
0	n	N

���u � uh
�
.tn/

��
L2.˝/

and �t1=2
N�2X
nD0

��r �u � uh
�
.tn/

��
L2.˝/

(7.124)

were proved with the assumption of sufficiently high regularity of the solution.
Under more realistic regularity assumptions, the BDF2 scheme was analyzed

in Emmrich (2004a,b). In Emmrich (2004b), the existence and stability of a
solution was studied as well as the convergence to a weak solution of the Navier–
Stokes equations. A finite element error analysis, also in the space-continuous
setting, was performed in Emmrich (2004a), leading to second order convergence
for the time-weighted velocity in the norms (7.124) (with the velocity replaced
by the time-weighted velocity) and first order convergence of the time-weighted
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pressure in the norm that corresponds to the first norm of (7.124), both in the
fully implicit case. For an IMEX approach, using an extrapolation of the previous
two solutions, only reduced orders of convergence were proved. The analysis of
the results for the fully implicit scheme requires sufficiently small time steps,
depending strongly on 	�1, whereas the convergence of the IMEX scheme could
be proved without time step restriction.

• A numerical analysis for the fully discrete schemes with a post-processing step
that improves the order of convergence in space can be found in de Frutos et al.
(2008). This paper presents the analysis for the backward Euler scheme and for
BDF2.

ut
Remark 7.81 (Discretizations with Stabilizations) There are several papers with
finite element error analysis of stabilized discretizations of time-dependent incom-
pressible flow problems. Both, stabilizations with respect to the violation of the
discrete inf-sup condition (3.51) and with respect to dominating convection were
studied.

• The PSPG method, see Sect. 4.5.1, was analyzed for the evolutionary Stokes
equations

@tu � 	�u C rp D f in .0;T� �˝;
r � u D 0 in .0;T� �˝;
u.0; �/ D u0 in ˝;

(7.125)

in Burman and Fernández (2011) and John and Novo (2015). In Burman
and Fernández (2011), the fully discrete scheme was studied and optimal
convergence was proved, in the case of higher order finite element functions for
sufficiently large time steps. Optimal error estimates without time step restriction
were derived in John and Novo (2015), such that both the fully discrete case and
the continuous-in-time case are covered.

• The analysis of the transient Stokes equations (7.125) presented in Burman and
Fernández (2008) covers other stabilizations with respect to the discrete inf-sup
condition, like the method from Brezzi and Pitkäranta (1984), Remark 4.110,
the method proposed in Codina and Blasco (1997), Remark 4.111, the method
developed in Dohrmann and Bochev (2004), Remark 4.113, the CIP method,
Remark 5.49, and the LPS method, Remark 5.53.

• A numerical analysis of the grad-div stabilization for the evolutionary Oseen
equations, i.e., (5.1) with the additional term @tu, is presented in de Frutos
et al. (2016b). In both the continuous-in-time and the fully discrete case (with
backward Euler scheme, Crank–Nicolson scheme, and BDF2), error bounds
were derived that do not depend explicitly on the inverse of the viscosity. The
analysis assumed a sufficiently smooth solution. The results were extended to
the instationary Navier–Stokes equations in de Frutos et al. (2016a), covering
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also the situation that the nonlocal compatibility conditions at the initial time,
compare Remark 7.30, are not satisfied.

• The CIP method, Remark 5.49, applied with equal-order pairs of finite element
spaces was analyzed in Burman and Fernández (2007) for the continuous-in-
time case. Assuming a sufficiently smooth solution of the incompressible Navier–
Stokes equations (7.1), error bounds were derived that do not depend on inverse
powers of the viscosity.

• A finite element error analysis of the LPS method, see Sect. 5.4 starting with
Remark 5.52, applied to the time-dependent Navier–Stokes equations was
presented in Arndt et al. (2015). Inf-sup stable pairs of finite element spaces and
the continuous-in-time case were considered. In the case of a sufficiently smooth
solution, error bounds were proved where the Gronwall constant does not depend
on the viscosity.

ut

7.5 Approaches Decoupling Velocity and Pressure:
Projection Methods

Remark 7.82 (Motivation and General Ideas) The motivation for the construction
of projection methods was the wish to obtain simple schemes for simulating the
time-dependent Navier–Stokes equations (7.1) that require only the solution of
scalar linear systems of equations for each component of the velocity and the
pressure but not of saddle point problems.

To this end, the Navier–Stokes equations (7.1) are decoupled such that separate
equations for velocity and pressure are obtained. Let an approximation of the time
derivative by a q-step scheme be given, for simplicity of presentation with an
equidistant time step,

@tu .tnC1/ 
 1

�t

0
@�qunC1 C

q�1X
jD0

�q�1�jun�j

1
A ;

qX
jD0

�j D 0: (7.126)

The equation for an intermediate velocity comes from the momentum balance of the
Navier–Stokes equations. Given Op 2 L2.˝/ or r Op and the initial condition Qu.0/ D
u.0/ D u0, it has the form

1

�t

0
@�q QunC1 C

q�1X
jD0

�q�1�jun�j

1
A

�	� QunC1 C .un � r/ QunC1 D f nC1 � r Op in ˝;
QunC1 D 0 on 
:

(7.127)
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To obtain only linear systems of equations, the convective term in (7.127) has to
be treated semi-implicitly or even explicitly. Instead of .un � r/ QunC1, also the semi-
implicit and explicit forms

. Qun � r/ QunC1 or . Qun � r/ Qun or .un � r/un

or even extrapolations from former time steps like

2. Qun � r/ Qun � . Qun�1 � r/ Qun�1 (7.128)

can be used in all schemes presented in this section, see also Remark 7.100.
The intermediate velocity field Qu will be in general not divergence-free. For this

reason, a correction step

1

�t

�
�qunC1 � �q QunC1

�C r' . QunC1/C rp D r Op in ˝;

r � unC1 D 0 in ˝;
unC1 � n D 0 on 
;

(7.129)

will be performed, where '.�/ is a given function with values in L2.˝/. In
Lemma 7.83, it will become clear that (7.129) describes the L2.˝/ projection of
QunC1 onto a velocity unC1 in Hdiv.˝/. The examples given below will illustrate
that (7.129) can be transformed into an equation for the pressure.

Note that (7.129) is only a first order partial differential equation with respect to
space for unC1. Hence, to define a well-posed problem, it is not possible to use the
same boundary condition for unC1 as given for the velocity in the Navier–Stokes
equations, which are of second order with respect to space.

Thus, the definition of projection methods involves two velocity fields: QunC1
satisfies the boundary conditions but it is not divergence-free whereas unC1 is
divergence-free but it does not satisfy the boundary conditions given in the Navier–
Stokes equations.

Adding (7.127) and (7.129) gives

1

�t

0
@�q QunC1 C

q�1X
jD0

�q�1�jun�j

1
A

�	� QunC1 C .un � r/ QunC1 C r' . QunC1/C rp D f nC1 in ˝;
QunC1 D 0 on 
:

One can see that an error is committed in applying the splitting, whose size depends
in particular on r' . QunC1/.

A survey of projection methods for incompressible flow problems can be found in
Guermond et al. (2006). Although projection schemes aim to facilitate the numerical
solution of the incompressible Navier–Stokes equations, their analysis turns out
to be more involved than the analysis for coupled schemes. Here, only the most
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important results concerning their convergence will be mentioned. For their proofs,
it is referred to the literature. ut
Lemma 7.83 (Projection Property of (7.129)) The velocity unC1 computed
with (7.129) is the L2.˝/ projection of QunC1 into Hdiv.˝/, i.e., unC1 is the Helmholtz
projection of QunC1. It is kunC1kL2.˝/ � kQunC1kL2.˝/.

Proof Let v 2 Hdiv.˝/ be an arbitrary function. Multiplication of (7.129) with v
and applying integration by parts gives

0 D �q

�t
.unC1 � QunC1; v/C .r' . QunC1/C r .p � Op/ ; v/

D �q

�t
.unC1 � QunC1; v/C

Z



.' . QunC1/C p � Op/ v � n ds � .r � v; ' . QunC1/C p � Op/

D �q

�t
.unC1 � QunC1; v/ ;

since v � n vanishes on 
 , ' . QunC1/ C p � Op 2 L2.˝/, and r � v D 0 in L2.˝/. It
follows that

.unC1 � QunC1; v/ D 0 8 v 2 Hdiv.˝/; n D 0; 1; 2; : : : :

This relation is just the definition of the L2.˝/ projection into Hdiv.˝/. The estimate
of the norms follows directly from (3.164). �
Example 7.84 (The Non-incremental Pressure-Correction Scheme) This scheme is
the simplest pressure-correction scheme, proposed in Chorin (1968) and in Témam
(1969). It is given by

Op D 0 in (7.127); ' . QunC1/ D 0 in (7.129):

Numerical analysis shows that the magnitude of the splitting error of this scheme is
of first order such that the use of a first order time stepping scheme is sufficient.

The non-incremental pressure-correction scheme with backward Euler time
stepping (q D 1, �1 D 1, �0 D �1 in (7.126)) has the following form: Given
u0, compute . QunC1;unC1; pnC1/ by solving

QunC1 C�tnC1 .�	� QunC1 C .un � r/ QunC1/ D un C�tnC1f nC1 in ˝;
QunC1 D 0 on 
;

(7.130)

and

unC1 C�tnC1rpnC1 D QunC1 in ˝;
r � unC1 D 0 in ˝;
unC1 � n D 0 on 
;

(7.131)

for n D 1; 2; 3; : : :.
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To obtain a scalar equation for the pressure from (7.131), the (negative of the)
divergence of the first equation of (7.131) is considered. This approach gives, using
also the second equation,

� r � rpnC1 D ��pnC1 D � 1

�tnC1
r � QunC1: (7.132)

Equation (7.132) is just a Poisson equation for the pressure, the so-called pressure-
projection equation, which still has to be equipped with boundary conditions.
From (7.131) and from the boundary conditions for QunC1 and unC1, one obtains

rpnC1 � n D � 1

�tnC1
.unC1 � QunC1/ � n D 0: (7.133)

Thus, homogeneous Neumann boundary conditions are applied.
After having computed pnC1, the velocity unC1 can be recovered from (7.131)

unC1 D QunC1 ��tnC1rpnC1: (7.134)

ut
Remark 7.85 (Numerical Analysis for the Non-incremental Pressure-Correction
Scheme) A linear convergence for the solution computed with the non-incremental
pressure-correction scheme with respect to an equidistant length of the time step
�t was proved in Shen (1992a). The analysis required a regularity property of the
temporal derivative of the pressure. This requirement is, however, generally not
satisfied for general flows because of the lack of compatibility of the data as t ! 0,
see Remark 7.30.

In Prohl (1997, Theorem 6.1) optimal error estimates were derived without the
regularity assumption on the pressure. This analysis requires assumptions on the
regularity of the velocity and of the right-hand side, in particular on temporal
derivatives of the right-hand side. Provided that the Navier–Stokes equations (7.1)
possess a unique solution in .0;T�, then for sufficiently small time steps the
following estimates can be proved

max
1	n	N

�ku.tn/� QunkL2.˝/ C minftn; 1g kp.tn/ � pnkH�1.˝/

� � C�t

and

max
1	n	N

�kr .u.tn/ � Qun/kL2.˝/ C minftn; 1g1=2 kp.tn/� pnkL2.˝/

�

� C .�t/1=2 ; (7.135)
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where T D N�t and the constants depend only on the data of the problem. It is
mentioned in Prohl (1997, Remark 6.1) that the same estimates can be proved for
un instead of Qun. ut
Remark 7.86 (On the Non-incremental Pressure-Correction Scheme)

• If the convective terms . Qun � r/ QunC1 or . Qun � r/ Qun are used, the divergence-free
velocity un appears only on the right-hand side of the momentum equation. Then,
it can be replaced with (7.134) for tn leading to the equation

QunC1 C�tnC1 .�	� QunC1 C . Qun � r/ QunC1/ D Qun ��tnrpn C�tnC1f nC1:

Since also in the pressure-correction equation (7.133) only QunC1 is present, the
divergence-free velocity does not appear in this formulation of the scheme.
If it is not needed for some other reason, it is not necessary to compute the
update (7.134).

• The artificial Neumann boundary condition for the pressure (7.133) induces
a numerical boundary layer that prevents the scheme to obtain a first order
convergence in (7.135), see Rannacher (1992). In Prohl (1997, Theorem 6.2),
local estimates were proved that show that the pressure converges of first order
in the interior of ˝ , to be precise in L2.˝ 0/ with ˝ 0 �� ˝ .

• It can be shown that the scheme has a splitting error of order O .�t/ that cannot
be reduced. Hence, using a higher order time stepping scheme does not lead to
an improvement of the order of convergence.

ut
Remark 7.87 (On the Stability of the Spatial Discretization) For the numerical
solution, (7.130) and (7.132) has to be discretized in space. Since it is known that
the solution of a Poisson problem with homogeneous Neumann boundary conditions
is unique up to an additive constant, this method does not seem to need an inf-sup
condition for obtaining a unique pressure. Hence, arbitrary finite element spaces can
be used for velocity and pressure. Because of the large splitting error, the use of low
order discretizations like P1=P1 is particularly attractive.

In fact, the pressure-correction equation (7.132) is kind of a strong form of
the mass balance equation that appears in the PSPG stabilization, see Sects. 4.5.1
and 5.3.2. To illustrate this connection, assume that all functions in the Navier–
Stokes equations are sufficiently smooth. Taking the divergence of the momentum
equation yields

��p D �r � . f � @tu C 	�u � .u � r/u/ :

Together with the mass balance, one obtains with some parameter ıp > 0

r � u � ıp�p D �ıpr � . f � @tu C 	�u � .u � r/u/ :



436 7 The Time-Dependent Navier–Stokes Equations: Laminar Flows

Transferring this equation into a weak form gives with integration by parts and the
boundary condition (7.133)

.r � u; q/C ıp .rp;rq/ D �ıp .r � . f � @tu C 	�u � .u � r/u/ ; q/ (7.136)

for all q 2 H1
0.˝/. This equation is of the same form as the PSPG stabilization,

e.g., see (5.36) for the Oseen equations. The left-hand side of (7.136) is responsible
for the stabilization with respect to the discrete inf-sup condition whereas the right-
hand side of (7.136) accounts for the consistency of the method. Approximating this
right-hand side by zero gives for the corresponding strong form

��p D � 1

ıp
r � u;

which is of the same form as the pressure-projection equation (7.132). In particular,
one can see that the stabilization parameter is of size ıp D �tnC1. Thus, the
stabilization becomes small for small time steps. In fact, it is shown in Guermond
and Quartapelle (1998) that in the case of using finite element spaces for velocity
and pressure that do not satisfy the discrete inf-sup condition (3.51) spurious
oscillations may appear if the time step becomes too small, in particular if�t < Ch2

in the case that the pair of spaces P1=P1 is used. For small time steps, it is proposed
to change the term �tnC1 in (7.132) to �tnC1 C h2. The interpretation of the non-
incremental pressure-projection equation as a kind of PSPG stabilization was first
given in Rannacher (1992). ut
Remark 7.88 (The Non-incremental Pressure-Correction Scheme with Grad-Div
Stabilization) The non-incremental pressure-correction scheme with grad-div sta-
bilization, compare Sect. 4.6.1, or sparse grad-div stabilization, see Remark 4.129,
was proposed and analyzed in Bowers et al. (2014). Applying either type of grad-
div stabilization improved the accuracy of the computed solutions in the numerical
studies presented in this paper. However, both the grad-div stabilization and the
sparse grad-div stabilization introduce couplings between different components of
the velocity field, see Remark 4.129. Thus, instead of having to solve d scalar
equations for the velocity, a coupled system has to be solved, which has a negative
impact on the efficiency of the non-incremental pressure-correction scheme. ut
Remark 7.89 (The Standard Incremental Pressure-Correction Scheme) The goal
of this scheme is to increase the order of convergence compared with the non-
incremental pressure-correction scheme by using a better approximation for Op. A
natural choice is the pressure from the previous discrete time

Op D pn in (7.127); ' . QunC1/ D 0 in (7.129):

Since the scheme should perform better than first order in space, it should be
combined with a higher order temporal discretization than the backward Euler
scheme. Popular second order discretizations are the Crank–Nicolson scheme,
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see Example 7.49, and the backward difference formula 2 (BDF2) scheme, see
Remark 7.64. The standard incremental pressure-correction scheme became popular
with the paper (van Kan 1986). ut
Example 7.90 (The Standard Incremental Pressure-Correction Scheme with the
Crank–Nicolson Scheme) There are different proposals for this kind of scheme that
differ in the form of the convective term, e.g., see Shen (1992b, 1996) and Prohl
(1997, p. 141). These schemes do not fit exactly in the form (7.126) since the right-
hand side is evaluated in the middle of the time interval and an average of velocities
is used in the viscous term and in Shen (1996) also in the convective term.

The proposal from Shen (1996) has the form

QunC1 C�tnC1
	

� 	� OunC1=2 C � OunC1=2 � r� OunC1=2

C1

2

�r � OunC1=2
� OunC1=2 C rpn



D un C�tnC1f nC1=2 in ˝;

QunC1 C un D 0 on 
;

with OunC1=2 D . QunC1 C un/ =2 and

unC1 C�tnC1r
	pnC1 � pn

2



D QunC1 in ˝;

r � unC1 D 0 in ˝;
unC1 � n D 0 on 
;

(7.137)

n D 0; 1; 2; : : :. Note that the convective term is just the strong version of
the divergence form, compare (6.20). The pressure-projection equation derived
from (7.137) by taking the negative of the divergence has the form

��.pnC1 � pn/ D � 2

�tnC1
r � QunC1 in ˝: (7.138)

With the boundary conditions for unC1 and QunC1, one obtains from (7.137) the
boundary condition

r .pnC1 � pn/ � n D 0 on 
 (7.139)

for (7.138). ut
Remark 7.91 (Error Analysis of the Standard Incremental Pressure-Correction
Scheme with Crank–Nicolson Scheme) Error estimates for the standard incremental
pressure-correction scheme with Crank–Nicolson scheme can be found in Shen
(1992b, 1996) and Prohl (1997, Chap. 7). The analysis in Prohl (1997) was actually
performed for the time-dependent Stokes equations (7.125) but it is mentioned in
Prohl (1997, Remark 7.1) that it can be extended to the instationary Navier–Stokes
equations. It is noted also in Shen (1996) that the estimate of the convective term
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is technically involved but the main contribution of the error bound comes from the
estimate of an auxiliary time-dependent Stokes problem.

The analysis in Shen (1992b), considers an implicit version of the convective
term. It uses a compatibility assumption that is generally not satisfied.

In Shen (1996) a neighborhood of the initial time t D 0 is neglected in the
analysis. Concretely, it is assumed that at a time t0 > 0 there are approximations for
velocity and pressure that are sufficiently accurate. With further assumptions on the
velocity and the right-hand side, an error estimate of the form

�t
NX

nD1
ku.tn/� Qunk2L2.˝/ C .�t/2 kr .u.tN/� QuN/k2L2.˝/

C .�t/2 kp.tN/ � pnk2L2.˝/ � C .�t/4 ; 0 < t0 � t � T;

was proved, where N is the largest integer contained in .t � t0/=�t and C depends
on the data and on t0.

The analysis in Prohl (1997) aimed for error estimates in different norms. With
regularity assumptions on the solution of the continuous problem, error estimates
for the gradient of the velocity

max
1	n	N

����r
�
u.tnC1=2/� QunC1 C 2 Qun C Qun�1

4

�����
L2.˝/

� C�t log

�
1

�t

�
;

for the velocity

max
1	n	N

 
minftnC1; 1g

����u.tn/ � QunC1 C 2 Qun C Qun�1
4

����
L2.˝/

!
� C .�t/2 log

�
1
�t

�
;

and for the pressure

max
1	n	N

 
minftnC1=2; 1g

����p.tnC1=2/ � pnC1 C 2pn C pn�1
4

����
L2.˝/

!
� C�t log

�
1
�t

�
;

were obtained, see Prohl (1997, Theorem 7.1). These bounds are valid also for the
divergence-free velocity.

In summary, the convergence of the standard incremental pressure-correction
scheme with Crank–Nicolson scheme is of higher order with respect to �t than the
convergence of the non-incremental pressure-correction scheme, compare (7.135).

ut
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Example 7.92 (The Standard Incremental Pressure-Correction Scheme with the
BDF2 Scheme) The standard incremental pressure-correction scheme with BDF2
(q D 2, �2 D 3=2, �1 D �2, �0 D 1=2 in (7.126)) and equidistant time step �t has
the form: Given .u0; p0/ and .u1; p1/, compute . QunC1;unC1; pnC1/ by solving

3 QunC1 C 2�t .�	� QunC1 C .un � r/ QunC1/

D 4un � un�1 C 2�t
�
f nC1 � rpn

�
in ˝; (7.140)

QunC1 D 0 on 
;

and

3unC1 C 2�tr .pnC1 � pn/ D 3 QunC1 in ˝;
r � unC1 D 0 in ˝;
unC1 � n D 0 on 
;

(7.141)

for n D 1; 2; 3; : : :. Note that modifications of the scheme are possible by using
other forms of the convective term, in particular extrapolated forms like (7.128) can
be found in the literature. By applying the negative of the divergence to (7.141), one
obtains the following equation for the update of the pressure

��.pnC1 � pn/ D � 3

2�t
r � QunC1 in ˝; (7.142)

which is equipped with the same boundary condition (7.139) as in the case of the
Crank–Nicolson scheme. ut
Remark 7.93 (The Initial Step) Besides the initial velocity field u0, the standard
incremental pressure-correction scheme with BDF2 requires the computation of
quantities p0 D p.0; x/ and .u1; p1/. An initial pressure can be computed as
described in Remark 7.29. Then, .u1; p1/ can be computed with the incremental
pressure-correction scheme, where a first order one-step discretization in time is
applied

Qu1 C�t .�	� Qu1 C .u0 � r/ Qu1/ D u0 C�t . f 1 � rp0/ in ˝;
Qu1 D 0 on 
;

and

u1 C�tr .p1 � p0/ D Qu1 in ˝;
r � u1 D 0 in ˝;
u1 � n D 0 on 
:

It can be proved that this step is sufficiently accurate such that the order of
convergence of the complete scheme is not spoiled, see Guermond and Shen (2004).

ut
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Remark 7.94 (Error Analysis of the Standard Incremental Pressure-Correction
Scheme with BDF2 Scheme) The fully discretized standard incremental pressure-
correction scheme with BDF2 and with the Galerkin finite element method was
analyzed in Guermond (1999b). An explicit form of the convective term was con-
sidered that is based on an extrapolation from the previous two times, like (7.128).
If the solution of the continuous problem is sufficiently regular, then estimates of
the form

max
1	n	N

ku.tn/� QunkH1.˝/ C max
1	n	N

kp.tn/� pnkL2.˝/ � C�t; (7.143)

.�t/1=2
NX

nD1
ku.tn/ � QunkL2.˝/ � C�t2

were proved. The constants depend on data of the problem and norms of the
solution. ut
Remark 7.95 (On the Standard Incremental Pressure-Correction Scheme)

• The boundary condition (7.139) implies

rpnC1 � n D rpn � n D : : : D rp0 � n on 
:

This boundary condition is an unphysical boundary condition that leads to
numerical boundary layers.

• The scheme has an irreducible splitting error of order O
�
�t2

�
. Hence, the use of

a higher than second order discretization in time does not improve the order of
convergence.

ut
Remark 7.96 (Stability of the Spatial Discretization) The pressure-correction equa-
tions (7.138) and (7.142) can be written in the form

�r � QunC1 C C�t�.pnC1 � pn/ D 0 in ˝;

with C D 1=2 for the Crank–Nicolson scheme and C D 2=3 for BDF2. Hence, there
is some pressure contribution in the continuity equation that acts as stabilization
with respect to the discrete inf-sup condition (3.51) if the difference pnC1 � pn is
sufficiently large. Otherwise, in particular if a steady-state solution is approached,
the stabilization vanishes. In fact, it is reported in the literature, e.g., in Guermond
and Quartapelle (1998) and de Frutos et al. (2016c), that solutions with spurious
oscillations are obtained in this case if spatial discretizations are used that do not
satisfy the discrete inf-sup condition.
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A remedy consists in introducing an additional stabilization of PSPG-type in the
pressure-correction equation, leading to an equation of the form

��
��
1C ıp

C�t

�
pnC1 � pn

�
D � 1

C�t
r � QunC1 in ˝;

r
��
1C ıp

C�t

�
pnC1 � pn

�
� n D 0 on 
:

A modification of this type was proposed in Prohl (1997, Chap. 7.4) with ıp D h2.
Generally, one can choose the stabilization parameter locally in the form ı

p
K D ı0h2K

with some positive constant ı0, see Sect. 4.5.1.
Another possibility for introducing a stabilization, which was investigated in

Codina (2001a), consists in using fluctuations of the pressure gradient, compare
also Remark 4.111. ut
Example 7.97 (The Rotational Incremental Pressure-Correction Scheme) The goal
of this scheme consists in curing the inaccuracies caused by the artificial boundary
condition of the pressure in the standard incremental pressure-correction scheme.
This scheme was proposed in Timmermans et al. (1996). It is obtained by choosing

Op D pn in (7.127); ' . QunC1/ D 	r � QunC1 in (7.129):

Using BDF2, the velocity step of this scheme is identical to (7.140) and the
projection step has the form

3unC1 C 2�tr .pnC1 � pn/ D 3 QunC1 � 2	�tr .r � QunC1/ in ˝;
r � unC1 D 0 in ˝;
unC1 � n D 0 on 
:

(7.144)

The problem for the pressure becomes, using r � r D �,

��.pnC1 � pn/ D � 3

2�t
r � QunC1 C 	� .r � QunC1/ (7.145)

or

��Qpn D � 3

2�t
r � QunC1 with Qpn D pnC1 � pn C 	r � QunC1: (7.146)

The boundary conditions for (7.145) and (7.146) will be discussed in Remark 7.98,
see (7.148) for the result.

Using (7.146), the update for the pressure has to be computed by subtracting
	r � QunC1 from Qpn. If standard finite elements are used for velocity and pressure with
a continuous pressure space, one has to modify (7.146) since the term 	r � QunC1 is
usually discontinuous. ut
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Remark 7.98 (On the Rotational Incremental Pressure-Correction Scheme) Insert-
ing (7.144) in (7.140) yields

3unC1 C 2�t
	
	r .r � QunC1/ � 	� QunC1 C .un � r/ QunC1 C rpnC1




D 4un � un�1 C 2�tfnC1:

Using now (3.155) leads to

3unC1 C 2�t
	
	r � r � QunC1 C .un � r/ QunC1 C rpnC1




D 4un � un�1 C 2�tfnC1:

From (7.144), it follows with (3.156) that r� QunC1 D r�unC1 such that an equation
of the following form is obtained

3unC1 C 2�t .	r � r � unC1 C .un � r/ QunC1 C rpnC1/
D 4un � un�1 C 2�tfnC1 in ˝;

r � unC1 D 0 in ˝;
unC1 � n D 0 on 
:

(7.147)

Because of this form, the scheme is called rotational incremental pressure-correction
scheme. From (7.147), also the boundary condition for the pressure can be derived
by using the boundary conditions for QunC1, unC1, un, and un�1

rpnC1 � n D �
f nC1 � 	r � r � unC1

� � n on 
: (7.148)

Considering now the Navier–Stokes equations (7.1), discretizing this equation in
time with BDF2, denoting the solution at time tn with .un; pn/, and using (3.155)
gives for the momentum balance

3unC1 C 2�t
	
	r � r � unC1 � 	r .r � unC1/C .unC1 � r/unC1 C rpnC1




D 4un � un�1 C 2�tf nC1:

Restricting this equation to the boundary and multiplying it with n yields exactly
the boundary condition (7.148) since the velocity field in the Navier–Stokes
equations is divergence-free and it vanishes on the boundary. Thus, the boundary
condition (7.148) is a consistent boundary condition because it is not introduced
by some numerical method but it can be derived directly from the Navier–Stokes
equations. ut
Remark 7.99 (Error Analysis of the Rotational Incremental Pressure-Correction
Scheme) An error analysis of the rotational incremental pressure-correction scheme
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was performed in Guermond and Shen (2004). The time-dependent Stokes equa-
tions (7.125) were considered to concentrate in the analysis on the splitting.
BDF2 was used as temporal discretization, with the initial step as described in
Remark 7.93. If the solution of the continuous problem is sufficiently smooth in
time and space, then the following error estimates were proved

�t
NX

nD0
ku.tn/ � unk2L2.˝/ C�t

NX
nD0

ku.tn/ � Qunk2L2.˝/ � C .�t/4

and

�t
NX

nD0
kr .u.tn/� un/k2L2.˝/ C�t

NX
nD0

kr .u.tn/� Qun/k2L2.˝/

C�t
NX

nD0
kp.tn/ � pnk2L2.˝/ � C .�t/3 ;

with the constants depending on norms of the solution and on the final time. Note
that the order of convergence for the gradient of the velocity and the pressure is
1:5, in contrast to the first order convergence of the standard incremental pressure-
correction scheme, see (7.143). ut
Remark 7.100 (On unC1 and QunC1)

• In implementing and using pressure-correction schemes, one has two veloc-
ity fields in the computation: unC1 and QunC1. The field unC1 is (discretely)
divergence-free but it does not satisfy the no-slip boundary condition. Only the
normal component of unC1 is required to vanish at the boundary, but not the
tangential component(s). On the contrary, the boundary condition is satisfied
from QunC1, but this field is not (discretely) divergence-free. Thus, none of the
fields is perfect.

• From the point of view of convergence orders, one obtains the same results for
both, unC1 and QunC1, e.g., see Remarks 7.85, 7.91, and 7.99.

• From the point of view of implementation, unC1 has another disad-
vantage. After having computed the pressure by solving the Poisson
equation (7.132), (7.138), (7.142), or (7.145) using standard continuous finite
elements, then unC1 can be recovered by (7.131), (7.137), (7.141), or (7.144).
This recovery requires the computation of the gradient of the computed pressure,
which will give in general a discontinuous finite element function. Consequently,
unC1 will be a discontinuous finite element function, too.

• Note that unC1 is not needed in computing the pressure pnC1.
• Using a formulation of the convective term which does not include the

divergence-free velocity field, then it is usually easy to eliminate this field
from the momentum equation. The idea consists in solving the equation for the
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Fig. 7.11 Example 7.101. Quantities of interest. Reference intervals, see Table D.2, are depicted
with the dotted lines. The cross marks the middle of the period. The reference interval for the
Strouhal number is Œ0:295; 0:305�

projection for unC1 and in inserting the result in the equation for the momentum
balance, see Remark 7.86.

In the literature, e.g., in Guermond et al. (2006), it is advised to use only QunC1 in the
implementation. ut
Example 7.101 (Standard Incremental Pressure-Correction Scheme with BDF2
Scheme) Numerical results obtained with standard incremental pressure-correction
scheme with BDF2 scheme (7.140)–(7.142) for a two-dimensional flow around a
cylinder, Example D.8, are presented in Fig. 7.11. The simulations were performed
with the Q2=Q1 Taylor–Hood pair of finite element spaces. The initial grid (level 0)
is depicted in Fig. 6.5 and the results from Fig. 7.11 were computed on level 2 with
27,232 velocity degrees of freedom (including Dirichlet nodes) and 3480 pressure
degrees of freedom. As comparison, results with the fully implicit method with
Crank–Nicolson scheme (7.80) are presented.

First of all, it is noted that the pictures of the results on level 3 and 4 are
very similar to the pictures from Fig. 7.11. Thus, it can be observed that the time
step �t D 0:005 suffices for the fully implicit approach to compute a solution
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where all quantities of interest are within their reference interval. The same time
step gives for the incremental pressure-correction scheme very inaccurate results.
Decreasing the length of the time step improves the accuracy considerably. But even
for �t D 0:001, most of the quantities of interest are not yet in their reference
interval. Altogether, one can observe in this example that for the incremental
pressure-correction scheme the temporal error is the dominant error. ut



Chapter 8
The Time-Dependent Navier–Stokes Equations:
Turbulent Flows

Remark 8.1 (Turbulent Flows) Usually, the behavior of incompressible turbulent
flows is modeled with the incompressible Navier–Stokes equations (2.25). There is
no mathematical definition of what is “turbulence”. From the mathematical point of
view, turbulent flows occur at high Reynolds numbers. From the physical point of
view, these flows are characterized by possessing flow structures (eddies, scales) of
very different sizes. Consider, e.g., a tornado. This tornado has some very large flow
structures (large eddies) but also millions of very small flow structures.

The small scales are important for the physics of turbulent flows. A numerical
scheme that simply neglects them, e.g., by introducing a large amount of artificial
viscosity, computes a solution which is laminar and usually has much different
properties than the turbulent solution. A prominent example is the mean velocity
profile of a channel flow: it is of parabolic form for a laminar flow and it tends to
become of a step profile for turbulent flows, see Fig. D.12. The way to treat the small
scales, which cannot be resolved in simulations, consists in modeling their influence
onto the resolved scales. With other words, a turbulence model has to be applied. A
turbulence model has to contain less scales than the Navier–Stokes equations, which
means, it has to be less complex than the Navier–Stokes equations. ut
Remark 8.2 (Contents) This chapter presents some approaches for turbulence mod-
eling. The emphasis will be on models that allow a mathematical or numerical
analysis or whose derivation is based on mathematical arguments. Some remarks
concerning the application of these models in practical simulations are given.
However, the use of turbulence models in practice is a wide field of research and it
is not the goal of this monograph to give a comprehensive presentation here. There
are several monographs on this topic, e.g., Sagaut (2006), Lesieur et al. (2005) and
Ferziger and Perić (1999).

With respect to the presentation of mathematical and numerical analysis there
will be the emphasis on results that are obtained for the case of bounded domains.
One can find in the literature a number of results for the space-periodic case. As
already mentioned in Remark 2.31, the space-periodic case mimics the situation of

© Springer International Publishing AG 2016
V. John, Finite Element Methods for Incompressible Flow Problems, Springer
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a domain without boundary and the periodic boundary conditions do not possess
a physical meaning. From the analytical point of view, the absence of a boundary
might simplify the analysis considerably and a somewhat different mathematical
setup is used than in the case of a bounded domain. However, the interaction of a
turbulent flow with the boundary of the domain is often of utmost importance in
practice, such that results obtained for the case of a bounded domain are of more
interest. ut

8.1 Some Physical and Mathematical Characteristics
of Turbulent Incompressible Flows

Remark 8.3 (Monographs) The physics of turbulent flows is the topic of a number
of monographs, e.g., Pope (2000) and Davidson (2004). Mathematical aspects
of turbulence flows are studied in Foias et al. (2001) and Chacón Rebollo and
Lewandowski (2014). ut
Remark 8.4 (The Incompressible Navier–Stokes Equations) For describing the
physical properties of turbulent flows, it is sometimes convenient to use the
incompressible Navier–Stokes equations with the Reynolds number in the viscous
term

@tu � 2Re�1r � D .u/C .u � r/u C rp D f in .0;T� �˝;
r � u D 0 in .0;T� �˝;
u.0; �/ D u0 in ˝:

(8.1)

If˝ � R
d, d 2 f2; 3g, is a bounded domain, (8.1) has to be equipped with boundary

conditions.
Turbulent flows are characterized by a high Reynolds number. In applications, the

range of the Reynolds number for flows of this type starts around several thousand.
Often, it is even larger by some orders of magnitude. In the case of high Reynolds
numbers, the stabilizing forces in the momentum balance (the viscous term 2Re�1r�
D .u/) are small compared with the destabilizing forces (the convective term @tu C
.u � r/u, right-hand side of Newton’s second law of motion (2.5)). ut
Remark 8.5 (Instantaneous Flow and Statistics) Considering turbulent flows, one
has the idea that the flow behaves in some sense chaotic and hardly predictable. In
fact, small changes of the data might lead to a large change in the instantaneous
flow field, i.e., in the flow field at a certain time t 2 .0;T� and in a certain point
x 2 ˝ . In practice, one has never complete information about the data, e.g.,
on the initial condition in the whole domain ˝ or on the boundary conditions
at the complete boundary for all times. For instance, boundary conditions are
available from measurement data only at some points at the boundary and at some
times. Then, the needed boundary conditions for the equations are defined by an
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interpolation. Since the boundary conditions obtained in this way most probably
differ from the actual boundary conditions, it is to be expected that the computed
instantaneous flow field is also different from the actual one. From this point of view,
the consideration of instantaneous turbulent flow fields is not of practical interest.
Instead, one is interested in practice in statistics of the flow fields, often defined
by averages in space and time. For different problems, different statistics are of
importance, e.g., compare Examples D.12 and D.13. ut
Remark 8.6 (On the Concept of Isotropic Turbulence) Much of the physical turbu-
lence theory, e.g., the determination of the size of the smallest scales, is based on
the concept of isotropic turbulence. A field u.t; x/ is called statistically stationary
if all statistics of u.t; x/ are invariant under a shift of time. It is called statistically
homogeneous if all statistics are invariant under a shift of position. If the field is also
statistically invariant under rotations and reflections of the coordinate system, it is
called (statistically) isotropic.

Wind tunnel experiments have been performed on (approximately) isotropic
turbulence. However, isotropic turbulence is in general an idealization. ut
Remark 8.7 (The Richardson Energy Cascade) Let ˝ � R

3. In Richardson
(1922), a description of the physical mechanisms was given that work in turbulent
flows. Kinetic energy enters the flow at the largest eddies. Large eddies are unstable
and break up into smaller ones. Thereby energy is transferred in the mean from
the eddies of a given size to the next smaller eddies. This transfer in the mean
does not exclude a local (in time and space) transfer in the opposite direction from
smaller to larger eddies, mainly the next larger eddies, the so-called backscatter of
energy. The smaller eddies undergo a similar process like the large eddies. This
process is continued until the Reynolds number Re.l/ D u.l/l=	 of the eddies of
size l is sufficiently small (of order one) such that the eddy motion is stable and the
molecular viscosity becomes effective in dissipating the kinetic energy. This process
is called energy cascade.

The size of the smallest eddies will be denoted by �. ut
Remark 8.8 (The Rate of Dissipation of Turbulent Energy) Denote by " Œm2=s3�

the rate of dissipation of turbulent energy which is defined in the following way.
Consider u as a random variable and let hui be the mean value (expectation) of u.
The difference u0 WD u � hui is called the fluctuations. The rate of dissipation of
turbulence energy is now defined by

" WD 2	hD �u0� W D �u0�i:
The detailed theoretical and experimental study of particular flows shows that

" D O
�

U3

L

�
(8.2)

independently of Re, Pope (2000, p. 183). ut
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Remark 8.9 (The Kolmogorov Hypotheses) In the fundamental paper (Kolmogoroff
1941) three hypotheses about turbulent flows were postulated:

1. At sufficiently high Reynolds numbers, the small scale turbulent motions are
isotropic.

2. In every turbulent flow at sufficiently high Reynolds number, the statistics of the
small scale motions have a universal form that is uniquely given by 	 and ".

3. In every turbulent flow at sufficiently high Reynolds number, the statistics of
motions of scales of size l in the range L � l � � have a universal form
uniquely determined by " and independent of 	.

ut
Remark 8.10 (The Size of the Kolmogorov Scales) For describing the size of the
smallest scales, the first and second hypothesis are of importance.

Let " and 	 be given. Then, there are unique length, velocity, and time scales
which can be defined, the so-called Kolmogorov scales

� D
�
	3

"

�1=4
Œm�; u� D ."	/1=4 Œm=s�; t� D

		
"


1=2
Œs�: (8.3)

The scale � is also called Kolmogorov length scale. The Reynolds number of eddies
of size � is

Re.�/ D �u�
	

D 	"1=4

	"1=4
D 1; (8.4)

such that it is sufficiently small for the dissipation to be effective. The motion of
eddies with Re.�/ D 1 is isotropic and the first hypothesis is met.

In addition, using (8.3), the rate of dissipation is given by the following
expressions

"1=2 D u2�
	1=2

; "1=2 D 	3=2

�2
H) " D 	

u2�
�2

and " D 	
1

t2�
; (8.5)

such that

u�
�

D 1

t�
D
	 "
	


1=2
Œ1=s�: (8.6)

The left-hand side is an approximation to the spatial derivative of the Kolmogorov
velocity, which describes the velocity gradient, since � is small. For the large eddies
in turbulent flows, the velocity gradient increases with the Reynolds number since
the flow field varies rapidly in space and time. Equation (8.6) shows that for the
Kolmogorov scales, the velocity gradient is bounded uniformly with respect to
the Reynolds number. It depends only on 	 and ". This dependency is required
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by the second Kolmogorov hypothesis. Altogether, (8.4) and (8.6) characterize the
Kolmogorov scales as dissipative scales.

Now, one can estimate the size of the Kolmogorov scales. Using (8.2) and (8.3)
gives

�

L
�
�
	3

L3U3

�1=4
� Re�3=4 ” � � Re�3=4; (8.7)

where L � 1 m was assumed. ut
Remark 8.11 (On the Impact of the Size of the Kolmogorov Scales in Numerical
Simulations) A standard discretization of the Navier–Stokes equations (8.1), like
the Galerkin finite element method studied in Sect. 7.2, seeks to simulate the
behavior of all scales, including the Kolmogorov scales.

Consider as example the domain ˝ D .0; 1/3, such that L D 1, and a mesh of
roughly 108 cubic mesh cells (
4643). Assuming that the mesh width is equal to the
resolution of the discretization, as for low order finite elements, then scales of size
1=464 can be represented on this mesh. Only those scales can be simulated which
can be represented. Hence, a necessary condition for flows to be simulated on this
grid is that for its Kolmogorov length it holds � Ò 1=464. Assuming additionally
that equality holds in (8.2), then it follows from (8.7) that flows up to a Reynolds
number of Re 
 4644=3 
 3590 can be simulated. This is far less than the Reynolds
number of turbulent flows in most applications.

Arguing the same way for a general situation, one finds with (8.7) that the number
of degrees of freedom to resolve the Kolmogorov scales behaves like

�
L

�

�3
� Re9=4:

The application of the Galerkin finite element method (or any other standard
discretization) is called Direct Numerical Simulation (DNS) in the context of
turbulent flow simulations. The considerations in this remark show that a DNS is
generally not feasible for the simulation of turbulent flows and it will not be feasible
in the foreseeable future. ut
Remark 8.12 (The Kinetic Energy Spectrum) The energy cascade, Remark 8.7, and
the third hypothesis of Kolmogorov, Remark 8.9, can be expressed with the so-called
kinetic energy spectrum.

Consider ˝ D R
3 and a velocity field u.t; x/. Applying the Fourier trans-

form (A.23) gives

F .u/ .t; k/ D
Z
R3

u.t; x/e�ik�x dx;
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where k D .k1; k2; k3/T is the wave number vector and the Fourier space is called
wave number space. The kinetic energy for the wave number k is given by

E.t; k/ D 1

2
hF .u/ .t; k/ � F .u/� .t; k/i;

with F .u/� denoting the conjugate complex of F .u/ and h�; �; i denotes an appro-
priate mean value. Here, homogeneous isotropic turbulence with mean velocity
equal to zero will be considered. For wave numbers with the same absolute value
k D kkk2, one defines

E.t; k/ D
Z

kkk2Dk
E.t; k/ dk:

Kolmogorov’s third hypothesis implies a universal form of scales of size l with
L � l � �.

The kinetic energy spectrum of turbulent flows is sketched in Fig. 8.1, see Pope
(2000, p. 229) for a detailed derivation. In the so-called inertial subrange, one finds
that

E.k/ D CK"
2=3k�5=3;

energy transfer

energy

energy dissipation

range range

production

energy−containing inertial subrange dissipation

universal equilibrium range

log E(k)

log k

k−5/3

Fig. 8.1 Sketch of the kinetic energy spectrum of turbulent flows
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where CK is called Kolmogorov constant. This relation is often called Kolmogorov
�5=3 spectrum.

Flows at high Reynolds number show a distinct inertial subrange which is absent
for laminar flows. ut
Remark 8.13 (Boundary Layers) Consider an example like a turbulent channel
flow, see Example D.12. Then, there is a planar solid wall as boundary which is
situated at y D 0, the domain at this boundary is given for y > 0, and a no-slip
condition u D 0 is applied at this wall. In this situation, there is a layer at the
boundary. For the mean velocity field it holds that hu1i D hu1i.y/, hu2i D hu3i D 0.
Then, the viscous stress (2.17) for the mean velocity is given by

�	
rhui C .rhui/T

2
D �	

2

0
@ 0 @yhu1i 0
@yhu1i 0 0

0 0 0

1
A :

The mean viscous stress at the wall, the so-called wall shear stress, is the non-
vanishing component

�w D �	@yhu1i
ˇ̌
yD0 ŒN=m2� ;

where the unit assumes a velocity with dimension. With �w, one can define an
appropriate velocity and length scale for the near-wall region, which enable a
characterization of the layer independently of the Reynolds number. The velocity
scale is the so-called friction velocity given by

U� D
r
�w

�
Œm=s�

and the viscous length scale is

�	 D 	

r
�

�w
D 	

U�

Œm�:

Then, the non-dimensional distance from the wall can be measured in viscous length
or wall units

yC D y

�	
D U�

	
y:

Depending on yC, several regions for near-wall flows are distinguished. The
region yC < 50 is called viscous wall region since effects of the molecular viscosity
are of importance. For yC < 5, the viscous stress �w even dictates the behavior of
the flow in this region and it is called viscous sublayer. The region yC > 50 is called
outer layer. ut
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Remark 8.14 (Differences Between Two- and Three-dimensional Flows) There are
at least two fundamental differences between two- and three-dimensional flows.

First, the smallest scales in two-dimensional flows behave differently than (8.7).
In Kraichnan (1967) it was shown that they are of order �2d � Re�1=2 in two
dimensions, where �2d is the Kraichnan dissipation length.

A second difference is the so-called vortex stretching. The vorticity is defined by
! D r � u, see Definition 3.162. Applying the curl operator to the Navier–Stokes
equations (8.1) and assuming sufficiently smooth functions gives for the viscous
term, applying (2.27), the Theorem of Schwarz, and again (2.27), and using r �! D
0 which follows from (3.157),

2r � .r � D .u// D r � .�u/ D
0
@@y�u3 � @z�u2
@z�u1 � @x�u3
@x�u2 � @y�u1

1
A

D
0
@�

�
@yu3 � @zu2

�
�.@zu1 � @xu3/
�
�
@xu2 � @yu1

�
1
A D �.r � u/

D �! D 2r � D .w/ :

For the convective term, one obtains with (6.6), (3.156), and (3.159), using again
that r �! D 0,

r � ..u � r/ u/ D r �
�
.r � u/ � u C 1

2
r �uTu

�� D r � .! � u/

D .u � r/! � .! � r/ u:

Thus, one gets for the Navier–Stokes equations with f D 0 the following equation
for the vorticity

@!

@t
� 2Re�1r � D .!/C .u � r/! � .! � r/u D 0:

The viscous term is small for high Reynolds numbers and can be neglected. Thus

D!

Dt
D @!

@t
C .u � r/! 
 .! � r/u: (8.8)

This relation is the equation of an infinitesimal line element of material. If ru acts
to stretch the line element, then j!j will be stretched, too. In fact, in turbulent
three-dimensional flows, vortex stretching occurs, which is an important feature
of such flows. Vortex stretching causes a change of the local length scale and it
leads to a hierarchy of vortical structures of different size. Thus, vortex stretching is
responsible for the multiscale character of turbulent flows.
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In two-dimensional flows, the right-hand side of (8.8) vanishes, which induces
that vortex stretching cannot occur.

Because of the absence of vortex stretching and the different size of the viscous
length scales, two-dimensional flows at high Reynolds numbers are qualitatively
different to three-dimensional turbulent flows. For this reason, one can share the
point of view that in two dimensions there are no turbulent flows. However, it seems
to be legitimate to check new methods for high Reynolds number flows also at
two-dimensional problems. If they fail, their success at three-dimensional flows,
which possess additional complex features, is unlikely. On the other hand, if they
are successful, it cannot be concluded without numerical studies that they will work
well in three dimensions, too. ut
Remark 8.15 (A Mathematical Approach for Studying Turbulent Flows) A math-
ematical concept for studying turbulent flows was developed within the theory of
dynamical systems. A dynamical system is given by

du
dt

D F.u/; u0 D u.0/: (8.9)

The incompressible Navier–Stokes equations in the weakly divergence-free
space (7.3) fit into this concept with

F.u/ D f � 	Au � N.u;u/;

where A W Vdiv ! V 0 is the Laplace operator in the distributional sense defined by

.ru;rv/ D hAu; viV0;V 8 v 2 Vdiv

and N W Vdiv � Vdiv ! V 0 is the bilinear convective operator

.N .u; v/ ;w/ D n .u; v;w/ 8 u; v;w 2 Vdiv:

In the theory for the Navier–Stokes equations it is assumed that the body force is
independent of time, i.e., f .t; x/ D f .x/. In this case, one obtains an autonomous
dynamical system.

To study sets of solutions of dynamical systems, one can define attractors, see
Remark 8.18, and in particular the dimension of these attractors. In Temam (1997,
p. 380) it is written ‘It is our understanding here that the number of degrees
of freedom of a turbulent phenomenon is the dimension of the attractor which
represents it’.

Here, a short introduction into this concept and a brief review of some results
for the incompressible Navier–Stokes equations will be given. More detailed
presentations can be found, e.g., in Foias et al. (2001, Chap. III) or Marion and
Temam (1998, Chap. 13). ut
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Remark 8.16 (A Family of Operators Describing the Evolution of a Dynamical
System) Consider the autonomous dynamical system (8.9) that is assumed to
possess a unique solution. Then, a family of operators fS.t/gt�0 is defined by

S.t/ W u.0/ 7! u.t/ ” u.t/ D S.t/u.0/;

i.e., the initial condition is mapped to the solution at time t. Basic properties are the
followings:

• S.0/ D I, where I is the identity operator.
• One obtains the same solution at time t C s, t; s � 0,

ı if the system is started at time 0 and evolved until time t C s or
ı if the system is started at time 0, evolved until time t and then evolved further

until time t C s is reached.

Mathematically, this property is

u.t C s/ D S.t C s/u.0/ D S.s/ .S.t/u.0// D .S.s/ ı S.t//u.0/ 8 s; t � 0

or

S.t C s/ D S.s/ ı S.t/ D S.t/ ı S.s/ 8 s; t � 0:

Therefore, the operators fS.t/gt�0 form a semigroup. There are no inverse elements.
ut

Remark 8.17 (Setup for the Incompressible Navier–Stokes Equations) For the
incompressible Navier–Stokes equations, it is assumed that u0; f 2 Hdiv.˝/. Note
that the assumption of unique solvability for the incompressible Navier–Stokes
equations is known so far only for two dimensions, see Theorem 7.24. In this case,
one can show that S.t/ is a continuous operator in Hdiv.˝/, Marion and Temam
(1998, p. 554), Foias et al. (2001, p. 138). ut
Remark 8.18 (Global Attractor, Foias et al. (2001, p. 138)) The global attractor of
fS.t/gt�0 is a set A � Hdiv.˝/ with the following properties:

• The set A is compact in Hdiv.˝/.
• The set A is invariant for the semigroup, i.e., S.t/A D A for all t � 0.
• The set A attracts all bounded sets in Hdiv.˝/, i.e., for every bounded set B �

Hdiv.˝/ it is

distHdiv.˝/ .S.t/B;A/ D sup
b2S.t/B

inf
a2A ka � bkL2.˝/ ! 0 as t ! 1;

i.e., the distant between these two sets goes to zero for t ! 1.

If the global attractor exists, it can be shown that it is unique. ut
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Remark 8.19 (The Hausdorff Dimension of the Global Attractor, Foias et al. (2001,
p. 117)) The so-called Hausdorff dimension of a global attractor is of particular
interest for the incompressible Navier–Stokes equations. Given a set X and " > 0.
This set is covered by balls of dimension Od 2 R with radii that are not larger than ".
The volume of these balls is proportional to "Od. Defining the quantity

�H.X; Od; "/ D inf
X
i2I

r Od
i ;

where the infimum is for all coverings of X with a family fBigi2I of balls with radius
ri � ". Reducing the maximal radius, the volume of the covering will not increase,
thus �H.X; Od; "/ is a non-increasing function with respect to ". Then,

�H.X; Od/ D lim
"!0

�H.X; Od; "/

is the Od-dimensional Hausdorff measure of X. One can show that there is a number
d0 2 Œ0;1� such that �H.X; Od/ D 1 for Od < d0 and �H.X; Od/ D 0 for Od > d0. This
number d0 is called the Hausdorff dimension of X and it is denoted by dH.X/. ut
Remark 8.20 (Results for the Two-dimensional Navier–Stokes Equations) Since
there exists a unique solution of the incompressible Navier–Stokes equations in
two dimensions, one can define the semigroup fS.t/gt�0 and study its properties.
In Foiaş and Temam (1979), the existence of a global attractor and the finiteness of
its Hausdorff dimension were proved in the case of a smooth boundary of˝ . There
are several extensions of these results, in particular to the periodic case, see Foias
et al. (2001, p. 140) for an overview. An estimate of the Hausdorff dimension was
given in Temam (1986). It can be shown that

dH .A/ �
�

L

�2d

�2
;

see Foias et al. (2001, p. 141), where �2d is introduced in Remark 8.14. ut
Remark 8.21 (Extensions to the Navier–Stokes Equations in Three Dimensions)
For the three-dimensional Navier–Stokes equations, one can consider so-called
invariant sets which are bounded in Vdiv, see Foias et al. (2001, p. 147). A set X in
Vdiv is invariant if, for any initial condition u0 2 X, the corresponding unique local
solution, see Remark 7.26, extends globally in time to a unique solution u.t/ that
is defined for all t � 0 with values in X. It was shown in Constantin et al. (1985b)
and Constantin et al. (1985a) that the Hausdorff dimension of any invariant bounded
set X � Vdiv has the same order concerning the number of degrees of freedom as
predicted from Kolmogorov’s theory, see Remark 8.11, i.e.,

dH .X/ �
�

L

�

�3
: (8.10)

ut
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Remark 8.22 (Smaller Complexity of Turbulence Models) As already mentioned in
Remark 8.1, a turbulence model has to be less complex than the incompressible
Navier–Stokes equations. Each turbulence model has a parameter that determines
the scales that should be simulated. This parameter is usually related to the
(local) mesh width, e.g., as in (8.67) for the Smagorinsky LES model, since the
mesh width determines which scales can be represented. Thus, in practice, the
parameter becomes smaller on finer meshes and asymptotically the turbulence
model converges to the Navier–Stokes equations as the mesh width tends to zero.
To study if a turbulence model is less complex than the Navier–Stokes equations,
one fixes the parameter, like in Sect. 8.3.2, and considers the continuous counterpart
of the turbulence model. Indicators for a reduced complexity are the existence and
uniqueness of a weak solution for long times since the uniqueness is not proved for
the Navier–Stokes equations so far, see Remark 7.25, or that the dimension of the
global attractor is smaller than (8.10).

Another indicator, coming from finite element error analysis, is that one can
prove error estimates which depend not on the Reynolds number but on some
reduced Reynolds number, e.g., see Theorem 8.273 for a three-scale coarse space
projection-based variational multiscale method. ut

8.2 Large Eddy Simulation: The Concept of Space Averaging

8.2.1 The Basic Concept of LES, Space Averaging,
Convolution with Filters

Remark 8.23 (The Basic Idea of Large Eddy Simulation) In the case of turbulent
flows, only, in some sense, large scales can be represented on given grids and these
scales are the only ones that can be simulated, see Remark 8.11 for a discussion of
this issue. There are different concepts of defining scales to be large. In the case of
Large Eddy Simulation (LES), the large scales are defined by an average in space. In
theory, the space averaging is usually given by a convolution with a filter function.

With this approach, one obtains a decomposition

u D u C u0; p D p C p0; (8.11)

of the solution of the Navier–Stokes equations. In (8.11), . u ; p / are the large scales,
and .u0; p0/ are the small scales or unresolved scales or subgrid scales or fluctuations.

ut
Remark 8.24 (Space Averaging with Convolution, Filter Function, Wave Numbers)
The space average of a sufficiently smooth function v.t; x/ defined in R

d given by a
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convolution with an appropriate filter function gfil.x/ is defined by

v .t; x/ D .gfil  v/ .t; x/ D
Z
Rd

gfil .x � z/ v .t; z/ dz

D
Z
Rd

gfil .z/ v .t; x � z/ dz: (8.12)

This identity follows from a transform of the integration variable. Consider for
simplicity the one-dimensional case, one sets first w D x � z and then one switches
the bounds for the integration to obtain

Z 1

�1
gfil.x � z/v.z/ dz D �

Z �1

1
gfil.w/v.x � w/ dw D

Z 1

�1
gfil.z/v.x � z/ dz:

Applying the Fourier transform to (8.12) gives with (A.25)

F . v / .t; k/ D .F .gfil/F .v// .t; k/ ; (8.13)

where k is the dual variable or wave number. If F .gfil/ .t; k/ D 0 for kkk2 > kc,
where kc is a cut-off wave number, then all high wave number components of
v .t; x/ are filtered out by convolving v with gfil. The high wave number components
correspond to the fluctuations of v. This situation is the ideal one. For practical
applications, it is sufficient that the high wave numbers are damped sufficiently
fast. Thus, an essential requirement on a filter function is that its Fourier transform
decreases rapidly for high wave numbers.

It will be assumed that the filter function gfil .x/ can be represented as tensor
product of one-dimensional filter functions

gfil .x/ D
dY

iD1
gfil;i .xi/ : (8.14)

Since all factors have different variables, the Fourier transform of the filter function
is

F .gfil/ .k/ D
dY

iD1
F .gfil;i/ .ki/ :

The filtering effect in the definition of v is often described by a positive constant
ı, called the characteristic filter width or averaging radius or scale of the filter. The
filter width is a measure of the size of the eddies that are damped out, which are all
eddies with size less than O .ı/. It is clear that the smaller ı is the larger becomes
the cut-off wave number kc and the less eddies are filtered out. ut
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Example 8.25 (The Gaussian Filter) The Gaussian filter is one of the most common
filters applied in LES. Its filter function is given by

gfil;i .xi/ D gGauss;i .xi/ D
r

6

�ı2
exp

�
� 6

ı2
x2i

�
: (8.15)

It is

Z 1

0

exp.�ax2/ dx D 1

2

r
�

a
; a > 0;

and because of symmetry

Z 1

�1
exp.�ax2/ dx D

r
�

a
; a > 0: (8.16)

Then, one obtains for the Fourier transform (A.23)

F
�
gGauss;j

� �
kj
�

D
r

6

�ı2

Z 1

�1
exp

�
� 6

ı2
x2j � ikjxj

�
dxj

D
r

6

�ı2

Z 1

�1
exp

0
@�

 p
6

ı
xj C ikjı

2
p
6

!2
C i2k2ı2

24

1
A dxj

D
r

6

�ı2
exp

 
�k2j ı

2

24

!Z 1

�1
exp

0
@�

 p
6

ı
xj C ikjı

2
p
6

!21
A dxj

D
r

6

�ı2
ıp
6

exp

�
� ı

2

24
k2j

�Z 1

�1
exp

��y2
�

dy

D exp

�
� ı

2

24
k2j

�
; j D 1; : : : ; d: (8.17)

The factor in (8.15) is chosen such that the filtering effect of the Gaussian filter
and the filtering effect of a certain discrete approximation in a model problem are
equilibrated, see Aldama (1990, Sect. 3.8) for a detailed discussion. In addition, the
integral of the filter function is normalized, see (8.21). The Gaussian filter function
and its Fourier transform are of the same form.

The Gaussian filter gGauss in R
d is given by

gGauss .x/ D
�
6

ı2�

�d=2

exp

�
� 6

ı2
kxk22

�
; (8.18)
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Fig. 8.2 The Gaussian filter
in one dimension for different
values of the filter width ı

see Fig. 8.2. Its Fourier transform is

F .gGauss/ .k/ D exp

�
� ı

2

24
kkk22

�
: (8.19)

For convenience of notation, the Gaussian filter with a scalar argument x is
understood to be

gGauss .x/ WD
�
6

ı2�

� d
2

exp

�
�6x2

ı2

�
:

The Gaussian filter has the following properties, which follow directly from
properties of the exponential or which can be verified by direct calculations,
compare also Fig. 8.2:

• regularity: Since the exponential is infinitely often differentiable, it follows that

gGauss 2 C1 �
R

d
�
; F .gGauss/ 2 C1 �

R
d
�
:

• positivity: The positivity of the exponential and the fact that (8.18) and (8.19)
take their maximal value at the origin yields

0 < gGauss .x/ �
�
6

ı2�

� d
2

; 0 < F .gGauss/ .k/ � 1: (8.20)
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• integrability: From (8.16), one finds that

kgGausskLp.Rd/ D
�
6

ı2�

�d=2 �Z
Rd

exp

�
�p

6

ı2
kxk22

�
dx

�1=p

D
�
6

ı2�

�d=2 �
�ı2

6p

�d=.2p/

:

Together with (8.20), one gets

kgGausskLp.Rd/ < 1; p 2 Œ1;1�; ; kgGausskL1.Rd/ D 1: (8.21)

• symmetry: Since the functions (8.18) and (8.19) depend only on the Euclidean
norm of x and k, it follows that

gGauss .x/ D gGauss .�x/ ; F .gGauss/ .k/ D F .gGauss/ .�k/ : (8.22)

• monotonicity: From the monotonicity of the exponential, one obtains

gGauss .x/ � gGauss .y/ if kxk2 � kyk2 : (8.23)
ut

Lemma 8.26 (Further Properties of the Gaussian Filter)

i) Let ' 2 Lp
�
R

d
�
, then for 1 � p < 1

lim
ı!0

kgGauss  ' � 'kLp.Rd/ D 0: (8.24)

ii) Let ' 2 L1 �
R

d
�
. If ' is uniformly continuous on a set !, then there is a

pointwise convergence gGauss  ' ! ' uniformly on ! as ı ! 0.

Proof The proof of the first two statements can be found, e.g., in Folland (1995,
Theorem 0.13). �

Example 8.27 (The Box Filter) Another popular filter is the box filter or top hat
filter. It is given in one dimension for the filter width ı > 0 by

gbox D
(
1
ı

for x 2 �� ı
2
; ı
2

�
;

0 else,

see Fig. 8.3. For multiple dimensions, it is defined by a tensor product as in (8.14).
Main properties of the box filter are as follows:

• it is piecewise constant,
• it is non-negative,
• it has compact support: supp.gbox/ D Œ�ı=2; ı=2�,
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Fig. 8.3 The box filter (left) and its Fourier transform (right) in one dimension for different values
of the filter width ı

• gbox 2 Lp.R/ for p 2 Œ1;1�, kgboxkL1.R/ D 1.
• For the Fourier transform (A.23), one obtains with the fundamental theorem of

calculus and with Euler’s formula for the exponential with complex argument

F
�
gbox;j

� �
kj
�

D
Z ı=2

�ı=2
1

ı
exp

��ikjxj
�

dxj

D 1

ı

�
� 1

ikj

��
exp

�
� ikjı

2

�
� exp

�
ikjı

2

��

D � 1

ikjı

�
cos

�
kjı

2

�
� i sin

�
kjı

2

�
� cos

�
kjı

2

�
� i sin

�
kjı

2

��

D 2

kjı
sin

�
kjı

2

�
:

Thus, the Fourier transform of the box filter is a damped sine function. This
function has negative values, see Fig. 8.3.

ut

8.2.2 The Space-Averaged Navier–Stokes Equations
in the Case˝ D R

d

Remark 8.28 (Steps for Deriving LES Models) To compute the space-averaged
velocity u and pressure p , equations for these quantities are needed. These
equations have to be derived from the governing equations for u and p, i.e., from
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the Navier–Stokes equations. The first step consists in applying the filter which
defines . u ; p / also to the Navier–Stokes equations (2.25). Thus, LES modeling
is based on the strong form of the Navier–Stokes equations, which is in contrast
to other turbulence models, which are based on the variational form of the Navier–
Stokes equations, e.g., see Sect. 8.8. After having applied the filter to (2.25), the
basic equation for LES, the space-averaged Navier–Stokes equations, are obtained
with the assumption that convolution and differentiation commute. However, due
to the nonlinear term of the Navier–Stokes equations, an additional modeling step
is necessary to derive equations for . u ; p / from the space-averaged Navier–Stokes
equations.

The assumption that convolution and differentiation commute will be studied in
the remainder of Sect. 8.2. The additional modeling step is the topic of Sects. 8.3
and 8.4. ut
Remark 8.29 (Assumptions on the Filter) It will be assumed that the filter operator
which defines . u ; p / has the following properties:

• The filter is a linear operator

u C �v D u C � v: (8.25)

• Derivatives (first and second order in space, first order in time) and averages
commute, e.g.,

@xiu D @xi u ; i D 1; : : : ; d; (8.26)

and

@tu D @t u: (8.27)

It is known already from classical calculus that the commutation of differenti-
ation and integration of a parametric function requires sufficient smoothness of
this function with respect to the parameter.

ut
Remark 8.30 (Filtering with Convolution in the Case ˝ D R

d) Let ˝ D R
d and

consider as filter operator the convolution with a filter function given in (8.12). Note
that this filter operator is only defined in R

d. The linearity (8.25) follows from the
linearity of the integral operator. The commutation with respect to the temporal
derivative (8.27) follows from the fact that integration with respect to a certain
variable and differentiation with respect to another variable can be interchanged.
For property (8.26), it will be assumed in addition that the filter width ı is constant.
Then, one gets for sufficiently smooth functions with (8.12), the transform of the
integration variable w D x � z, Fubini’s theorem, the back transform of integration
variable, and the chain rule to compute

@xiv D
dX

jD1
@zjv@xi zj D

dX
jD1

@zjvıij D @ziv;
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for i D 1; : : : ; d,

@xi

Z
Rd

gfil .x � z/ v .t; z/ dz D �@xi

Z �1

1
� � �
Z �1

1
gfil .w/ v .t; x � w/ dw

D �
Z �1

1
� � �
Z �1

1
gfil .w/ @xiv .t; x � w/ dw

D
Z 1

�1
� � �
Z 1

�1
gfil .x � z/ @xiv .t; z/ dz

D
Z 1

�1
� � �
Z 1

�1
gfil .x � z/ @ziv .t; z/ dz:

ut
Remark 8.31 (The Space-Averaged Navier–Stokes Equations in the Case ˝ D
R

d) Applying a filter with the properties (8.25) and (8.26) to the Navier–Stokes
equations (2.25) with sufficiently smooth functions and the initial condition u0 gives
the space-averaged Navier–Stokes equations (or Reynolds equations)

@t u � 2	r � D .u /C r �
	
uuT



C r p D f in .0;T� � R

d;

r � u D 0 in .0;T� � R
d;

u .0; �/ D u 0 in R
d:

(8.28)

ut
Remark 8.32 (The Filter of the Nonlinear Term and the Closure Problem) The
space-averaged Navier–Stokes equations (8.28) are not yet equations for . u ; p /
because the tensor uuT is not expressed in terms of . u ; p /. Since the dyadic
product of a d-dimensional vector with itself is a symmetric tensor, uuT is
symmetric, too. Thus, on the one hand there are .d C 1/ equations in (8.28) and on
the other hand there are .d C 1/ unknown space-averaged values and d .d C 1/ =2

unknown quantities in uuT . Hence, a closure problem arises. Writing the nonlinear
term in the form

r �
	
uuT



D r � � u u T

�C r �
	
uuT � u u T



D r � � u u T

�C r � T; (8.29)

where T is called subgrid-scale (sgs) stress tensor, Meneveau and Katz (2000),
subgrid tensor, Sagaut (2006, p. 49), or residual-stress tensor, Pope (2000, p. 581),
or Reynolds stress tensor. A model of the subgrid scale tensor is needed for closing
the equations. Modeling T in terms of . u ; p / is the main issue in LES. This topic
will be addressed in Sects. 8.3 and 8.4. ut
Remark 8.33 (Averaging in Time) The concept of LES models does not include
averaging in time. Temporal averaging is used in the derivation of Reynolds
Averaged Navier–Stokes (RANS) models, e.g., see Ferziger and Perić (1999,
Sect. 9.4) for more details. ut
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8.2.3 The Space-Averaged Navier–Stokes Equations
in a Bounded Domain

Remark 8.34 (The Space-Averaged Navier–Stokes Equations in Bounded Domains
in Practical Computations) Usually, (8.28) is also used in practical computations
in bounded domains˝ , i.e., Rd is simply replaced by˝ , also in the definition (8.12)
of the filter. However, if ˝ is a bounded domain, the commutation of filtering
and differentiation requires special attention from the mathematical point of view.
One has to extend all functions of the Navier–Stokes equations consistently from
˝ to R

d. In general, these extensions are not sufficiently smooth for the simple
commutation of differentiation and integration to be valid. An extra term occurs and
omitting this term leads to a so-called commutation error. This type of commutation
error will be studied in the following.

The presentation of this topic is based on Dunca et al. (2004). ut
Remark 8.35 (Setup of the Problem) Let˝ be a bounded domain in R

d, d 2 f2; 3g,
with Lipschitz boundary @˝ and .d � 1/-dimensional measure j@˝j < 1. The
incompressible Navier–Stokes equations with homogeneous Dirichlet boundary
conditions

@tu � 2	r � D .u/C r � �uuT
�C rp D f in .0;T� �˝;

r � u D 0 in .0;T� �˝;
u D 0 on .0;T� � @˝;

u .0; �/ D u0 in ˝;Z
˝

p dx D 0 in .0;T�;

(8.30)

will be considered.
The derivation of the space-averaged Navier–Stokes equations and the analysis of

the commutation error require that (8.30) possesses a unique solution .u; p/ which
is sufficiently regular, such that the normal stress has a well defined trace on @˝
that belongs to some Lebesgue space defined on @˝ . The stress tensor S is given
in (2.35) and the normal stress or Cauchy stress vector on @˝ is defined by Sn.
Concretely, it will be assumed that

u 2 H2 .˝/\ V; p 2 H1 .˝/\ Q for a.e. t 2 Œ0;T�;
u 2 H1 ..0;T// for a.e. x 2 ˝: (8.31)

In order to apply a convolution operator to (8.30), one has to extend first all func-
tions outside the domain. These functions will satisfy the Navier–Stokes equations
in a distributional sense. Then, the convolution operator can be applied, filtering
and differentiation commute, and the space-averaged Navier–Stokes equations are
obtained. ut
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Lemma 8.36 (Regularity of the Normal Stress and Estimate of Its Lp .@˝/

Norm) If (8.31) holds, then Sn 2 H1=2 .@˝/. In particular, for almost every
t 2 Œ0;T�, Sn 2 Lq .@˝/ with

q 2 Œ1;1/ if d D 2; q 2 Œ1; 4� if d D 3:

Proof By the trace theorem. Theorem A.34 and (A.11) for s D 1, it follows that
ru 2 H1=2 .@˝/ and p 2 H1=2 .@˝/, such that Sn H1=2 .@˝/. Theorem A.34 for
q D 2 provides also the second statement of the lemma. �

Remark 8.37 (Extensions of the Functions to R
d) For deriving an equation to which

the convolution with a filter function can be applied, f has to be extended off ˝
and then .u; p/ must be extended compatibly with the extension of f such that the
extended functions satisfy a kind of Navier–Stokes equations. Since the right-hand
side is data, the extension of f has to be known. For f to be easily to compute, f is
extended by 0 off˝ . Then, .u; p/ can be extended by zero off˝ , too. This extension
is reasonable since u D 0 on @˝ . Thus, one defines

u D 0; u0 D 0; p D 0; f D 0 if x … ˝:

The extended functions possess the following regularities

u 2 H1
0

�
R

d
�
; p 2 L20

�
R

d
�

for a.e. t 2 Œ0;T�;
u 2 H1 ..0;T// for a.e. x 2 R

d:
(8.32)

From (8.31) and (8.32), it follows that the first order weak derivatives of the
extended velocity @tu, ru ,r � u, and r � �uuT

�
are well defined on R

d, taking
their indicated values in ˝ and being identically zero off ˝ .

An extension of u off ˝ as a function in H2
�
R

d
�

exists but it is unknown,
in particular since u is not known away from the boundary. Using this extension,
instead of u � 0 on R

d n˝ , would lead to an unknown extension of f and hence f
would not be known in the space-averaged momentum equation. ut
Remark 8.38 (Extension of the Pressure Term and the Viscous Term) Since u 62
H2
�
R

d
�
, p 62 H1

�
R

d
�
, the terms r � D .u/ and rp must be defined in the sense of

distributions. To this end, let ' 2 C1
0

�
R

d
�
. Since p � 0 on R

d n ˝ for all times,
one obtains with the definition of the distributional derivative and with integration
by parts

.@ip/ .'/ .t/ D �
Z
Rd

p .t; x/ @i' .x/ dx

D
Z
˝

' .x/ @ip .t; x/ dx �
Z
@˝

p .t; s/ ' .s/ ei � n .s/ ds;
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i D 1; : : : ; d, or in compact form

.rp/ .'/ .t/ D �
Z
Rd

p .t; x/r' .x/ dx (8.33)

D
Z
˝

' .x/rp .t; x/ dx �
Z
@˝

p .t; s/ ' .s/ n .s/ ds:

In the same way, one derives

r � D .u/ .'/ .t/

D �
Z
Rd

D .u/ .t; x/r' .x/ dx (8.34)

D
Z
˝

' .x/r � D .u/ .t; x/ dx �
Z
@˝

' .s/D .u/ .t; s/ n .s/ ds:

Both distributions define continuous linear functionals on C1
0 .R

d/ such that they
have compact support. Note that from the regularity assumption (8.31), it follows
that the traces of p and D .u/ on @˝ are well defined. ut
Remark 8.39 (The Distributional Form of the Momentum Equation) From (8.33)
and (8.34), it follows that the extended functions .u; p/ satisfy the following
distributional form of the momentum equation

�
@tu � 2	r � D .u/C r � �uuT

�C rp
�
.'/ .t/ (8.35)

D
Z
˝

f .t; x/'.x/ dx C
Z
@˝

S .t; s/ n .s/ ' .s/ ds; 8 ' 2 C1
0

�
R

d
�
:

ut
Remark 8.40 (The Space-Averaged Navier–Stokes Equations in a Bounded Domain)
The space-averaged Navier–Stokes equations are now derived by convolving (8.35)
with a filter function gfil .x/ 2 C1 �

R
d
�
. Applying the convolution with gfil to (8.35)

gives a function in C1 �
R

d
�

and moreover convolution and differentiation commute
on R

d, see Hörmander (1990, Theorem 4.1.1). One obtains for the left-hand side
of (8.35)

gfil  ��@tu � 2	r � D .u/C r � �uuT
�C rp

�
.'/
�

D @t u � 2	r � D . u /C r �
	
uuT



C r p (8.36)

in .0;T� � R
d.
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The filter of the viscous term and the pressure term will be studied in more detail.
Let H .'/ be a distribution with compact support that has the form

H .'/ D �
Z
Rd

f .x/D˛' .x/ dx;

where D˛ is the derivative of ' with the multi-index ˛. Then, H  gfil 2 C1 �
R

d
�
,

see Rudin (1991, Theorem 6.35), where

H .x/ D .H  gfil/ .x/ D H .gfil .x � �// D �
Z
Rd

f .y/D˛gfil .x � y/ dy: (8.37)

Applying (8.37) to (8.33) yields

r p .t; x/ D gfil  ..rp/ .'// .t; x/

D �
Z
Rd

p .t; y/rgfil .x � y/ dy (8.38)

D
Z
˝

rp .t; y/ gfil .x � y/ dy �
Z
@˝

gfil .x � s/ p .t; s/ n .s/ ds:

Convolving (8.34) in the same way gives

r � D . u / .t; x/ (8.39)

D
Z
˝

r � D .u/ .t; y/ gfil .x � y/ dy �
Z
@˝

gfil .x � s/D .u/ .t; s/ n .s/ ds:

Combining (8.36), (8.38), and (8.39) leads to the space-averaged momentum
equation

@t u � 2	r � D .u /C r �
	
uuT



C r p

D f C
Z
@˝

gfil .x � s/S .t; s/ n .s/ ds in .0;T� � R
d (8.40)

with

f .t; x/ D
Z
˝

�
@tu � 2	r � D .u/C r � �uuT

�C rp
�
.t; y/gfil .x � y/ dy:

(8.41)

Since f vanishes outside˝ for t 2 .0;T�, (8.41) has the same form which is obtained
if f is filtered directly. This correspondence has to be expected from a consistent
extension of the functions. ut
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Definition 8.41 (Commutation Error) Let gfil 2 C1 �
R

d
�

be a filter function
with filter width ı. The commutation error Aı .S/ in the space-averaged Navier–
Stokes equations is defined to be

Aı .S/ .t; x/ D
Z
@˝

gfil .x � s/ S .t; s/ n .s/ ds:

ut
Remark 8.42 (On the Commutation Error)

• The analysis of the commutation error will be performed for the Gaussian filter
gGauss defined in Example 8.25.

• In the analysis of the commutation error, an arbitrary but fixed time t 2 .0;T�will
be considered such that the dependency of Aı .S/ on the time can be neglected.

• If the viscous term in the Navier–Stokes equations is written as 	�u instead
of 2	r � D .u/, the resulting space-averaged momentum equation is given by
replacing 2	D .u / in (8.40) by 	r u and 2	D .u/ .t; s/ by 	ru .t; s/ in the stress
tensor.

• The space-averaged Navier–Stokes equations arising from the Navier–Stokes
equations in a bounded domain thus possess the extra boundary integral, Aı .S/.
Omitting this integral results in committing a commutation error. Including this
integral in the space-averaged momentum equation introduces a new modeling
question since it depends on the unknown normal stress on @˝ of .u; p/ but not
of . u ; p /.

ut

8.2.4 Analysis of the Commutation Error for the Gaussian
Filter

Remark 8.43 (The Term to be Studied) In view of Definition 8.41, Lemma 8.36, and
Remark 8.42, one has to study terms of the form

Z
@˝

gGauss .x � s/  .s/ ds (8.42)

with  2 Lq .@˝/, 1 � q � 1. Recall that @˝ is assumed to possess a finite
.d � 1/-dimensional measure. ut
Lemma 8.44 (Expression (8.42) Defines a Function in Lp

�
R

d
�
, p 2 Œ1;1�) Let

 2 Lq .@˝/, 1 � q � 1, then (8.42) belongs to Lp
�
R

d
�
; 1 � p � 1.
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Proof

i) p D 1; q > 1. By the Hölder inequality (A.9), one obtains with r�1Cq�1 D 1,
q > 1,

ˇ̌
ˇ̌Z
@˝

gGauss .x � s/  .s/ ds

ˇ̌
ˇ̌

�
�Z

@˝

gr
Gauss .x � s/ ds

�1=r

k kLq.@˝/

D
 Z

@˝

�
6

ı2�

�rd=2

exp

�
�6r

ı2
kx � sk22

�
ds

!1=r

k kLq.@˝/ : (8.43)

By the triangle inequality and Young’s inequality (A.5), it follows that

kxk22 � 2 kx � sk22 C 2 ksk22 ” 2 kx � sk22 � kxk22 � 2 ksk22 ;

which implies, together with the monotonicity of the exponential, that

exp

 
�6r kx � sk22

ı2

!
� exp

 
3r

� kxk22 C 2 ksk22
ı2

!
:

Inserting this estimate in (8.43) yields

ˇ̌
ˇ̌Z
@˝

gGauss .x � s/  .s/ ds

ˇ̌
ˇ̌

�
�
6

ı2�

�d=2

k kLq.@˝/

 Z
@˝

exp

 
6r ksk22
ı2

!
ds

!1=r

exp

 
�3 kxk22

ı2

!

< 1; (8.44)

since @˝ has finite measure in R
d�1 and the exponential is a bounded function

on @˝ . This estimate proves the statement for L1 �
R

d
�

and q > 1.
ii) p 2 Œ1;1/; q > 1. The proof for p 2 Œ1;1/ and q > 1 is obtained by raising

both sides of (8.44) to the power p, integrating on R
d, and using (8.16), from

what follows that

Z
Rd

exp

 
�3p kxk22

ı2

!
dx < 1:

iii) p 2 Œ1;1/; q D 1. If q D 1, one has for 1 � p < 1 with Hölder’s
inequality (A.9) and the monotonicity of the Gaussian filter (8.23), such that
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the largest values are taken if the absolute value of the argument is as small is
possible,

Z
Rd

ˇ̌
ˇ̌Z
@˝

gGauss .x � s/  .s/ ds

ˇ̌
ˇ̌p dx �

Z
Rd

sup
s2@˝

gp
Gauss .x � s/ dx

�Z
@˝

 .s/ ds
�p

D
Z
Rd

gp
Gauss .d .x; @˝// dx k kp

L1.@˝/
:

Choose a ball B .0;R/ with sufficiently large radius R such that d .x; @˝/ >
kxk2 =2 for all x 62 B .0;R/. Then, the integral on R

d is split into a sum of
two integrals. The first integral is computed on B .0;R/. It is finite since the
term in the integral is a continuous function on B .0;R/. The second integral on
R

d n B .0;R/ is also finite because
Z
RdnB.0;R/

gp
Gauss .d .x; @˝// dx �

Z
Rd

gp
Gauss

�kxk2
2

�
dx

and the integrability of the Gaussian filter (8.21). Hence, the statement is proved
for p < 1.

iv) p D 1; q D 1. For p D 1 and q D 1, one finds

ess sup
x2Rd

ˇ̌
ˇ̌
Z
@˝

gGauss .x � s/ .s/ ds

ˇ̌
ˇ̌ � ess sup

x2Rd

ess sup
s2@˝

gGauss .x � s/ k kL1.@˝/

� gGauss .0/ k kL1.@˝/ < 1;

where in the second estimate, it was used that the Gaussian filter takes its largest
value at the origin, which follows from its monotonicity (8.23). This estimate
finishes the proof of the lemma. �

Theorem 8.45 (Behavior of the Lp
�
R

d
�

Norm of the Commutation Error for
ı ! 0) Let  2 Lp .@˝/, 1 � p � 1. A necessary and sufficient condition for

lim
ı!0

����
Z
@˝

gGauss .x � s/  .s/ ds

����
Lp.Rd/

D 0; (8.45)

1 � p � 1, is that  vanishes almost everywhere on @˝ .

Proof It is obvious that the condition is sufficient.
Let (8.45) hold. From Hölder’s inequality (A.9) and (8.24), one obtains for an

arbitrary function ' 2 C1
0

�
R

d
�

lim
ı!0

ˇ̌
ˇ̌Z

Rd
' .x/

�Z
@˝

gGauss .x � s/  .s/ ds
�

dx

ˇ̌
ˇ̌

� lim
ı!0

k'kLq.Rd/

����
Z
@˝

gGauss .x � s/ .s/ ds

����
Lp.Rd/

D 0; (8.46)
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where p�1 C q�1 D 1. By Fubini’s theorem and the symmetry of the Gaussian
filter (8.22), one gets

lim
ı!0

Z
Rd
' .x/

�Z
@˝

gGauss .x � s/  .s/ ds
�

dx

D lim
ı!0

Z
@˝

 .s/
�Z

Rd
gGauss .x � s/ ' .x/ dx

�
ds

D
Z
@˝

 .s/ lim
ı!0

�Z
Rd

gGauss .s � x/ ' .x/ dx
�

ds D
Z
@˝

 .s/ ' .s/ ds;

where the last step is a consequence of Lemma 8.26 ii) since ' 2 L1 �
R

d
�

and ' is
uniformly continuous on the compact set @˝ . Thus, with (8.46), it follows that

0 D
Z
Rd
' .x/

�Z
@˝

gGauss .x � s/  .s/ ds
�

dx D
Z
@˝

 .s/ ' .s/ ds 8 ' 2 C1

0

�
R

d
�
:

This statement is true if and only if  vanishes almost everywhere on @˝ . �

Remark 8.46 (Interpretation of Lemma 8.44 and Theorem 8.45) Lemma 8.44 states
that the commutation error Aı .S/ is a function in Lp

�
R

d
�
, 1 � p � 1. Then, it is

shown in Theorem 8.44 that Aı .S/ vanishes in Lp
�
R

d
�

as ı ! 0 if and only if the
normal stress is identical to zero almost everywhere on @˝ . This condition means
that the wall has zero influence on the wall-bounded turbulent flow. This situation
is not expected to be satisfied in any interesting flow problem ! If the commutation
error term is simply dropped and then the strong form of the space-averaged Navier–
Stokes equations is discretized, as, e.g., by a finite difference method, this result
shows that the committed commutation error is O .1/ ! ut
Remark 8.47 (Further Results on the Lp

�
R

d
�

Norm of the Commutation Error)
With a quite technical proof, a bound for the Lp

�
R

d
�

norm of the commutation error
in terms of ı can be derived, see Dunca et al. (2004) or John (2004, Theorem 3.13).
An inspection of the proof shows that the commutation error is largest at the
boundary and it decays away from the boundary. ut
Remark 8.48 (Motivation for Considering the H�1.˝/ Norm of the Commutation
Error) Variational methods, such as finite element methods, discretize the weak
form of the considered equations. For these methods, the H�1.˝/ norm of any
omitted term is of interest. ut
Lemma 8.49 (Estimate of k v � vkH1=2.Rd/) There exists a constant C which does
not depend on v and ı such that

k v � vkH1=2.Rd/ � Cı1=2 kvkH1.Rd/ (8.47)

for any v 2 H1
�
R

d
�

and any ı > 0.
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Proof The norm in H1=2
�
R

d
�

can be expressed with the Fourier transform, e.g., see
Evans (2010, Sect. 5.8.5, Theorem 8),

kvk2
H1=2.Rd/ D

Z
Rd

	
1C kxk1=22


2 jF .v/j2 dx:

Applying Young’s inequality, it follows that

	
1C kxk22


1=2 �
	
1C kxk1=22


2 � C
	
1C kxk22


1=2
;

such that

kvk2
H1=2.Rd/ D

Z
Rd

	
1C kxk22


1=2 jF .v/j2 dx

is an equivalent norm.
Using the latter definition, the linearity of the Fourier transform, and (8.13) yields

k v � vk2
H1=2.Rd/ D

Z
Rd

	
1C kxk22


1=2 jF .gGauss  v � v/j2 dx

D
Z
Rd

	
1C kxk22


1=2 jF .gGauss  v/ � F .v/j2 dx

D
Z
Rd

	
1C kxk22


1=2 jF .gGauss/F .v/ � F .v/j2 dx

D
Z
Rd

	
1C kxk22


1=2 j1 � F .gGauss/j2 jF .v/j2 dx

D
Z

fkxk2>�=ıg

	
1C kxk22


1=2 j1 � F .gGauss/j2 jF .v/j2 dx

C
Z

fkxk2	�=ıg

	
1C kxk22


1=2 j1 � F .gGauss/j2 jF .v/j2 dx:

The integrals on the right-hand side will be bounded separately.
The bound of the first integral relies on the fact that kxk2 is sufficiently large.

There exists a constant C > 0, which does not depend on ı and v, such that for
kxk2 > �=ı

1	
1C kxk22


1=2 <
1

.1C �2=ı2/
1=2

D ı
1

.ı2 C �2/
1=2

� ı

�1=2
D Cı:

From (8.17), it follows the pointwise estimate

j1 � F .gGauss/ .x/j � 1 8 x 2 R
d:
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Thus, the first integral can be bounded by

ˇ̌
ˇ̌
Z

fkxk2>�=ıg

	
1C kxk22


1=2 j1 � F .gGauss/j2 jF .v/j2 dx

ˇ̌
ˇ̌

�
Z

fkxk2>�=ıg

	
1C kxk22


 	
1C kxk22


�1=2 jF .v/j2 dx

� Cı
Z

fkxk2>�=ıg

	
1C kxk22



jF .v/j2 dx: (8.48)

To bound the second integral, it is used that the Fourier transform of the Gaussian
filter is close to one at the origin. Applying a Taylor series expansion of (8.17) at
x D 0 for fixed ı yields

F .gGauss/ .x/ D 1 � ı2 kxk22
24

C O
	
ı4 kxk42



:

One obtains for all x with kxk2 � �=ı the pointwise bound

j1 � F .gGauss/ .x/j2 � Cı4 kxk42 � Cı4
�3

ı3
kxk2 D Cı kxk2 ;

where C does not depend on ı or x. Continuing this estimate with kxk2 �	
1C kxk22


1=2
shows that the second integral can be bounded as follows

ˇ̌
ˇ̌Z

fkxk2	�=ıg

	
1C kxk22


1=2 j1 � F .gGauss/j2 jF .v/j2 dx

ˇ̌
ˇ̌

� Cı
Z

fkxk2	�=ıg

	
1C kxk22



jF .v/j2 dx: (8.49)

Combining (8.48) and (8.49) gives

k v � vk2
H1=2.Rd/ � Cı

Z
Rd

	
1C kxk22



jF .v/j2 dx D Cı kvk2

H1.Rd/ ;

which is the statement of the lemma. �

Theorem 8.50 (Convergence of the Commutation Error in H�1.˝/) Let  2
L2 .@˝/, then there exists a constant C > 0, which depends only on ˝ , such that

����
Z
@˝

gGauss .x � s/  .s/ ds

����
H�1.˝/

� Cı1=2 k kL2.@˝/ (8.50)

for every ı > 0.
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Proof It is

k'kH�1.˝/ D sup
v2H1

0 .˝/

R
˝ .v'/ .x/ dx

krvkL2.˝/
: (8.51)

The numerator of the right-hand side will be estimated for the commutation error.
Let v 2 H1

0 .˝/. Extending v by zero outside ˝ , applying Fubini’s theorem,
utilizing the symmetry of the Gaussian filter (8.22), using that v vanishes on @˝ ,
applying the Cauchy–Schwarz inequality (A.10), the trace theorem (A.11) for s D
1=2, Lemma 8.49, that v vanishes off˝ , and the Poincaré inequality (A.12) yields

Z
˝

�Z
@˝

gGauss .x � s/  .s/ ds
�
v.x/ dx

D
Z
@˝

 .s/
�Z

˝

gGauss .x � s/ v.x/ dx
�

ds

D
Z
@˝

 .s/
�Z

˝

gGauss .s � x/ v.x/ dx
�

ds D
Z
@˝

 .s/ v .s/ ds

D
Z
@˝

 .s/ . v .s/ � v .s// ds � k v � vkL2.@˝/ k kL2.@˝/

� C k v � vkH1=2.˝/ k kL2.@˝/ � C k v � vkH1=2.Rd/ k kL2.@˝/

� Cı1=2 kvkH1.Rd/ k kL2.@˝/ D Cı1=2 kvkH1.˝/ k kL2.@˝/

� Cı1=2 krvkL2.˝/ k kL2.@˝/ :

Inserting this estimate in (8.51) gives the result of the theorem. �

Remark 8.51 (Interpretation of Theorem 8.50) Theorem 8.50 shows that the com-
mutation error tends to zero in H�1 .˝/ as ı ! 0. The order of convergence is
at least O

�
ı1=2

�
. Thus, using variational methods, like the finite element method,

leads to the expected asymptotic vanishing of the commutation error. It is not known
whether the estimate (8.50) is optimal. ut
Remark 8.52 (On a Weak Form of the Commutation Error) One can derive an
estimate for a weak form of the commutation error, i.e., the commutation error is
multiplied with a test function and integrated. Considering any v 2 H1

�
R

d
�

with
vj˝ 2 H2.˝/\ V and v.x/ D 0 for x 62 ˝ , then the estimate is of the form

Z
Rd

ˇ̌
ˇ̌ v .x/

Z
@˝

gGauss .x � s/  .s/ ds

ˇ̌
ˇ̌k dx

� Cı1C
	
�dC .d�1/�

q Cˇ�



k k kk
Lp.@˝/ kvkk

H2.˝/ ; (8.52)
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where ı 2 .0; �/, � > 0, � 2 .0; 1/, k 2 Œ1;1/, ˇ 2 .0; 1/ if d D 2 and ˇ D 1=2 if
d D 3, p�1 C q�1 D 1, p > 1, and C and � depend on �; k, and j@˝j. The proof can
be found in Dunca et al. (2004) and John (2004, Sect. 3.7).

For d D 2, k D 1, and p < 1 arbitrary large, i.e.,  is sufficiently smooth, one
finds that q is arbitrary close to 1. Choosing � and ˇ also arbitrary close to 1 leads
to the following power of ı on the right-hand side of (8.52)

1C .�2C .1 � �1/C .1 � �2// D 1 � .�1 C �2/ D 1 � �3

for arbitrary small �1; �2; �3 > 0. In this case, the convergence is almost of first
order.

Estimate (8.52) does not provide convergence for d D 3. Lemma 8.36 suggests
choosing p D 4, i.e., q D 4=3. Then, for k D 1, the power of ı on the right-hand
side of (8.52) becomes 2 .� � 1/, which is negative for � < 1. ut
Remark 8.53 (Non-constant Filter Width and Skewed Filtering) The application of
a filter is called skewed if the point in which a function is filtered and the center of
the filter kernel do not coincide. Possible advantages of studying skewed filters are
discussed in van der Bos and Geurts (2005). The skewed version of the Gaussian
filter with skewness Qz.x/ and with variable filter width ı.x/, in one dimension and
neglecting the dependency on time, reads as follows

v .x/ D
p
6

ı.x/�

Z 1

�1
exp

 
�6

�
z C Qz.x/
ı.x/

�2!
v.x � z/ dz:

Both, the variable filter width and the skewness introduce in general commutation

errors. Estimates for the error
	
@i v � @iv



.x/ can be found in Berselli et al.

(2007). ut

8.2.5 Analysis of the Commutation Error for the Box Filter

Remark 8.54 (Motivation for Using the Box Filter) The box filter, see Exam-
ple 8.27, is a filter whose kernel has a compact support. It will be required that
the application of this filter leads to integrals whose domain of integration is a
subset of ˝, i.e., the filter width at a point x in any direction is not allowed to
be larger than the distance of x to the boundary in that direction. This situation has
the appealing property that an extension of the function v to be filtered outside ˝
is not necessary. Note that the non-smooth extension of the functions was the origin
of the commutation error studied in Sect. 8.2.4. But the requirement that the domain
of filtering is always in ˝ also implies that the filter width has to tend to zero (at
least in one direction) as the point x in which v is filtered tends to the boundary of
˝ . Thus, necessarily, the filter width is not constant but it is a function of x. This
property leads to a commutation error. ut
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Remark 8.55 (Normalized Box Filter) The filter kernel of the normalized box filter
is given by

gbox.x/ D
(
1 for x 2 �� 1

2
; 1
2

�
;

0 else.

It follows for the first moments that

Z 1=2

�1=2
gbox.x/ dx D 1 ;

Z 1=2

�1=2
gbox.x/x dx D 0 ;

Z 1=2

�1=2
gboxx2 dx D 1

12
:

ut
Remark 8.56 (The Box Filter with Variable Filter Width) Let˝ � R

d be a bounded
domain, v 2 C1.˝/, ıl.x/ be scalar filter width functions with ıl.x/ 2 C1.˝/,
ıl.x/ � 0 for all x 2 ˝, and ıl.x/ > 0 for all x 2 ˝ , l D 1; : : : ; d. The support
of the filter will be denoted by B.x/ D Œ�ı1.x/; ı1.x/� � � � � � Œ�ıd.x/; ıd.x/� and it
is assumed that the filtering is applied for each point such that this support is in the
closure of the domain, i.e., that

x C B.x/ WD Œx1 � ı1.x/; x1 C ı1.x/� � � � � � Œxd � ıd.x/; xd C ıd.x/� � ˝

for all x D .x1; : : : ; xd/ 2 ˝ . The filter of v is defined by

v.x/ D 1

a.x/

Z
B.x/

dY
lD1

gbox

�
xl

2ıl.x/

�
v.x � z/ dz; (8.53)

with

a.x/ D
dY

lD1
2ıl.x/:

Note that with this definition, the filter width in x in the direction xl is 2ıl.x/. ut
Lemma 8.57 (Representation Formula for the Commutation Error) Let v 2
C1.U.x//, where U.x/ is a neighborhood of x such that x C B.x/ � U.x/, and
ıl 2 C1.U.x//, l D 1; : : : ; d. Then, the i-th component of the commutation error has
the form

	
@iv � @iv



.x/ D

dX
lD1

@iıl.x/
ıl.x/

	
xl@lv � xl@lv



.x/: (8.54)
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Proof For the sake of simplifying the presentation, the proof will be given in one
dimension. Because of the tensor product structure of the multi-dimensional filter,
the proof for multiple dimensions uses the same techniques, see Berselli et al.
(2007).

With the product rule of differentiation and the Leibniz rule, denoting with the
prime the derivative, one gets

d v

dx
.x/ D d

dx

 
1

2ı.x/

Z ı.x/

�ı.x/
v.x � z/ dz

!

D � ı0.x/

2ı2.x/

Z ı.x/

�ı.x/
v.x � z/ dz

C 1

2ı.x/

�
v.x � ı.x//ı0.x/ � v.x C ı.x//.�ı0.x/

�C 1

2ı.x/

Z ı.x/

�ı.x/
v0.x � z/ dz

D � ı0.x/

2ı2.x/

Z ı.x/

�ı.x/
v.x � z/ dz

C ı0.x/

2ı.x/
Œv.x � ı.x//C v.x C ı.x//�C dv

dx
.x/: (8.55)

Since the bounds of the integral do not depend on z, integration by parts and the
chain rule yields

Z ı.x/

�ı.x/
zv0.x � z/ dz D �zv.x � z/

ˇ̌
ˇzDı.x/
zD�ı.x/ C

Z ı.x/

�ı.x/
v.x � z/ dz

D �ı.x/v.x � ı.x// � ı.x/v.x C ı.x//C
Z ı.x/

�ı.x/
v.x � z/ dz:

Multiplying this identity by ı0.x/=.2ı2.x// and adding it to (8.55) gives

 
d v

dx
� dv

dx

!
.x/

D � ı0.x/
2ı2.x/

Z ı.x/

�ı.x/
zv0.x � z/ dz (8.56)

D ı0.x/
ı.x/

 
1

2ı.x/

Z ı.x/

�ı.x/
.x � z/v0.x � z/ dz � x

1

2ı.x/

Z ı.x/

�ı.x/
v0.x � z/ dz

!

D ı0.x/
ı.x/

	
xv0.x/ � x v0



:

This representation is exactly (8.54) for d D 1. �
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Theorem 8.58 (Pointwise Error Estimate of the Commutation Error) Let v 2
C2.U.x//, where U.x/ is defined in Lemma 8.57, and let ıl.x/ 2 C1.U.x//, l D
1; : : : ; d, then

ˇ̌
ˇ@iv � @iv

ˇ̌
ˇ .x/ � kvkC2.U.x//

3

dX
lD1

j@iıl.x/j jıl.x/j : (8.57)

Proof For the same reasons as in Lemma 8.57, the proof will be performed in one
dimension. A Taylor series expansion with Lagrangian remainder gives

v0.x � z/ D v0.x/� zv00./; with some  2 U.x/:

Inserting this expression in (8.56) and using the definition of the norm in C2.U.x//,
see Remark A.22, gives

ˇ̌
ˇ̌
ˇ
d v

dx
� dv

dx

ˇ̌
ˇ̌
ˇ .x/ D

ˇ̌
ˇ̌
ˇ
ı0.x/
2ı2.x/

Z ı.x/

�ı.x/
zv0.x/ � z2v00./ dz

ˇ̌
ˇ̌
ˇ

D
ˇ̌
ˇ̌
ˇ
ı0.x/
2ı2.x/

 
v0.x/

Z ı.x/

�ı.x/
z dz � v00./

Z ı.x/

�ı.x/
z2 dz

!ˇ̌
ˇ̌
ˇ

�
ˇ̌
ˇ̌ ı0.x/
2ı2.x/

ˇ̌
ˇ̌ kvkC2.U.x//

ˇ̌
ˇ̌0 � 2

3
ı3.x/

ˇ̌
ˇ̌

D jı0.x/j ı.x/
3

kvkC2.U.x//:

This estimate is the one-dimensional version of (8.57). �

Remark 8.59 (Interpretation of Theorem 8.58) Estimate (8.57) shows that the
commutation error vanishes if the filter width is constant in all directions, i.e.,
@iıl.x/ D 0, i D 1; : : : ; d. These conditions cannot be satisfied (or only trivially)
if one considers a bounded domain and requires that the filter kernel should always
be inside the closure of this domain. For simplicity, let ˝ D .a; b/ � R. If the
filter kernel should be contained in Œa; b� then necessarily ı.x/ ! 0 as x ! a and
ı.x/ ! 0 as x ! b. Thus, either one has ı.x/ D 0, i.e., no filtering, or the filter
width is not constant.

If the derivatives @iıl.x/ D 0, i D 1; : : : ; d, are bounded, then the commutation
error tends to zero as ıl.x/ ! 0. ut
Remark 8.60 (Further Results on Commutation Errors for Filters with Compact
Support)

• In Berselli et al. (2007), the case of a general filter with compact support, variable
filter width, and non-vanishing skewness is studied. A representation formula of
the commutation error and a pointwise error estimate are derived.
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• The analysis presented in this section requires a certain regularity of v, namely
v 2 C2.U.x//. In the case of turbulent flows, however, one cannot expect
smooth solutions. In Berselli et al. (2007) also a pointwise estimate for the
commutation error for functions with low regularity, concretely for Hölder-
continuous functions, is proved.

• Since the filter width cannot be constant near the boundary, see Remark 8.59, a
commutation error will be committed especially near the boundary. Estimates
of this error for certain models of the mean velocity can be also found in
Berselli et al. (2007). For the velocity, these models are called wall laws. An
asymptotic analysis in Berselli and John (2006) shows for the turbulent channel
flow, Example D.12, that the commutation error near the wall is at least as
important as the divergence of the sgs stress tensor (8.29). Note that modeling
the sgs stress tensor is the main issue in LES.

ut

8.2.6 Summary of the Results Concerning Commutation
Errors

Remark 8.61 (Summary of the Results Concerning the Commutation of Convolution
and Differentiation) There are important situations in which the assumed commu-
tation of filtering and differentiation is generally not true, e.g., if ˝ is a bounded
domain or if the filter width is not constant. Commuting these operators in these
situation leads to extra terms. Omitting these terms, so-called commutation errors
are committed.

Sections 8.2.3 and 8.2.4 considered the case of a bounded domain and the
convolution with the Gaussian filter. First, the commutation error that is caused
by extensions of functions from ˝ to R

d which are not sufficiently smooth was
derived in Sect. 8.2.3. In the following sections, an analysis of the commutation
error in various norms for an arbitrary but fixed time was presented. In practical
computations, the commutation error term is always neglected, expecting that it is
small and vanishes if the filter width ı tends to zero. In Sect. 8.2.4, it was shown
that this is not always true. The commutation error is asymptotically negligible
in Lp

�
R

d
�
, i.e., it vanishes as the averaging radius ı ! 0, if and only if the

normal stress vanishes almost everywhere on the boundary. In other words, it is
asymptotically negligible in Lp

�
R

d
�

if and only if the fluid and the boundary exert
zero force on each other. The expected convergence of the commutation error as
ı ! 0 was shown in the H�1 .˝/ norm and for a weak form of the commutation
error.

When using the box filter, one can avoid the extension of functions off the
domain. However, the required non-constant filter width causes also a commutation
error. This error was analyzed in Sect. 8.2.5. It was shown that it depends on the
variation of the filter width. ut



482 8 The Time-Dependent Navier–Stokes Equations: Turbulent Flows

Remark 8.62 (Practical Simulations) In practice, the commutation error is not of
importance. By experience, it is known that LES models do not behave appropriately
near boundaries. Thus, they are either modified, like by using the van Driest
damping in the Smagorinsky model, see Remark 8.127, or even completely different
approaches are used near the boundary. An overview on such approaches is given in
Piomelli and Balaras (2002). Two possibilities are

• imposing some form of wall law,
• solving numerically a set of simplified equations in the boundary layer region,

which is the so-called zonal approach.
ut

8.3 Large Eddy Simulation: The Smagorinsky Model

Remark 8.63 (Motivation and Contents of this Section) The Smagorinsky model,
proposed in Smagorinsky (1963), is one of the most popular turbulence models.
From the mathematical point of view, the continuous Smagorinsky model is well
understood. Existence and uniqueness of a solution in two and three dimensions
can be proved, see Sect. 8.3.2. These results were obtained in Ladyženskaja (1967).
Therefore, in the mathematical literature, the continuous model is often called
Ladyzhenskaya model. In addition, a finite element error analysis can be performed,
see Sect. 8.3.3. From the computational point of view, the Smagorinsky model
is easy to implement, it has low computational cost, and generally it is quite
robust in simulations. The last point means that the simulations do not blow up.
However, as it shall be discussed in some detail in Sect. 8.3.4, the Smagorinsky
model possesses a number of drawbacks. In particular, the computational results
depend on a coefficient, the so-called Smagorinsky coefficient, whose good choice
is in general situations an open problem.

In addition, it is part of some other turbulence models, like the three-scale coarse
space projection-based variational multiscale model presented in Sect. 8.8.6. ut

8.3.1 The Model of the SGS Stress Tensor: Eddy Viscosity
Models

Remark 8.64 (Some Properties of the SGS Stress Tensor) The space-averaged
Navier–Stokes equations are not yet closed and the divergence of the subgrid-scale
stress tensor

r � T D r �
	
uuT



� r � � u u T

�
(8.58)
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needs to be modeled, see Remark 8.32. Models should possess some important
properties of T, as the followings.

• The subgrid stress tensor is symmetric, since uuT and u u T are symmetric.
• The subgrid stress tensor is Galilean invariant. Consider two coordinate systems

.t; x/ and .Ot; Ox/ D .t; x � Ut/; (8.59)

where U is a constant velocity. These systems describe two so-called inertial
frames of references. The second frame is moving with constant velocity with
respect to the first frame. Galilean invariance means that one gets the same
expressions in both frames.
Since u is the velocity (derivative with respect to time) of x, it follows from (8.59)
by differentiating Ox with respect to time that

Ou.Ot; Ox/ D u.t; x/� U: (8.60)

In the special case u D U, the coordinate system .Ot; Ox/ moves with the flow. This
case is the so-called Lagrangian point of view of a flow field, i.e., one observes
the motion of the fluid such that one follows an individual “fluid particle” as it
moves through time and space, see also Remark 8.190.
Using the chain rule, (8.60), and (8.59), one obtains for the partial derivative of
the velocity

@ Ouj

@Oxi
D @uj

@t

@t

@Oxi
C

dX
kD1

@uj

@xk

@xk

@Oxi
D @uj

@xi
; i; j D 1; : : : ; d:

Since the sgs stress tensor is composed only of partial derivative of the velocity,
it is Galilean invariant.
With similar calculations, it can be shown that the Navier–Stokes equations (8.1)
are Galilean invariant (with Ou instead of u).

Further requirements for satisfactory turbulence models are discussed in Berselli
et al. (2006, Sect. 6.2). ut
Remark 8.65 (Modeling of the Deviatoric Part) For incompressible fluids, the
pressure is the trace of the stress tensor multiplied with �1=3, see (2.19), and the
velocity part of the stress tensor is trace-free. Similarly, one considers only the
deviatoric or trace-free sgs stress tensor

T � T11 C T22 C T33

3
(8.61)

and the second term is usually added to the filtered pressure p

p C T11 C T22 C T33

3
:
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Hence, it remains to model the deviatoric part (8.61) of the sgs stress tensor.
For simplicity of notation, the modified pressure will be also denoted by p . ut

Remark 8.66 (The Boussinesq Hypothesis) The starting point of the derivation of
the Smagorinsky model is the Boussinesq hypothesis stated in Boussinesq (1877):
“Turbulent fluctuations are dissipative in the mean”. This hypothesis is based upon
the resemblance of the elastic collisions of molecules with the interaction of small
scales in flows. Expressing this hypothesis for the model of the sgs stress tensor, it
has the form

T � T11 C T22 C T33

3
D �	TD . u / ; (8.62)

where 	T � 0 is called turbulent viscosity or eddy viscosity. From (8.62), one
can see that this model introduces a viscous term. Usually, the turbulent viscosity
depends on the solution, hence the new viscous term is nonlinear. The term on the
right-hand side of (8.62) is often called eddy viscosity model. ut
Remark 8.67 (Modeling the Turbulent Viscosity 	T) It is known for the dissipation
of turbulent energy that " � U3=L, see (8.2). For the Kolmogorov scales, one obtains
from (8.5) with a direct calculation that " D u3�=�. It is now assumed that not only
for the largest and smallest scales a relation of this type holds but for every length
scale and the corresponding velocity scale. In particular, it is assumed that

" � U3
int

Lint
; " � U3

ı

ı
; (8.63)

where ı is the filter width. The scale Lint is the so-called integral length scale, which
characterizes the distance over which the small scales are correlated, and Uint is the
corresponding velocity scale. One obtains directly from (8.63) the relation

Uı � Uint

�
ı

Lint

�1=3
: (8.64)

The goal of the turbulence model is to capture scales of size ı. The Reynolds number
of these scales should be 1, i.e., it should hold

Re.ı/ D ıUı

	T
D 1:

Hence, one gets with (8.64)

	T D Uıı � UintL
�1=3
int ı4=3: (8.65)

The next assumption correlates the integral velocity and length scales. It is assumed
that the integral velocity scale depends linearly on the norm of the deformation
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tensor of the filtered velocity

Uint � Lint kD . u /kF :

Inserting this assumption in (8.65) and replacing similarity by an unknown coeffi-
cient yields

	T D CL2=3int ı
4=3 kD .u /kF :

The integral length scale Lint is usually hard to determine. Thus, one uses the
approximation Lint � ı to get, with a modified constant,

	T D CSı
2 kD . u /kF : (8.66)

ut
Remark 8.68 (The Smagorinsky Model) With (8.66), the Smagorinsky model intro-
duces the following additional term to the left-hand side of the momentum equation
of the Navier–Stokes equations

� r � �CSı
2 kD .u /kF D . u /

�
; (8.67)

where CS � 0 is the dimensionless Smagorinsky coefficient and ı is related to the
(local) mesh width. In particular in engineering literature, it is common to write the
Smagorinsky model in the form

� r �
	
2
�
C�

S ı
�2
.2D .u / W D .u //1=2 D .u /



: (8.68)

Since the Smagorinsky model contains only the deformation tensor of the
velocity, it is a symmetric model. It is also Galilean invariant, since only first order
spatial derivatives of the velocity appear, compare Remark 8.64.

Replacing the space-averaged velocity and pressure .u ; p / with their approxi-
mations .w; r/, the momentum balance of the Smagorinsky model has the form

@tw � r � ��	 C CSı
2 kD .w/kF

�
D .w/

�C .w � r/w C rr D f (8.69)

in .0;T� �˝ . ut
Remark 8.69 (The Smagorinsky Filter) The use of the Smagorinsky model does not
require the specification of a concrete filter. The filter does not appear explicitly, only
the filter width. However, it can be shown for homogeneous isotropic turbulence that
there is a uniquely implied filter, see Pope (2000, Sect. 13.4.3). ut
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8.3.2 Existence and Uniqueness of a Solution
of the Continuous Smagorinsky Model

Remark 8.70 (To the Proof of the Existence and Uniqueness of a Solution) The
proof of the existence and uniqueness of a weak solution of the continuous
Smagorinsky model was given in Ladyženskaja (1967), see also Ladyzhenskaya
(1969, Supplement 1) for an overview. The presentation in this section follows also
John (2004, Sect. 6.1).

The existence of a weak solution is proved with the Galerkin method, which
was used in Sect. 7.1 to show the existence of a weak solution of the Navier–Stokes
equations. Because of the nonlinear viscous term of the Smagorinsky model, one
needs different spaces than for the Navier–Stokes equations to ensure that all terms
are well defined. In fact, the velocity space needed for the Smagorinsky model
is of somewhat higher regularity than the space (7.5) used for the Navier–Stokes
equations. This additional regularity simplifies the technical tools needed in the
proof, in particular the convergence of the nonlinear convective term, compare
Lemma 8.83 with Lemmas 7.15 and 7.16. The main issue consists in proving
the convergence of the nonlinear viscous term of the Smagorinsky model, see the
considerations from Lemmas 8.84 to 8.90. It can be shown that the Smagorinsky
model defines a monotone operator and the theory of such operators can be applied.
Even more important, the higher regularity allows to prove the uniqueness of the
weak solution.

Altogether, the main questions concerning the analysis of the Smagorinsky
model are answered, in contrast to the Navier–Stokes equations. This situation
indicates that the Smagorinsky model is in some sense an easier problem than the
Navier–Stokes equations, despite of the additional nonlinear term. In this respect, it
behaves exactly the way a turbulence model should do, compare Remark 8.22. ut
Remark 8.71 (Notation) The notation in this section will indicate that the solution
of the Smagorinsky model is generally not the solution of the Navier–Stokes
equations. To this end, the velocity field will be denoted by w and the pressure
by r. ut
Remark 8.72 (The Strong Form of the Smagorinsky Model) Let ˝ � R

d, d 2
f2; 3g, be a bounded domain with Lipschitz boundary
 . For the sake of simplifying
the analysis a little bit, the gradient form of the Smagorinsky model is considered.
This model, equipped with homogeneous Dirichlet boundary conditions, has the
form

@tw � r � ..	 C 	Sm krwkF/rw/C .w � r/w C rr D f in .0;T� �˝;
r � w D 0 in .0;T� �˝;

w D 0 in .0;T� � 
;
w .0; �/ D w0 in ˝;Z
˝

r dx D 0 in .0;T�;

(8.70)
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with 	Sm 2 R, 	Sm > 0, f 2 L2
�
0;TI L2 .˝/

�
, given initial condition w0, and

finite final time T < 1. Because a bounded domain with Lipschitz boundary
is considered, the Sobolev imbedding of W1;3.˝/ ! Lq.˝/, q 2 Œ1;1/,
compare (A.16) is compact, see Theorem A.42 vii). ut
Remark 8.73 (Function Spaces for the Weak Formulation) For achieving that all
terms in the weak formulation are well defined, the Banach space

W1;3
0;div .˝/ D fv 2 W1;3 .˝/ W vj@˝ D 0 ; r � v D 0 in ˝g (8.71)

is used. This space is equipped with the same norm as W1;3
0 .˝/, see Remark A.31.

The appropriate velocity space is

V D L3
	
0;TI W1;3

0;div .˝/



\ H1
�
0;TI L2 .˝/

�
(8.72)

equipped with the norm

kvkV D krvkL3.0;TIL3.˝// C k@tvkL2.0;TIL2.˝// :

Compared with the spaces used for the Navier–Stokes equations, see (7.5), one can
observe the higher regularity of the spaces used in the analysis of the Smagorinsky
model. ut
Remark 8.74 (Weak Formulation) The weak formulation of the Smagorinsky
model is obtained in the usual way. The strong formulation (8.70) is multiplied
with appropriate test functions, the resulting equations are integrated in ˝ , and
integration by parts is applied to transfer derivatives from the solution to the test
functions. As for the Navier–Stokes equations, the test functions are divergence-free
such that the pressure term vanishes.

The weak formulation of the Smagorinsky model reads as follows: Find w 2 V
such that w .0; x/ D w0 2 W1;3

0;div .˝/ and for all v 2 V

Z T

0

.@tw C .w � r/w; v/C ..	 C 	Sm krwkF/rw;rv/ dt D
Z T

0

. f ; v/ dt:

(8.73)
The function w 2 V is called weak solution of the Smagorinsky model. ut
Remark 8.75 (Preparations for the Convergence Proof) The existence proof is
based on three a priori or stability error estimates that will be given in Lemmas 8.76–
8.78. ut
Lemma 8.76 (Stability Estimate for kwkL1.0;TIL2.˝//) Let .w; r/ 2 V � Q, with

Q D L20.˝/, f 2 L2
�
0;TI L2 .˝/

�
, and w0 2 W1;3

0;div .˝/. Then, each solution
of (8.70) satisfies

kw .T/kL2.˝/ � kw0kL2.˝/ C k fkL1.0;TIL2.˝// 8 T > 0: (8.74)
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Proof Since .w; r/ is a solution of (8.70), one obtains by testing the momentum
equation of (8.70) with w and integration by parts

.@tw;w/C ..	 C 	Sm krwkF/rw;rw/C n .w;w;w/� .r;r � w/ D . f ;w/ :

Because r � w D 0, the convective term and the term with the pressure r vanish,
such that

1

2

d

dt
.w;w/C ..	 C 	Sm krwkF/rw;rw/ D . f ;w/ : (8.75)

Since 0 < 	 C 	Sm krwkF, the second term on the right-hand side is non-negative.
Neglecting this term, applying the chain rule for the first term of the left-hand side
and the Cauchy–Schwarz inequality (A.10) for the right-hand side gives

kwkL2.˝/
d

dt
kwkL2.˝/ � k fkL2.˝/ kwkL2.˝/ :

Cancellation of kwkL2.˝/, integration on .0;T/, and noting that for a finite time
interval f 2 L2

�
0;TI L2 .˝/

�
implies f 2 L1

�
0;TI L2 .˝/

�
completes the proof. �

Lemma 8.77 (Stability of krwkL3.0;TIL3.˝//) With the same assumptions as in
Lemma 8.76, it holds for all T > 0

kw .T/k2L2.˝/ C 2

Z T

0

..	 C 	Sm krwkF/rw;rw/ dt

� 2 kw0k2L2.˝/ C 3 k fk2
L1.0;TIL2.˝// D C1.T/: (8.76)

In particular, it is krwkL3.0;TIL3.˝// � QC1.T/.
Proof Starting with (8.75), one gets by integration on .0;T/

kw .T/k2L2.˝/C2
Z T

0

..	 C 	Sm krwkF/rw;rw/ dt D kw0k2L2.˝/C2
Z T

0

. f ;w/ dt;

(8.77)

which is an energy inequality like (7.27), here even an energy equality. Applying
the Cauchy–Schwarz inequality (A.10) and inequality (8.74), which is valid for all
times t, it follows for the second term on the right-hand side that

Z T

0

. f ;w/ dt

�
Z T

0

kw.t/kL2.˝/ k f .t/kL2.˝/ dt

� kw0kL2.˝/

Z T

0

k f .t/kL2.˝/ dt C
Z T

0

k f .t/kL2.˝/

�Z t

0

�� f �t0���
L2.˝/

dt0
�

dt:
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Using Young’s inequality (A.5) and the non-negativeness of k f .t0/kL2.˝/ yields

Z T

0

. f .t; x/ ;w .t; x// dt � kw0k2L2.˝/
2

C 1

2

�Z T

0

k f .t/kL2.˝/ dt

�2

C
Z T

0

k f .t/kL2.˝/

�Z T

0

�� f �t0���
L2.˝/

dt0
�

dt

D kw0k2L2.˝/
2

C 3

2
k fk2

L1.0;TIL2/ :

Inserting this estimate in (8.77) gives (8.76).
It follows that

2	Sm

Z T

0

.krwkF rw;rw/ dt D 2	Sm

Z T

0

krwk3F dx

D 2	Sm krwk3
L3.0;tIL3.˝// � C1.T/;

which proves the second statement of the lemma. �

Lemma 8.78 (Stability of kwkH1.0;TIL2.˝//) If the assumptions of Lemma 8.76 are
valid, then

krw .T/k3L3.˝/ C 3

2	Sm
kwk2

H1.0;TIL2.˝// � C2 .T/ : (8.78)

In particular, it follows that kwkH1.0;TIL2.˝// � QC2.T/.
Proof To prove (8.78), one starts by testing the momentum equation of (8.70) with
@tw and integrating in .0;T/. With the chain rule, one gets

1

3

Z
˝

d

dt
krwk3F dx D .krwkF rw; @trw/ D .krwkF rw;r@tw/ :

This relation, integration by parts, using that @tw is weakly divergence-free, and
applying formulas of type (7.13) yields

Z T

0

k@twk2L2.˝/ dt C 	

2
.rw .T/ ;rw .T//C 	Sm

3

Z
˝

krw .T/k3F dx (8.79)

D 	

2
.rw0;rw0/C 	Sm

3

Z
˝

krw0k3F dx �
Z T

0

n .w;w; @tw/ dt C
Z T

0

. f ; @tw/ dt:
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First, the convective term will be estimated. Hölder’s inequality (A.9) gives
Z
˝

�
wTw

�
.rw W rw/ dx D

Z
˝

w2 .rw/2 dx

� ��w2��
L3.˝/

���.rw/2
���

L3=2

D kwk2L6.˝/ krwk2L3.˝/ :
With the Sobolev imbedding W1;3.˝/ ! L6.˝/, see (A.16), and Poincaré’s
inequality (A.12), it follows that

Z
˝

�
wTw

�
.rw W rw/ dx � C krwk4L3.˝/ : (8.80)

Applying Young’s inequality, one gets

�
w1@xw1 C w2@yw1 C w3@zw1

�2
D w21 .@xw1/

2 C w22
�
@yw1

�2 C w23 .@zw1/
2 C 2w1w2@xw1@yw1 C 2w1w3@xw1@zw1

C2w2w3@yw1@zw1

� w21 .@xw1/
2 C w22

�
@yw1

�2 C w23 .@zw1/
2 C w21

�
@yw1

�2 C w22 .@xw1/
2 C w21 .@zw1/

2

Cw23 .@xw1/
2 C w22 .@zw1/

2 C w23
�
@yw1

�2

D �
w21 C w22 C w23

� 	
.@xw1/

2 C �
@yw1

�2 C .@xw1/
2


:

Using now once more Young’s inequality and inserting estimate (8.80) leads to

Z T

0

n .w;w; @tw/ dt D
Z T

0

Z
˝

.w � r/w � @tw dx dt

�
Z T

0

Z
˝

 
.@tw/

2

4
C ..w � r/w/2

!
dx dt

�
Z T

0

Z
˝

�
@tw2

4
C �

wTw
�
.rw W rw/

�
dx dt

� 1

4
k@twk2

L2.0;TIL2.˝// dt C C
Z T

0

krwk4L3.˝/ dt:

Young’s inequality gives also

Z T

0

. f ; @tw/ dt �
Z T

0

Z
˝

 
f 2 C .@tw/

2

4

!
dx dt

D k fk2
L2.0;TIL2.˝// C 1

4
k@twk2

L2.0;TIL2.˝// :
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Inserting all estimates in (8.79) yields

k@twk2
L2.0;TIL2.˝// C 	 krw .T/k2L2.˝/ C 2	Sm

3
krw .T/k3L3.˝/ (8.81)

� 	 krw0k2L2.˝/ C 2	Sm

3
krw0k3L3.˝/ C 2 k fk2

L2.0;TIL2.˝// C 2C
Z T

0

krwk4L3.˝/ dt:

In particular, it follows that

krw .T/k3L3.˝/ � 3	

2	Sm
krw0k2L2.˝/ C krw0k3L3.˝/ C 3

	Sm
k fk2

L2.0;TIL2.˝//

C 3C

	Sm

Z T

0

krwk4L3.˝/ dt:

The application of Gronwall’s lemma, Lemma A.53, gives

krw .T/k3L3.˝/ �
�
3	

2	Sm
krw0k2L2.˝/ C krw0k3L3.˝/ C 3

	Sm
k fk2L2.0;TIL2.˝//

�

� exp

�
3C

	Sm

Z T

0

krwkL3.˝/ dt

�
:

One still has to bound the term in the exponential. Using inequality (A.4) yields

Z T

0

krwkL3.˝/ dt D
Z T

0

0
@
Z
˝

dX
i;jD1

ˇ̌
ˇ̌@wi

@xj

ˇ̌
ˇ̌3 dx

1
A
1=3

dt

�
Z T

0

0
B@
Z
˝

0
@ dX

i;jD1

ˇ̌
ˇ̌@wi

@xj

ˇ̌
ˇ̌2
1
A
3=2

dx

1
CA
1=3

dt: (8.82)

On the other hand, by the definition of the Frobenius norm, it is

Z
˝

krwkF .rw W rw/ dx D
Z
˝

.rw W rw/3=2 dx D
Z
˝

0
@ dX

i;jD1

ˇ̌
ˇ̌@wi

@xj

ˇ̌
ˇ̌2
1
A
3=2

dx:

Inserting this identity in (8.82), one obtains with Hölder’s inequality (A.9) and the
a priori estimate (8.76)

Z T

0

krwkL3.˝/ dt �
Z T

0

�Z
˝

krwkF .rw W rw/ dx
�1=3

dt

�
�Z T

0

Z
˝

krwkF .rw W rw/ dx dt

�1=3 �Z T

0

dt

�2=3

� T2=3
�

C1.T/

2	Sm

�1=3
;
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which gives

krw .T/k3L3.˝/ � C .T/ :

Together with (8.81), estimate (8.78) follows. �

Remark 8.79 (Setup of the Finite-Dimensional Problem) A sequence fwng � V will
be constructed, where the wn is the unique solution of a Smagorinsky problem in a
space with dimension n. It will be shown that a subsequence converges to a solution
w 2 V of (8.73).

Let fvn
l .x/g1

lD1 � W1;3
0;div be a sequence of linearly independent functions that

are orthonormal with respect to the L2.˝/ inner product in ˝ and with v1l D w0,
l D 1; : : : ;1. Then, the solution of the Smagorinsky problem in the space spanned
by fvn

l .x/gn
lD1 is sought in the form

wn .t; x/ D
nX

lD1
˛n

l .t/ v
n
l .x/ (8.83)

satisfying

˛n
l .0/ D

(
1; l D 1;

0; l > 1;

and

�
@twn; vn

l

�C�
.	 C 	Sm krwnkF/rwn;rvn

l

�Cn
�
wn;wn; vn

l

� D �
f ; vn

l

�
; (8.84)

l D 1; : : : ; n. System (8.84) is an autonomous, quasi-linear system of ordinary
differential equations with respect to the unknown functions ˛n

l .t/. ut
Lemma 8.80 (Existence and Uniqueness of a Solution of the Problem in the
Finite-Dimensional Space) System (8.84) admits a unique solution for all T > 0.
Moreover, the estimates (8.74), (8.76), and (8.78) are valid for wn, where the right-
hand sides do not depend on n. Hence wn 2 V.

Proof Like for the Navier–Stokes equations, the proof is based on the theorem of
Carathéodory, see Theorem A.50. The first part can be taken literally from the proof
of Lemma 7.10.

One has to show a Lipschitz condition for the right-hand side of

d˛n
l

dt
.t/ D F

�
˛n

l

�
; t 2 .0;T�; (8.85)

with F 2 L2.0;T/. The functions ˛n
l appear linearly and quadratically on the right-

hand side of (8.85). Hence, the Lipschitz condition is satisfied, since linear and
quadratic functions are Lipschitz continuous. Consequently, the local existence and
uniqueness of an absolutely continuous solution wn .t; x/ in some maximal interval
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Œ0; tn� with 0 < tn � T can be concluded from the theorem of Carathéodory. If
tn < T, then wn.t/ blows up as t ! tn.

Now, stability estimates have be proved which guarantee that this situation cannot
happen and therefore tn D T. The boundedness of

sup
Œ0;T�

nX
lD1

�
˛n

l

�2
.t/

has to be shown. From the L2 .˝/ orthonormality of fvn
l .x/g, it follows that

sup
Œ0;T�

nX
lD1

�
˛n

l

�2
.t/ D sup

Œ0;T�
kwn .t/k2L2.˝/ D kwk2

L1.0;TIL2.˝// :

The linear combination of the equations of (8.84) yields

.@twn;wn/C ..	 C 	Sm kwnkF/rwn;rwn/ D . f ;wn/ ; (8.86)

where n .wn;wn;wn/ D 0 has been used. This equation has the same form as (8.75).
Since wn is defined as a solution of (8.84), it solves also (8.86) such that the
techniques used for proving Lemma 8.76 can be applied. Thus, one obtains the
estimates

kwn .t/kL2.˝/ � kw0kL2.˝/ C �� f �t0���
L1.0;tIL2.˝// ; 0 � t � T;

uniformly in n, which provides the a priori boundedness which shows that there is
no blow-up and thus the existence of a unique solution of (8.84) in .0;T� is proved.

Analogously to the proof of Lemma 8.77, one gets

kwn .T/k2L2.˝/ C 2

Z T

0

..	 C 	Sm krwnkF/rwn;rwn/ dt � C1.T/ (8.87)

uniformly in n. System (8.84) can be brought also in form (8.79) by multiplication
with d˛n

l .t/ = dt and summation, such that the estimate

krwn .T/k3L3.˝/ C 3

2	Sm
k@twnk2

L2.0;TIL2.˝// � C2 .T/ (8.88)

is valid for T > 0 and uniformly in n. From estimates (8.87) and (8.88), one derives
that wn 2 V , uniformly in n. �

Lemma 8.81 (Existence of a Converging Subsequence) There is a function w 2
V such that a subsequence of fwng1

nD1
i) converges weakly to w in V,

ii) converges strongly to w in L2
�
0;TI L2 .˝/

�
,
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iii) converges strongly to w in Lq .0;TI Lq .˝// for q < 4.
iv) A subsequence of f@twng converges weakly to @tw in L2

�
0;TI L2 .˝/

�
.

v) There is a subsequence of
@wn

j

@xi
, i; j D 1; : : : ; d, that converges weakly to @wj

@xi
in

L3
�
0;TI L3 .˝/

�
.

Proof For brevity, it will be spoken of the convergence of fwng D fwng1
nD1 instead

of the convergence of a subsequence. Besides proving the convergence in the senses
given in i)–v), one has to show that all kinds of convergence lead to the same limit
w.

i) The weak convergence of fwng to w 2 V , i.e.,

lim
n!1

Z T

0

Z
˝

wnv dx dt D
Z T

0

Z
˝

wv dx dt 8 v 2 V 0; (8.89)

where V 0 is the dual space of V , follows from the uniform boundedness of fwng
in the norm k�kV of V , which is a consequence of (8.88), and that every bounded
sequence in a reflexive Banach space has a weakly convergent subsequence, see
Remark A.58.

ii) Since V � L2
�
0;TI L2 .˝/

� � V 0, (8.89) holds also for all v 2
L2
�
0;TI L2 .˝/

�
such that fwng converges weakly to w in L2

�
0;TI L2 .˝/

�
.

From the uniform boundedness of wn .t; x/ in W1;3
0 .˝/ for every t � 0,

estimate (8.88), and the compact imbedding W1;3
0 .˝/ into L2 .˝/, (A.16)

and Theorem A.42 vii), it follows that there is a subsequence of fwng which
converges strongly in L2 .˝/ to Qw 2 L2 .˝/. Since this statement is true for
all t � 0, fwng converges strongly to Qw 2 L2

�
0;TI L2 .˝/

�
. Consequently, this

subsequence of fwng converges also weakly to Qw

lim
n!1

Z T

0

Z
˝

wnv dx dt D
Z T

0

Z
˝

Qwv dx dt 8 v 2 L2
�
0;TI L2 .˝/

� � V 0:

Since the weak limit is unique, it follows with (8.89) that w D Qw. Hence, (a
subsequence of) fwng converges to w strongly in L2

�
0;TI L2 .˝/

�
.

iii) It will be first established that fwng is uniformly bounded (with respect to n)
in L4

�
0;TI L4 .˝/

�
. From the Cauchy–Schwarz inequality (A.10), the Sobolev

imbedding H1.˝/ ! L6.˝/, see (A.22), and Poincaré’s inequality (A.12), it
follows that

kwnk4L4.˝/ D
Z
˝

kwnk42 dx �
�Z

˝

kwnk62 dx
�1=2 �Z

˝

kwnk22 dx
�1=2

� kwnk3L6.˝/ kwnkL2.˝/ � C kwnk3H1.˝/ kwnkL2.˝/

� C krwnk3L2.˝/ kwnkL2.˝/ :
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One obtains, using (8.87) and (8.88)

kwnk4
L4.0;TIL4.˝// � C

Z T

0

krwnk3L2.˝/ kwnkL2.˝/ dt �
Z T

0

C2 .t/C1 .t/
1=2 dt;

uniformly in n. Now, one can prove the strong convergence wn ! w in
Lq .0;TI Lq .˝//, q D 4 � "; " > 0. The generalized Hölder inequality (6.33)
with respect to the time-space norm gives

kw � wnkq
Lq.0;TILq.˝//

D
Z T

0

Z
˝

kw � wnk2�"2 kw � wnk2 kw � wnk2 dx dt

�
���.w � wn/2�"

���
L2.0;TIL2.˝//

kw � wnkL4.0;TIL4.˝// kw � wnkL4.0;TIL4.˝// :

The last two factors are bounded by the triangle inequality and the uniform
boundedness of fwng in L4

�
0;TI L4 .˝/

�
. The first term can be written in the

form

���.w � wn/2�"
���2

L2.0;TIL2.˝//
D
Z T

0

Z
˝

kw � wnk2�2"2 kw � wnk2 kw � wnk2 dx dt:

Applying the same steps as for the previous estimate gives

kw � wnkq
Lq.0;TILq.˝//

�
���.w � wn/2�2"

���
L2.0;TIL2.˝//

kw � wnk2
L4.0;TIL4.˝// :

Continuing this approach, i.e., applying several times Hölder’s inequality, yields
eventually the factor

���.w � wn/2�"0
���

L2.0;TIL2.˝//
with 2� "0 � 1:

If 2 � "0 D 1, the result of ii) can be applied directly to prove iii). In the case
2 � "0 < 1, first (A.8) has to be used to obtain

���.w � wn/2�"0
���

L2.0;TIL2.˝//
� C kw � wnkL2.0;TIL2.˝// ;

before ii) can be used to prove iii).
iv) For � 2 C1

0

�
0;TI L2 .˝/

�
, it follows, using ii), that

lim
n!1

Z
˝

Z T

0

@twn� dt dx D � lim
n!1

Z
˝

Z T

0

wn@t� dt dx

D �
Z
˝

Z T

0

w@t� dt dx D
Z
˝

Z T

0

@tw� dt dx:
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Now, statement iv) is a consequence of the density of C1
0

�
0;TI L2 .˝/

�
in

L2
�
0;TI L2 .˝/

�
, see Theorem A.38.

v) One has to prove

lim
n!1

Z T

0

Z
˝

@wn
j

@xi
� dx dt D

Z T

0

Z
˝

@wj

@xi
� dx dt 8 � 2 L3=2

�
0;TI L3=2 .˝/

�
:

It suffices to prove this relation for a dense set in L3=2
�
0;TI L3=2 .˝/

�
, e.g., for

functions from the space C0
�
0;TI C1

0 .˝/
�

that is dense in L3=2
�
0;TI L3=2 .˝/

�
,

which follows from Theorem A.38. Let � 2 C0
�
0;TI C1

0 .˝/
�

be arbitrary, then
applying ii) and twice integration by parts yields

lim
n!1

Z T

0

Z
˝

@wn
j

@xi
� dx dt D � lim

n!1

Z T

0

Z
˝

wn
j

@�

@xi
dx dt

D �
Z T

0

Z
˝

wj
@�

@xi
dx dt D

Z T

0

Z
˝

@wj

@xi
� dx dt:

All boundary integrals vanish since � vanishes on the boundary. Now, the proof
concludes by applying ii) since it is C0

�
0;TI C1

0 .˝/
� � L2

�
0;TI L2 .˝/

�
. �

Remark 8.82 (Formulation of the Finite-Dimensional Problem with Arbitrary Test
Function) In the following, the notation that “fwng converges” will be used instead
of that a subsequence converges.

Let

Pn D
(
v W v D

nX
lD1

Q̨ n
l .t/ v

n
l .x/

)
;

where Q̨ n
l .t/ are absolutely continuous functions of t 2 Œ0;T� with Q̨n

l .t/ 2
H1 .0;T/, see Definition A.48. Choosing a fixed function � 2 Pn, it follows
from (8.84), by taking a linear combination, that � satisfies

Z T

0

.@twn;�/C ..	 C 	Sm krwnkF/rwn;r�/C n .wn;wn;�/ dt

D
Z T

0

. f ;�/ dt: (8.90)

ut
Lemma 8.83 (Convergence of a Bilinear Form with the Temporal Derivative
and the Nonlinear Convective Term) For � 2 Pn it holds

lim
n!1

Z T

0

.@twn;�/ dt D
Z T

0

.@tw;�/ dt; (8.91)

lim
n!1

Z T

0

n .wn;wn;�/ dt D
Z T

0

n .w;w;�/ dt: (8.92)
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Proof Equation (8.91) : This statement follows immediately from Lemma 8.81, iv).
Equation (8.92) : It is

Z T

0

n .wn;wn;�/ dt D
dX

i;jD1

Z T

0

Z
˝

wn
i

@wn
j

@xi
�j dx dt:

Considering an arbitrary term of this sum yields

Z T

0

Z
˝

wn
i

@wn
j

@xi
�j dx dt D

Z T

0

Z
˝

wi

@wn
j

@xi
�j dx dt C

Z T

0

Z
˝

�
wn

i � wi
� @wn

j

@xi
�j dx dt:

Since
@wn

j

@xi
2 L3

�
0;TI L3 .˝/

�
converges weakly to @wj

@xi
in this space and one has

from the Cauchy–Schwarz inequality (A.10) that with wi; �j 2 L3
�
0;TI L3 .˝/

�
also wi�j 2 L3=2

�
0;TI L3=2 .˝/

�
, one obtains for the first term with Lemma 8.81 v)

lim
n!1

Z T

0

Z
˝

wi

@wn
j

@xi
�j dx dt D

Z T

0

Z
˝

wi
@wj

@xi
�j dx dt:

Applying Hölder’s inequality (A.9) to the second term gives

ˇ̌
ˇ̌Z T

0

Z
˝

�
wn

i � wi
� @wn

j

@xi
�j dx dt

ˇ̌
ˇ̌

� ���wn
i � wi

�
�j

��
L3=2.0;TIL3=2.˝//

����
@wn

j

@xi

����
L3.0;TIL3.˝//

:

By the Cauchy–Schwarz inequality, it follows that

���wn
i � wi

�
�j

��
L3=2.0;TIL3=2.˝// � ��wn

i � wi

��3=2
L3.0;TIL3.˝//

���j

��3=2
L3.0;TIL3.˝// :

By Lemma 8.81 iii), one has that wn
i converges strongly to wi in L3

�
0;TI L3 .˝/

�
.

The term
��� @wn

j

@xi

���
L3.0;TIL3.˝//

is uniformly bounded and
���j

��3=2
L3.0;TIL3.˝// is just a

constant. Altogether, one gets

lim
n!1

ˇ̌
ˇ̌Z T

0

Z
˝

�
wn

i � wi
� @wn

j

@xi
�j dx dt

ˇ̌
ˇ̌ D 0

and

lim
n!1

Z T

0

Z
˝

wn
i

@wn
j

@xi
�j dx dt D

Z T

0

Z
˝

wi
@wj

@xi
�j dx dt:

�



498 8 The Time-Dependent Navier–Stokes Equations: Turbulent Flows

Lemma 8.84 (The Limiting Equation) The limiting equation of (8.90) is

Z T

0

.@tw;�/C .B;r�/C n .w;w;�/ dt D
Z T

0

. f ;�/ dt (8.93)

with B 2 L3=2
�
0;TI L3=2 .˝/

�
.

Proof The limits of the first and the third term were established in Lemma 8.83.
From the choice of �, it follows that r� 2 L3

�
0;TI L3 .˝/

�
. If one can

show now that the sequence f.	 C 	Sm krwnkF/rwng is uniformly bounded in
L3=2

�
0;TI L3=2 .˝/

�
, then there is a subsequence that converges weakly to an

operator B 2 L3=2
�
0;TI L3=2 .˝/

�
, i.e.,

lim
n!1

Z T

0

..	 C 	Sm krwnkF/rwn;r�/ dt D
Z T

0

.B;r�/ dt:

Consider the nonlinear viscous term component by component. It is

����.	 C 	Sm krwnkF/
@wn

i

@xj

����
3=2

L3=2.0;TIL3=2.˝//
(8.94)

D 	3=2
Z T

0

Z
˝

ˇ̌
ˇ̌@wn

i

@xj

ˇ̌
ˇ̌3=2 dx dt C 	

3=2
Sm

Z T

0

Z
˝

krwnk3=2F

ˇ̌
ˇ̌@wn

i

@xj

ˇ̌
ˇ̌3=2 dx dt;

i; j D 1; : : : ; d. Using Young’s inequality (A.5) with p D 4=3; q D 4 gives for the
first term

Z T

0

Z
˝

ˇ̌
ˇ̌@wn

i

@xj

ˇ̌
ˇ̌3=2 dx dt � 3

4

Z T

0

Z
˝

ˇ̌
ˇ̌@wn

i

@xj

ˇ̌
ˇ̌2 dx dt C 1

4

Z T

0

Z
˝

dx dt:

The right-hand side of this estimate is bounded by (8.87) and since ˝ is bounded.
For estimating the second term of (8.94), again Young’s inequality with p D 4; q D
4=3 is used

Z T

0

Z
˝

krwnk3=2F

ˇ̌
ˇ̌@wn

i

@xj

ˇ̌
ˇ̌3=2 dx dt

D
Z T

0

Z
˝

krwnk3=4F krwnk3=4F

ˇ̌
ˇ̌@wn

i

@xj

ˇ̌
ˇ̌3=2 dx dt

� 1

4

Z T

0

Z
˝

krwnk3F dx dt C 3

4

Z T

0

Z
˝

krwnkF

ˇ̌
ˇ̌@wn

i

@xj

ˇ̌
ˇ̌2 dx dt

D 1

4

Z T

0

.krwnkF rwn;rwn/ dt C 3

4

Z T

0

Z
˝

krwnkF

ˇ̌
ˇ̌@wn

i

@xj

ˇ̌
ˇ̌2 dx dt:
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Both terms in the last line of this inequality possess terms of rwn to the third
power and thus they are bounded uniformly by (8.87).

Hence, (8.94) is bounded uniformly and a subsequence of f.	 C 	Sm krwnkF/

rwng converges weakly to some B .t; x/. �

Remark 8.85 (On the Limiting Equation) The limiting Eq. (8.93) holds for � 2 Pn

for arbitrary n and thus for � 2 [1
nD1Pn. One still has to show that it holds for all

test functions from V . ut
Lemma 8.86 (The Limiting Equation in V) The limiting Eq. (8.93) is valid for
� 2 V.

Proof For the proof of this lemma it is referred to Ladyzhenskaya (1969, p. 159). In
this proof, it is shown that any � 2 V can be approximated by a linear combination
of functions from Pn such that the linear combination and its gradient converge to �
and r�, respectively, in L2

�
.0;T/I L2.˝/

�
. �

Remark 8.87 (The Nonlinear Viscous Operator) The nonlinear viscous operator is
defined by A W L3 .˝/ ! L3=2 .˝/ with

A .rw/ D .	 C 	Sm krwkF/rw: (8.95)

For proving the existence of a weak solution, it will be shown that the nonlinear
viscous term defines a so-called monotone operator. ut
Lemma 8.88 (Strong Monotonicity of the Nonlinear Viscous Operator) For
arbitrary functions w0;w00 2 W1;3 .˝/, it holds the estimate

Z
˝

�
A
�rw0� � A

�rw00�� W �rw0 � rw00� dx � 	
��rw0 � rw00��2

L2.˝/
(8.96)

with the operator A defined in (8.95). In addition, it is

Z
˝

	Sm
���rw0��

F rw0 � ��rw00��
F rw00� W �rw0 � rw00� dx

� 	Sm

4

��rw0 � rw00��3
L3.˝/

; (8.97)

i.e., the Smagorinsky term defines a strongly monotone operator from L3 .˝/ into
L3=2 .˝/.
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Proof Let w0;w00 2 C1
�
˝
�
. With w� D �w0 C .1 � �/w00, one obtains, applying the

fundamental theorem of calculus,

�
A
�rw0� � A

�rw00�� W �rw0 � rw00�

D
dX

i;jD1

�
Aij
�rw0� � Aij

�rw00�� �@w0
i

@xj
� @w00

i

@xj

�

D
dX

i;jD1

�Z 1

0

d

d�
Aij .rw� / d�

��
@w0

i

@xj
� @w00

i

@xj

�
: (8.98)

Applying the product rule, one gets

d

d�
Aij .rw� / D

�
	Sm

@

@�
krw�kF

�
@w�i
@xj

C .	 C 	Sm krw�kF/

�
@w0

i

@xj
� @w00

i

@xj

�
:

With the chain rule, one obtains

@

@�
krw�kF D @

@�

 
dX

k;lD1

�
�
@w0

k

@xl
C .1 � �/ @w00

k

@xl

�2!1=2

D 1

2

Pd
k;lD1 2

	
�
@w0

k
@xl

C .1 � �/
@w00

k
@xl


 	
@w0

k
@xl

� @w00

k
@xl



�Pd

k;lD1
	
�
@w0

k
@xl

C .1 � �/ @w00

k
@xl


2�1=2

D 1

krw�kF

dX
k;lD1

@w�k
@xl

�
@w0

k

@xl
� @w00

k

@xl

�
:

Inserting these expressions in (8.98) yields

�
A
�rw0� � A

�rw00�� W �rw0 � rw00�

D
Z 1

0

dX
i;jD1

.	 C 	Sm krw�kF/

�
@w0

i

@xj
� @w00

i

@xj

��
@w0

i

@xj
� @w00

i

@xj

�
d� (8.99)

C
Z 1

0

	Sm krw�k�1
F

dX
i;j;k;lD1

@w�k
@xl

@w�i
@xj

�
@w0

k

@xl
� @w00

k

@xl

��
@w0

i

@xj
� @w00

i

@xj

�
d�:

The second term is non-negative since

dX
i;j;k;lD1

@w�k
@xl

@w�i
@xj

�
@w0

k

@xl
� @w00

k

@xl

��
@w0

i

@xj
� @w00

i

@xj

�
D
0
@ dX

i;jD1

@w�i
@xj

�
@w0

i

@xj
� @w00

i

@xj

�1
A
2

:

(8.100)
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Thus, this term can be estimated from below by zero.

Estimate (8.96) The first term of (8.99) is estimated by using the non-negativity of
the term including the turbulent viscosity

Z 1

0

dX
i;j;D1

.	 C 	Sm krw�kF/

�
@w0

i

@xj
� @w00

i

@xj

�2
d�

�
dX

i;j;D1
	

�
@w0

i

@xj
� @w00

i

@xj

�2 Z 1

0

d�

D 	
�rw0 � rw00� W �rw0 � rw00� D 	

��rw0 � rw00��2
F : (8.101)

Estimate (8.97) For this estimate, the term with 	 in (8.99) is bounded by zero from
below. The estimate of the other term starts by bounding the Frobenius norm from
below by the largest term of the sum and using the definition of w�k

Z 1

0

dX
i;jD1

	Sm krw�kF

�
@w0

i

@xj
� @w00

i

@xj

�2
d�

� 	Sm

Z 1

0

dX
i;jD1

max
k;lD1;:::;d

ˇ̌
ˇ̌@w�k
@xl

ˇ̌
ˇ̌
�
@w0

i

@xj
� @w00

i

@xj

�2
d� (8.102)

D 	Sm

Z 1

0

dX
i;jD1

max
k;lD1;:::;d

ˇ̌
ˇ̌� @w0

k

@xl
C .1 � �/ @w00

k

@xl

ˇ̌
ˇ̌
�
@w0

i

@xj
� @w00

i

@xj

�2
d�:

Now, the estimate

Z 1

0

j�a C .1 � �/ bj d� � ja � bj
4

; a; b 2 R;

will be applied. To prove this estimate, one has to distinguish the cases ab � 0

and ab < 0. In the first case, one finds, e.g., for a; b � 0, with a straightforward
calculation of the integral and using the triangle inequality

Z 1

0

j�a C .1� �/ bj d� D �
Z 1

0

�a C .1 � �/ b d� D �a C b

2
D jaj C jbj

2
� jaj C jbj

4

� ja � bj
4

:

The calculation for a; b � 0 is performed analogously. In the second case, one finds
that the term in the integral, which is linear in � , has a root at �0 D �b=.a � b/.
Now, one splits the integral into the integrals on .0; �0/ and .�0; 1/. Consider, e.g.,
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the case a > 0 and b < 0, one finds with a direct calculation

Z 1

0

j�a C .1 � �/ bj d� D �
Z �0

0

.�a C .1 � �/ b/ d� C
Z 1

0

.�a C .1 � �/ b/ d�

D a

�
1

2
� �20

�
C b

�
�1
2

C .1 � �0/
2

�
D a2 C b2

2 .a � b/
:

Then, dropping a non-negative term yields

Z 1

0

j�aC .1 � �/ bj d� D 1

2

a2 C b2

a � b
D 1

4

.a � b/2 C .a C b/2

a � b
� a � b

4
D ja � bj

4
:

For a < 0 and b > 0, one gets the same estimate. Inserting this estimate in (8.102)
and estimating the maximal value by the absolute value of the individual terms from
below gives

Z 1

0

dX
i;jD1

	Sm krw�kF

�
@w0

i

@xj
� @w00

i

@xj

�2
d�

� 	Sm

dX
i;jD1

max
k;lD1;:::;d

1

4

ˇ̌
ˇ̌@w0

k

@xl
� @w00

k

@xl

ˇ̌
ˇ̌
�
@w0

i

@xj
� @w00

i

@xj

�2

� 	Sm

4

dX
i;jD1

ˇ̌
ˇ̌@w0

i

@xj
� @w00

i

@xj

ˇ̌
ˇ̌
�
@w0

i

@xj
� @w00

i

@xj

�2

D 	Sm

4

dX
i;jD1

ˇ̌
ˇ̌@w0

i

@xj
� @w00

i

@xj

ˇ̌
ˇ̌3 :

The proof of both estimates is completed with integration on ˝ and using the
density of C1

�
˝
�

in W1;3 .˝/, which is a consequence of Theorem A.38. �

Lemma 8.89 (Estimate of the Difference of the Weak Equation for Two Test
Functions) Let Q� 2 V, then it is

�
Z T

0

Z
˝

.@tw C .w � r/w � f / � �w � Q��C A
�r Q�� W r �

w � Q�� dx dt � 0:

(8.103)

Proof To begin with, let Q� 2 Pn for an arbitrary n. From (8.96), it follows that

Z T

0

Z
˝

�
A .rwn/� A

�r Q��� W �rwn � r Q�� dx dt � 0: (8.104)
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Since wn 2 Pn and Q� 2 Pn, one obtains with � D wn � Q� in (8.90)

Z T

0

Z
˝

A .rwn/ W �rwn � r Q�� dx dt D
Z T

0

�
f � @twn � .wn � r/wn;wn � Q�� dt;

such that with (8.90)

�
Z T

0

Z
˝

h
.@twn C .wn � r/wn � f /��wn � Q��CA

�r Q�� W �rwn � r Q�� i dx dt � 0:

(8.105)

It is
Z T

0

�
f ;wn � Q�� dt D

Z T

0

�
f ;w � Q�� dt C

Z T

0

. f ;wn � w/ dt:

The second term converges to zero since wn converges to w strongly in
L2
�
0;TI L2 .˝/

�
and

ˇ̌
ˇ̌
Z T

0

. f ;wn � w/ dt

ˇ̌
ˇ̌ � k fkL2.0;TIL2.˝// kwn � wkL2.0;TIL2.˝// :

The nonlinear term is considered component by component
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Z
˝

.wn � r/wn � wn dx dt D
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k;lD1

Z T

0

Z
˝

wn
k

@wn
l

@xk
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l dx dt:

By construction, it is @wn
l

@xk
2 L3

�
0;TI L3 .˝/

�
and it was proved in Lemma 8.81 v)

that @wn
l

@xk
* @wl

@xk
in L3

�
0;TI L3 .˝/

�
. Hence, it follows that
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n!1
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˝
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l dx dt
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@xk
wl dx dt C lim

n!1

Z T

0

Z
˝

@wn
l

@xk

�
wn

kwn
l � wkwl

�
dx dt:

Since one obtains with Hölder’s inequality (A.9)
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ˇ̌Z T

0

Z
˝

@wn
l

@xk

�
wn

kwn
l � wkwl

�
dx dt

ˇ̌
ˇ̌

�
����@wn

l

@xk

����
L3.0;TIL3.˝//

��wn
kwn

l � wkwl

��
L3=2.0;TIL3=2.˝// ;
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one has to show that wn
kwn

l ! wkwl strongly in L3=2
�
0;TI L3=2 .˝/

�
. Using the

triangle inequality and the Cauchy–Schwarz inequality (A.10) gives

��wn
kwn

l � wkwl

��
L3=2.0;TIL3=2.˝//

� ���wn
k � wk

�
wn

l

��
L3=2.0;TIL3=2.˝// C ��wk

�
wn

l � wl
���

L3=2.0;TIL3=2.˝//

� ��wn
k � wk

��
L3.0;TIL3.˝//

��wn
l

��
L3.0;TIL3.˝//

C ��wn
l � wl

��
L3.0;TIL3.˝//

��wk
l

��
L3.0;TIL3.˝// :

Because wn
k ! wk strongly in L3

�
0;TI L3 .˝/

�
, see Lemma 8.81 iii), it follows that

wn
kwn

l ! wkwl strongly in L3=2
�
0;TI L3=2 .˝/

�
and

lim
n!1

Z T

0

Z
˝

wn
k

@wn
l

@xk
lwn

l dx dt D
Z T

0

Z
˝

wk
@wl

@xk
wl dx dt:

It was shown in the proof of Lemma 8.84 that A
�r Q�� 2 L3=2

�
0;TI L3=2 .˝/

�
. Since

rwn 2 L3
�
0;TI L3 .˝/

�
and rwn * rw in that space, see Lemma 8.81 v), one gets

lim
n!1

Z T

0

Z
˝

A
�r Q�� W rwn dx dt D

Z T

0

Z
˝

A
�r Q�� W rw dx dt:

In addition, it is, using the Cauchy–Schwarz inequality

lim
n!1

Z T

0

Z
˝

@twnwn dx dt

D lim
n!1

Z T

0

Z
˝

@twn .wn � w/ dx dt C lim
n!1

Z T

0

Z
˝

@twnw dx dt

� lim
n!1 k@twnkL2.0;TIL2.˝// kwn � wkL2.0;TIL2.˝// C lim

n!1

Z T

0

Z
˝

@twnw dx dt

D 0C
Z T

0

Z
˝

@tww dx dt

by Lemma 8.81 ii) and iv).
Thus, inequality (8.103) is proved for any Q� 2 Pn with arbitrary n. But then it is

also valid for arbitrary Q� 2 P and also for arbitrary Q� 2 V by Lemma 8.86. �

Lemma 8.90 (Identifying B and the Nonlinear Viscous Operator) For all � 2
V, it holds

Z T

0

Z
˝

B W r� dx dt D
Z T

0

Z
˝

A .rw/ W r� dx dt:
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Proof Since (8.93) is valid for all� 2 V , one can choose� D w� Q�. Adding (8.103)
to this equation yields

Z T

0

Z
˝

�
B � A

�r Q��� W �rw � r Q�� dx dt � 0:

Setting Q� D w � " O� with " > 0 and O� 2 V arbitrary gives

"

Z T

0

Z
˝

	
B � A

	
rw � "r O�




W r O� dx dt � 0:

Division by ", taking the limit " ! 0, and using the continuity of the Frobenius
norm leads to

Z T

0

Z
˝

.B � A .rw// W r O� dx dt � 0: (8.106)

If O� 2 V , then also � O� 2 V . Thus, if the integral is positive for O�, then it is negative
for � O� which is a contradiction to (8.106), since (8.106) holds for all functions from
V . Hence, it follows that

Z T

0

Z
˝

.B � A .rw// W r O� dx dt D 0 8 O� 2 V;

which is the statement of the lemma. �

Theorem 8.91 (Existence of a Weak Solution) Problem (8.73) possesses at least
one solution w 2 V for arbitrary f 2 L2

�
0;TI L2 .˝/

�
and w0 2 W1;3

0;div .˝/.

Proof It was shown, starting with Lemma 8.81, that there is a w 2 V that satisfies
the weak formulation of (8.73). Since w is given as a limit of a sequence fwng1

nD1
with wn .0; x/ D w0 .x/ for all n, it follows that w .0; x/ D w0 .x/, such that the
initial condition is satisfied, too. �
Remark 8.92 (Generalizations)

• In Ladyženskaja (1967), the existence of a solution has been proved for the weak
formulation of the form

Z T

0

.@tw C .w � r/w; v/C ��
	 C 	Sm krwk�F

�rw;rv� dt D
Z T

0

. f ; v/ dt

with � � 2=5. The restriction on � comes from the application of the Sobolev
imbedding to obtain inequality (8.80).

• The result of Ladyzhenskaya was extended in Du and Gunzburger (1991) to � �
1=5 by deriving new stability (a priori) estimates.
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• In Świerczewska (2006), the case of a non-constant parameter in the Smagorin-
sky model was studied. This parameter function was allowed to depend on
filtered functions of w and D .w/, see Świerczewska (2006) for details. It was
assumed that the parameter function is continuous, it is bounded from below by
a positive constant, and it is bounded from above. With these conditions, the
existence of a weak solution was proved.

ut
Theorem 8.93 (Uniqueness of the Weak Solution) Under the same assumptions
as in Theorem 8.91, the weak solution of (8.73) is unique in V.

Proof Assume that there are two weak solutions w0;w00 2 V of (8.73) and denote
Qw D w0 � w00. Thus, Qw 2 V and Qw .0; x/ D 0. Subtracting (8.73) for w D w0; v D Qw
and w D w00; v D Qw gives

0 D
Z T

0

.@t Qw; Qw/C �
A
�rw0� � A

�rw00� ;rw0 � rw00�

Cn
�
w0;w0; Qw� � n

�
w00;w00; Qw� dt:

Adding and subtracting n .w00;w0; Qw/, using n .w00; Qw; Qw/ D 0, see Lemmas 6.10,
and (7.13), this equation can be rewritten in the following form

0 D
Z T

0

d

dt
k Qwk2L2.˝/ C 2

�
A
�rw0� � A

�rw00� ;rw0 � rw00�C 2n
� Qw;w0; Qw� dt:

Using the strong monotonicity property (8.97) of A .�/, Hölder’s inequality (A.9),
the Sobolev imbedding H1.˝/ ! L6.˝/, see (A.22), and Poincaré’s inequal-
ity (A.12) leads to

Z T

0

d

dt
k Qwk2L2.˝/ C 2	 kr Qwk2L2.˝/ C 	T

2
kr Qwk3L3.˝/ dt

� �2
Z T

0

n
� Qw;w0; Qw� dt

� 2

Z T

0

k QwkL2.˝/

��rw0��
L3.˝/ k QwkL6.˝/ dt

� C
Z T

0

k QwkL2.˝/

��rw0��
L3.˝/ kr QwkL2.˝/ dt: (8.107)

The right-hand side can be estimated further by Young’s inequality (A.5)

Z T

0

d

dt
k Qwk2L2.˝/ C 2	 kr Qwk2L2.˝/ C 	T

2
kr Qwk3L3.˝/ dt

�
Z T

0

2	 kr Qwk2L2.˝/ C C2

8	
k Qwk2L2.˝/

��rw0��2
L3.˝/

dt: (8.108)
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Neglecting terms on the left-hand side, integrating on .0;T/, and using Qw.0/ D 0

yields

k Qw .T/k2L2.˝/ � C
Z T

0

k Qwk2L2.˝/
��rw0��2

L3.˝/
dt: (8.109)

Gronwall’s lemma (A.34) now gives k Qw .T/k2L2.˝/ � 0 for all T which proves the
uniqueness of the solution in L1 �

0;TI L2 .˝/
�
. Since it is H1

�
0;TI L2 .˝/

� �
L1 �

0;TI L2 .˝/
�

by the Sobolev imbedding (A.18) in one dimension, Qw is in the
equivalence class of zero in H1

�
0;TI L2 .˝/

�
and hence the solution is unique in

H1
�
0;TI L2 .˝/

�
.

Applying now the result k Qw .t/k2L2.˝/ D 0 for almost all t, which implies in

particular d
dt k Qwk2L2.˝/ D 0 for almost all t, in (8.108) gives

Z T

0

kr Qwk3L3.˝/ dt � 0

for almost all T. Hence kr QwkL3.0;TIL3.˝// D 0, i.e., Qw is in the equivalence class

of zero in L3
	
0;TI W1;3

0;div .˝/



, which proves the uniqueness of the solution in

L3
	
0;TI W1;3

0;div .˝/



. �

Theorem 8.94 (Stability of the Weak Solution) Let the assumptions of Theo-
rem 8.91 be satisfied and let w0;w00 2 V be solutions of (8.73) with different initial
data and different right-hand sides f 0; f 00. Then it is

��w0 � w00��2
L1.0;TIL2.˝//

�
���w0 .0/� w00 .0/

��2
L2.˝/

C 1

2C1.T/

�� f 0 � f 00��2
L2.0;TIL2.˝//

�

� exp

�
C2
��rw0��2

L2.0;TIL3.˝// C C1.T/

2
T

�
;

with C1.T/;C2 > 0 and C1.T/ can be chosen arbitrarily.
If f 0 D f 00, then it holds

��w0 � w00��2
L1.0;TIL2.˝//

� ��w0 .0/� w00 .0/
��2

L2.˝/ exp
	

C2
��rw0��2

L2.0;TIL3.˝//


:
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Proof The proof starts in the same way as the proof of Theorem 8.93. One obtains
instead of (8.109)

k Qw .T/k2L2.˝/ � k Qw .0/k2L2.˝/ C
Z T

0

1

2C1.T/

�� f 0 � f 00��2
L2.˝/

dt

C
Z T

0

�
C2

4	

��rw0��2
L3.˝/ C C1.T/

2

�
k Qwk2L2.˝/ dt:

Setting C2= .4	/ D C2 and applying Gronwall’s lemma (A.33) proves the statement
of the theorem. �

Remark 8.95 (Other Analytical Investigations of the Smagorinsky Model)

• Parés (1992) studied the existence and uniqueness of a weak solution of
a Smagorinsky model that differs from (8.70) in some aspects. First, the
deformation tensor formulation of the viscous term and the deformation tensor
formulation of the Smagorinsky model, i.e., (8.67), were considered. Second,
homogeneous Dirichlet boundary conditions are prescribed only at a part of
the boundary 
nosl with j
noslj > 0. On the rest of the boundary, slip with
friction and penetration with resistance boundary conditions are given, e.g., the
linear conditions described in Remark 2.26. These boundary conditions lead to
an additional term in the weak formulation of the momentum equation of the
Smagorinsky model. The existence proof uses the Galerkin method in the same
way as described in the present section. In addition, estimates for the additional
term coming from the boundary conditions have to be proved.

• The Smagorinsky model can be used to stabilize the dominating convection
in the stationary Navier–Stokes equations (6.1). In Parés (1992), the stationary
Smagorinsky model is considered with the same features as the time-dependent
model. The existence of weak solutions and the uniqueness in the case of small
data could be proved. In Du and Gunzburger (1991), existence of a unique weak
solution for small data was shown.

ut

8.3.3 Finite Element Error Analysis for the Time-Continuous
Case

Remark 8.96 (Contents) This section presents a finite element error analysis of the
continuous-in-time discretization of the Smagorinsky model from John and Layton
(2002), see also John (2004, Sect. 8.1). The error of a finite element discretization
of the Smagorinsky model to the continuous Smagorinsky model is analyzed
(and not to the Navier–Stokes equations). In this analysis, a generalization of the
Smagorinsky model and pairs of inf-sup stable finite element spaces are considered.
In addition, other boundary conditions than no-slip conditions are allowed on a part
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of the boundary. The goal of the analysis consists in deriving uniform estimates,
i.e., with right-hand sides that do not depend on the viscosity 	, with as weak
assumptions on the regularity of the solution of the continuous Smagorinsky model
as possible. In this respect, the obtained estimates are better than for the Navier–
Stokes equations, see Theorem 7.35. Besides the existence and uniqueness of a
weak solution of the continuous problem, these estimates are another indicator that
the complexity of the Smagorinsky model is smaller than of the Navier–Stokes
equations, see Remark 8.22. ut

8.3.3.1 The Continuous Problem

Remark 8.97 (The Strong Formulation of the Problem) Let˝ be a bounded domain
in R

d, d 2 f2; 3g, with polygonal or polyhedral Lipschitz boundary and suppose that
the boundary @˝ is composed of faces 
0; : : : ; 
J with j
0j > 0.

The Smagorinsky model is considered with slip with linear friction and no
penetration boundary conditions, see Remark 2.26,

@tw � r � ..2	 C 	T/D .w//
C .w � r/w C rr D f in .0;T� �˝;

r � w D 0 in .0;T� �˝;
w D 0 in .0;T� � 
0;

w � n@˝ D 0 in .0;T� � 
j; j D 1; : : : ; J;
w � �j;k C ˇ�1nT

@˝Ssma .w; r/ �j;k D 0 in .0;T� � 
j; j D 1; : : : ; J;
w .0; �/ D w0 in ˝;Z
˝

r dx D 0 in .0;T�:

(8.110)

Here, f�j;kgd�1
kD1 is an orthonormal system of tangential vectors in each point of 
j,

1; : : : ; J, and

Ssma .w; r/ D .2	 C 	T/D .w/� rI:

The turbulent viscosity is given by

	T D 	0 .ı/C CSı
2 kD .w/kF ; 	0 .ı/ � 0;

which is a generalization of (8.66). ut
Remark 8.98 (The Variational Formulation) Let

V D ˚
v 2 W1;3 .˝/ ; v D 0 on 
0; v � n@˝ D 0 on 
j; j D 1; : : : ; J

�
;

Q D L20 .˝/ :



510 8 The Time-Dependent Navier–Stokes Equations: Turbulent Flows

To simplify the notation, whenever �j occurs, it will be understood that the term
is summed over the two tangential vectors if d D 3, i.e.,

��v � �j

��2
L2.
j/

WD ��v � �j;1

��2
L2.
j/

C ��v � �j;2

��2
L2.
j/

:

The variational formulation of (8.110) is derived in the usual way by multiplying
the equations with test functions, integrating on ˝ , and applying integration by
parts. Applying this procedure to the viscous and pressure term gives an integral on
the boundary. Using the decomposition

v D
JX

jD1
.v � n@˝/ n@˝ C �

v � �j
�
� j

and the definition of the boundary condition gives for this term

Z
@˝

�nT
@˝ ..2	 C 	T/D .w/C rI/ v ds

D
JX

jD1

Z

j

�nT
@˝Ssma .w; r/ �j

�
v � �j

�
ds D

JX
jD1

Z

j

ˇ
�
w � �j

� �
v � � j

�
ds:

The variational problem reads as follows: Find .w; r/ 2 V � Q such that for all
t 2 .0;T� and all .v; q/ 2 V � Q

.@tw; v/Ca .w;w; v/Cnskew .w;w; v/C.r � w; q/�.r � v; r/ D . f ; v/ (8.111)

with

a .u;w; v/ D ��
2	 C 	0 .ı/C CSı

2 kD .u/kF

�
D .w/ ;D .v/

�

C� .r � w;r � v/C
JX

jD1
ˇ
�
w � �j; v � �j

�

j
;

where � > 0 is given, and w .0; x/ D w0 .x/. Note that the skew-symmetric
form of the nonlinear convective term is for the continuous problem equivalent to
the standard convective form, see Remark 6.8, and that the grad-div stabilization
vanishes since w is weakly divergence-free. ut
Remark 8.99 (Some Tools for the Analysis) Since v � n D 0 on @˝ for all v 2
V , Poincare’s inequality (A.12) holds in V . In addition, it is known that Korn’s
inequality holds in V , i.e.,

krvkL3.˝/ � CkD .v/ kL3.˝/: (8.112)
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The dual space V 0 of V is equipped with the norm

k�kV0 WD sup
v2Vnf0g

Z
˝

� � v dx

kD .v/kL3.˝/
: (8.113)

Note that kD .v/kL3.˝/ defines a norm in V as a consequence of Poincare’s and
Korn’s inequality. In the case @˝ D 
0, one has V 0 D W�1;3=2 .˝/ equipped with
the norm (8.113). ut
Lemma 8.100 (Strong Monotonicity of the Nonlinear Viscous Term) There is a
constant C such that for all u; v;w 2 W1;3 .˝/

.kD .u/kF D .u/ � kD .v/kF D .v/ ;D .u � v// � C kD .u � v/k3L3.˝/ ; (8.114)

i.e., the strong monotonicity holds.

Proof The proof of Lemma 8.88 can be performed also for the deformation tensor
instead of the gradient. All partial derivatives have to be replaced by the respective

entries of the deformation tensor, e.g., @w
0

i
@xj

by Dij.w0/. �

Lemma 8.101 (Norm Equivalence for a Tensor) Let A 2 L3 .˝/ with A .x/ 2
R

d�d for every x 2 ˝ , then

kAkL3.˝/ � kkAkFkL3.˝/ � C .d/ kAkL3.˝/ : (8.115)

Proof It is

kAk3L3.˝/ D
Z
˝

dX
i;jD1

ˇ̌
aij

ˇ̌3
dx; kkAkFk3L3.˝/ D

Z
˝

0
@ dX

i;jD1
a2ij

1
A
3=2

dx:

Since all matrix norms are equivalent, there are constants 0 < C1 .d/ < C2 .d/ such
that

C1 .d/

0
@ dX

i;jD1

ˇ̌
aij

ˇ̌3
1
A
1=3

�
0
@ dX

i;jD1
a2ij

1
A
1=2

� C2 .d/

0
@ dX

i;jD1

ˇ̌
aij

ˇ̌3
1
A
1=3

: (8.116)

From (A.4), it follows with p D 3=2 that one can choose C1 .d/ D 1. Raising (8.116)
to the power 3 and integrating on˝ proves (8.115). �

Lemma 8.102 (Local Lipschitz Continuity of the Nonlinear Viscous Term)
There is a constant C such that for all u; v;w 2 W1;3 .˝/

.kD .u/kF D .u/ � kD .v/kF D .v/ ;D .w// (8.117)

� CCL kD .u � v/kL3.˝/ kD .w/kL3.˝/
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with CL D max
˚kD .u/kL3.˝/ ; kD .v/kL3.˝/

�
, which is the so-called local Lipschitz

continuity.

Proof Applying Hölder’s inequality (A.9) gives

.kD .u/kF D .u/ � kD .v/kF D .v/ ;D .w//

D .kD .u/kF D .u/ � kD .u/kF D .v/ ;D .w//C .kD .u/kF D .v/ � kD .v/kF D .v/ ;D .w//

� kkD .u/kFkL3.˝/ kD .u � v/kL3.˝/ kD .w/kL3.˝/

C kkD .u/kF � kD .v/kFkL3.˝/ kD .v/kL3.˝/ kD .w/kL3.˝/ : (8.118)

Using the triangle inequality and (8.115) yields

kkD .u/kF � kD .v/kFkL3.˝/ � kkD .u/ � D .v/kFkL3.˝/ � C kD .u � v/kL3.˝/ :

Inserting this estimate in (8.118) proves the local Lipschitz continuity. �

Lemma 8.103 (Energy Inequality for w) Any solution of (8.111) satisfies

1

2
kw .T/k2L2.˝/ C

Z T

0

 
JX

jD1
ˇ
��w � �j

��2
L2.
j/

C .2	 C 	0 .ı// kD .w/k2L2.˝/

CCCSı
2 kD .w/k3L3.˝/

!
dt � 1

2
kw0k2L2.˝/ C

Z T

0

. f ;w/ dt: (8.119)

Proof Choosing .v; q/ D .w; r/ in (8.111) gives

.@tw;w/C a .w;w;w/C nskew .w;w;w/C .r � w; r/ � .r � w; r/ D . f ;w/ :

The skew symmetric nonlinear convective term vanishes, see (6.26).
Since every q 2 L2 .˝/ admits a decomposition q D q0 C C with q0 2 Q and C

is a constant, see Remark 4.70, it follows that

.r � v; q/ D .r � v; q0 C C/ D .r � v;C/

D �
Z



Cv � n@˝ ds � .v;rC/ D 0 8 v 2 Vdiv; q 2 L2 .˝/ ;

(8.120)

because v �n@˝ D 0 on the whole boundary. Thus,� .r � w;r � w/ vanishes because
w 2 Vdiv, r � w 2 L2 .˝/, and (8.120).

In addition, it follows from (8.114) that

.kD .w/kF D .w/ ;D .v// � C kD .w/k3L3.˝/
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such that

.@tw;w/C .2	 C 	0 .ı// kD .w/k2L2.˝/ C CCSı
2 kD .w/k3L3.˝/

C
JX

jD1
ˇ
��w � �j

��2
L2.
j/

� . f ;w/ :

Integration on .0;T/ gives the statement of the lemma. �

Lemma 8.104 (Stability Estimates for w Uniformly in 	) The velocity compo-
nent w of the solution of (8.111) satisfies for T > 0

1

2
kw .T/k2L2.˝/ C

Z T

0

 
JX

jD1
ˇ
��w � �j

��2
L2.
j/

C .2	 C 	0 .ı// kD .w/k2L2.˝/

C2

3
CCSı

2 kD .w/k3L3.˝/
!

dt (8.121)

� 1

2
kw0k2L2.˝/ C 2

3
.CCS/

�1=2 ı�1
 

sup
v2L3.0;TIV/

R T
0
. f ; v/ dt

kD .v/kL3.0;TIL3.˝//

!3=2

and

1

2
kw .T/k2L2.˝/ C

Z T

0

eT�t

 
JX

jD1
ˇ
��w � �j

��2
L2.
j/

C .2	 C 	0 .ı// kD .w/k2L2.˝/ C CCSı
2 kD .w/k3L3.˝/

!
dt

� eT

2
kw0k2L2.˝/ C 1

2

Z T

0

eT�t k fk2L2.˝/ dt: (8.122)

Proof Young’s inequality (A.5) and the first stability estimate (8.119). It is

Z T

0

. f ;w/ dt D kD .w/kL3.0;TIL3.˝//

R T
0
. f ;w/ dt

kD .w/kL3.0;TIL3.˝//

� kD .w/kL3.0;TIL3.˝// sup
v2L3.0;TIL3.˝//

R T
0
. f ; v/ dt

kD .v/kL3.0;TIL3.˝//

� CCSı
2

3
kD .w/k3

L3.0;TIL3.˝//

C2

3
.CCS/

�1=2 ı�1
0
@ sup
v2L3.0;TIL3.˝//

R T
0 . f ; v/ dt

kD .v/kL3.0;TIL3.˝//

1
A
3=2

:
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Absorbing the first term on the right-hand side in (8.119) gives (8.121).
Equation (8.122): In the same way as in the proof of Lemma 8.103, one obtains

with the Cauchy–Schwarz inequality (A.10) and Young’s inequality

1

2

d

dt
kwk2L2.˝/ C .2	 C 	0 .ı// kD .w/k2L2.˝/

CCCSı
2 kD .w/k3L3.˝/ C

JX
jD1

ˇ
��w � �j

��2
L2.
j/

� k fk2L2.˝/
2

C kwk2L2.˝/
2

:

Multiplying this equality with eT�t, integrating on .0;T/, and applying integration
by parts yields

Z T

0

eT�t

�
d

dt
kwk2L2.˝/ � kwk2L2.˝/

�
dt

D eT�t kwk2L2.˝/
ˇ̌
ˇtDT

tD0 C
Z T

0

eT�t kwk2L2.˝/ dt �
Z T

0

eT�t kwk2L2.˝/ dt

D kw .T/k2L2.˝/ � eT kw .0/k2L2.˝/ :

Using this equality, (8.122) is proved. �

Remark 8.105 (On the Stability Estimate (8.121)) The right-hand side of the
stability estimate (8.121) is independent of 	 but it depends on inverse powers of ı.
Thus, if ı ! 0, the right-hand side blows up. This behavior is the natural one since
otherwise one would find in the limit a uniform stability estimate for the solution of
the Navier–Stokes equations. ut
Lemma 8.106 (Stability of @tw Uniformly in 	) Let .w; r/ be a solution
of (8.111). Then, there is a constant C independent of 	 such that for almost
all t 2 Œ0;T�

k@twkV0 � C

�
kwk2L3.˝/ C krkL3=2.˝/ C .2	 C 	0 .ı// kD .w/kL3=2.˝/

CCSı
2 kD .w/k2L3.˝/ C k fkV0

�
(8.123)

and

k@twk3=2
L3=2.0;TIV0/

� C

�
kwk3

L3.0;TIL3.˝// C krk3=2
L3=2.0;TIL3=2.˝//

C .2	 C 	0 .ı// kD .w/k3=2
L3=2.0;TIL3=2.˝//

CCSı
2 kD .w/k3L3.0;TIL3.˝// C k fk3=2

L3=2.0;TIV0/

�
:
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Proof Multiplying (8.110) with v, integrating over ˝ , dividing the resulting
equation by kD .v/kL3.˝/, taking the supremum over v 2 V , and applying the
triangle inequality gives

k@twkV0 � ��r � �wwT
���

V0
C krrkV0 C CSı

2 kr � .kD .w/kF D .w//kV0

C .2	 C 	0 .ı// kr � D .w/kV0 C k fkV0 :

The definition of the norm (8.113), integration by parts, using v � n@˝ D 0 on @˝
for v 2 V , Hölder’s inequality (A.9), estimating the norm of the divergence by the
norm of the gradient, and Korn’s inequality (8.112) leads to, e.g.,

krrkV0 D sup
v2Vnf0g

� .r � v; r/
kD .v/kL3.˝/

� sup
v2Vnf0g

krkL3=2.˝/ kr � vkL3.˝/

kD .v/kL3.˝/

� C sup
v2Vnf0g

krkL3=2.˝/ krvkL3.˝/

kD .v/kL3.˝/
� C krkL3=2.˝/ :

Note that an estimate of the norm of the divergence by the norm of the gradient of
form (3.40) can be proved for any Lp.˝/ norm by using Hölder’s inequality instead
of the Cauchy–Schwarz inequality in the proof of (3.40).

The other terms are estimated in the same way, using the following estimates.
With the Cauchy–Schwarz (A.10) inequality, it is

��wwT
��

L3=2.˝/ D
0
@
Z
˝

dX
i;jD1

ˇ̌
wiwj

ˇ̌3=2
dx

1
A
2=3

�

0
B@
Z
˝

 
dX

iD1
jwij3

!1=20
@ dX

iDj

ˇ̌
wj

ˇ̌3
1
A
1=2

dx

1
CA
2=3

D
 Z

˝

dX
iD1

jwij3 dx

!2=3
D kwk2L3.˝/ :

Using Hölder’s inequality and (8.115), one finds that

kkD .w/kF D .w/kL3=2.˝/ D
0
@
Z
˝

dX
i;jD1

ˇ̌kD .w/kF Dij .w/
ˇ̌3=2

dx

1
A
2=3

� C

0
B@
Z
˝

kD .w/k3=2F

0
@ dX

i;jD1

ˇ̌
Dij .w/

ˇ̌2
1
A
3=4

dx

1
CA
2=3
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D C

�Z
˝

kD .w/k3=2F kD .w/k3=2F dx
�2=3

D C kkD .w/kFk2L3.˝/ � C kD .w/k2L3.˝/ :

The second inequality stated in the lemma follows by raising both sides of (8.123)
to the power 3=2, integrating in time, and absorbing some powers of coefficients and
parameters in the constant. �

8.3.3.2 The Finite Element Problem

Remark 8.107 (Finite Element Spaces) The discrete problem is defined in finite
element spaces Vh and Qh with Vh � V and Qh � Q. It will be assumed that
the spaces Vh and Qh satisfy the discrete inf-sup condition

inf
qh2Qh

qh¤0
sup
vh2Vh

vh¤0

�r � vh; qh
�

��qh
��

L2.˝/

��vh
��

V

� ˇh
is;sma > 0;

where ˇis;sma is independent of h and

��vh
��2

V D ��D �vh
���2

L2.˝/ C
JX

jD1

��vh � � j

��2
H1=2.
j/

:

ut
Remark 8.108 (The Continuous-in-Time Finite Element Problem) The continuous-
in-time finite element problem reads as follows: Find

�
wh; rh

� 2 Vh � Qh such that

�
@twh; vh

�C a
�
wh;wh; vh

�C nskew
�
wh;wh; vh

�
(8.124)

C �r � wh; qh
� � �r � vh; rh

� D �
f ; vh

�

for all
�
vh; qh

� 2 Vh � Qh where wh .0; x/ is an approximation to w0 .x/. ut
Lemma 8.109 (Energy Inequality for the Finite Element Solution) A solution
of (8.124) satisfies

1

2

��wh .T/
��2

L2.˝/
C
Z T

0

 
�
��r � wh

��2
L2.˝/

C
JX

jD1
ˇ
��wh � �j

��2
L2.
j/

C .2	 C 	0 .ı//
��D �wh

���2
L2.˝/ C CCSı

2
��D �wh

���3
L3.˝/

!
dt

� 1

2
kw0k2L2.˝/ C

Z T

0

�
f ;wh

�
dt:
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Proof The proof proceeds in the same way as the proof of Lemma 8.103. �

Theorem 8.110 (Stability Estimates for wh Uniformly in 	) The velocity compo-
nent wh of the solution of (8.124) satisfies for T > 0

1

2

��wh .T/
��2

L2.˝/ C
Z T

0

 
�
��r � wh

��2
L2.˝/ C

JX
jD1

ˇ
��wh � �j

��2
L2.
j/

C .2	 C 	0 .ı//
��D �wh

���2
L2.˝/

C 2

3
CCSı

2
��D �wh

���3
L3.˝/

!
dt (8.125)

� 1

2

��wh
0

��2
L2.˝/

C 2

3
.CCS/

�1=2 ı�1
 

sup
v2L3.0;TIV/

R T
0
. f ; v/ dt

kD .v/kL3.0;TIL3.˝//

!3=2

and

1

2

��wh .T/
��2

L2.˝/
C
Z T

0

eT�t

 
�
��r � wh

��2
L2.˝/

C
JX

jD1
ˇ
��wh � �j

��2
L2.
j/

C .2	 C 	0 .ı//
��D �wh

���2
L2.˝/

C CCSı
2
��D �wh

���3
L3.˝/

!
dt

� eT

2

��wh
0

��2
L2.˝/

C 1

2

Z T

0

eT�t k fk2L2.˝/ dt: (8.126)

Proof The proof is performed in the same way as the proof of Lemma 8.104. �
Remark 8.111 (Goal and Summary of the Finite Element Error Analysis) The goal
of the analysis is to estimate the error

��w � wh
�� in appropriate norms under

consideration of the following aspects:

• The error bound should be independent of 	.
• The assumption on the regularity of the solution of the variational prob-

lem (8.111) should be as weak as possible.

The following results will be presented.

• First, the natural regularity

rw 2 L3
�
0;TI L3 .˝/

�
; (8.127)

for the variational formulation of the Smagorinsky model will be assumed. This
regularity ensures that the Smagorinsky term is well defined, see (8.72). A finite
element error analysis, using a standard approach sketched in Remark 8.112,
can be performed for the case 	0 .ı/ > 0. The error estimate is given in
Theorem 8.118.
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• Second, the case 	0 .ı/ D 0 is discussed for the regularity assumption (8.127),
see Remark 8.119. It will be shown that Gronwall’s lemma cannot be applied.
Thus, a uniform estimate for this case is open.

• Finally, the situation of assuming higher regularity of w uniformly in 	 and
	0 .ı/ � 0 is studied and a uniform estimate is presented in Theorem 8.120.

ut
Remark 8.112 (Outline of the Proof) Since the error analysis involves a lot of
technical details, a plan of the proof is given in advance, compare also the proof
of Theorem 7.35.

1. The variational formulation (8.111) and the discrete problem (8.124) with
arbitrary test functions

�
vh; qh

� 2 Vh � Qh are subtracted to derive the error
Eq. (8.131).

2. One chooses an arbitrary Qwh 2 Vh
div and splits the error e D �

w � Qwh
� ��

wh � Qwh
� D � � �h. Then, one takes �h as test function in (8.131) to

derive (8.132).
3. The left-hand side of the error Eq. (8.132) is bounded from below by the strong

monotonicity (8.114) and the right-hand side of (8.132) from above by the local
Lipschitz continuity (8.117) of the Smagorinsky term.

4. Estimating the other terms, in particular the nonlinear convective terms, one
derives a differential inequality of the form

d

dt

���h
��2

L2.˝/
C Qg ��h

� � g .�/C �
�
t;w;wh

� ���h
��2

L2.˝/
(8.128)

with 0 � Qg ��h
�
; g .�/ ; �

�
t;w;wh

�
and Qg ��h

� 2 L1.0;T/.
5. The term g .�/ is bounded from above uniformly in 	 by the stability estimates

already proved in this section. The bounds have to be in L1 .0;T/ uniformly in 	.
6. One shows that �

�
t;w;wh

� 2 L1 .0;T/ uniformly in 	 by the stability estimates.
7. The application of Gronwall’s lemma, Lemma A.55, to (8.128) gives an error

estimate for �h.
8. The error estimate for w � wh is obtained by the triangle inequality. The

terms containing � are bounded independently of 	 by best approximation error
estimates of the finite element spaces.

ut
Lemma 8.113 (Differential Inequality for Performing the Error Estimates) Let
e D w � wh denote the error, let Qwh 2 Vh

div be arbitrary, and consider the
decomposition

e D �
w � Qwh

� � �
wh � Qwh

� D �� �h: (8.129)
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If � > 0, then it holds the estimate

1

2

d

dt

���h
��2

L2.˝/
C �

2

��r � �h
��2

L2.˝/
C 2	 C 	0 .ı/

2

��D ��h
���2

L2.˝/

CCCSı
2

3

��D ��h
���3

L3.˝/
C

JX
jD1

ˇ

2

���h � �j

��2
L2.
j/

� 2

3 .CCS/
1=2 ı

k@t�k3=2V0 C � kr � �k2L2.˝/ C 2	 C 	0 .ı/

2
kD .�/k2L2.˝/

C2C
3=2

C3=2
L CSı

2

3C1=2
kD .�/k3=2

L3.˝/
C

JX
jD1

ˇ

2

��� � �j

��2
L2.
j/

(8.130)

C ˇ̌
nskew

�
w;w;�h

� � nskew
�
wh;wh;�h

�ˇ̌C 1

�

��r � qh
��2

L2.˝/
:

Proof By the choice of Qwh, it follows that �h 2 Vh
div. Subtracting (8.124)

from (8.111) gives for all vh 2 Vh
div and qh 2 Qh

�
@te; vh

�C a
�
w;w; vh

� � a
�
wh;wh; vh

�C nskew .w;w; vh/ (8.131)

�nskew
�
wh;wh; vh

� � �
r � qh;r � vh

� D 0:

One obtains for vh D �h

�
@t�

h;�h
�C a

�
wh;wh;�h

� � a
� Qwh; Qwh;�h

�
(8.132)

D �
@t�;�

h
�C a

�
w;w;�h

� � a
� Qwh; Qwh;�h

�C nskew
�
w;w;�h

�
�nskew

�
wh;wh;�h

� � �
r � qh;r � �h

�
:

The monotonicity of a .�; �; �/, (8.114), implies

a
�
wh;wh;�h

� � a
� Qwh; Qwh;�h

�

� �
��r � �h

��2
L2.˝/

C .2	 C 	0 .ı//
��D ��h

���2
L2.˝/

C CCSı
2
��D ��h

���3
L3.˝/

C
JX

jD1
ˇ
���h � �j

��2
L2.
j/

:

For bounding the right-hand side of (8.132), one has to get norms of �h that can

be absorbed from the left-hand side or
���h

��2
L2.˝/

for the application of Gronwall’s
lemma, and the norms of � have to be bounded by the stability estimates given
at the beginning of this section. The local Lipschitz continuity of the trilinear



520 8 The Time-Dependent Navier–Stokes Equations: Turbulent Flows

form, (8.117), gives the estimate

a
�
w;w;�h

� � a
� Qwh; Qwh;�h

�
� �

��r � �h
��

L2.˝/ kr � �kL2.˝/ C .2	 C 	0 .ı//
��D ��h

���
L2.˝/ kD .�/kL2.˝/

CCCLCSı
2
��D ��h

���
L3.˝/ kD .�/kL3.˝/ C

JX
jD1

ˇ
���h � �j

��
L2.
j/

��� � �j

��
L2.
j/

with

CL D max
n
kD .w/kL3.˝/ ;

��D � Qwh
���

L3.˝/

o
: (8.133)

The terms on the right-hand side are estimated further by Young’s inequality (A.5)
and the definition of the norm in V 0, (8.113),

CCLCSı
2
��D ��h

���
L3.˝/ kD .�/kL3.˝/

� CCSı
2

3

��D ��h
���3

L3.˝/
C 2C

3=2
C3=2

L CSı
2

3C1=2
kD .�/k3=2

L3.˝/
;

�
��r � �h

��
L2.˝/ kr � �kL2.˝/ � �

4

��r � �h
��2

L2.˝/
C � kr � �k2L2.˝/ ;

�
@t�;�

h
� � k@t�kV0

��D ��h
���

L3.˝/

� 2

3

�
CCSı

2
��1=2 k@t�k3=2V0 C CCSı

2

3

��D ��h
���3

L3.˝/ :

Young’s inequality is applied to the other terms with p D q D 2 and t D 1.
Inserting these estimates in (8.132), using the Cauchy–Schwarz inequal-

ity (A.10), and collecting terms gives in the case � > 0 estimate (8.130). �
Lemma 8.114 (Estimate of the Nonlinear Convective Term) It holds

ˇ̌
nskew

�
w;w;�h

� � nskew
�
wh;wh;�h

�ˇ̌

� 1

4
kr�k2L3.˝/ C "1

6

��D ��h
���3

L3.˝/
C C

3"
1=2
1

kwk3=2
L2.˝/

k�k3=2
L6.˝/

C1

4
k�k2L6.˝/ C "1

6

��D ��h
���3

L3.˝/
C C

3"
1=2
1

��wh
��3=2

L2.˝/ k�k3=2L6.˝/

C	0 .ı/

3

��D ��h
���2

L2.˝/ C �

8

��r � �h
��2

L2.˝/
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C
"
1

4
kwk2L6.˝/ C 1

4

��rwh
��2

L3.˝/
C C

	0 .ı/

��D �wh
���2

L3.˝/

C C

	0 .ı/
1=2 �3=2

��D �wh
���3

L3.˝/

#���h
��2

L2.˝/ : (8.134)

Proof Again, the guidelines for deriving estimates are to get norms of�h that can be

absorbed from the left-hand side of (8.132) or to obtain
���h

��2
L2.˝/

for the application
of Gronwall’s lemma. The norms of � have to be bounded by the stability estimates
given at the beginning of this section.

A straightforward calculation gives the decomposition, compare (6.64),

nskew
�
w;w;�h

� � nskew
�
wh;wh;�h

�
(8.135)

D nskew
�
w;�;�h

�C nskew
�
�;wh;�h

� � nskew
�
�h;wh;�h

�
;

where nskew
�
w;�h;�h

� D 0 has been used, see (6.26).
The first term of (8.135) is bounded using Hölder’s inequality (A.9), Korn’s

inequality (8.112), and Young’s inequality (A.5)

ˇ̌
nskew

�
w;�;�h

�ˇ̌

D 1

2

ˇ̌
nconvn

�
w;�;�h

� � nconv
�
w;�h;�

�ˇ̌

� 1

2

	���h
��

L2.˝/ kr�kL3.˝/ kwkL6.˝/ C ��r�h
��

L3.˝/ kwkL2.˝/ k�kL6.˝/




� 1

2

 ���h
��

L2.˝/ kr�kL3.˝/ kwkL6.˝/ C C
��D ��h

���
L3.˝/ kwkL2.˝/ k�kL6.˝/

!

� 1

4
kwk2L6.˝/

���h
��2

L2.˝/
C 1

4
kr�k2L3.˝/ C "1

6

��D ��h
���3

L3.˝/
(8.136)

C C

3"
1=2
1

kwk3=2L2.˝/ k�k3=2L6.˝/
:

In the same way, one obtains

nskew
�
�;wh;�h

� � 1

4

��rwh
��2

L3.˝/

���h
��2

L2.˝/
C 1

4
k�k2L6.˝/ (8.137)

C"1

6

��D ��h
���3

L3.˝/ C C

3"
1=2
1

��wh
��3=2

L2.˝/ k�k3=2L6.˝/
:
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The estimate of the third term starts with applying (6.22) and Hölder’s inequality
such that

nskew
�
�h;wh;�h

� D 1

2
nconv

�
�h;wh;�h

� � 1

2
nconv

�
�h;�h;wh

�

D nconv
�
�h;wh;�h

�C 1

2

�r � �h;�h � wh
�

(8.138)

� ��rwh
��

L3.˝/

���h
��2

L3.˝/ C 1

2

ˇ̌�r � �h;�h � wh
�ˇ̌
:

In this estimate, the maximal regularity is used for rwh and both factors �h are
treated the same way. By the Sobolev imbedding H1=2 .˝/ ! L3 .˝/, see (A.15),
the interpolation theorem (A.13) and Poincare’s inequality (A.12), one obtains

���h
��2

L3.˝/
� C

���h
��2

H1=2.˝/
� C

���h
��

L2.˝/

���h
��

H1.˝/

� C
���h

��
L2.˝/

��r�h
��

L2.˝/ :

Inserting this estimate in the previous estimate and applying Korn’s and Young’s
inequalities gives

ˇ̌
nskew

�
�h;wh;�h

�ˇ̌ � 	0 .ı/

6

��D ��h
���2

L2.˝/
C 3C

2	0 .ı/

��D �wh
���2

L3.˝/

���h
��2

L2.˝/

C1

2

ˇ̌�r � �h;�h � wh
�ˇ̌
:

The last term of the right-hand side of this inequality is estimated by Hölder’s and
by Young’s inequality leading to

ˇ̌�r � �h;�h � wh
�ˇ̌ � ��r � �h

��
L2.˝/

���h
��

L18=7.˝/

��wh
��

L9.˝/

� �

4

��r � �h
��2

L2.˝/
C 1

�

���h
��2

L18=7.˝/

��wh
��2

L9.˝/
:

The Sobolev imbedding theorem W1;3 .˝/ ! L9 .˝/, see (A.16), implies together
with Poincare’s and Korn’s inequality

��wh
��2

L9.˝/
� C

��wh
��2

W1;3.˝/
� C

��D �wh
���2

L3
:

The Sobolev imbedding theorem implies also H1=3 .˝/ ! L18=7 .˝/, see (A.15).
With the interpolation theorem (A.13), Poincare’s and Korn’s inequality, it follows
that

���h
��2

L18=7.˝/
� C

���h
��2

H1=3.˝/
� C

���h
��4=3

L2.˝/

���h
��2=3

H1.˝/

� C
���h

��4=3
L2.˝/

��D ��h
���2=3

L2.˝/
:
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These bounds and Young’s inequality yields

nskew
�
�h;wh;�h

� � 	0 .ı/

6

��D ��h
���2

L2.˝/ C C

	0 .ı/

��D �wh
���2

L3.˝/

���h
��2

L2.˝/

C�

8

��r � �h
��2

L2.˝/
C 	0 .ı/

6

��D ��h
���2

L2.˝/

C C

	0 .ı/
1=2 �3=2

��D �wh
���3

L3

���h
��2

L2.˝/
:

Combining this estimate with (8.136) and (8.137) gives (8.134). �

Remark 8.115 (On Inequalities (8.130) and (8.134)) The right-hand sides of these

inequalities have to be estimated further. Because of the appearance of
���h

��2
L2.˝/ on

the right-hand side of (8.134), Gronwall’s lemma will be applied. In Lemmas 8.116
and 8.117 it will be shown that the terms on the right-hand side are sufficiently
regular. The proofs use the stability bound for w and wh. ut
Lemma 8.116 (Regularity in Time of the Term in the Brackets in (8.134))
Assume � > 0 and 	0 .ı/ > 0 for ı > 0. Let

~ .t/ WD 1

4
kwk2L6.˝/ C 1

4

��rwh
��2

L3.˝/
C C

	0 .ı/

��D �wh
���2

L3.˝/

CC	0 .ı/
�1=2 ��3=2 ��D �wh

���3
L3.˝/

;

then there is a constant C1.ı/ independent of 	 and h such that for 0 < T < 1

k~ .t/kL1.0;T/ � C1.ı/:

Proof By the Sobolev imbedding W1;3 .˝/ ! L6 .˝/, see (A.16), Poincaré’s
inequality (A.12), and Korn’s inequality (8.112), one has kwkL6.˝/ �
C kD .w/kL3.˝/ which is bounded uniformly in 	 by (8.121) and (8.122). By the
stability estimates (8.125) and (8.126), it follows that

��D �wh
���

L3.˝/ 2 L3 .0;T/

uniformly in 	 and h. Since L3 .0;T/ � L2 .0;T/, it is also
��D �wh

���
L3.˝/

2
L2 .0;T/, such that

��D �wh
���3

L3.˝/ 2 L1 .0;T/ and
��D �wh

���2
L3.˝/ 2 L1 .0;T/

uniformly in 	 and h. �
Lemma 8.117 (Regularity in Time of the Other Terms From the Right-Hand
Side of (8.134)) Under the assumptions of Lemma 8.116 there is a constant C2 .ı/
independent of 	 and h such that for T 2 .0;1/

	��wh
��3=2

L2.˝/
C kwk3=2L2.˝/



� C2 .ı/ :
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Proof The statement of the lemma follows for kwkL2.˝/ by the stability esti-
mates (8.121) and (8.122) since

Z T

0

kwk3=2
L2.˝/

dt � kwk3=2
L1.0;TIL2.˝// T � C .ı/ :

Similarly, this property follows for
��wh

��
L2.˝/

from (8.125) and (8.126). �

Theorem 8.118 (Uniform Finite Element Error Estimate for the Natural Reg-
ularity of the Solution and 	0 .ı/ > 0) Assume that rw 2 L3

�
0;TI L3 .˝/

�
,

@tw 2 L3=2 .0;TI V 0/, r 2 L2
�
0;TI L2 .˝/

�
, � > 0, and 	0 .ı/ > 0. Then, the error

w � wh satisfies for 0 < T < 1
��w � wh

��2
L1.0;TIL2.˝// C �

��r � �w � wh
���2

L2.0;TIL2.˝//

C .	 C C	0 .ı//
��D �w � wh

���2
L2.0;TIL2.˝//

Cı2 ��D �w � wh
���3

L3.0;TIL3.˝// C
JX

jD1
ˇ
���w � wh

� � �j

��2
L2.0;TIL2.
j//

� C exp .C1.ı//
���w � wh

�
.0/
��2

L2.˝/
C C inf

Qwh2Vh
div

qh2Qh

F
�
w � Qwh; r � qh; ı

�

with

F
�
w � Qwh; r � qh; ı

�

D ��w � Qwh
��2

L1.0;TIL2.˝// C ı2
��D �w � Qwh

���3
L3.0;TIL3.˝//

C exp .C1.ı//

"���w � Qwh
�
.0/
��2

L2.˝/ C ı�1 ��@t
�
w � Qwh

���3=2
L3=2.0;TIV0/

C���r � �w � Qwh
���2

L2.0;TIL2.˝//C .2	 C 	0 .ı//
��D �w � Qwh

���2
L2.0;TIL2.˝//

CC .ı/
��D �w � Qwh

���3=2
L3.0;TIL3.˝// C

JX
jD1

ˇ
���w � Qwh

� � �j

��2
L2.0;TIL2.
j//

C ��r�w � Qwh
���2

L2.0;TIL3.˝// C C2 .ı/
��w � Qwh

��3=2
L3=2.0;TIL6.˝//

C ��w � Qwh
��2

L2.0;TIL6.˝// C 1

�

��r � qh
��2

L2.0;TIL2.˝//

#

and C1.ı/ and C2 .ı/ defined in Lemmas 8.116 and 8.117.
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Proof The bound (8.134) is substituted into (8.130) yielding the differential inequal-
ity

1

2

d

dt

���h
��2

L2.˝/
C 3�

8

��r � �h
��2

L2.˝/
C
�
	 C 	0 .ı/

6

���D ��h
���2

L2.˝/

C
�

CCSı
2

3
� "1

3

���D ��h
���3

L3.˝/
C

JX
jD1

ˇ

2

���h � � j

��2
L2.
j/

�
"

2

3 .CCS/
1=2 ı

k@t�k3=2V0 C � kr � �k2L2.˝/ C 2	 C 	0 .ı/

2
kD .�/k2L2.˝/

C2C
3=2

C3=2
L CSı

2

3C1=2
kD .�/k3=2

L3.˝/
C

JX
jD1

ˇ

2

��� � �j

��2
L2.
j/

C 1

4
kr�k2L3.˝/

C C

3"
1=2
1

	
kwk3=2

L2.˝/
C ��wh

��3=2
L2.˝/



k�k3=2

L6.˝/
C 1

4
k�k2L6.˝/ (8.139)

C 1

�

��r � qh
��2

L2.˝/

#
C
"
1

4
kwk2L6.˝/ C 1

4

��rwh
��2

L3.˝/
C C

	0 .ı/

��D �wh
���2

L3.˝/

C C

	0 .ı/
1=2 �3=2

��D �wh
���3

L3.˝/

# ���h
��2

L2.˝/
:

Picking "1 D CCSı
2=2 such that

CCSı
2

3
� "1

3
D CCSı

2

6
H) 1

"
1=2
1

D C

ı
;

and multiplying with 2 yields

d

dt

���h
��2

L2.˝/ C 3�

4

��r � �h
��2

L2.˝/ C
�
2	 C 	0 .ı/

3

���D ��h
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L2.˝/

CCCSı
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3

��D ��h
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L3.˝/ C
JX

jD1
ˇ
���h � �j

��2
L2.
j/

�
"

4

3 .CCS/
1=2 ı

k@t�k3=2V0 C 2� kr � �k2L2.˝/ C .2	 C 	0 .ı// kD .�/k2L2.˝/

C4C
3=2

C3=2
L CSı

2

3C1=2
kD .�/k3=2

L3.˝/
C

JX
jD1

ˇ
��� � � j

��2
L2.
j/

C 1

2
kr�k2L3.˝/
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CCı�1
	
kwk3=2

L2.˝/
C ��wh

��3=2
L2.˝/



k�k3=2

L6.˝/
C 1

2
k�k2L6.˝/

C 2

�

��r � qh
��2

L2.˝/

#
C
"
1

2
kwk2L6.˝/ C 1

2

��rwh
��2

L3.˝/

C C

	0 .ı/

��D �wh
���2

L3.˝/
C C	0 .ı/

�1=2 ��3=2 ��D �wh
���3

L3.˝/

#���h
��2

L2.˝/
:

Before applying Gronwall’s lemma, Lemma A.55, one has to check that all
functions are sufficiently smooth in time. All terms that involve only norms of �
and derivatives of � are in L1 .0;T/. The other term in the first bracket is shown
to be in L1 .0;T/ in Lemma 8.117. Finally, the term in the second bracket is also
in L1 .0;T/ by Lemma 8.116. The application of Gronwall’s lemma of form (A.40)
gives for almost all t 2 Œ0;T�
���h .t/

��2
L2.˝/ C �

��r � �h
��2

L2.0;tIL2.˝// C .	 C C	0 .ı//
��D ��h���2

L2.0;tIL2.˝//

Cı2 ��D ��h���3
L3.0;tIL3.˝// C

JX
jD1

ˇ
���h � �j

��2
L2.0;tIL2.
j//

� C exp
�k~ .t/kL1.0;t/

� ���h .0/
��2

L2.˝/ C C exp
�k~ .t/kL1.0;t/

�

�
"
ı�1 k@t�k3=2

L3=2.0;tIV0/
C � kr � �k2L2.0;tIL2.˝// C .2	 C 	0 .ı// kD .�/k2L2.0;tIL2.˝//

Cı2
Z t

0

C3=2
L kD .�/k3=2L3.˝/ dt0 C

JX
jD1

ˇ
��� � � j

��2
L2.0;tIL2.
j//

C kr�k2L2.0;tIL3.˝//

Cı�1

Z t

0

	
kwk3=2L2.˝/ C ��wh

��3=2
L2.˝/



k�k3=2L6.˝/ dt0

C k�k2L2.0;tIL6.˝// C 1

�

��r � qh
��2

L2.0;tIL2.˝//

#
:

Using the definition of CL in (8.133), Lemma 8.100, the Cauchy–Schwarz inequal-
ity (A.10) in L2 .0;T/, and the stability estimates (8.121) and (8.122), one gets

Z t

0

C3=2
L kD .�/k3=2

L3.˝/
dt0

�
Z t

0

	
max

n
kD .w/kL3.˝/ ;

��D � Qwh
���

L3.˝/

o
3=2 kD .�/k3=2
L3.˝/

dt0

� C
Z t

0

kD .w/k3=2
L3.˝/

kD .�/k3=2
L3.˝/

dt0
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� C kD .w/k3=2
L3.0;tIL3.˝// kD .�/k3=2

L3.0;tIL3.˝//

� C .ı/ kD .�/k3=2
L3.0;tIL3.˝// :

All constants which does not depend on the problem or the discretization are
collected in the generic constants C. Using the definition of C2 .ı/, Lemma 8.117,
and applying the essential supremum on .0;T/ on both sides of the inequality gives

���h
��2

L1.0;TIL2.˝// C �
��r � �h

��2
L2.0;TIL2.˝//

C .	 C C	0 .ı//
��D ��h

���2
L2.0;TIL2.˝// C ı2

��D ��h
���3

L3.0;TIL3.˝//

C
JX

jD1
ˇ
���h � �j

��2
L2.0;TIL2.
j//

� C exp
�k~ .t/kL1.0;T/

� ���h .0/
��2

L2.˝/

CC exp
�k~ .t/kL1.0;T/

� "
ı�1 k@t�k3=2

L3=2.0;TIV0/
C � kr � �k2

L2.0;TIL2.˝//

C .2	 C 	0 .ı// kD .�/k2L2.0;TIL2.˝// C C .ı/ kD .�/k3=2
L3.0;TIL3.˝//

C
JX

jD1
ˇ
��� � �j

��2
L2.0;TIL2.
j//

C kr�k2
L2.0;TIL3.˝//

CC2 .ı/ k�k3=2
L3=2.0;TIL6.˝// C k�k2

L2.0;TIL6.˝// C 1

�

��r � qh
��2

L2.0;TIL2.˝//

#
:

The triangle inequality implies

��w � wh
��2

L1.0;TIL2.˝// C �
��r � �w � wh

���2
L2.0;TIL2.˝//

C .	 C C	0 .ı//
��D �w � wh

���2
L2.0;TIL2.˝//

Cı2 ��D �w � wh
���3

L3.0;TIL3.˝// C
JX

jD1
ˇ
���w � wh

� � �j

��2
L2.0;TIL2.
j//

� C

"
k�k2

L1.0;TIL2.˝// C � kr � �k2
L2.0;TIL2.˝//

C .	 C C	0 .ı// kD .�/k2
L2.0;TIL2.˝// C ı2 kD .�/k3

L3.0;TIL3.˝//
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C
JX

jD1
ˇ
��� � �j

��2
L2.0;TIL2.
j//

C ���h
��2

L1.0;TIL2.˝//

C� ��r � �h
��2

L2.0;TIL2.˝// C .	 C C	0 .ı//
��D ��h

���2
L2.0;TIL2.˝//

Cı2 ��D ��h
���3

L3.0;TIL3.˝// C
JX

jD1
ˇ
���h � �j

��2
L2.0;TIL2.
j//

#
:

With the estimate for �h and since exp
�k~ .t/kL1.0;T/

� � 1, one gets

��w � wh
��2

L1.0;TIL2.˝// C �
��r � �w � wh

���2
L2.0;TIL2.˝//

C .	 C C	0 .ı//
��D �w � wh

���2
L2.0;TIL2.˝//

Cı2 ��D �w � wh
���3

L3.0;TIL3.˝// C
JX

jD1
ˇ
���w � wh

� � �j

��2
L2.0;TIL2.
j//

� C exp
�k~ .t/kL1.0;T/

� ���h .0/
��2

L2.˝/

CC

(
k�k2

L1.0;TIL2.˝// C ı2 kD .�/k3
L3.0;TIL3.˝//

C exp
�k~ .t/kL1.0;T/

� "
ı�1 k@t�k3=2

L3=2.0;TIV0/
C � kr � �k2

L2.0;TIL2.˝//

C .2	 C 	0 .ı// kD .�/k2
L2.0;TIL2.˝// C C .ı/ kD .�/k3=2

L3.0;TIL3.˝//

C
JX

jD1
ˇ
��� � �j

��2
L2.0;TIL2.
j//

C kr�k2
L2.0;TIL3.˝//

CC2 .ı/ k�k3=2
L3=2.0;TIL6.˝// C k�k2

L2.0;TIL6.˝// C 1

�

��r � qh
��2

L2.0;TIL2.˝//

#)
:

Applying the triangle inequality

���h .0/
��2

L2.˝/
� C

	���w � wh
�
.0/
��2

L2.˝/
C k� .0/k2L2.˝/




and taking the infimum over Qwh completes the proof of Theorem 8.118. �

Remark 8.119 (The Case rw 2 L3
�
0;TI L3 .˝/

�
and 	0 .ı/ D 0) The result

proved in Theorem 8.118 requires that 	0 .ı/ > 0, i.e., there is some artificial
viscosity in addition to the Smagorinsky model. In practice, the Smagorinsky model
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is used without artificial viscosity such that an error analysis for the case 	0 .ı/ D 0

is of much interest. However, so far uniform finite element error estimates for the
case rw 2 L3

�
0;TI L3 .˝/

�
and 	0 .ı/ D 0 are not known. This remark explains

why a straightforward approach for deriving an error estimate fails.
Let 	0 .ı/ D 0 and rw 2 L3

�
0;TI L3 .˝/

�
. The key of the error analysis is the

estimate of the nonlinear convective term. Using the decomposition (8.135), the first
and the second term are estimated as before, see (8.136) and (8.137). The critical
term is the last one. As in estimate (8.138), the maximal regularity will be used for
rwh. However, the two factors �h will be treated in a different way, having mind

that
���h

��2
L2.˝/ might be a good term on the right-hand side for the application of

Gronwall’s lemma. Bounding this term by Hölder’s inequality (A.9), the Sobolev
imbedding W1;3 .˝/ ! L6 .˝/, see (A.16), Korn’s inequality (8.112), and Young’s
inequality (A.5) yields

nskew
�
�h;wh;�h

�

D 1

2

�
nconv

�
�h;wh;�h

� � nconv
�
�h;�h;wh

��

� 1

2

 ��rwh
��

L3.˝/

���h
��

L6.˝/

���h
��

L2.˝/
C ��r�h

��
L3.˝/

���h
��

L2.˝/

��wh
��

L6.˝/

!

� C
��rwh

��
L3.˝/

���h
��

W1;3.˝/

���h
��

L2.˝/ C C
��D ��h

���
L3.˝/

���h
��

L2.˝/

��wh
��

W1;3.˝/

� "1

6

��D ��h
���3

L3.˝/
C C

"
1=2
1

��rwh
��3=2

L3.˝/

���h
��3=2

L2.˝/
(8.140)

C"1

6

��D ��h
���3

L3.˝/
C C

"
1=2
1

���h
��3=2

L2.˝/

��D �wh
���3=2

L3.˝/
;

where in the last step Poincaré’s inequality (A.12) and Korn’s inequality were used
to obtain

���h
��

W1;3.˝/
� C

��r�h
��

L3.˝/
� C

��D ��h
���

L3.˝/
:

Collecting the terms of (8.136), (8.137), and (8.140) yields

ˇ̌
nskew

�
w;w;�h

� � nskew
�
wh;wh;�h

�ˇ̌

�
"
1

4
kr�k2L3.˝/ C C

"
1=2
1

	
kwk3=2

L2.˝/
C ��wh

��3=2
L2.˝/



k�k3=2

L6.˝/
C 1

4
k�k2L6.˝/

#

C2"1

3

��D ��h
���3

L3.˝/
C C

"
1=2
1

��D �wh
���3=2

L3.˝/

���h
��3=2

L2.˝/
(8.141)
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C
�
1

4
kwk2L6 C 1

4

��rwh
��2

L3

� ���h
��2

L2.˝/
:

Choosing now

2"1

3
D 1

6
CCSı

2 H) "1 D O
�
ı2
�
;
1

"
1=2
1

D O
�
ı�1� ;

one obtains with (8.130) the differential inequality

1

2

d

dt

���h
��2

L2.˝/
C �

2

��r � �h
��2

L2.˝/
C 	

��D ��h
���2

L2.˝/

CCCSı
2

6

��D ��h
���3

L3.˝/
C

JX
jD1

ˇ

2

���h � �j

��2
L2.
j/

�
"

2

3 .CCS/
1=2 ı

k@t�k3=2V0 C � kr � �k2L2.˝/ C 	 kD .�/k2L2.˝/

C2C
3=2

C3=2
L CSı

2

3C1=2
kD .�/k3=2L3.˝/

C
JX

jD1

ˇ

2

��� � �j

��2
L2.
j/

C 1

4
kr�k2L3.˝/

CCı�1 	kwk3=2L2.˝/
C ��wh

��3=2
L2.˝/



k�k3=2L6.˝/

C 1

4
k�k2L6.˝/

C 1

�

��r � qh
��2

L2.˝/

#
C Cı�1 ��D �wh

���3=2
L3.˝/

���h
��3=2

L2.˝/

C
�
1

4
kwk2L6 C 1

4

��rwh
��2

L3

� ���h
��2

L2.˝/
: (8.142)

The last step of the proof would be the application of Gronwall’s lemma,

Lemma A.55, for f .t/ D ���h .t/
��2

L2.˝/
. However, the term with

���h
��3=2

L2.˝/
D	���h

��2
L2.˝/


3=4
in the right-hand side of (8.142) does not fit into the basic

inequality (A.38) of Lemma A.55. The power 3=4 is too small. Thus, Gronwall’s
lemma cannot be applied and this approach fails.

• Also other attempts for deriving a uniform error estimate in the case rw 2
L3
�
0;TI L3 .˝/

�
and 	0 .ı/ D 0 failed so far, see John and Layton (2002) and

John (2004, Sect. 8.1.4).
• It would be possible to prove a finite element error estimate that is not uniform,

i.e., where the constant depends on 	, see John (2004, Sect. 8.1.7) for a discussion
of this topic.
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• A uniform error bound in the case 	0 .ı/ � 0 can be achieved if a higher
regularity of the solution is assumed, see Theorem 8.120. This situation is similar
to finite element error analysis of the Navier–Stokes equations, where higher
regularity assumptions also enable the derivation of error bounds with a weaker
dependency on the viscosity, compare Remark 7.39.

Maybe, the deeper reason for the failure is that one cannot exclude that the
Smagorinsky model with 	0.ı/ D 0 vanishes in some points .t; x/ or even in some
regions. Thus, from the analytical point of view, there is no uniform positive bound
form below for the additional viscosity and maybe one cannot expect to obtain
different estimates than for the Navier–Stokes equations since the analysis uses only
global estimates. ut
Theorem 8.120 (Uniform Finite Element Error Estimate for the Case 	0 .ı/ � 0

and Higher Regularity of w Uniformly in 	) Suppose 	0 .ı/ � 0; � > 0, and
w 2 L2

�
0;TI W1;1 .˝/

�
, rw 2 L4

�
0;TI L3 .˝/

�
, both uniformly in 	. Let

~ .t/ WD 3

4
C krwkL1.˝/ C

�
1

4
C 1

4�

�
kwk2L1.˝/ C 1

2
krwk2L1.˝/ ;

then there is a C3 D C3 .w/ such that k~ .t/kL1.0;T/ � C3 .w/. Let C4 D C4 .ı/ be
such that

��D �wh
���

L3.0;TIL3/ � C4 .ı/ : Then, the error w � wh satisfies

��w � wh
��2

L1.0;TIL2.˝// C ı2
��D �w � wh

���3
L3.0;TIL3.˝//

C���r � �w � wh
���2

L2.0;TIL2.˝//C.	 C C	0 .ı//
��D �w � wh

���2
L2.0;TIL2.˝//

C
JX

jD1
ˇ
���w � wh

� � O�j

��2
L2.0;TIL2.
j//

(8.143)

� C exp .C3 .w//
���w � wh

�
.0/
��2

L2.˝/ C C inf
Qwh2Vh

div
qh2Qh

F
�
w � Qwh; r � qh; ı

�

with

F
�
w � Qwh; r � qh; ı

�
(8.144)

D ��w � Qwh
��2

L1.0;TIL2.˝// C ı2
��D �w � Qwh

���3
L3.0;TIL3.˝//

C exp .C3 .w//

"���w � Qwh
�
.0/
��2

L2.˝/
C ı�1 ��@t

�
w � Qwh

���3=2
L3=2.0;TIV0/

C .2	 C 	0 .ı//
��D �w � Qwh

���2
L2.0;TIL2.˝//
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C
JX

jD1
ˇ
���w � Qwh

� � O�j

��2
L2.0;TIL2.
j//

C C .ı/
��D �w � Qwh

���3=2
L3.0;TIL3.˝//

C��1 ��r � qh
��2

L2.0;TIL2.˝// C
�
1

4
C �

���r � �w � Qwh
���2

L2.0;TIL2.˝//

C ��w � Qwh
��2

L2.0;T;L2.˝//

CC4 .ı/
	��D �w � Qwh

���2
L18=5.0;TIL3.˝// C ��w � Qwh

��2
L6.0;TIL6.˝//


 #
:

Proof The proof starts with using a special case of the Gagliardo–Nirenberg
inequality, e.g., see Nirenberg (1959),

kwkL6.˝/ � C krwk2=3L3.˝/ kwk1=3L2.˝/
; (8.145)

which holds because w vanishes on 
0, see also the discussion of this inequality in
John and Layton (2002). Applying (8.145) and Korn’s inequality (3.43), it follows
that

kwk6
L6.0;TIL6.˝// D

Z T

0

kwk6L6.˝/ dt � C
Z T

0

krwk4L3.˝/ kwk2L2.˝/ dt

� C kwk2L1.0;TIL2.˝//

Z T

0

kD .w/k4L3.˝/ dt

D C kwk2
L1.0;TIL2.˝// kD .w/k4

L4.0;TIL3.˝// � C < 1

by the regularity assumptions and stability estimates (8.121) and (8.122). Note also
that rw 2 L4

�
0;TI L3 .˝/

�
uniformly in 	 implies rw 2 L18=5

�
0;TI L3 .˝/

�
uniformly in 	 since the time interval is bounded.

The proof is based on the differential inequality (8.130). The nonlinear convec-
tive term is decomposed in the form (6.65)

ˇ̌
nskew

�
w;w;�h

� � nskew
�
wh;wh;�h

�ˇ̌
D ˇ̌

nskew
�
�� �h;w;�h

�C nskew
�
wh;� � �h;�h

�ˇ̌
D ˇ̌

nskew
�
�;w;�h

� � nskew
�
�h;w;�h

�C nskew
�
wh;�;�h

�ˇ̌
;

where nskew
�
wh;�h;�h

� D 0, see (6.26), was used. With this decomposition,
the critical term is nskew

�
�h;w;�h

�
and not nskew

�
�h;wh;�h

�
as in (8.135). For

estimating the critical term, the assumptions on w can be used now. Note that one
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can assume regularity for the solution of the continuous problem but not for the
finite element solution.

The individual terms of the right-hand side are first transformed with (6.22) and
then bounded by Hölder’s inequality (A.9) and by Young’s inequality (A.5)

ˇ̌
nskew

�
�;w;�h

�ˇ̌ D
ˇ̌
ˇ̌nconv

�
�;w;�h

�C 1

2

�r � �;�h � w�
ˇ̌
ˇ̌

� krwkL1.˝/ k�kL2.˝/

���h
��

L2.˝/ C 1

2
kwkL1.˝/ kr � �kL2.˝/

���h
��

L2.˝/

� 1

2
k�k2L2.˝/ C 1

2
krwk2L1.˝/

���h
��2

L2.˝/
C 1

4
kr � �k2L2.˝/

C1

4
kwk2L1.˝/

���h
��2

L2.˝/
;

ˇ̌
nskew

�
�h;w;�h

�ˇ̌ D
ˇ̌
ˇ̌nconv

�
�h;w;�h

�C 1

2

�r � �h;w � �h
�ˇ̌ˇ̌

� krwkL1.˝/

���h
��2

L2.˝/
C 1

2
kwkL1.˝/

��r � �h
��

L2.˝/

���h
��

L2.˝/

� krwkL1.˝/

���h
��2

L2.˝/ C �

4

��r � �h
��2

L2.˝/ C 1

4�
kwk2L1.˝/

���h
��2

L2.˝/ ;

ˇ̌
nskew

�
wh;�;�h

�ˇ̌ D
ˇ̌
ˇ̌nconv

�
wh;�;�h

�C 1

2

�r � wh;� � �h
�ˇ̌ˇ̌

� ��wh
��

L6.˝/ kr�kL3.˝/

���h
��

L2.˝/
C 1

2

��r � wh
��

L3.˝/ k�kL6.˝/

���h
��

L2.˝/

� 1

2

��wh
��2

L6.˝/ kr�k2L3.˝/ C C
��D �wh

���2
L3.˝/ k�k2L6.˝/ C 3

4

���h
��2

L2.˝/ ;

where Korn’s inequality (8.112) was used in the last line. The term
��wh

��
L6.˝/

is
bounded using the Gagliardo–Nirenberg inequality (8.145), Korn’s inequality, and
the uniform boundedness of

��wh
��

L2.˝/

��wh
��2

L6.˝/ � C
��wh

��2=3
L2.˝/

��D �wh
���4=3

L3.˝/ � C
��D �wh

���4=3
L3.˝/ :

Collecting all estimates yields

ˇ̌
nskew

�
w;w;�h

� � nskew
�
wh;wh;�h

�ˇ̌

� 1

2
k�k2L2.˝/ C 1

4
kr � �k2L2.˝/ C C

��D �wh���4=3
L3.˝/ kr�k2L3.˝/
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CC
��D �wh

���2
L3.˝/ k�k2L6.˝/ C �

4

��r � �h
��2

L2.˝/

C
�
3

4
C 1

2
krwk2L1.˝/ C 1

4
kwk2L1.˝/ C krwkL1.˝/ C 1

4�
kwk2L1.˝/

����h
��2

L2.˝/ :

This bound is inserted in the right-hand side of (8.130) giving

1

2

d

dt

���h
��2

L2.˝/ C CCSı
2

3

��D ��h
���3

L3.˝/ C �

2

��r � �h
��2

L2.˝/

C1

2
.2	 C 	0 .ı//

��D ��h
���2

L2.˝/
C

JX
jD1

ˇ

2

���h � O�j

��2
L2.
j/

�
"

2

3 .CCS/
1=2 ı

k@t�k3=2V0 C 1

2
.2	 C 	0 .ı// kD .�/k2L2.˝/

C
JX

jD1

ˇ

2

��� � O�j

��2
L2.
j/

C 2

3
C�1=2CSC

3=2
C3=2

L ı2 kD .�/k3=2
L3.˝/

C��1 ��r � qh
��2

L2.˝/
C � kr � �k2L2.˝/ C 1

2
k�k2L2.˝/ C 1

4
kr � �k2L2.˝/

CC
��D �wh

���4=3
L3.˝/ kr�k2L3.˝/ C C

��D �wh
���2

L3.˝/ k�k2L6.˝/
#

C �

4

��r � �h
��2

L2.˝/

C
�
3

4
C krwkL1.˝/ C

�
1

4
C 1

4�

�
kwk2L1.˝/ C 1

2
krwk2L1.˝/

����h
��2

L2.˝/
:

For the application of Gronwall’s lemma, Lemma A.55, one needs that

3

4
C krwkL1.˝/ C

�
1

4
C 1

4�

�
kwk2L1.˝/ C 1

2
krwk2L1.˝/ 2 L1 .0;T/ ;

in other words w 2 L2
�
0;TI W1;1 .˝/

�
. The term on the right-hand side of this

inequality containing C3=2
L is treated as in the proof of Theorem 8.118. To obtain

finally a uniform error estimate, one has also to verify that the terms containing��D �wh
���

L3.˝/
are bounded uniformly in 	. To this end, one gets with Hölder’s

inequality

Z T

0

��D �wh
���4=3

L3.˝/ kD .�/k2L3.˝/ dt

� ��D �wh
���4=3

L4q=3.0;TIL3.˝// kD .�/k2
L2q0.0;TIL3.˝// ;
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where q�1 C q0�1 D 1. From the stability estimates (8.125) and (8.126), it
follows that one has to take q such that 4q=3 � 3. Accordingly, one can choose
q D 9=4; q0 D 9=5. Inserting this choice gives

Z T

0

��D �wh
���4=3

L3.˝/ kD .�/k2L3.˝/ dt

� C
��D �wh

���4=3
L3.0;TIL3.˝// kD .�/k2

L18=5.0;TIL3.˝// � CC4 .ı/ kD .�/k2
L18=5.0;TIL3.˝// :

Similarly, for the conjugate exponents q D 3=2; q0 D 3, one obtains

Z T

0

��D �wh
���2

L3.˝/ k�k2L6.˝/ dt � ��D �wh
���2

L2q.0;TIL3.˝// k�k2
L2q0.0;TIL6.˝//

� ��D �wh
���2

L3.0;TIL3.˝// k�k2
L6.0;TIL6.˝//

� C4 .ı/ k�k2
L6.0;TIL6.˝// :

The stated error estimate follows now from Gronwall’s inequality (A.40) and the
triangle inequality as in the proof of Theorem 8.118. �

Remark 8.121 (Interpretation of the Error Estimates and Numerical Studies) The
estimates given in Theorems 8.118 and 8.120 show that the error between the
solution of the continuous and the discrete Smagorinsky model in different norms
is bounded independently of 	 for fixed filter width ı. In this case, the order of
convergence is related to the best approximation errors of the finite element spaces
in several norms. The best approximation error of Vh

div can be estimated by the
best approximation error of Vh, see Lemma 3.60 or Remark 3.62 for the L2.˝/
norm of the gradient. For instance, considering an error which is squared on the
left-hand side of estimate (8.143), then the order of convergence is bounded, e.g.,

by the best approximation error
��D �w � Qwh

���3=4
L3.0;TIL3.˝// in expression (8.144).

Numerical studies in John and Layton (2002) and John (2004, Sect. 8.1.8) show
that the errors are independent of 	 and an even higher order of convergence than
predicted by the error bounds. ut
Remark 8.122 (Finite Element Analysis of the Fully Discrete Smagorinsky Model)
A finite element analysis of the fully discrete Smagorinsky model, with the IMEX
Euler scheme as temporal discretization, is presented in Chacón Rebollo and
Lewandowski (2014, Chap. 10). Stability estimates are given, the well-posedness
of the problem is proved, error estimates are derived, and the asymptotic energy
balance is studied. ut
Remark 8.123 (Analysis of Finite Element Discretizations for the Stationary
Smagorinsky Model) Finite element methods for the stationary Smagorinsky model
were studied in Du and Gunzburger (1990). It was proved that the discrete solution
converges to the solution of the continuous problem under minimal regularity
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assumptions on this solution. In addition, an optimal order finite element error
estimate for

��w � wh
��

H1.˝/
is given. A comprehensive presentation of a finite

element analysis for this model and further results can be found in Chacón Rebollo
and Lewandowski (2014, Chap. 9). ut

8.3.4 Variants for Reducing Some Drawbacks
of the Smagorinsky Model

Remark 8.124 (Drawbacks of the Smagorinsky Model in Numerical Simulations)
The advantages of the Smagorinsky model were already mentioned in Remark 8.63:
easiness of implementation, robustness, and low costs. However, this model pos-
sesses in its application for flow simulations also a number of drawbacks, e.g., see
Zang et al. (1993) or Sagaut (2006, pp. 113, 123)

The easiest way, which is in fact quite popular, consists in choosing the
Smagorinsky coefficient CS in (8.66) a priori as a constant. However, it is well
known that it is generally not possible to represent the large scales of turbulent
flows correctly with a single constant. In addition, a reasonable good choice of
CS depends on many aspects, e.g., the flow problem or the discretization. For a
concrete simulation, it is usually not clear what are good values for CS. Numerical
simulations with the Smagorinsky model that can be found in the literature use
typically a Smagorinsky constant of size CS 2 Œ0:01; 0:1�, e.g., see Sagaut (2006,
p. 124) or Piomelli (1999). For the case of homogeneous isotropic turbulence, in
Lilly (1967) the constant C�

S 
 0:17 in (8.68) (CS 
 0:08 in (8.67)) was derived,
compare also Pope (2000, Sect. 13.4.2). Inappropriate choices of CS might give very
bad computational results, e.g., see Example 8.128.

The Smagorinsky model introduces generally too much viscosity into the flow
simulations. This behavior can be observed in particular near solid walls with no-
slip boundary conditions.

More drawbacks of the Smagorinsky model arise from the fact that
CSı

2
��D �wh

���
F � 0. Thus, backscatter of energy is prevented. Usually it is

CSı
2
��D �wh

���
F > 0, even for laminar flows or in subregions where the studied

flow field is laminar. Hence, the Smagorinsky model generally does not vanish for
laminar flows and thus it introduces also in simulations of such flows unnecessary
viscosity. ut
Remark 8.125 (Contents of this Section) This section describes two approaches
that are used in practice for reducing the drawbacks of the Smagorinsky model.
In the dynamic Smagorinsky model, Remark 8.126, the Smagorinsky parameter
CS is computed a posteriori as a function in space and time. To reduce the
introduction of model viscosity near solid walls, there is a proposal to decrease
CS, see Remark 8.127, the so-called van Driest damping. ut
Remark 8.126 (The Dynamic Smagorinsky Model) The Smagorinsky model (8.66)
contains the parameter CS. As already noted, a good choice of CS depends on the
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concrete flow problem and it is in general a priori hardly to achieve. It is even
desirable to choose CS in a different way in different flow regions. In particular,
the impact of the Smagorinsky model should be small in subregions with laminar
flows, where small values of CS are preferable. A different approach for restriction
the impact of the Smagorinsky model is discussed Remark 8.216.

An approach which determines values for CS as a function of space and time was
proposed in Germano et al. (1991). This proposal was modified in Lilly (1992) to the
form presented here. It is called dynamic Smagorinsky model or dynamic subgrid
scale model.

The dynamic Smagorinsky model starts with introducing a second filter, a so-
called test filter denoted by a hat, with Oı > ı. Then, the space-averaged Navier–
Stokes equations (8.28) and (8.29)

@t u � 2	r � D .u /C r � �u u T
�C r � T C r p D f ;

are filtered once more with the test filter. Assuming that differentiation and filtering
commute yields

@t bu � 2	r � D
	 bu 
C r �

	 du u T



C r � bT C r bp D bf in .0;T� �˝;
r � bu D 0 in .0;T� �˝:

A direct calculation gives for

K D duuT � bu bu T

that

K � bT D du u T � bu bu T : (8.146)

Now, one takes the ansatz of the Smagorinsky model (8.62), (8.66) for both tensors
with the same parameter CS .t; x/

T .t; x/� trace .T/

3
I D �CS .t; x/ ı2 kD .u /kF D . u / ;

K .t; x/ � trace .K/

3
I D �CS .t; x/ Oı 2

���D
	 bu 


���
F
D

	 bu 


Inserting this ansatz in (8.146) yields

0 D � du u T C K .t; x/ � T .t; x/

D bu bu T C � du u T C bu bu T C 1

3

	
trace .K/� 3trace .T/



I (8.147)

C
V	

CS .t; x/ ı2 kD . u /kF D .u /



� CS .t; x/ Oı 2
���D

	 bu 

���

F
D

	 bu 
 :
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From the linearity of the filter (8.25), the linearity of the trace operator, and (8.146),
it follows that

trace .K/� 3trace .T/ D trace .K/� trace
	bT 
 D trace

	
K � bT 


D trace
	 du u T � bu bu T



: (8.148)

In order to obtain an equation for CS .t; x/, one approximates

V	
CS .t; x/ ı2 kD . u /kF D .u /




 CS .t; x/ ı2
V	

kD . u /kF D . u /


: (8.149)

If CS depends only on t but not on x, one has an equality instead of an approximation.
Inserting (8.149) and (8.148) in (8.147) gives

0 
 � du u T C bu bu T C 1

3
trace

	 du u T � bu bu T


I

CCS .t; x/

0
B@ı2
V	

kD .u /kF D . u /



� Oı 2
���D

	 bu 

���

F
D

	 bu 

1
CA

DW L C CSM: (8.150)

Equations for CS .t; x/ are obtained by replacing the approximation sign in (8.150)
with the equal sign. Then, there are d .d C 1/ =2 equations to determine a scaler
value for given t and x. Because of the divergence constraint, the traces of the
deformation tensors vanish, such that only d .d C 1/ =2 � 1 equations are linearly
independent. In Lilly (1992), it was proposed to determine the parameter CS .t; x/
by the least squares method, i.e., to find CS .t; x/ such that kL C CS .t; x/Mk2F is
minimized. Evaluating the necessary condition for a minimum gives

0 D d

dCS
kL C CSMk2F D d

dCS

dX
i;jD0

�
Lij C CSMij

�2

D 2

dX
i;jD0

�
Lij C CSMij

�
Mij D 2

dX
i;jD0

LijMij C 2CS

dX
i;jD0

MijMij

D 2L W M C 2CSM W M:
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It follows that

CS .t; x/ D � L W M
M W M .t; x/ : (8.151)

In practical computations, the test filter can be applied by solving the space-
averaged Navier–Stokes equations on a coarse grid. If the next coarser grid of the
current grid is used, then Oı D 2ı.

The dynamic subgrid scale model can predict negative values for CS .t; x/. In this
way, backscatter of energy is possible, in contrast to the Smagorinsky model, see
Remark 8.7. However, experience shows that CS .t; x/ can vary strongly in space
and time and it might contain negative values with a very large amplitude. If the
total viscosity 2	C	T becomes locally non-positive, then one has the discretization
of an operator which is not elliptic. The mathematical properties of such an operator
are not clear. These properties may strongly destabilize numerical simulations. In
practice, the nominator and denominator of (8.151) are averaged, often in time,
to compute a smoother function CS .t; x/, e.g., see Lesieur (1997, p. 405), Breuer
(1998), or Sagaut (2006, p. 139). ut
Remark 8.127 (Van Driest Damping) As already mentioned in Remark 8.124, the
Smagorinsky model introduces too much viscosity in particular near solid walls.
The application of a van Driest damping, see van Driest (1956), is a proposal to
reduce this viscosity. The van Driest damping changes the eddy viscosity of the
Smagorinsky model (8.66) in the viscous sublayer, see Remark 8.13, to Pope (2000,
p. 599)

	T D CSı
2

�
1 � exp

�
� yC

AC

��2
kD . u /kF ; if yC < 5; (8.152)

with AC D 26. ut
Example 8.128 (Turbulent Channel Flow at Re� D 180) This example presents
some numerical results obtained with the Smagorinsky model for the turbulent
channel flow at Re� D 180, see Example D.12.

The domain was triangulated with a grid consisting of 8 � 16 � 8 hexahedra
with right angles. In the directions with periodic boundary conditions, the x-
and the z-direction, a uniform distance of the grid points was used. The flow
exhibits boundary layers at the walls y D 0 and y D 2, see Fig. D.12. For
this reason, it is common to use in the wall-normal y-direction a grid that
is refined towards the walls. There are several proposals in the literature for
defining the grid points in this direction, e.g., see John and Kindl (2008).
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For the results presented in this example, the grid points were set according
to

yi D 1 � cos

�
i�

Ny

�
; i D 0; : : : ;Ny;

where Ny is the number of mesh cells in y-direction.
The simulations were performed with the Q2=Pdisc

1 pair of finite element spaces.
Using this pair results in 25,344 degrees of freedom for the velocity (including
Dirichlet nodes) and 4096 pressure degrees of freedom. Compared with most
results from the literature, the number of degrees of freedom is quite small.
The deformation tensor form of the viscous term, the convective form of the
convection term, and the form (8.67) of the Smagorinsky model were used. Using
the Smagorinsky model requires the choice of the constant CS and of the filter width
ı. The filter width ı was set to be two times a measure for the local mesh width.
However, there is the difficulty of defining the measure for the local mesh width
since in the vicinity of the walls there are anisotropic mesh cells that look like
thin plates. Possible choices are the diameter hK , the cubic root of the volume of
the mesh cell hK;vol D jKj1=3, and the shortest edge hK;short of the mesh cell. It
holds

hK;short � hK;vol � hK :

The larger this measure, the more viscosity is introduced. An appropriate range of
values for choosing CS is known from the literature, e.g., see John and Kindl (2008,
2010b).

The simulations were performed in the time interval Œ0; 40�. Statistics
were computed in Œ10; 40�. As temporal discretization, the Crank–Nicolson
scheme, see Example 7.49, with the equidistant time step �t D 0:004 was
used. This length of the time step satisfies condition (D.38). The stopping
criterion of the Picard iteration for solving the nonlinear problem in each
discrete time was the Euclidean norm of the residual vector to be smaller than
10�6.

A few selected numerical results are presented in Fig. 8.4. From the mean
velocity field, it can be seen that ıK D 2hK;short and CS D 0:005 is the
only combination that provides a qualitatively correct approximation. Comparing
the standard Smagorinsky model and the Smagorinsky model with van Driest
damping (8.152) for these values, one can see only little differences. The results
obtained with van Driest damping are a little bit more accurate. However, it can
be observed that the second order statistics T

h
12;mean and uh

1;rms are considerably
overpredicted (for Th

12;mean with respect to the absolute value).
ut
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Fig. 8.4 Example 8.128. Mean velocity field for the standard Smagorinsky model with different
parameters (top left, blue line on top of the green line). The results with ıK D 2hK were even worse
than with ıK D 2hK;vol. Statistics of interest for the Smagorinsky model with ıK D 2hK;short and
CS D 0:005 (top right, bottom)

8.4 Large Eddy Simulation: Models Based
on Approximations in Wave Number Space

Remark 8.129 (The Basic Approach) Inserting the decomposition (8.11) and apply-
ing the linearity (8.25) of the filter yields for filtered nonlinear convective term,
which is unknown,

uuT D u u T C uu0T C u0 u T C u0u0T : (8.153)

The first term in (8.153) is called large scale advective term. It describes the
convection of the large eddies driven by themselves. The second and third term are
the so-called cross terms describing the interaction of the large scale and subgrid
scale components. The last tensor is the subgrid scale (sgs) term that describes how
the small eddies extract energy from the flow.
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Models that are based on approximations in wave number space consider the
terms on the right-hand side of (8.153) separately. Each term is transformed to the
Fourier or wave number space and then an approximation is applied, see Sect. 8.4.1.
It turns out that with this approach the sgs term is modeled with the zero tensor.
Numerical simulations show that this model is not sufficient, e.g., see John (2004,
Sect. 10.3.3). Section 8.4.2 presents some proposals for modeling the sgs term. The
final models will be presented and discussed in Sect. 8.4.3. ut

8.4.1 Modeling of the Large Scale and Cross Terms

Remark 8.130 (Assumptions) Let˝ D R
d and let the averaging be performed with

the Gaussian filter

u .t; x/ D gGauss  u .t; x/ ;

where gGauss is defined in (8.18) and ı is a constant. ut
Remark 8.131 (Principal Approach) The model of the large scale and cross terms
is obtained in five steps:

1. compute the Fourier transform,
2. replace F .u0/ by a function of F . u / if necessary,
3. approximate the Fourier transform of the Gaussian filter with a simpler function,
4. neglect all terms that are in a certain sense of higher order in ı,
5. compute the inverse Fourier transform.

There are two approaches in the literature which differ in the third point. The first
approach, see Leonard (1975) or Clark et al. (1979), approximates F .gGauss/ by a
Taylor polynomial, Remark 8.133, whereas the second approach from Galdi and
Layton (2000) uses a rational approximation, see Remark 8.136. The first approach
gives the Taylor LES model and the second one the rational LES model. ut
Remark 8.132 (Step 1 and 2) Using (A.25), the Fourier transform of the large scale
term is

F
	
u u T



D F .gGauss/F

�
u u T

�
; (8.154)

and the Fourier transforms of the cross terms are

F
	
uu0T



D F .gGauss/F

	
uu0T




D F .gGauss/
	
F . u /  F

�
u0�T



; (8.155)

F
	
u0 u T



D F .gGauss/

�
F
�
u0�  F . u /T

�
:
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Since F .gGauss/ ¤ 0, one obtains

F .u/ D F .gGauss/F .u/
F .gGauss/

D F . u /
F .gGauss/

: (8.156)

Inserting the decomposition u D u Cu0 in the left-hand side and rearranging terms
yields

F
�
u0� D

�
1

F .gGauss/
� 1

�
F . u / : (8.157)

Thus, the Fourier transform of u0 can be represented with the Fourier transforms of u
and of the Gaussian filter. For this representation, it is important that F .gGauss/ ¤ 0.
Inserting (8.157) in (8.155) gives

F
	
uu0T



D F .gGauss/

�
F . u / 

�
1

F .gGauss/
� 1

�
F .u /T

�
; (8.158)

F
	
u0 u T



D F .gGauss/

��
1

F .gGauss/
� 1

�
F . u /  F .u /T

�
:

Although on the right-hand sides u0 does not appear, there is no reduction of the
complexity of the terms so far since still equality holds. ut
Remark 8.133 (Step 3 with Taylor Polynomial Approximation) The Fourier trans-
form of the Gaussian filter is an exponential, see (8.19), and the Taylor series
expansion for the exponential has the form

eax D 1C ax C O
�
x2
�
:

Applying this expansion to F .gGauss/ with respect to ı and for fixed y gives

F .gGauss/ .ı; y/ D 1 � kyk22
24

ı2 C O
�
ı4
�
: (8.159)

Since of 1=F .gGauss/ is an exponential as well, one obtains the expansion

1

F .gGauss/
.ı; y/ D 1C kyk22

24
ı2 C O

�
ı4
�
: (8.160)

Now, F .gGauss/ and 1=F .gGauss/ are approximated in (8.154) and (8.158) by
quadratic polynomials that are obtained by neglecting the terms of O

�
ı4
�

in (8.159)
and (8.160), see Fig. 8.5 for the one-dimensional situation. It can be seen that the
polynomial approximation of F .gGauss/ is a good approximation only for small
wave numbers and it is completely wrong for high wave numbers. Consequently, the
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Fig. 8.5 F .gGauss/ (left) and 1=F .gGauss/ (right) with their polynomial approximations, ı D 1

most important property of a filter function, the damping of the high wave number
components of .u; p/, is not preserved by its Taylor polynomial approximation.

Inserting (8.159) and (8.160) in (8.154) and (8.158) gives

F
	
u u T



D
 
1� kyk22

24
ı2 C O

�
ı4
�!

F
�
u u T

�
; (8.161)

F
	
uu0T



D
 
1� kyk22

24
ı2 C O

�
ı4
�!

(8.162)

�
"
F . u / 

 
kyk22
24

ı2 C O
�
ı4
�!

F . u /T
#
;

F
	
u0 u T



D
 
1� kyk22

24
ı2 C O

�
ı4
�!

�
" 

kyk22
24

ı2 C O
�
ı4
�!

F . u /  F . u /T
#
:

ut
Remark 8.134 (Step 4 with Taylor Polynomial Approximation) Now, the expres-
sions obtained in Step 3 are simplified using properties of the Fourier transform. All
terms that have as factor the fourth or a higher power of ı are neglected. However,
the other factors of these terms depend on u which in turn depends on ı in some
unknown way. That means, the neglected terms are only formally of fourth order in
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ı. One gets with (A.26) for the large scale advective term from (8.161)

F
	
u u T



D F

�
u u T

� � kyk22
24

ı2F
�
u u T

�C Oformal �ı4�

D F
�
u u T

�C ı2

24
F
�
�
�
u u T

��C Oformal
�
ı4
�
:

For the first cross term (8.162), one obtains with (A.26) and (A.25)

F
	
uu0T



D
 
1 � kyk22

24
ı2

! 
F . u /  kyk22

24
ı2F . u /T

!
C Oformal �ı4�

D
 
F . u /  kyk22

24
ı2F . u /T

!
C Oformal �ı4�

D � ı
2

24

�
F . u /  F .� u /T

�C Oformal
�
ı4
�

D � ı
2

24
F
�
u�.u /T

�C Oformal �ı4� :
In the same way, one gets for the other cross term

F
	
u0 u T



D � ı

2

24
F
�
�. u / u T

�C Oformal
�
ı4
�
:

ut
Remark 8.135 (Step 5 with Taylor Polynomial Approximation—the Taylor LES
Model) The final approximation of the individual terms is computed by applying
the inverse Fourier transform

u u T D u u T C ı2

24
�
�
u u T

�C Oformal �ı4� ;

uu0T D � ı
2

24
u�.u /T C Oformal

�
ı4
�
;

u0 u T D � ı
2

24
� . u / u T C Oformal

�
ı4
�
:

In this way, the approximation of the large scale and cross terms of the so-called
Taylor LES model reads as follows

u u T C uu0T C u0 u T


 u u T C ı2

24

�
�
�
u u T

� � u�.u /T ��.u / u T
�

D u u T C ı2

12
r ur u T ; (8.163)
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where

�
�
u u T

� � u�.u /T ��.u / u T D 2r ur u T (8.164)

was used. Equality (8.164) can be checked by a direct calculation, e.g., considering
just an entry of the tensor and a second order derivative gives with the product rule

@xx
�

u i u j
� D @x

�
@x u i u j C u i@x u j

�
D @xx u i u j C 2@x u i@x u j C u i@xx u j:

ut
Remark 8.136 (Step 3 with Rational Approximation) Based on the observation that
the Fourier transform of the Gaussian filter is approximated very badly for large
wave numbers with the Taylor polynomial approximation, it was proposed in Galdi
and Layton (2000) to use a second order rational approximation of the exponential
of the form

eax D 1

1C ax
C O

�
a2x2

�
:

Applying this subdiagonal Padé approximation to F .gGauss/ gives

F .gGauss/ .ı; y/ D 1

1C kyk22
24

ı2
C O

�
ı4
�

(8.165)

and transforming this formula to 1=F .gGauss/ yields

1

F .gGauss/
.ı; y/ D 1C kyk22

24
ı2 C Oformal �ı4� : (8.166)

The last term in (8.166) is actually O
�
ı4
�
=F .gGauss/ such that it is only formally

of fourth order. The rational approximations of F .gGauss/ and 1=F .gGauss/ are
obtained by neglecting all (formal) fourth order terms in (8.165) and (8.166). The
behavior of F .gGauss/ for high wave numbers is much better approximated than with
the Taylor polynomial, see Fig. 8.6 for a one-dimensional sketch. The approximation
of 1=F .gGauss/ is the same as in the Taylor polynomial case. ut

Remark 8.137 (Steps 4 and 5 with Rational Approximation) The derivation of
the model continues now in the same way as in the Taylor polynomial case.
Inserting (8.165) and (8.166) in (8.154) and (8.158), simplifying the arising terms
using properties of the Fourier transform like (A.25), (A.26), (A.28), neglecting all
terms that are formally of fourth order with respect to ı and applying the inverse



8.4 Large Eddy Simulation: Models Based on Approximations in Wave. . . 547

Fig. 8.6 F .gGauss/ with its
second order rational
approximations, ı D 1

Fourier transform yields

u u T D
�

I � ı2

24
�

��1 �
u u T

�C Oformal
�
ı4
�
; (8.167)

uu0T D � ı
2

24

�
I � ı2

24
�

��1 �
u�. u /T

�C Oformal
�
ı4
�
;

u0 u T D � ı
2

24

�
I � ı2

24
�

��1 �
�. u / u T

�C Oformal
�
ı4
�
:

ut
Remark 8.138 (The (Second Order) Rational LES Model) The approximation of the
large scale and the cross terms for the so-called (second order) rational LES model
has the form, using (8.164) in the derivation,

u u T C uu0T C u0 u T



�

I � ı2

24
�

��1 �
u u T � ı2

24

�
u�.u /T C�. u / u T

��

D
�

I � ı2

24
�

��1 �
u u T � ı2

24
�
�
u u T

�C ı2

12
r ur u T

�

D u u T C ı2

12

�
I � ı2

24
�

��1
r ur u T : (8.168)
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In Galdi and Layton (2000, Formula (2.10)), there is a misprint (minus sign instead
of plus sign). ut
Remark 8.139 (On the Operator in the Rational LES Model) The operator�
I � ı2=24���1 describes an elliptic, second order problem which has to be solved

� ı2

24
�U C U D r ur u T : (8.169)

This problem is a Helmholtz equation. It is called differential filter in turbulence
modeling. In connection with the rational LES model, it is usually called auxiliary
problem. Differential filters are used also in the definition of approximate decon-
volution models (ADM), see (8.178), the Leray-˛ model turbulence model (8.191),
and the Navier–Stokes-˛ model (8.215).

In the analysis of the incompressible Navier–Stokes equations, operators of form�
I � ı2=24���1 are called Yosida approximation of the identity, e.g., see Sohr

(2001, Sect. II.3.4). Such operators approximate functions from L2.˝/ by more
regular functions.

Some properties of the differential filter will be discussed in Sect. 8.5, starting
with Remark 8.153, and of the Galerkin finite element discretization of the
differential filter in Sect. 8.6, starting from Remark 8.176. From (8.167), it can
be already observed that the operator

�
I � ı2=24���1 is an approximation of the

convolution with the Gaussian filter, compare also Remark 8.141. ut
Remark 8.140 (The Differential Filter in a Bounded Domain) If ˝ is a bounded
domain, which is usually the case in computations, the differential filter has to
be equipped with boundary conditions on @˝ . In Galdi and Layton (2000), it is
proposed to use homogeneous Neumann boundary conditions. The only exception
is the case that periodic boundary conditions are prescribed for the flow problem at
some part of the boundary. Then, the differential filter is equipped also with periodic
boundary conditions at those parts of the boundary.

This kind of boundary conditions were applied in simulations, e.g., in Iliescu
et al. (2003) and John et al. (2010). In these simulations, the use of homogeneous
Neumann boundary conditions gave generally reasonable results. ut
Remark 8.141 (The Differential Filter is an Approximation of the Convolution) A
direct calculation, using the rational approximation (8.165) of F .gGauss/ and the
property (A.28) of the Fourier transform, gives

F .gGauss  u/ D F .gGauss/F .u/ 
 1

1C kyk22
24

ı2
F .u/

D F
 �

I � ı2

24
�

��1
u

!
;
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such that the application of the inverse Fourier transform yields

gGauss  u 

�

I � ı2

24
�

��1
u: (8.170)

Thus, the differential filter is an approximation of the convolution operator with the
Gaussian filter.

Relation (8.170) suggests that the rational LES model can be defined with a
convolution instead of the auxiliary problem

u u T C uu0T C u0 u T 
 u u T C ı2

12
gGauss  �r ur u T

�
:

This model is called rational LES model with convolution. However, it is practically
not used, partly because of the overhead for approximating the convolution operator,
see John (2004, Sect. 7.8). ut
Remark 8.142 (A Fourth Order Rational Approximation) The second order polyno-

mial and rational approximations model the sgs term u0u0T by 0, see Remark 8.144.
Using a fourth order rational approximation, one gets a non-trivial model for the
sgs term, see John (2004, Sect. 4.2.3). However, the arising approximation of the
sgs tensor involves the solution of a fourth order partial differential equation and it
involves some higher order terms that are hard to approximate. The only attempt to
explore this model, however only from the point of view of analysis, can be found
in Berselli and Iliescu (2003). ut

8.4.2 Models for the Subgrid Scale Term

Remark 8.143 (On the SGS Term) The sgs term u0u0T is considered to possess
a great influence on the formation of turbulence. Thus, its modeling is of great
importance. ut
Remark 8.144 (The Second Order Fourier Transform Approach) If the sgs term
is modeled with the second order approaches that were used for the large scale
term and the cross terms, Sect. 8.4.1, one obtains with the second order polynomial
approximation of the Fourier transform of the Gaussian filter

u0u0T D ı4

576

�
� u� u T

�C Oformal
�
ı6
�

and with the second order rational approximation

u0u0T D ı4

576

�
I � ı2

24
�

��1 �
� u� u T

�C Oformal
�
ı6
�
:
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Both approximations are formally of fourth order in ı and therefore they will be
neglected in these approaches. That means, one obtains the approximation

u0u0T 
 0;

which proves to be not robust for long time simulations, see John (2004,
Sect. 10.3.3) for a numerical example. ut
Remark 8.145 (The Smagorinsky Model) A popular approach consists in using the
Smagorinsky model (8.67) for approximating the sgs term. However, with the
Fourier space approach, Remark 8.144, one obtains that the sgs term is formally
of fourth order in ı whereas the Smagorinsky model is formally of second order in
ı. There is a contradiction, at least formally. Recall that in the formal higher order
terms there is some dependency on ı which is not known.

In the rational LES models, the Smagorinsky model is used only as a model of
the sgs term. Thus, its influence should be kept smaller than in computations with
the pure Smagorinsky model, which can be achieved by choosing a smaller constant
CS for the rational LES model than for the pure Smagorinsky model. ut
Remark 8.146 (Models Based on Physical Arguments) In Iliescu and Layton
(1998), several eddy viscosity models for modeling the sgs term based on physical
arguments were derived. One of these models has the form

	T D CSı ku � gGauss  u k2 : (8.171)

Using (A.25) gives

u � gGauss  u D F�1 .F .u � gGauss  u //

D F�1 .F .u / � F .gGauss/F . u //

D F�1 ..1 � F .gGauss//F . u // :

For the polynomial approximation (8.159), it is obvious that the term in parentheses
is O

�
ı2
�
. Using the rational approximation (8.165) yields

1 � F .gGauss/ D 1C kyk22
24
ı2 � 1

1C kyk22
24
ı2

C O
�
ı4
� D O

�
ı2
�
:

Altogether, model (8.171) is of third order in ı.
In numerical simulation, model (8.171) is usually applied in such a way that the

convolution operator is approximated by a second order partial differential operator,
see Remark 8.141, i.e.,

	T D CSı

�����u �
�

I � ı2

24
�

��1
u

�����
2

: (8.172)

ut
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8.4.3 The Resulting Models

Remark 8.147 (Models Based on Approximations in Wave Number Space) The
models derived in Sects. 8.4.1 and 8.4.2 can be written concisely in the following
strong form

@tw � r � ..2	 C 	T/D .w//C .w � r/w
Crr C r � ı

2

12

�
Awave

�rwrwT
�� D f in .0;T� �˝;

r � w D 0 in .0;T� �˝;
w .0; �/ D w0 in ˝;

(8.173)

where .w; r/ should be an approximation to . u ; p /. The operator Awave depends on
the approximation of the Fourier transform of the Gaussian filter:

• Awave D I for the Taylor LES model (8.163),
• Awave D �

I � ı2= .24/���1 for the second order rational LES model with
auxiliary problem (8.168),

• Awave D gGauss for the second order rational LES model with convolution
(8.171).

Possible choices for the model of the sgs term 	T are the Smagorinsky model (8.66)
and the Iliescu–Layton model (8.172).

In a bounded domain, usually the same boundary conditions are applied for w
as they are prescribed for u. The differential filter is equipped with homogeneous
Neumann boundary conditions, see Remark 8.140. ut
Remark 8.148 (Analytical Results)

• For the Taylor LES model with Smagorinsky sgs term, the existence, uniqueness,
and stability of a weak solution for all times was proved in Coletti (1997) under
the assumption that 	T � ı2=6: This condition means that the Smagorinsky term
dominates the Taylor LES model. This relation is not correct since the Taylor
LES model is a model for the large scale and cross term, which are Oformal

�
ı2
�
,

whereas the sgs term is Oformal
�
ı4
�
. Under a similar condition, a finite element

error analysis was performed in Iliescu et al. (2002).
• The existence and uniqueness of a solution of the rational LES model was studied

in Berselli et al. (2002). This model was considered with auxiliary problem
but without subgrid scale term, 	T D 0 in (8.173). In addition, the case of a
space-periodic setting was investigated, i.e., ˝ D .0;L/3 and periodic boundary
conditions on @˝ . Periodic boundary conditions are applied in the auxiliary
problem as well. The existence and uniqueness of a solution in an appropriate
function space for small time intervals T D O

�
ı4
�

could be proved. It was
already mentioned in Remark 8.144 that the rational LES model without model
for the sgs term is not robust in long time simulations. The proof uses the
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Fig. 8.7 Example 8.149. Rational LES model (8.173) with Awave D �
I � ı2= .24/�

�
�1

, ıK D
2hK;short, and with the Smagorinsky model as model of the sgs term

Galerkin method in a similar way as described in Sect. 7.1. Further analytical
results can be found in Barbato et al. (2007).

A finite element error analysis of the rational LES model is not available.
ut

Example 8.149 (Turbulent Channel Flow at Re� D 180) This benchmark problem
is described in Example D.12. The setup of the simulations was exactly as for
the Smagorinsky LES model, compare Example 8.128. The auxiliary problem was
equipped with homogeneous Neumann boundary conditions.

Results for the rational LES model (8.173) with auxiliary problem, i.e., with
Awave D �

I � ı2= .24/�
��1

, and with the Smagorinsky model as model for the sgs
term are presented in Fig. 8.7. Actually, one would expect that with the rational
LES model, the constant in the Smagorinsky model should be smaller than for the
Smagorinsky LES model, since the Smagorinsky model is used to model a term that
is Oformal

�
ı4
�
. The most reasonable result was obtained in fact for CS D 0:005.

Simulations with smaller values of CS and with the van Driest damping (8.152) and
CS D 0:005 blew up. With CS D 0:005, the mean velocity field is approximated
reasonably well. However, only a very bad prediction of the second statistic uh

1;rms is
obtained.

Similar conclusions with respect to the first and second order statistics can be
drawn from the results for the rational LES model with the Iliescu–Layton model
for 	T, compare Fig. 8.8.

As mentioned in Example D.12, it is advised to incorporate contributions of the
actually used turbulence models in the computation of the second order statistics.
In the performed simulations, such contributions were not included. Perhaps, their
inclusion would improve the results somewhat. ut
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Fig. 8.8 Example 8.149. Rational LES model (8.173) with Awave D �
I � ı2= .24/�

�
�1

, ıK D
2hK;short, and with the Iliescu–Layton model as model for the sgs term

8.5 Large Eddy Simulation: Approximate Deconvolution
Models (ADMs)

Remark 8.150 (Basic Idea) Approximate deconvolution models (ADM) were
introduced in Stolz and Adams (1999) and Stolz et al. (2001). Consider the space-
averaged Navier–Stokes equations

@t u � 2	r � D .u /C r �
	
uuT



C r p D f in .0;T� � R

d;

r � u D 0 in .0;T� � R
d;

(8.174)

see (8.28). As already discussed in Remark 8.32, the momentum equation in (8.174)
is not yet an equation for . u ; p / since the nonlinear convective term still depends
on u.

Often, the filter is defined by a convolution with an appropriate filter function.
For this reason, the filter operator is denoted by Gconv, i.e., u D Gconv.u/. If the
filter operator is invertible, then u D Gdeconv. u /, where Gdeconv D G�1

conv is the
inverse filter operator or the deconvolution operator. Then, the momentum equation
of (8.174) becomes

@t u � 2	r � D . u /C r �
	

Gdeconv. u /Gdeconv. u /T



C r p D f ; (8.175)

which is an equation for . u ; p /, involving the filter operator and its inverse.
Even if Gdeconv exists and would be efficiently computable, (8.175) does not

define a turbulence model since the nonlinear term contains still all scales of the flow
and it has the same complexity as the nonlinear term of the Navier–Stokes equations.
The proposal of Stolz and Adams (1999) and Stolz et al. (2001) consists in replacing
in (8.175) the deconvolution operator by an approximation of the deconvolution
(or of the inverse filter). Denoting the approximate deconvolution of order N by
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Gdeconv;N gives the momentum equation

@t u � 2	r � D .u /C r �
	

Gdeconv;N. u /Gdeconv;N. u /T



C r p D f ; (8.176)

where the order will be specified more precisely in Remark 8.156. Equation (8.176)
is an equation for . u ; p / with the known and computable filter operator and
approximate deconvolution operator.

Since ADMs compute an approximation of .u ; p /, the solution will be denoted
also in this case by .w; r/. Hence, an ADM has the form

@tw � 2	r � D .w/
Cr �

	
Gdeconv;N.w/Gdeconv;N.w/T



C rr D f in .0;T� � R

d;

r � w D 0 in .0;T� � R
d:

(8.177)

ut
Remark 8.151 (Mathematical Literature) There are a number of papers on the
analysis and numerical analysis of ADMs. An overview of the available results can
be found in the monograph Layton and Rebholz (2012).

Note that the space-average Navier–Stokes equations (8.174), which are the
basis of ADMs, were derived with the assumption of the commutation of the filter
operator and the differential operators, see Remark 8.28. As it was discussed in
Sect. 8.2, this assumption is usually not satisfied for filters that are defined by
convolution. An exception is the case of space-periodic boundary conditions. In
ADMs, usually the differential filter, see (8.169) or (8.178) below, is used. The
commutation error of the differential filter will be discussed in Remark 8.154
and Example 8.155. Surveying the mathematical literature of ADMs, one finds
that exclusively space-periodic boundary conditions are considered. As already
mentioned in Remark 8.2, this kind of boundary conditions is not in the focus here.
Since a survey of mathematical results is available, Layton and Rebholz (2012), here
only some selected topics of ADMs will be presented. ut
Example 8.152 (Inverse Deconvolution Operators) In general, the inverse operator
of the filter operator does not need to exist. However, for some examples, one can
give the explicit inverse operator.

• For the Gaussian filter, a representation of the deconvolution operator is obtained
by applying the inverse Fourier transform to (8.156)

u D Gdeconv .u / D F�1 .F .u// D F�1
� F . u /
F .gGauss/

�
:

• Let the filter be defined by the differential filter

� ı2� u C u D u in ˝; (8.178)



8.5 Large Eddy Simulation: Approximate Deconvolution Models (ADMs) 555

which was already introduced within the framework of the rational LES model
in (8.169). This equation has to be equipped with boundary conditions. A
possible choice is u D u on @˝ . Then, it holds

u D Gconv.u/ D ��ı2�C I
��1

u;

u D Gdeconv .u / D ��ı2�C I
�
. u / :

ut
Remark 8.153 (On the Boundary Conditions for the Differential Filter) Assuming
that u possesses Dirichlet boundary conditions, then a straightforward choice con-
sists in using the same conditions for u . If these conditions are no-slip conditions,
then one finds from the definition of the differential filter that not only u D 0 at the
boundary but also � u D 0 at the boundary. Thus, u is near the boundary (in the
layer) close to a harmonic function, e.g., a linear function, which probably does not
correctly reflect the physical behavior of the large scales. ut
Remark 8.154 (The Commutation of Filtering and Spatial Derivatives for the Differ-
ential Filter) Let u and u be sufficiently smooth, then it follows by differentiating
the strong form of the filter equation and using the Theorem of Schwarz that

ru D r �
u � ı2� u

� D r u � ı2� .r u / :

On the other hand, the differential filter, extended to tensor-valued functions, for ru
is by definition

ru D ru � ı2�
	

ru


:

Thus, r u and ru satisfy the same elliptic partial differential equation with the
same right-hand side. If they would satisfy the same boundary condition, then they
are identical and filtering and commutation commute.

In the situation of space-periodic boundary conditions for u, also space-periodic
boundary conditions for u will be prescribed. Then, also r u and ru are space-
periodic, i.e., they satisfy the same boundary condition, and thus differentiation and
filtering commute.

In the case that ˝ is a bounded domain, Dirichlet boundary conditions are
prescribed for u, and the same boundary conditions are prescribed for each filtered
function as for the corresponding unfiltered function, then the boundary conditions
are generally not identical, see Example 8.155. ut
Example 8.155 (Commutation Error for the Differential Filter in a Bounded
Domain) Consider u.x/ D sin.x/C ı2 sin.x/ in .0; �/. Then it is u.0/ D u.�/ D 0.
Using the same boundary conditions for the filter, the differential filter (8.178) is
equipped with u .0/ D u .�/ D 0, such that u .x/ D sin.x/.

On the one hand, it is u 0.x/ D cos.x/ and consequently u 0.0/ D 1, u 0.�/ D �1.
For defining the filter of u0.x/ D cos.x/ C ı2 cos.x/, one takes the same boundary
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conditions as for the unfiltered function, i.e., u0 .0/ D u0.0/ D 1 C ı2 and
u0 .�/ D u0.�/ D �1 � ı2. These are not the same boundary vales as for u 0.x/
and consequently u0 .x/ ¤ u 0.x/. ut
Remark 8.156 (Van Cittert Approximate Deconvolution) The probably most popu-
lar approach for defining an approximate deconvolution is the van Cittert approxi-
mate deconvolution, van Cittert (1931).

Let Gconv W L2.˝/ ! L2.˝/ be a convolution operator, i.e., Gconv.u/ D u .
Consider the fixed point equation

u D u C . u � Gconv.u// : (8.179)

The N-th order van Cittert deconvolution Gdeconv;N . u / is defined by applying a fixed
point iteration to (8.179) for approximating u, starting with Gdeconv;0 . u / D u and
performing N steps:

Gdeconv;0 . u / D u ; (8.180)

Gdeconv;n . u / D Gdeconv;n�1 . u /C .u � Gconv .Gdeconv;n�1 . u /// ;

n D 1; : : : ;N. ut
Remark 8.157 (Properties of the Van Cittert Approximate Deconvolution)

• The first members of the family of van Cittert approximate deconvolutions can
be derived in a straightforward way from (8.180)

Gdeconv;0 . u / D u ;

Gdeconv;1 . u / D Gdeconv;0 . u /C . u � Gconv .Gdeconv;0 . u ///

D u C . u � Gconv .u // D 2 u � u ;

Gdeconv;2 . u / D 2 u � u C �
u � Gconv

�
2 u � u

��

D 2 u � u C u � 2 u C u

D 3 u � 3 u C u :

It can be seen that the approximate deconvolution of order N is defined by a
sum that involves terms with multiple (at most N) applications of the filter to the
function u.

• Rewriting the fixed point iteration (8.180), one finds the recursion

Gdeconv;n . u / D .I � Gconv/Gdeconv;n�1 . u /C u ; n D 1; : : : ;N:

Straightforward calculations, using Gdeconv;0 .u / D u , give

Gdeconv;0 . u / D .I � Gconv/
0 Gdeconv;0 . u / D u ;

Gdeconv;1 . u / D .I � Gconv/ u C .I � Gconv/
0 u ;
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Gdeconv;2 . u / D .I � Gconv/Gdeconv;1 . u /C .I � Gconv/
0 Gdeconv;0 . u /

D .I � Gconv/
2 u C .I � Gconv/ u C .I � Gconv/

0 u ;

from what one finds by induction that

Gdeconv;N . u / D
NX

nD0
.I � Gconv/

n . u / ; 0 � N < 1: (8.181)

ut
Lemma 8.158 (Representation of the Error of the Approximate Deconvolution)
Consider the space-periodic case and the differential filter. Then, it is for any v 2
L2.˝/

v � Gdeconv;NGconvv D .�1/NC1 ı2NC2 .�Gconv/
NC1 v: (8.182)

Proof Using the binomial theorem, one finds that

Gconv .I � Gconv/
n D Gconv C nG2

conv C : : :C GnC1
conv D .I � Gconv/

n Gconv; n � 0:

From rewriting (8.181) term by term, it follows that GconvGdeconv;N D Gdeconv;NGconv.
Applying the representation (8.181) of the van Cittert approximate deconvolution,
one obtains, using the canceling of terms in telescopic sums,

Gdeconv;NGconv D GconvGdeconv;N D Gconv

NX
nD0

.I � Gconv/
n

D
NX

nD0
.I � Gconv/

n � .I � Gconv/

NX
nD0

.I � Gconv/
n

D
NX

nD0
.I � Gconv/

n �
NC1X
nD1

.I � Gconv/
n

D I � .I � Gconv/
NC1 :

It follows that

v � Gdeconv;NGconvv D .I � Gconv/
NC1 v: (8.183)

Since for the differential filter it is

.�ı2�C I/Gconv D I;
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one gets

I � Gconv D �ı2�Gconv:

Inserting this expression in (8.183) gives (8.182). �

Lemma 8.159 (Selfadjointness of the Filter Operator) Let the filter be given
by convolution (8.12) with a symmetric filter function or by the differential
filter (8.178), where either homogeneous Dirichlet boundary conditions are used
or the space-periodic case is considered. Then it holds

. u ;v/ D .u; v / 8 u; v 2 L2.˝/: (8.184)

Proof Filtering with the convolution has to be considered in R
d. Then, one obtains

with (8.12), the application of Fubini’s theorem, and the symmetry of the filter
function

. u ;v/ D
Z
Rd

�Z
Rd

gfil .x � z/ u .z/ dz
�
v.x/ dx

D
Z
Rd

u .z/
�Z

Rd
gfil .x � z/ v.x/ dx

�
dz

D
Z
Rd

u .z/
�Z

Rd
gfil .z � x/ v.x/ dx

�
dz D .u; v / :

With the assumed boundary conditions, the variational form of the differential
filter of u is given by

.u;w/ D . u ;w/C ı2 .r u ;rw/ ;

where the test functions are from H1
0.˝/ or the corresponding space with space-

periodic boundary conditions. For v 2 L2.˝/, the function v is sufficiently smooth
such that it can be used as test function, since it also obeys the correct boundary
conditions. Choosing w D v gives

.u; v / D . u ; v /C ı2 .r u ;r v / :

With the same arguments, one can use u as test function. Using the definition of the
differential filter for v with w D u yields

. u ;v/ D .v; u / D . v ; u /C ı2 .r v ;r u / ;

which proves the statement for the differential filter. �

Remark 8.160 (On the Analysis of ADMs) As already mentioned at the beginning of
this section, the analysis for ADMs is performed exclusively for the space-periodic
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case. To give a flavor of applying the properties of the deconvolution operator in this
case, the proof of a stability estimate for the lowest order ADM will be presented
below. A short survey of available results will be given in Remark 8.163. ut
Remark 8.161 (The Lowest Order ADM) The weak formulation of the lowest order
ADM in the space-periodic case with the differential filter has the form: Find .w; r/
such that

Z T

0

h
.@tw; v/C .	rw;rv/C

	
r �

	
wwT



; v



� .r � v; r/C .r � w; q/
i

dt D
Z T

0

�
f ; v

�
dt 8 .v; q/; (8.185)

where all functions belong to appropriate spaces. ut
Lemma 8.162 (Stability Estimate (Energy Equality) for the Zeroth Order
ADM) Let w be a sufficiently regular solution of (8.185), then it holds for all T > 0

1

2
kw.T/k2L2.˝/ C ı2

2
krw.T/k2L2.˝/ C 	 krwk2

L2.0;TIL2.˝//

Cı2	 k�wk2
L2.0;TIL2.˝//

D 1

2
kw.0/k2L2.˝/ C ı2

2
krw.0/k2L2.˝/ C

Z T

0

. f ;w/ dt: (8.186)

Proof As always, one has to choose the test function such that the nonlinear
convective term vanishes. Using the commutation of filtering and differentiation
in the space-periodic case, (8.184), and (2.29) gives

	
r �

	
wwT



; v



D
	

r � .wwT/ ; v



D �r � �wwT
�
; v
�

D ..w � r/w; v / D nconv .w;w; v / :

Hence, one has to choose v D w which is equivalent to choosing v D��ı2�C I
�
w. One has for sufficiently smooth functions

r ��w D @x
�
@xxw1 C @yyw1 C @zzw1

�
C@y

�
@xxw2 C @yyw2 C @zzw2

�
C@z

�
@xxw3 C @yyw3 C @zzw3

�
(8.187)

D �
@xx C @yy C @zz

� �
@xw1 C @yw2 C @zw3

� D �.r � w/ :
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Since r �w D 0, see (8.177), it follows that r ��w D 0. Inserting this test function
in (8.185) yields

Z T

0

��
@tw;

��ı2�C I
�
w
�C �

	rw;r ���ı2�C I
�
w
���

dt

D
Z T

0

�
f ;
��ı2�C I

�
w
�

dt:

Applying integration by parts, where the boundary integrals cancel due to the space-
periodic conditions, and using (8.184) gives

Z T

0

�
.@tw;w/C ı2 .@trw;rw/C .	rw;rw/C ı2 .	�w; �w/

�
dt

D
Z T

0

	
f ; .�ı2�C I/w



dt D

Z T

0

. f ;w/ dt: (8.188)

Applying (7.13) leads to

Z T

0

�
d

dt

1

2
kwk2L2.˝/ C ı2

2

d

dt
krwk2L2.˝/ C .	rw;rw/C ı2 .	�w; �w/

�
dt

D
Z T

0

. f ;w/ dt:

Integration on .0;T/ gives finally (8.186). �

Remark 8.163 (Short Survey of Analytical Results for ADMs) If not stated oth-
erwise, the results mentioned in this remark are for the space-periodic case, the
differential filter, and the van Cittert approximate deconvolution.

• The existence of a weak solution of the zeroth order ADM was proved in
Layton and Lewandowski (2003) and its uniqueness was shown in Layton and
Lewandowski (2006), see also Layton and Rebholz (2012).

• ADMs of order N were studied in Dunca and Epshteyn (2006). In this paper,
the existence and uniqueness of a weak solution was proved. The proof of the
existence uses the Galerkin method, which was introduced in Sect. 7.1. The
existence and uniqueness results obtained indicate that ADMs are less complex
than the three-dimensional Navier–Stokes equations, compare Remark 8.22.

• Another main topic in Dunca and Epshteyn (2006) is an estimate of the modeling
error, i.e., the error between u and w. It was shown that for sufficiently smooth
solutions it holds that k u � wkL1.0;TIL2.˝// and kr . u � w/kL2.0;TIL2.˝// are

O
�
ıNC1�. The proof uses the error representation (8.182).

• In Stanculescu (2008), a general approximate deconvolution operator Gdeconv;N

is considered in combination with the differential filter. Conditions on Gdeconv;N

were derived that ensure the existence and uniqueness of a weak solution, which
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guarantee regularity of the weak solution, and which ensure an energy equality.
The conditions on Gdeconv;N are

ı Gdeconv;N is a bounded linear operator on L2.˝/,
ı Gdeconv;N is selfadjoint and positive definite,
ı Gdeconv;N commutes with differentiation.

It is pointed out that there are deconvolution operators besides the van Cittert
deconvolution that satisfy these conditions and also deconvolution operators
which do not.

• The convergence of an ADM for fixed ı for N ! 1 was studied in Berselli
and Lewandowski (2012). It was shown that a subsequence of solutions
f.wN ; rN/g1

ND1 converges to a solution, in an appropriate sense, of the space-
averaged Navier–Stokes equations (8.28).

ut
Remark 8.164 (Finite Element Error Analysis of ADMs)

• A numerical scheme for the zeroth order approximate deconvolution model is
studied in Manica and Merdan (2007). In this paper, the situation of a bounded
domain and no-slip boundary conditions is considered. Hence, differentiation and
filtering do not commute and the momentum balance has the form

@tw � 	�w C r � .w wT/ C rq D f :

To handle the nonlinear convective term, it is proposed to use the same kind
of test function as in the proof of Lemma 8.162, namely

��ı2�C I
� Qv. Then,

this term can be rewritten in the form nskew.w;w; Qv/ and it vanishes for Qv D
w. However, the use of this kind of test functions leads to a fourth order term,
compare the term ı2 .	�w; �w/ in (8.188). A mixed finite element formulation
is considered to handle this situation, which is analyzed in the usual way. A main
tool of the analysis is a modified Stokes projection. The optimal choice of ı
comes from the properties of the modified Stokes projection and it is ı D O .h/.

• A so-called reduced ADM was proposed and analyzed in Galvin et al. (2014).
The derivation of this model starts with defining the Helmholtz filter with an
additional incompressibility constraint. Then, the filtered variable is inserted in
the momentum equation of the Navier–Stokes equations and the arising fourth
order terms are approximated by second order terms using the approximate
deconvolution operator. This approach gives an additional viscous term of the
form �ı2�.@tw/. A similar approach was used for deriving a reduced Navier–
Stokes-˛ model, see Example 8.208. For the reduced ADM, a Crank–Nicolson
IMEX scheme was analyzed, unconditional stability of the solution was proved,
and error estimates with respect to the velocity solution of the continuous reduced
ADM and to the filtered velocity of the Navier–Stokes equations were shown.

ut
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8.6 The Leray-˛Model

Remark 8.165 (Motivation) In Leray (1934b), the existence of a weak solution
of the Navier–Stokes equations (8.1) (in this paper called turbulent solution) was
proved by considering a sequence of simplified problems, where the simplification
consisted in replacing in the nonlinear term of the Navier–Stokes equations the
convection field by a smooth or regularized velocity field, see Remark 7.10. The
case ˝ D R

3 was considered and the regularization was defined by a convolution
with a filter function. Then, the behavior was studied for the filter width tending
to zero. Based on this idea from the analysis of the Navier–Stokes equations, a
turbulence model can be proposed, the so-called Leray-˛ model. ut
Remark 8.166 (The Regularization Operator) Since the numerical calculation of
convolution operators is expensive and in the case of a bounded domain one has to
consider a cut-off of the domain of integration, see Remark 8.153, the regularization
operator in the Leray-˛ model is usually the differential filter. It was already noted
in Remark 8.141 that the differential filter is an approximation of the convolution
with the Gaussian filter function. ut
Remark 8.167 (Transforming an Abstract Regularized Equation into an Equation
for the Large Scales) Following Geurts and Holm (2003, 2006), a regularization
model can be expressed similarly to the basic form of Eq. (8.28) of LES with the sgs
tensor given in (8.29). Consider a model of the form

@tw � 	�w C .w � r/w C rr D f ;
r � w D 0;

Rw D w;
(8.189)

where R is some linear regularization operator that is invertible. It will be assumed
that the regularization operator and its inverse commute with derivatives.

Using the commutation property of the inverse operator and its linearity yields

r � w D r � �R�1w
� D R�1 .r � w/ D 0: (8.190)

In Geurts and Holm (2003, 2006), the model was equipped from the beginning with
the constraint (8.190).

Next, one can write the convective term in the form r � �ww T
�
, see (2.28).

Replacing now in the first equation w with Rw gives

@t .Rw / � 	� .Rw /C r � �.Rw / w T
�C rr D f :

With the assumption of the commutation of the regularization operator with all
derivatives, one obtains

R .@t w /� R .	�w /C R
�r � �w w T

��C rr

D f � �r � �.Rw / w T
� � R

�r � �w w T
���
:
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The application of the inverse operator, defining r D R�1r, f D R�1f , and using
again the commutation property and the linearity of R�1 leads to

@t w � 	�w C r � �w w T
�C r r

D f � �r � �R�1 �.Rw / w T
�� � r � �w w T

��

D f � r �
	
ww T � w w T



:

In this way, the regularized model (8.189) is written in a similar form as the abstract
LES model (8.28), where the sgs stress tensor T from (8.29) is replaced by an
asymmetric tensor which contains in its first term already the filtered velocity field.
Note that the asymmetry contradicts the first property of models for the sgs stress
tensor given in Remark 8.64. ut

8.6.1 The Continuous Problem

Remark 8.168 (The Leray-˛ Model) Let˝ D R
d, d 2 f2; 3g, be a bounded domain

with Lipschitz boundary 
 and let ˛ > 0 be a constant. Then, the Leray-˛ model
with homogeneous boundary conditions for the velocity is given by

@tw � 	�w C .w � r/w C rr D f in .0;T� �˝;
r � w D 0 in .0;T� �˝;

w D 0 on .0;T� � 
;
w.0; �/ D u0 in ˝;

�˛2�w C w D w in .0;T� �˝;
w D 0 on .0;T� � 
;Z

˝

r dx D 0 in .0;T�:

(8.191)

The smoothed or regularized velocity field is obtained by the solution of three scalar
Helmholtz equations (differential filter).

In the analysis, the case of periodic boundary conditions, see Remark 2.31,
is considered, i.e., ˝ is a cube and w and w are equipped with space-periodic
boundary conditions. ut
Remark 8.169 (The Divergence of w ) Assuming sufficient smoothness of w ,
taking the divergence of the differential filter, and using (8.187) gives

� ˛2� .r � w /C r � w D 0 in .0;T� �˝: (8.192)

Equation (8.192) is a Helmholtz equation for r � w with homogeneous right-hand
side. Thus, its solution depends only on the boundary conditions.
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In the case of a bounded domain, boundary values for r � w cannot be derived
from (8.191). Hence, it is not clear whether or not w is divergence-free. From the
practical point of view, this issue might not be that important since finite element
velocities are usually not (weakly) divergence-free and thus there is no reason why
the (discrete) regularization should be divergence-free.

For periodic boundary conditions, it follows from the periodicity of w that also
r � w possesses periodic boundary conditions. Since the Helmholtz problem with
periodic boundary conditions has a unique solution, which can be proved, e.g., by an
easy extension of Kreiss and Lorenz (2004, Lemma 9.1.2), one gets that r � w D 0

is this solution. Hence, w is divergence-free.
In Geurts and Holm (2003, 2006), where the constraint r � w D 0 was

used, an example was considered that possesses periodic boundary conditions in
two directions and a free-slip condition in the third direction. However, the third
direction was not of importance for the turbulent character of the considered flow.

ut
Theorem 8.170 (Existence and Uniqueness of a Solution in the Space-Periodic
Case) Let˝ D .0; 2�L/3, L > 0, and (8.191) be equipped with periodic boundary
conditions

@tw � 	�w C .w � r/w C rr D f in .0;T� �˝;
r � w D 0 in .0;T� �˝;

.w; r/ is periodic on .0;T� � 
;
w.0; �/ D u0 in ˝;

�˛2�w C w D w in .0;T� �˝;
w is periodic on .0;T� � 
;Z

˝

r dx D 0 in .0;T�:

(8.193)

Let

Hdiv;per.˝/ D
�
v W v 2 L2.˝/;r � v D 0; v is periodic in˝;

Z
˝

v dx D 0


;

and V D Hdiv;per.˝/\ H1.˝/.
If f 2 Hdiv;per.˝/ and u0 2 V, then (8.193) has a unique weak solution which is

even a strong solution in .0;T/. That means, w satisfies

d

dt
.w; v/C 	 .rw;rv/C n .w ;w; v/ D . f ; v/ 8 v 2 V;

where w D �
I � ˛2���1 w and

w 2 C .Œ0;T�I V/ \ L2
�
.0;T/I V \ H2.˝/

�
; @tw D L2

�
.0;T/I Hdiv;per.˝/

�
:

Proof This theorem is stated in Cheskidov et al. (2005).
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The proof for the case ˝ D R
3 follows from the analysis of Leray (1934b). For

the proof in the periodic case, it is mentioned in Cheskidov et al. (2005) that similar
arguments can be applied as in Foias et al. (2002). �

Remark 8.171 (On Theorem 8.170) The existence and uniqueness of a weak solu-
tion of (8.193) can be proved even with weaker regularity of the data f and u0, see
Cheskidov et al. (2005) for the concrete statement. ut
Remark 8.172 (Existence of an Attractor) It is shown in Cheskidov et al. (2005)
that with the regularity assumptions f ;u0 2 Hdiv;per.˝/ there exists a unique global
attractor ALer for the velocity. ut
Remark 8.173 (Definition of the Viscous Dissipation Length Scale) The viscous
dissipation length scale is the smallest scale that is needed to obtain a complete
resolution of the flow field defined by the Leray-˛ model. The definition of
this length scale is similar to the definition of the Kolmogorov length scale for
the Navier–Stokes equations, see (8.3). Thus, one needs an expression for the
dissipation of turbulent energy. It is remarked in Cheskidov et al. (2005) that a worst
case scenario is given by

"Ler D 	

.2�L/3
sup

u02ALer

lim sup
t!1

1

t

Z t

0

krw.�/k2L2.˝/ d�:

Then, the viscous length scale of the Leray-˛ model is defined by

�	;Ler D
�
	3

"Ler

�1=4
:

Since the goal of the model consists in reducing the complexity of the Navier–Stokes
equations, it can be expected that �	;Ler > � or even �	;Ler � �. ut
Remark 8.174 (The Dimension of the Attractor) To estimate the dimension of the
global attractor, the Leray-˛ model is linearized about a trajectory in the attractor
and the deviation is studied. The deviation satisfies a first order linear ordinary
differential equation. There is a classical solution theory of this type of equations.
In particular, it is well known that the norm of the solution (in an appropriate space)
can be estimated by the norm of the initial condition times an exponential factor.
In order that the deviation tends to zero, the argument of this exponential factor
has to be negative. In Cheskidov et al. (2005), this argument is estimated and the
condition that it should be negative gives an estimate of the Hausdorff dimension of
the attractor

dH.ALer�/ � c

�
L

�Ler

�12=7 �
1C L

˛

�9=14
(8.194)

with some universal constant, which can be estimated explicitly. ut
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Remark 8.175 (Consequence of Estimate (8.194)) Already the fact that it is pos-
sible to prove the existence and uniqueness of a weak solution, Theorem 8.170,
suggests that the Leray-˛ model is less complex than the Navier–Stokes equations.
The estimate of the dimension of the attractor allows to quantify this suggestion to
some extent.

The power 12=7 of the attractor of the Leray-˛model, for fixed ˛, is considerably
smaller than the power 3 of the invariant bounded set X for the Navier–Stokes
equations, see (8.10). In addition, one expects that �Ler > � or even �Ler � �, see
Remark 8.173. Altogether, (8.194) indicates that the number of degrees of freedom
needed to simulate a flow modeled with the Leray-˛ model is much smaller than for
a flow modeled with the Navier–Stokes equations.

In simulations, ˛ will depend on the mesh width, see Remark 8.185. Inserting
the estimate �Ler . ˛ in (8.194) gives the estimate of the dimension 12=7C9=14D
33=14 2 .2; 3/. Also with this estimate, in combination with the expectation
�Ler > � or �Ler � �, the Leray-˛ model is an appropriate candidate for turbulence
modeling. ut

8.6.2 The Discrete Problem

Remark 8.176 (On the Application of the Differential Filter in Simulations) In
numerical simulations, the differential filter as solution of a Helmholtz equation
can be only approximated. For finite element methods, a straightforward approach
consists in discretizing the Helmholtz equation in the velocity space, which gives
the so-called discrete differential filter. The finite element error analysis requires
some estimates of the discrete differential filter, which will be given next.

Since the differential filter requires to solve a Helmholtz equation for each
component of the velocity separately, the analysis of the discrete differential filter
will be presented for the scalar case. To avoid the introduction of further notations
for this case, the continuous space will be denoted by V D H1

0.˝/ and the
conforming finite element space by Vh � V . ut
Remark 8.177 (Differential Filter and Discrete Differential Filter) Let ˝ � R

d,
d 2 f2; 3g, be a bounded domain with Lipschitz boundary 
 and ˛ > 0. Then the
differential filter of u 2 V is the unique solution u 2 V of

˛2 .r u ;rv/C . u ;v/ D .u; v/ 8 v 2 V: (8.195)

The discrete differential filter is the solution uh 2 Vh of

˛2
�r uh ;rvh

�C �
uh ;vh

� D �
u; vh

� 8 vh 2 Vh: (8.196)

ut
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Lemma 8.178 (Properties of the Discrete Differential Filter) The discrete differ-
ential filter is selfadjoint, i.e., it is

	
uh

h
;vh



D
	

uh; vh
h



8 uh; vh 2 Vh: (8.197)

Let uh 2 Vh be a time-dependent function, then it is @t uh
h D @tuh

h 2 Vh, i.e., the
filter and the differentiation in time commute.

Proof Since uh
h 2 Vh, one can apply the definition (8.196) of the discrete

differential filter with uh
h

as test function and obtains
	

uh
h
;vh



D
	

uh
h
; vh

h



C ˛2
	
r uh

h
;r vh

h


:

On the other hand, one gets with the test function vh
h 2 Vh

	
uh; vh

h



D
	

uh
h
; vh

h



C ˛2
	
r uh

h
;r vh

h


:

Combining these two equations proves (8.197).
Let uh 2 Vh be given and let vh 2 Vh be an arbitrary function, both functions

might be time-dependent. Note that the filters of uh; vh, the temporal derivatives
of uh; vh and their filters, and the filters of the temporal derivative are contained
in Vh as well. Differentiating the definition (8.196) for uh with respect to time,
commuting integration in space and differentiation in time, applying the product
rule, and commuting temporal and spatial derivatives gives

�
@tu

h; vh
�C �

uh; @tv
h
�

D
	
@t uh

h
; vh



C
	

uh
h
; @tv

h



C ˛2
	
r@t uh

h
;rvh



C ˛2

	
r uh

h
;r@tv

h


:

On the other hand, using the definition (8.196) of the discrete filter, one obtains

�
@tu

h; vh
�C �

uh; @tv
h
�

D
	
@tuh

h
; vh



C ˛2

	
r @tuh

h
;rvh



C
	

uh
h
; @tv

h



C ˛2
	
r uh

h
;r@tv

h


:

Combining these equations yields

	
@t uh

h � @tuh
h
;vh



C ˛2
	
r
	
@t uh

h � @tuh
h


;rvh



D 0 8 vh 2 Vh:

Since the left-hand side of this equation defines an inner product in Vh, the
assumptions of the Theorem of Lax–Milgram, Theorem B.4 are satisfied and
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applying this theorem it follows that @t uh
h � @tuh

h D 0 is the unique solution
of this equation. �

Lemma 8.179 (Stability of the Discrete Differential Filter) Let u 2 V, then it
holds

�� uh
��

L2.˝/
� kukL2.˝/ ; (8.198)

��r uh
��

L2.˝/
� krukL2.˝/ : (8.199)

Proof Inserting vh D uh in (8.196), applying the Cauchy–Schwarz inequal-
ity (A.10), and Young’s inequality (A.5) yields

˛2
��r uh

��2
L2.˝/

C �� uh
��2

L2.˝/
� kukL2.˝/

�� uh
��

L2.˝/
� kuk2L2.˝/

2
C
�� uh

��2
L2.˝/

2
:

Bounding the first term on the left-hand side by zero from below gives immedi-
ately (8.198).

To prove the second estimate, one defines the discrete Laplacian �h W V ! Vh

by

�
�hu; vh

� D � �ru;rvh
� 8 vh 2 Vh: (8.200)

Applying this definition to the first term of (8.196) gives

�r uh ;rvh
� D � ��h uh ;vh

�
:

Inserting now vh D �h uh in (8.196) leads to

�˛2 ���h uh
��

L2.˝/
C �

uh ;�h uh
� D �

u; �h uh
�
;

such that with (8.200)

˛2
���h uh

��
L2.˝/

C ��r uh
��

L2.˝/
D �ru;r uh

�
: (8.201)

With the same reasoning as in the first part of the proof, one obtains now (8.199).�

Lemma 8.180 (Error Estimate for the Discrete Differential Filter in Terms of
u) Let u 2 V with �u 2 L2.˝/, then it is

˛2
��r �u � uh

���2
L2.˝/

C ��u � uh
��2

L2.˝/
(8.202)

� C

�
inf
vh2Vh

	
˛2
��r �

u � vh
���2

L2.˝/ C ��u � vh
��2

L2.˝/



C ˛4 k�uk2L2.˝/

�
;
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where C does not depend on ˛ and h. Consequently, one has

��r �
u � uh

���
L2.˝/

� C

˛

�
.˛ C h/ krukL2.˝/ C ˛2 k�ukL2.˝/

�
; (8.203)

��u � uh
��

L2.˝/
� C

�
.˛ C h/ krukL2.˝/ C ˛2 k�ukL2.˝/

�
: (8.204)

Proof The proof proceeds in principle along the standard lines of proving finite
element error estimates. The only non-standard issue is that the continuous function
in the error is also on the right-hand side of the discrete problem.

By the regularity assumption, u satisfies

˛2
�ru;rvh

�C �
u; vh

� D �˛2 ��u; vh
�C �

u; vh
� 8 vh 2 Vh:

Denoting the error by e D u � uh and subtracting (8.196) from this identity yields
an error equation

˛2
�re;rvh

�C �
e; vh

� D �˛2 ��u; vh
� 8 vh 2 Vh: (8.205)

Next, the error is decomposed into e D �
u � Ihu

� � �
uh � Ihu

� D � � 'h, where
Ihu 2 Vh is some arbitrary interpolant. Inserting this decomposition in the error
equation and setting vh D 'h gives

˛2
��r'h

��2
L2.˝/

C ��'h
��2

L2.˝/
D ˛2

�r�;r'h
�C �

�; 'h
�C ˛2

�
�u; 'h

�
:

One obtains, applying the Cauchy–Schwarz inequality (A.10) and Young’s inequal-
ity (A.5),

˛2
��r'h

��2
L2.˝/

C ��'h
��2

L2.˝/

� ˛2 kr�kL2.˝/

��r'h
��

L2.˝/ C k�kL2.˝/

��'h
��

L2.˝/ C ˛2 k�ukL2.˝/

��'h
��

L2.˝/

� ˛2

2
kr�k2L2.˝/ C ˛2

2

��r'h
��2

L2.˝/ C k�k2L2.˝/ C 1

4

��'h
��2

L2.˝/

C˛4 k�uk2L2.˝/ C 1

4

��'h
��2

L2.˝/
:

The terms with 'h on the right-hand side can be absorbed from the left-hand side.
Finally, an application of the triangle inequality gives

˛2 krek2L2.˝/ C kek2L2.˝/
� 2

	
˛2 kr�k2L2.˝/ C k�k2L2.˝/ C ˛2

��r'h
��2

L2.˝/
C ��'h

��2
L2.˝/




� C
	
˛2 kr�k2L2.˝/ C k�k2L2.˝/ C ˛4 k�uk2L2.˝/



;

which completes the proof of (8.202), since Ihu was chosen to be arbitrary.
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The estimates (8.203) and (8.204) are derived by bounding the best approxima-
tion errors in (8.202) with interpolation errors and by applying the interpolation
estimate (C.14). �

Remark 8.181 (Finite Element Error Analysis of the Leray-˛ Model) The available
finite element error analysis for the Leray-˛ model proceeds in the same way as
for the Galerkin discretization of the Navier–Stokes equations, see Sect. 7.2. In
particular, the obtained results are qualitatively not better than for the Galerkin
discretization in the sense that the constants in the error bounds depend still on
exp.C	�3/ or on exp.C	�1/, depending on the assumed regularity of the solution,
where C depends on norms of the solution of the Navier–Stokes equations. For these
reasons, a presentation of a detailed analysis would be just a repetition and it will be
omitted here. Instead, only the differences in the finite element error analysis for the
continuous-in-time case will be presented. The discussion of the obtained estimates
gives a guideline for the asymptotic choice of the parameter ˛. ut
Remark 8.182 (Continuous-in-Time Leray-˛ Finite Element Model) Consider inf-
sup stable finite element spaces Vh � V and Qh � Q, then the continuous-in-time
Leray-˛ finite element model reads as follows: Find wh W .0;T� ! Vh and rh W
.0;T� ! Qh such that

�
@twh; vh

�C .	rwh;rvh/C nskew

	
wh

h
;wh; vh




� �r � vh; rh
�C �r � wh; qh

� D h f ; vhiV0;V ;

˛2
	
r wh

h
;rvh



C
	
wh

h
;vh



D �
wh; vh

�
(8.206)

for all .vh; qh/ 2 Vh � Qh, ˛ > 0, and wh.0; x/ 2 Vh is an approximation of u0.x/.
ut

Lemma 8.183 (Existence, Uniqueness, and Stability of the Finite Element
Solution) Let wh

0 2 Vh
div and f 2 L2.0; tI V 0/, then the finite element problem (8.206)

has a unique solution
�
wh; rh

� 2 Vh � Qh. For all t 2 .0;T�, the stability estimate

��wh.t/
��2

L2.˝/
C 	

��rwh
��2

L2.0;tIL2.˝// � ��wh
0

��2
L2.˝/

C 1

	
k fk2L2.0;tIV0/ (8.207)

holds.

Proof The existence and uniqueness of a solution can be proved in the same way as
it is done in the first step of the Galerkin method for proving the existence of a weak
solution, e.g., see Lemma 7.12.

To prove the stability estimate, choose .vh; qh/ D .wh; rh/ in (8.206).
Using (6.26), the nonlinear convective term vanishes. Now, the proof proceeds
analogously as the proof of Lemma 7.12 starting from (7.14). Note that (8.207) is
of the same form as estimate (7.11). In addition, an estimate of form (7.10) can be
derived for wh in the same way as in the proof of Lemma 7.12. �
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Theorem 8.184 (Finite Element Error Estimates for the Continuous-in-Time
Leray-˛ Finite Element Model) Let the assumptions of Theorem 7.35 be satisfied
and let in addition

�u 2 L4
�
0;TI L2 .˝/

�
: (8.208)

Then the following error estimate holds for all t 2 .0;T�
���u � wh

�
.t/
��2

L2.˝/
C 	

��r �
u � wh

���2
L2.0;tIL2.˝//

� right-hand side of (7.44)

CC

	
exp

�
C

	3
kruk4L4.0;tIL2.˝//

�" �
˛1=2 C ˛�1=2h

�2 kruk4L4.0;tIL2.˝//

C˛3 k�uk2L4.0;tIL2.˝// kruk2L4.0;tIL2.˝//
#
: (8.209)

Assuming in addition to (8.208)

u 2 L4 .0;TI L1 .˝// ; ru 2 L4 .0;TI L1 .˝// ; (8.210)

then one obtains the error estimate for all t 2 .0;T�
���u � wh

�
.t/
��2

L2.˝/
C 	

��r �
u � wh

���2
L2.0;tIL2.˝//

� similar to right-hand side of (7.44) with

exp

�
C

�
krukL1.˝/ C 1

	
kuk2L1.˝/

��

CC

	
exp

�
C

�
krukL1.˝/ C 1

	
kuk2L1.˝/

��h 	
.˛ C h/2 C ˛4




�
	

kruk2L4.0;tIL2.˝// C k�uk2L4.0;tIL2.˝// C kuk2L4.0;tIL1.˝// (8.211)

C kruk2L4.0;tIL1.˝//


i
:

Proof The proof follows exactly the lines of the proof of Theorem 7.35. As
mentioned in Remark 8.181, only this part will be presented in detail which is
different.

Using the same notations as in the proof of Theorem 7.35 and considering the
decomposition

e.t/ D u.t/ � wh.t/ D �
u.t/� Ih

Stu.t/
�C �

Ih
Stu.t/ � wh.t/

� D �.t/ � �h.t/;
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the critical term for the estimate is the difference of the nonlinear convective terms.
One gets for the Leray-˛ model, using (6.26),

nskew
�
u;u;�h

� � nskew

	
wh

h
;wh;�h




D nskew
�
u � uh ;u;�h

�C nskew
�
uh ;u;�h

� � nskew

	
wh

h
;wh;�h




D nskew
�
u � uh ;u;�h

�C nskew
�
�h ;u;�h

� � nskew

�
�h

h
;u;�h

�

Cnskew

	
wh

h
;u;�h



� nskew

	
wh

h
;wh;�h




D nskew
�
u � uh ;u;�h

�C nskew
�
�h ;u;�h

� � nskew

�
�h

h
;u;�h

�

Cnskew

	
wh

h
;u � wh;�h




D nskew
�
u � uh ;u;�h

�C nskew
�
�h ;u;�h

� � nskew

�
�h

h
;u;�h

�

Cnskew

	
wh

h
;�;�h



: (8.212)

The last three terms are estimated the same way as (7.50)–(7.52). Using the stability
estimates (8.198) and (8.199) for the discrete filter, one gets even exactly the same
estimates as in (7.50)–(7.52).

With the assumptions of Theorem 7.35, one can estimate the first term with (6.41)
for s D 1=2, and Young’s inequality (A.5)

nskew
�
u � uh ;u;�h

�

� C
��u � uh

��1=2
L2.˝/

��r �
u � uh

���1=2
L2.˝/ krukL2.˝/

��r�h
��

L2.˝/

� C

	

��u � uh
��

L2.˝/

��r �
u � uh

���
L2.˝/ kruk2L2.˝/ C 	

16

��r�h
��2

L2.˝/
:

The last term is absorbed in the left-hand side of the differential equation for the
error estimate. The error estimate (8.204) gives for the first term an estimate of the
form

��u � uh
��

L2.˝/

��r �u � uh
���

L2.˝/ kruk2L2.˝/

� C

˛

�
.˛ C h/ krukL2.˝/ C ˛2 k�ukL2.˝/

�2 kruk2L2.˝/

� C

˛
.˛ C h/2 kruk4L2.˝/ C C˛3 k�uk2L2.˝/ kruk2L2.˝/ :
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Using the Cauchy–Schwarz inequality (A.10), one has

Z t

0

k�uk2L2.˝/ kruk2L2.˝/ d�

�
�Z t

0

k�uk4L2.˝/ d�

�1=2 �Z t

0

kruk4L2.˝/ d�

�1=2
< 1; (8.213)

by the regularity assumptions. Now, estimate (8.209) follows in the same way as in
Theorem 7.35.

With assumption (8.210), one can estimate the first term of the last bound
in (8.212) with (6.39), Poincaré’s inequality (A.12), Young’s inequality, and (8.204)

nskew
�
u � uh ;u;�h

�

� 1

2

��u � uh
��

L2.˝/

	
krukL1.˝/

���h
��

L2.˝/
C ��r�h

��
L2.˝/ kukL1.˝/




� C
��u � uh

��
L2.˝/

��r�h
��

L2.˝/

�krukL1.˝/ C kukL1.˝/

�

� C

	

��u � uh
��2

L2.˝/

�krukL1.˝/ C kukL1.˝/

�2 C 	

16

��r�h
��2

L2.˝/

� C

	

	
.˛ C h/2 kruk2L2.˝/ C ˛4 k�uk2L2.˝/


 �krukL1.˝/ C kukL1.˝/

�2

C 	

16

��r�h
��2

L2.˝/
: (8.214)

The last term is absorbed from the left-hand side of the differential inequality. By
assumptions (8.208) and (8.210), one shows analogously to (8.213) that all terms are
in L1.0;T/ such that Gronwall’s lemma can be applied. With the assumed regularity
of the solution, the third term on the right-hand side of (8.212) can be bounded in
the form (7.58), using also the stability estimate (8.198). Thus, in this case, the term
in the exponential depends only on 	�1. Then, estimate (8.211) follows again in the
same way as in Theorem 7.35. �

Remark 8.185 (Optimal Asymptotic Choice of ˛) For both error bounds (8.209)
and (8.211), ˛ � h is the optimal asymptotic choice. In the case of (8.209), this
choice follows from equilibrating the terms ˛ and ˛�1h2. One obtains first order
convergence, also for higher order finite elements.

In (8.211), one can choose on the one hand ˛ D 0 to get the best error bound.
But on the other hand, ˛ should be as large as possible to have a sufficient impact of
the turbulence model. The optimal compromise is ˛ � h. Then, one gets the same
power for the terms ˛2 and h2 in the parentheses. This power cannot be improved
by different choices. Altogether, there is a second order of convergence in this case.

ut
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Remark 8.186 (The Fully Discrete Case) A finite element error analysis for the
Leray-˛ finite element model discretized in time with the Crank–Nicolson scheme,
see Remark 7.49, can be found in Layton et al. (2008). In fact, this analysis is the
special case of N D 0 in this paper. The existence of a solution in each discrete
time is proved and a stability estimate is derived. The finite element error analysis
uses an estimate of type (8.214) for the nonlinear term which is introduced by the
turbulence model. As in the continuous-in-time case, an error bound is derived
where the constant depends on exp.C	�3/, where C depends on norms of the
solution of the Navier–Stokes equations. The application of the discrete Gronwall
lemma, Lemma A.56, gives the usual time step restriction. Finally, error bounds are
proved of second order in ˛, like in the corresponding situation for the continuous-
in-time case, see Remark 8.185, and second order in �t. ut
Remark 8.187 (Leray-˛ Approximate Deconvolution Model) The idea of applying
an approximate deconvolution, see Remark 8.150, can be also applied to the
convective field of the Leray-˛ model, leading to the Leray-˛ ADM or Leray-
deconvolution model

@tw � 	�w C .Gdeconv;N .w / � r/w C rr D f in .0;T� �˝;
r � w D 0 in .0;T� �˝;

�˛2�w C w D w in .0;T� �˝:

This model was analyzed in the usual setup for ADMs, i.e., for space-periodic
boundary conditions, the differential filter, and the van Cittert approximate deconvo-
lution operator, see Layton and Rebholz (2012, Chap. 6) for details and an overview
on available results. ut
Example 8.188 (Turbulent Channel Flow at Re� D 180) This benchmark problem
is described in Example D.12. The setup of the simulations was almost identical to
the setup for the Smagorinsky model, compare Example 8.128. The only difference

was the initial condition. For the Leray-˛ model (8.206), with nconv

	
wh

h
;wh; vh




instead of nskew

	
wh

h
;wh; vh



, a fully developed flow field was used. With the initial

condition (D.34), it could be observed that the interval Œ0; 10� was not sufficient for
obtaining a fully developed flow field for some values of the model parameter.

Figure 8.9 presents the obtained results for different values of the model
parameter ˛ D ˛0hK;short. With respect to umean there are only little differences for
˛0 2 Œ0:4; 0:8�. Considering in this interval the second order statistics of interest,
then the best results were computed with ˛0 D 0:8. ut
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Fig. 8.9 Example 8.188. Statistics of interest for the Leray-˛ model with different values of ˛ D
˛0hK;short

8.7 The Navier–Stokes-˛ Model

Remark 8.189 (The Navier–Stokes-˛ Model) The Navier–Stokes-˛ model is given
by

@tw � 	�w C .w � r/w C .r w /T w C rr D f in .0;T� �˝;
r � w D 0 in .0;T� �˝;
w.0; �/ D u0 in ˝;

�˛2�w C w D w in .0;T� �˝;Z
˝

r dx D 0 in .0;T�;

(8.215)

together with appropriate boundary conditions. The pressure includes some terms
that appear in the derivation of this model and it has the form, Chen et al. (1998),

r D p � 1

2
kw k22 � 1

2
˛2 .r w W w / :
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Model (8.215) is also called viscous Camassa–Holm model or isotropic Lagrangian-
averaged Navier–Stokes equations.

Using (3.158), the momentum equation can be rewritten, introducing a new
pressure, by

@tw � 	�w C .r � w/ � w C rQr D f (8.216)

or

@tw � 	�w � w � .r � w/C rQr D f : (8.217)

ut
Remark 8.190 (The Lagrangian Description of a Flow Field) The description of
the flow field in Chap. 2, which finally led to the Navier–Stokes equations, was
performed from the point of view of considering a point .t; x/ in time and space.
Then, the flow field was modeled with functions depending on .t; x/. This approach
is called the Eulerian description of the flow field. Alternatively, it is possible to
describe the flow from the point of view of a “fluid particle”. In this case, one follows
the motion of that fluid particle through time and space. This approach is called
Lagrangian description of a flow field.

The Eulerian description can be thought of sitting at the banks of a river and
describing the flow of the river from this point. For the Lagrangian description, one
sits in a boat and describes the flow by following the river with the boat. ut
Remark 8.191 (Sketch of the Derivation) Although the Navier–Stokes-˛ model
has a convective term with regularized velocity, its derivation is not based on
regularization. One can find in the literature two ways for deriving (8.215).

One way, whose details can be found in Chen et al. (1999b), considers a
Lagrangian functional comprised of the kinetic energy and the incompressibility
constraint

Z �
1

2
ku.t; x/k22 C p .X.t; x/; t/ .det .rX .t; x// � 1/

�
dx

with u.t; x/ D @tX.t; x/ and X.t; x/ is the Lagrangian trajectory. The incom-
pressibility constraint leads finally to the requirement det .rX .t; x// D 1. Then,
the Lagrangian trajectory is augmented with fluctuations. This step resembles the
decomposition (8.11) of the flow field: the Lagrangian trajectory represents the
mean flow field and the fluctuations the small scales. The trajectory with fluctuations
is inserted in the Lagrangian functional. As a next crucial step, the velocity field
and the pressure in this functional are approximated with a linear Taylor series
expansion. This step assumes that the fluctuations are sufficiently small. Then, the
Lagrangian functional is averaged and minimized. The optimality conditions are
derived by computing its variational derivatives. In this way, one obtains a similar
model to (8.215), but without viscous term and with a more complicated relation
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between w and w. Adding the viscous term, to be able to use this equation as a
turbulence model for incompressible flow problems, was proposed in Chen et al.
(1998, 1999a,b). If the fluctuations are assumed to be isotropic, one obtains the
equation for w given in (8.215). If they are in addition homogeneous, then ˛ is a
constant. This derivation generalizes a one-dimensional shallow water model from
Camassa and Holm (1993) to d dimensions. Therefore, (8.215) is called also viscous
Camassa–Holm model.

A different derivation of the model (8.215) can be found in Marsden and Shkoller
(2001, 2003). There, a so-called Lagrangian average is applied over a set of solutions
of the Euler equations with initial data in some ball. The viscous term is treated via
stochastic variations. It is noted that in the case of a bounded domain the definition
of the viscous term should include a projection onto divergence-free vector fields.

ut
Remark 8.192 (The Divergence Constraint) If w and w are sufficiently smooth,
one obtains from the definition of w in (8.215), r � w D 0, and a calculation like
in (8.187) gives

r � w D r � w � ˛2r ��w D r � w � ˛2� .r � w / D 0:

Hence, w is also divergence-free. ut
Remark 8.193 (Analysis of the Navier–Stokes-˛ Model in Turbulent Channel and
Pipe Flows) The Navier–Stokes-˛ model for turbulent channel and pipe flows was
studied analytically in Chen et al. (1998, 1999a,b). It was found that the analytical
steady-state solution of the Navier–Stokes-˛ model with constant ˛ shows a good
agreement, e.g., with available mean velocity profiles away from the boundary of
a distance of order ˛. Note that the Navier–Stokes-˛ model was derived with the
assumption of homogeneous and isotropic fluctuations, see Remark 8.191, which is
usually not satisfied close to the boundary. Scaling arguments suggest that near the
boundary ˛ should decrease as the Reynolds number increases. The decrease of ˛,
and with that the smaller influence of the turbulence model, resembles the reduction
of the eddy viscosity in the Smagorinsky model by applying the van Driest damping,
see Remark 8.127. Away from the boundary, the scaling arguments imply that ˛ is
independent of the Reynolds number. ut
Remark 8.194 (Well-Posedness of the Navier–Stokes-˛ Model) One can find results
on the existence and uniqueness of a solution of the Navier–Stokes-˛ model in
Foias et al. (2002) for the case of periodic boundary conditions and in Marsden and
Shkoller (2001) for the case of a bounded domain with no-slip boundary conditions.
In Marsden and Shkoller (2001), first local well-posedness is proved by using
Banach’s fixed point theorem, see Remark 7.26 for the notation of a local solution.
Then, global well-posedness is obtained by proving appropriate stability (a priori)
estimates. The analysis in Foias et al. (2002) uses the Galerkin method presented in
Sect. 7.1. It will be sketched here. ut
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Remark 8.195 (The Navier–Stokes-˛ Model in a Periodic Domain) Let ˝ D
.0;L/3, then the Navier–Stokes-˛ model with rotational form of the convective term
has the form, see (8.217),

@tw � 	�w � w � .r � w/C rr D f in .0;T� �˝;
.w; r/ is periodic on .0;T� � 
;

�˛2�w C w D w in .0;T� �˝;
r � w D 0 in .0;T� �˝;
w .0; �/ D u0 in ˝;

w is periodic on .0;T� � 
;Z
˝

r dx D 0 in .0;T�;

(8.218)

where for simplicity of notation the tilde is omitted for the pressure. Note that it
does not matter if the initial condition for w or w is prescribed. If one is known, the
other one can be computed. ut
Remark 8.196 (Assumptions and Consequences) In the analysis, it will be assumed
that the right-hand side does not depend on time, i.e., f .t; x/ D f .x/. Further, it will
be assumed that the right-hand side and the initial condition have zero mean, i.e.,

Z
˝

w .0; x/ dx D
Z
˝

f .x/ dx D 0: (8.219)

Integration by parts gives
Z
˝

rr dx D �
Z
@˝

rn ds

D
Z

xD0\@˝
r.�e1/ ds C

Z
xDL\@˝

re1 ds C
Z

yD0\@˝
r.�e2/ ds

C
Z

yDL\@˝
re2 ds C

Z
zD0\@˝

r.�e3/ ds C
Z

zDL\@˝
re3 ds

D 0;

since r is periodic. With the same argument, one can derive
Z
˝

�w dx D
Z
˝

w � .r � w/ dx D
Z
˝

�w dx D 0;

such that one finds from (8.218) and (8.219)

0 D
Z
˝

f dx D
Z
˝

@tw dx D d

dt

Z
˝

w dx

D d

dt

�
�˛2

Z
˝

�w dx C
Z
˝

w dx
�

D d

dt

Z
˝

w dx:
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Thus, the last integral is a constant with respect to time and since this constant is
zero at the initial time, see (8.219), it follows that

Z
˝

w dx D 0 8 t � 0:

ut
Remark 8.197 (Setup for the Analysis) Let

V D
(
v W v is a trigonometric polynomial on ˝ with r � v D 0;

Z
˝

v dx D 0

)
:

In comparison with the situation in the non-periodic case, the condition with the
vanishing mean value appears. Nevertheless, the same notations will be used here,
namely Hdiv.˝/ is the completion of V in L2.˝/ and Vdiv is the completion in
H1.˝/.

The Helmholtz projector Phelm W L20.˝/ ! Hdiv.˝/ is given in Definition 3.170.
In addition, A D �Phelm� is the Stokes operator with domain D.A/ D H2.˝/\Vdiv.

Now, (8.218) can be written in operator form in the divergence-free subspace as
follows

d

dt
w C 	Aw C N .w ;w/ D Phelmf ;

˛2Aw C w D w; (8.220)

w .0/ D u0 ;

with N .w ;w/ D �Phelm .w � .r � w//. ut
Remark 8.198 (On the Stokes Operator) In the case of periodic boundary condi-
tions, the restriction of A to D.A/ is a selfadjoint operator with compact inverse,
e.g., see Temam (1995, p. 10). The Stokes operator possesses a set of eigenfunc-
tions, which form an orthonormal basis of Hdiv.˝/, with corresponding positive
eigenvalues, compare (Temam 1995, p. 10). ut
Lemma 8.199 (Norm Estimates) Let �1 be the smallest eigenvalue of the Stokes
operator, then there holds the Poincaré-type inequality

kvk2L2.˝/ � ��1
1 krvk2L2.˝/ 8 v 2 D.A/: (8.221)

For the Stokes operator, the following norm equivalence is valid

kAvkL2.˝/ � kvkH2.˝/ � C kAvkL2.˝/ 8 v 2 D.A/: (8.222)

Proof Let fvlg1
lD1 be the basis of orthonormal eigenfunctions of the Stokes operator

and let v D P1
iDl vlvl 2 D.A/. Using an argument as in (8.187) shows that �v
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is divergence-free, hence ��v D Av. Then, one gets with integration by parts,
the argument from the previous sentence, the definition of the eigenvalues, the
orthonormality of the eigenfunctions, the positivity of the eigenvalues, and once
more the orthonormality of the eigenfunctions

krvk2L2.˝/ D .rv;rv/ D � .v; �v/ D .v;Av/

D
 

1X
iDl

vlvl;A
1X
iDl

vlvl

!
D
 

1X
iDl

vlvl;

1X
iDl

vl�lvl

!
D
Z
˝

1X
iDl

v2l �lvl � vl dx

� �1

Z
˝

1X
iDl

v2l vl � vl dx D �1

 
1X
iDl

vlvl;

1X
iDl

vlvl

!
D �1 kvk2L2.˝/ :

For the proof of the norm equivalence (8.222), it is referred to Temam (1995,
p. 9). The proof is based on the observation that the operator A defines an
isomorphism between D.A/ and the space of all functions from H2.˝/ whose mean
value and the mean value of the derivatives vanish. �

Lemma 8.200 (Estimate of the Convective Term) Let u 2 Vdiv, v 2 Hdiv.˝/, and
w 2 D.A/, then it is

j.�Phelm .u � .r � v// ;w/j
� C

	
kwk1=2

L2.˝/
krwk1=2

L2.˝/
kAukL2.˝/ kvkL2.˝/

C kruk1=2L2.˝/ kAuk1=2L2.˝/ krwkL2.˝/ kvkL2.˝/



: (8.223)

Proof Since the Helmholtz projection is just the L2.˝/ projection into Hdiv.˝/ and
in particular w 2 Hdiv.˝/ by the definition of D.A/, one gets

.�Phelm .u � .r � v// ;w/ D .�u � .r � v/ ;w/ D ..r � v/ � u;w/ :

Equality (6.14) can be derived also in the case of periodic boundary conditions.
The integrals on the boundary, which appear in this derivation, will vanish because
all functions are periodic and thus the integrals on opposite faces sum up to zero.
Hence, one gets

.�Phelm .u � .r � w// ;u/ D nconv .u; v;w/ � nconv .w; v;u/ : (8.224)

Also in the periodic case, the convective term is skew-symmetric, i.e., (6.24) holds.
This property is derived as in Remark 6.8, where the boundary integral vanishes
again because of the periodicity of the functions. With the triangle inequality, the
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skew-symmetry of the convective term, and Hölder’s inequality (A.9), one gets

j.�Phelm .u � .r � v// ;w/j
� jnconv .u; v;w/j C jnconv .w; v;u/j
� jnconv .u;w; v/j C jnconv .w;u; v/j
� kukL1.˝/ krwkL2.˝/ kvkL2.˝/ C kwkL3.˝/ krukL6.˝/ kvkL2.˝/ : (8.225)

Using the Sobolev imbedding (A.15), the interpolation theorem in Sobolev
spaces (A.13), and Poincaré’s inequality (A.12) gives

kwkL3.˝/ � C kwkH1=2.˝/ � C kwk1=2
L2.˝/

krwk1=2
L2.˝/

:

From the Sobolev imbedding (A.14) with m D 1; p D 2; j D 1, and with the norm
equivalence (8.222), it follows that

krukL6.˝/ � C kukH2.˝/ � C kAukL2.˝/ :

Using Agmon’s inequality, see Foias et al. (2001, (A.29)), Poincaré’s inequality, and
the equivalence (8.222) yields

kukL1.˝/ � C kuk1=2H1.˝/
kuk1=2H2.˝/

� C kruk1=2L2.˝/ kAuk1=2L2.˝/
:

Inserting all estimates in (8.225) gives the statement of the lemma. �
Theorem 8.201 (Existence and Uniqueness of a Solution in the Space-Periodic
Case) Let f 2 Hdiv.˝/ and u0 2 Vdiv. Then there is for any T > 0 a unique
solution of (8.220)

w 2 L1
loc

�
.0;T�;H3.˝/

�
:

Proof The proof utilizes the Galerkin method presented in Sect. 7.1. It consists of
four parts:

1. Show the well-posedness of the problem in a finite-dimensional subspace.
2. Prove stability estimates in H1.˝/;H2.˝/, and H3.˝/.
3. Pass to the limit with the dimension and show the convergence of a subsequence.
4. Prove uniqueness of the solution.

The first three steps will be only sketched here.

1. Show the well-posedness of the problem in a finite-dimensional subspace.
Analogously to the proof of Lemma 7.12, a problem in a finite-dimensional space
is considered. The space is spanned by the eigenfunctions of the Stokes operator.
The existence and uniqueness of an absolutely continuous solution in Œ0;T� is
proved with the theorem of Carathéodory, see Theorem A.50.
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2. Prove stability estimates in H1.˝/;H2.˝/, and H3.˝/. The derivation of these
estimates is somewhat longer. It uses standard estimates like Hölder’s and
Young’s inequality, the Gronwall lemma, and estimates for the Stokes operator
A and the operator N for the nonlinear term. Let w n.t/ be the solution of the
problem in the subspace with dimension n. Then, one obtains for all t 2 Œ0;T�,
e.g.,

kw n.t/k2L2.˝/ C ˛2 kr w n.t/k2L2.˝/ � C1;

kr w n.t/k2L2.˝/ C ˛2 kAw n.t/k2L2.˝/ � C2.t/:

Note that there is the norm equivalence of kAw n.t/kL2.˝/ and the H2.˝/ norm,
see (8.222).

3. Pass to the limit with the dimension and show the convergence of a subsequences.
This part of the proof is performed like the proofs of Corollary 7.13 and
Lemma 7.16, using the stability estimates from the previous part and the theorem
of Lions–Aubin, Girault and Raviart (1979, p. 153)). Because of the higher
regularity of the solution proved in the second step, in comparison with the
solution of the Navier–Stokes equations, the proof of the convergence of the
nonlinear convective term is simpler than in Sect. 7.1.

4. Prove uniqueness of the solution. Assume that there are two solutions w1 and
w2 of (8.220) to the same data f and u0. Denoting w21 D w2 � w1 and
correspondingly w21 D w2 � w1 , one obtains by subtracting (8.220) for w1
from (8.220) for w2 and expanding with N.w1 ;w2/ � N.w1 ;w2/

0 D d

dt
w21 C 	Aw21 C N .w2 ;w2/ � N .w1 ;w1/

D d

dt
w21 C 	Aw21 C N .w21 ;w2/ � N .w1 ;w21/ : (8.226)

The next step consists in testing (8.226) with w21 . One gets for the first term on the
right-hand side with the definition of the w21 , integration by parts, and relations of
the form (7.13)

�
d

dt
w21; w21

�
D d

dt

�
˛2Aw21 C w21 ;w21

�

D ˛2
d

dt
.r w21 ;r w21 /C d

dt
.w21 ;w21 /

D 1

2

d

dt

�
kw21 k2L2.˝/ C ˛2

���rw21
���2

L2.˝/

�
:
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For the viscous term, one obtains with applying repeatedly integration by parts

.	Aw21; w21 / D ˛2 .	A .Aw21 / ; w21 /C .	Aw21 ;w21 /

D ˛2 .	Aw21 ;Aw21 /C .	r w21 ;r w21 /

D 	

�
˛2 kAw21 k2L2.˝/ C

���rw21
���2

L2.˝/

�
:

One finds with (8.224) that

.N .w21 ;w2/ ; w21 / D .�Phelm .w21 � .r � w2// ; w21 /

D nconv .w21 ;w2; w21 /� nconv .w21 ;w2; w21 / D 0:

Inserting all identities in (8.226), applying estimate (8.223), collecting all norms
of w1, which are known to be finite, into the constant, using (8.221), and Young’s
inequality (A.5) gives

1

2

d

dt

�
kw21 k2L2.˝/ C ˛2

���rw21
���2

L2.˝/

�
C 	

�
˛2 kAw21 k2L2.˝/ C

���rw21
���2

L2.˝/

�

� j.�N .w1 ;w21/ ; w21 /j
D j.�Phelm .w1 � .r � w21// ; w21 /j
� C kw21kL2.˝/

	
kw21 k1=2

L2.˝/
kr w21 k1=2

L2.˝/
kAw1 kL2.˝/

C kr w1 k1=2L2.˝/ kAw1 k1=2L2.˝/ kr w21 kL2.˝/




D C kw21kL2.˝/

	
kw21 k1=2

L2.˝/
kr w21 k1=2

L2.˝/
C kr w21 kL2.˝/




� C
	
1C �

�1=2
1



kw21kL2.˝/ kr w21 kL2.˝/

� CC0
	

kr w21 k2L2.˝/ C 	

2C0
kw21k2L2.˝/ (8.227)

with C0 D 2˛2 C ��1
1 . For the last term, one obtains with the definition of w21 ,

integration by parts, and (8.221)

	

2C0
kw21k2L2.˝/ D 	

2C0

��˛2Aw21 C w21
��2

L2.˝/

D 	

2C0

	
kw21 k2L2.˝/ C ˛4 kAw21 k2L2.˝/ C 2˛2 .Aw21 ;w21 /




D 	

2C0

�
1

�1
kr w21 k2L2.˝/ C ˛4 kAw21 k2L2.˝/ C 2˛2 kr w21 k2L2.˝/

�
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� 	

2C0

�
2˛2 C 1

�1

�	
kr w21 k2L2.˝/ C ˛2 kAw21 k2L2.˝/




D 	

2

	
kr w21 k2L2.˝/ C ˛2 kAw21 k2L2.˝/



:

This estimate is inserted in (8.227). Then, this term is absorbed by the left-hand
side. Neglecting the arising non-negative term on the left-hand side and neglecting
also the dependency of the constant on C0 and 	, which is not of importance here,
one gets

d

dt

�
kw21 k2L2.˝/ C ˛2

���rw21
���2

L2.˝/

�
� C kr w21 k2L2.˝/
D C˛�2˛2 kr w21 k2L2.˝/
� C˛�2 	kw21 k2L2.˝/ C ˛2 kr w21 k2L2.˝/



:

Applying Gronwall’s lemma, Lemma A.54, yields for almost all t 2 Œ0;T�
	
kw21 k2L2.˝/ C ˛2 kr w21 k2L2.˝/



.t/

� C
	
kw21 k2L2.˝/ C ˛2 kr w21 k2L2.˝/



.0/ D 0;

since kw21 .0/kL2.˝/ D kr w21 .0/kL2.˝/ D 0 because w1 and w2 have the same
initial data. Therefore, w1 D w2 in the sense of Hdiv.˝/ and Vdiv for almost all
t 2 Œ0;T�, and with that also w1 D w2. �

Remark 8.202 (The Hausdorff Dimension of the Global Attractor) In Foias et al.
(2002), an estimate for the Hausdorff dimension of the global attractor ANS�˛ of
the Navier–Stokes-˛model in the case of periodic boundary conditions was derived.
Let �˛ be the length scale for which there is a balance of the mean rates of nonlinear
transport of energy and viscous dissipation of energy in the Navier–Stokes-˛ model.
This scale depends on ˛, it is not smaller than the Kolmogorov scale �, usually it is
(much) larger. Then, the estimate proved in Foias et al. (2002) has the form

dH .ANS�˛/ D O
 �

L

�˛

�3!
:

Since usually �˛ � �, this dimension is asymptotically smaller than the dimen-
sion (8.10) for the Navier–Stokes equations. Besides that one can prove the
existence and uniqueness of a weak solution. All these results indicate that the
Navier–Stokes-˛ model is less complex than the Navier–Stokes equations. ut
Remark 8.203 (Convergence to a Weak Solution of the Navier–Stokes Equations as
˛ ! 0) Similarly as for the Leray-˛ model, one can show that a subsequence of
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fw˛g˛>0 converges to a weak solution of the Navier–Stokes equations as ˛ ! 0.
The proof of this statement, in the case of periodic boundary conditions, can be
found in Foias et al. (2002). In the proof, one shows the uniform (with respect
to ˛) boundedness of some norms from which follows the weak convergence of
a subsequence in the corresponding spaces. Further bounds imply, together with
Aubin’s compactness theorem, e.g., see Foias et al. (2001, Theorem A.11), the
strong convergence in appropriate spaces. ut
Remark 8.204 (The Finite Element Problem) For sufficiently smooth functions, it
is known that from r � w in ˝ it follows that r � w D 0 in ˝ , see Remark 8.192.
However, finite element functions are not sufficiently smooth, e.g., the strong form
of the Laplacian is not well defined, they are only discretely divergence-free, and
one has to apply a discrete filter. For these reasons, finite element formulations have
been studied in the literature where the discrete divergence constraint was posed for
the discrete velocity and the discretely filtered discrete velocity separately.

In Connors (2010), a finite element error analysis for the Navier–Stokes-˛ model
of the following form is presented

@tw � 	�w C .r � w/ � w C rr D f in .0;T� �˝;
r � w D 0 in .0;T� �˝;

w D 0 in .0;T� � 
;
�˛2�w C w C rQr D w in .0;T� �˝;

r � w D 0 in .0;T� �˝;
w D 0 in .0;T� � 
;

w.0; �/ D u0 in ˝;Z
˝

r dx D
Z
˝

Qr dx D 0 in .0;T�:

(8.228)

Here,˝ is a bounded domain in R
d, d 2 f2; 3g, with polyhedral Lipschitz boundary


 and the form (8.216) of the momentum equation is used. Since there is a separate
divergence constraint for the filtered velocity, one needs also a Lagrangian multiplier
in the corresponding equation.

The weak form of (8.228) is derived by multiplying the equations with appropri-
ate test functions, integrating the equations in ˝ , and applying integration by parts.
The correct function spaces with respect to the spatial variable are V D H1

0.˝/

and Q D L20.˝/. In Connors (2010), the continuous-in-time case is considered for
conforming finite element spaces: Find

�
0symbolwh; rh

� W .0;T� ! Vh � Qh,	
wh

h
;Qrh



W .0;T� ! Vh � Qh with Vh � V , Qh � Q and

�
@twh; vh

�C �
	rwh;rvh

�C nrot

	
wh; wh

h
; vh



� �r � vh; rh
� D �

f ; vh
� 8 vh 2 Vh;

�r � wh; qh
� D 0 8 qh 2 Qh (8.229)
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˛2
	
r wh

h
;r Qvh



C
	
wh

h
; Qvh



� �r � Qvh; Qrh

� D �
wh; Qvh

� 8 Qvh 2 Vh;

	
r � wh

h
; Qqh



D 0 8 Qqh 2 Qh;

and w.0; �/ D u0. The rotational form of the convective term is defined in (6.21). In
addition, a grad-div stabilization term was included in the first equation of (8.229)
but not in the equation for the discrete filter in Connors (2010).

The functions wh and wh
h

are contained in Vh
div. Considering only velocity test

functions from this space, problem (8.229) can be restricted to Vh
div: Find wh W

.0;T� ! Vh
div, wh

h W .0;T� ! Vh
div such that

�
@twh; vh

�C �
	rwh;rvh

�C nrot

	
wh; wh

h
;vh



D �
f ; vh

�
; (8.230)

˛2
	
r wh

h
;r Qvh



C
	
wh

h
; Qvh



D �
wh; Qvh

�
;

for all vh; Qvh 2 Vh
div. ut

Remark 8.205 (Properties of the Discrete Differential Filter) In comparison with
the discrete differential filter for the Leray-˛ model, see (8.196), the discretely
filtered finite element velocity for the Navier–Stokes-˛ model has to satisfy the
discrete divergence constraint. Thus, the corresponding equation is defined in Vh

div
and not in Vh as for the Leray-˛ model. Inspecting the proofs of Lemmas 8.178–
8.180 shows that one can obtain the same results for the discrete differential filter
of the Navier–Stokes-˛ model, where always Vh has to be replaced by Vh

div in the
formulas and also in the definition of the discrete Laplacian. ut
Lemma 8.206 (Existence, Uniqueness, and Stability of the Finite Element
Solution) Let wh

0 2 Vh
div and f 2 L2.0; tI V 0/, then the finite element problem (8.230)

possesses a unique solution. The following stability estimate holds for the discretely
filtered finite element velocity field

���wh
h
.t/
���2

L2.˝/
C ˛2

���r wh
h
.t/
���2

L2.˝/

C	
����r wh

h
���2

L2.0;tIL2.˝//
C 2˛2

����h
	
r wh

h

���2

L2.0;tIL2.˝//

�

�
���wh

h
.0/
���2

L2.˝/
C ˛2

���r wh
h
.0/
���2

L2.˝/
C 1

	
k fk2L2.0;tIV0/ : (8.231)

If ˛ � Ch, then there holds for the unfiltered finite element velocity field

��wh.t/
��2

L2.˝/
C 	

��rwh
��2

L2.0;tIL2.˝// (8.232)

� C

���wh.0/
��2

L2.˝/
C ˛2

��rwh.0/
��2

L2.˝/
C 1

	
k fk2L2.0;tIV0/

�
;
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where the constant depends on the constant of the inverse estimate (C.37) but not
on the mesh width h.

Proof As usual, stability estimates are derived by using appropriate test functions
in the equation. Considering (8.230), then the test function has to be chosen such

that the nonlinear convective term vanishes, i.e., one has to choose vh D wh
h

which
gives the desired result, see (6.26), and leads to the equation

	
@twh; wh

h



C
	
	rwh;r wh

h



D
	
f ; wh

h


: (8.233)

With property (8.197) and the commutation of filtering and temporal derivative,
compare Lemma 8.197, one obtains

	
@twh; wh

h



D
	
@twh

h
;wh



D
	
@t wh

h
;wh


;

from what

	
@twh; wh

h



D 1

2

	
@twh; wh

h



C 1

2

	
wh; @t wh

h



follows. Then, the product rule shows that

1

2

d

dt

	
wh; wh

h



D 1

2

	
@twh; wh

h



C 1

2

	
wh; @t wh

h



D
	
@twh; wh

h


:

Inserting this expression in (8.233) gives

1

2

d

dt

	
wh; wh

h



C
	
	rwh;r wh

h



D
	
f ; wh

h


: (8.234)

Using now the definition of the discrete filter (8.230) and (8.201) on the left-hand
side, and the estimate for the duality pairing and Young’s inequality (A.5) on the
right-hand side yields

1

2

d

dt

����wh
h
���2

L2.˝/
C ˛2

���r wh
h
���2

L2.˝/

�

C	
����r wh

h
���2

L2.˝/
C ˛2

����h
	
r wh

h

���2

L2.˝/

�
� k fkV0

���r wh
h
���

L2.˝/

� 1

2	
k fk2V0 C 	

2

���r wh
h
���2

L2.˝/
:

The last term can be absorbed from the left-hand side. Multiplying the resulting
estimate by two and integrating in .0;T/ gives (8.231).
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To prove (8.232), norms of wh
h

will be bounded from below with norms of wh.
Inserting Qvh D wh 2 Vh

div in the definition of the discrete filter (8.230), applying the
Cauchy–Schwarz inequality (A.10) and the inverse inequality (C.37) gives

��wh
��2

L2.˝/
D
	
wh

h
;wh



C ˛2
	
r wh

h
;rwh




�
���wh

h
���

L2.˝/

��wh
��

L2.˝/
C ˛2

���r wh
h
���

L2.˝/

��rwh
��

L2.˝/

�
���wh

h
���

L2.˝/

��wh
��

L2.˝/
C ˛2C2

inv

h2

���wh
h
���

L2.˝/

��wh
��

L2.˝/
:

Using the condition on ˛ gives

��wh
��2

L2.˝/
� C

���wh
h
���

L2.˝/
: (8.235)

Choosing in (8.230) Qvh to be the discrete Laplacian�hwh 2 Vh
div, see Remark 8.205,

and applying the definition (8.200) of the discrete Laplacian yields with the same
tools the estimate

��rwh
��2

L2.˝/
D
	
r wh

h
;rwh



C ˛2

	
�h wh

h
;�hwh



(8.236)

�
���r wh

h
���

L2.˝/

��rwh
��

L2.˝/
C ˛2

����h wh
h
���

L2.˝/

���hwh
��

L2.˝/
:

Using in the definition of the discrete Laplacian as test function the discrete
Laplacian itself and applying the inverse inequality gives

���hwh
��2

L2.˝/
� ��rwh

��
L2.˝/

��r�hwh
��

L2.˝/
� Cinv

h

��rwh
��

L2.˝/

���hwh
��

L2.˝/
;

which gives an inverse estimate for the discrete Laplacian. Inserting this inverse
estimate in (8.236) and using the assumption on ˛ yields

��rwh
��2

L2.˝/
� C

���r wh
h
���

L2.˝/
: (8.237)

Now, (8.232) is obtained by neglecting the terms with ˛ on the left-hand side
of (8.231), estimating the other terms on the left-hand side with (8.235) and (8.237),
and bounding the terms from the initial condition with (8.198).

Estimate (8.232) for wh is of the same form as estimate (7.11). In addition, by
using (8.235), (8.231), and (8.198), an estimate of form (7.10) can be derived for
wh. Then, the existence and uniqueness of a velocity solution wh 2 L2

�
0;TI Vh

div

�\
L1 �

0;TI L2.˝/
�

can be proved along the lines of the proof of Lemma 7.12.

The existence and uniqueness of wh
h

follows from the unique solvability of the
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Helmholtz equation in (8.230), which can be proved with the Theorem of Lax–
Milgram, see Theorem B.4. �

Remark 8.207 (Further Results From Finite Element Analysis)

• An error estimate for the continuous-in-time case can be found in Connors
(2010). The proof of this estimate follows the standard lines, e.g., as the proof
of Theorem 7.35 for the Navier–Stokes equations. It uses some properties of the
discrete differential filter which were also used in the proof of Lemma 8.206.
The nonlinear convective term is estimated with inequalities that can be found in
Sect. 6.1.2. Under some regularity assumptions, one obtains an estimate for

���u � wh
�
.t/
��2

L2.˝/
C 	

��r �u � wh
���2

L2.0;tIL2.˝//

with a factor of size exp.C	�3t/, similarly to the Navier–Stokes equations,
see (7.44), and the Leray-˛ model, see (8.209), (8.211). It is assumed that
˛ D O .h/, which leads to second order convergence, as for the Leray-˛ model,
see Remark 8.185.

• A full discretization with the Crank–Nicolson scheme as time integrator was
considered in Layton et al. (2010). In this paper, the stability of the finite element
solution is proved, but an error analysis is not presented.

• An error analysis of a fully discrete scheme was presented in Miles and
Rebholz (2010). The studied scheme uses the Crank–Nicolson method and the
rotational form (8.217). A key feature consists in enforcing that the curl of
the solution wh should be discretely divergence-free. With this requirement,
improved conservation properties of the scheme can be proved. In addition, the
analysis presented in Miles and Rebholz (2010) includes a stability estimate,
the proof of the existence of a solution, and a finite element error estimate.
Furthermore, a Navier–Stokes-˛ deconvolution model is presented, where w �
.r � w/ is replaced with Gdeconv;N .w / � .r � w/ and Gdeconv;N being the van
Cittert approximate deconvolution operator, compare Remark 8.156.

ut
Example 8.208 (Turbulent Channel Flow at Re� D 180) The setup of this example
was exactly as in Examples 8.128 and 8.188. The Navier–Stokes-˛ model was
applied as well in the convective form (8.215) and also in the rotational form (8.216)
with ˛ D ˛0hK;short.

It turned out that the simulations blew up if ˛0 was chosen too small for both
formulations. That solving the nonlinear problem arising in the Navier–Stokes-˛
model was not possible is also reported for simulations of a two-dimensional flow
around a cylinder, Example D.9, in Layton et al. (2010).

Results obtained for the smallest values of ˛0 for which there was no blow-up
are presented in Fig. 8.10. It can be observed that not even the mean velocity field
was reproduced reasonably accurately for these values.

In Abdi (2015), the Navier–Stokes-˛model (8.215) was tested without the zeroth
order term, such that the only difference to the Leray-˛ model is that w is discretely
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Fig. 8.10 Example 8.208.
Mean velocity field obtained
for the Navier–Stokes-˛
model with different values of
˛ D ˛0hK;short

divergence-free. Without zeroth order term, stable simulations were observed and
reasonably accurate results for the turbulent channel flow at Re� D 180 were
obtained. Thus, the instability arises from the zeroth order term.

A reduced Navier–Stokes-˛model is proposed and analyzed in Cuff et al. (2015),
leading to stable simulations with good results for the mean velocity profile of the
turbulent channel flow problem at Re� D 180. In this model, the equation defining
w in (8.215) is inserted in the momentum balance (8.216) with the rotational
form of the convective term. The arising fourth order terms are approximated by
second order terms with the help of the van Cittert approximate deconvolution, see
Remark 8.156. In the first step, the term �˛2� .@t w / arises that provides additional
stability since it is a viscous term. A similar approach was used for deriving a
reduced ADM, compare Remark 8.164. ut

8.8 Variational Multiscale Methods

Remark 8.209 (Contents) This section presents so-called Variational Multiscale
(VMS) methods. Common features of these methods comprise that they are based
on a variational formulation of the Navier–Stokes equations and that the scales are
defined by projection into function spaces. Apart of these features, realizations of
VMS methods are quite different. However, the proposed methods can be divided
into two classes: two-scale and three-scale VMS methods, see Sect. 8.8.1.

A recent review on VMS methods, which is in some parts similar to the
presentation in this section, can be found in Ahmed et al. (2016). In this review, two
more VMS methods than presented here are included, the LPS method, see Sect. 5.4
starting with Remarks 5.52, and the higher order term-by-term stabilization method,
see Remark 5.57. A longer presentation of LPS methods can be found in (Roos et al.
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2008, Chap. IV.4). The link of the LPS method to VMS methods was established in
Braack and Burman (2006). Additionally, considerably more information on the
numerical experience with some methods is provided in Ahmed et al. (2016). ut

8.8.1 Basic Concepts

Remark 8.210 (Differences to LES) Similarly to classical LES methods, Variational
Multiscale (VMS) methods seek to simulate only large flow structures. Therefore,
these methods are also called VMS-LES. However, there are some fundamental
differences between VMS methods and classical LES methods.

The difficulties of the classical LES methods in their mathematical study
originate in the definition of the large scales by spatial averaging. As an alternative,
VMS methods consider large scales that are defined by projection into appropriate
spaces. To this end, a variational formulation of the Navier–Stokes equations
is considered, again in contrast to LES methods, whose derivation is based on
the strong form of the Navier–Stokes equations, see Sects. 8.2.2 and 8.2.3. The
consideration of a variational form of the equation and the use of projections for
defining the different scales allow to incorporate bounded domains and boundary
conditions into the mathematical analysis in a natural way.

There are VMS methods that decompose the flow field into two scales, resolved
and unresolved ones, like LES methods, see Remark 8.23. However, the VMS
methodology allows also the decomposition into more than two scales. An alter-
native approach are so-called three-scale VMS methods. For these methods, there
is another difference to LES methods: the turbulence model does not act directly on
all resolved scales but only on the smallest resolved scales, see Remark 8.214.

First ideas of projection-based methods, also for different problems than the
Navier–Stokes equations, can be found in Hughes (1995), Guermond (1999a), and
Hughes et al. (2000). ut

8.8.1.1 Two-Scale VMS Methods

Remark 8.211 (Basic Approach for a Two-Scale VMS Method) A two-scale VMS
method uses just a decomposition of the scales in resolved scales .u; p/ and
unresolved scales .u0; p0/ with

u D u C u0; p D p C p0:

Inserting this decomposition in (8.243) and using the same decomposition for the
test functions yields

A .uI .u; p/ ; .v; q//C A
�
uI �u0; p0� ; .v; q/� D F .v/ ; (8.238)

A
�
uI .u; p/ ; �v0; q0��C A

�
uI �u0; p0� ; �v0; q0�� D F

�
v0� : (8.239)
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To simplify notations, set

U D
�
u
p

�
; V D

�
v

q

�
and so on.

Decomposing the form A .�I �; �/ into its linear part and the trilinear convective term

A .uIU;V/ D Alin .U;V/C n.u;u; v/;

Eq. (8.239) can be written in the form

AU
�
U0;V0�C n

�
u0;u0; v0� D � ˝Res

�
U
�
;V0˛

.V�Q/0;.V�Q/
(8.240)

with

AU
�
U0;V0� D Alin

�
U0;V0�C n

�
u0;u; v0�C n

�
u;u0; v0� ;

˝
Res

�
U
�
;V0˛

.V�Q/0;.V�Q/
D Alin

�
U;V0�C n

�
u;u; v0� � h f ; v0iV0;V :

A possible interpretation of (8.240) is that the unresolved scales are a function of
the residual of the resolved scales. Then, they can be represented in the form

U0 D FU
��Res

�
U
��
: (8.241)

Inserting this representation in (8.238) gives an equation for the resolved scales, see
Sect. 8.8.2 for a concrete method.

There is a second way to interprete (8.240). Taking into account that the left-hand
side of (8.240) depends on the temporal derivative of the small scale velocity, it is
possible to model the unresolved scales as a function of the residual of the large
scales and the small scale velocity u0

old at former times

U0 D FU
��Res

�
U
�
;u0

old

�
: (8.242)

This interpretation is used in the derivation of the method presented in Sect. 8.8.3.
In practice, the operator FU is not known. Even if it would be available, using

this operator for modeling (representing) the unresolved scales would not lead to
a less complex problem than the Navier–Stokes equations, i.e., there would be
no turbulence modeling. A two-scale VMS method aims to approximate FU, see
Sects. 8.8.2 and 8.8.3 for possible approaches. ut
Remark 8.212 (On AU

�
U0;V0�) The operator AU

�
U0;V0� is the Gâteaux derivative

of A.�I �; �/ at U in the direction of U0 since one obtains with the linearity of Alin .�; �/
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and the trilinearity of n.�; �; �/

lim
"!0

A
�
u C "u0IU C "U0;V0� � A

�
uIU;V0�

"

D lim
"!0

	
Alin

�
U C "U0;V0�C n

�
u C "u0;u C "u0; v0� � Alin

�
U;V0�

�n
�
u;u; v0� 
="

D Alin
�
U0;V0�C n

�
u0;u; v0�C n

�
u;u0; v0� :

ut
Remark 8.213 (Turbulence Modeling Without Physical Turbulence Model) The
two-scale VMS approach usually does not include a turbulence model that is based
on physical considerations, like the Smagorinsky model. The turbulence modeling is
based on purely mathematical considerations by defining the operator FU in (8.241)
or (8.242). Note that the arguments of this operator are in practice quantities that are
computed in the simulations.

It is shown in Guasch and Codina (2013), for the quasi-static OSS-VMS method,
see Remark 8.234, and with several simplifying assumptions that nevertheless this
kind of mathematical based turbulence modeling may have the correct physical
behavior in the inertial subrange of turbulent flows. Concretely, it is shown, with
heuristic arguments, that the rate of transfer of energy contributed from the model
of the unresolved scales does not depend on the mesh width and it is proportional to
the mean molecular dissipation rate, see Remark 8.8. ut

8.8.1.2 Three-Scale VMS Methods

Remark 8.214 (Basic Approach for a Three-Scale VMS Method) Consider the
Navier–Stokes equations (7.1) in a bounded domain, equipped for simplicity with
no-slip conditions, and a decomposition of the flow into three scales: the large scales
.u; p/, the small resolved scales . Ou; Op/, and the unresolved scales .u0; p0/, with

u D u C Ou C u0; p D p C Op C p0:

The starting point of a VMS method is the variational formulation of the Navier–
Stokes equations, e.g., like (7.40). This formulation can be written in short form

A .uI .u; p/ ; .v; q// D F .v/ : (8.243)

Decomposing the test functions also into three scales, the variational form of the
Navier–Stokes equations can be written as a coupled system: Find u D uC OuCu0 W
.0;T� ! V; p D p C Op C p0 W .0;T� ! Q satisfying for all .v; q/ 2 V � Q with
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v D vC OvC v0, q D q C Oq C q0

A .uI .u; p/ ; .v; q//C A .uI . Ou; Op/ ; .v; q//C A
�
uI �u0; p0� ; .v; q/� D F .v/ ;

A .uI .u; p/ ; . Ov; Oq//C A .uI . Ou; Op/ ; . Ov; Oq//C A
�
uI �u0; p0� ; . Ov; Oq/� D F . Ov/ ;

A
�
uI .u; p/ ; �v0; q0��C A

�
uI . Ou; Op/ ; �v0; q0��C A

�
uI �u0; p0� ; �v0; q0�� D F

�
v0� :

Here, the linearity of the variational problem with respect to the test function has
been used. Now, the basic ideas and assumptions of a three-scale VMS method are
as follows:

• The equation with the test function from the unresolved scales is neglected, i.e.,
the equations are projected in the space of the resolved scales.

• It is assumed that the direct influence of the unresolved scales on the large
scales is negligible, i.e., A .uI .u0; p0/ ; .v; q// D 0. The unresolved scales might
influence the resolved scales, e.g., by a backscatter of energy. It was mentioned in
Remark 8.7 that this backscatter occurs mainly to the next larger eddies, which
are represented by the small resolved scales. In this sense, this assumption is
reasonable.

• The influence of the unresolved scales onto the small resolved scales is modeled:

A
�
uI �u0; p0� ; . Ov; Oq/� 
 T .uI .u; p/ ; . Ou; Op/ ; . Ov; Oq// :

The choice of the model T .uI .u; p/ ; . Ou; Op/ ; .Ov; Oq// may be guided by physical
ideas in turbulence modeling, e.g., eddy viscosity models of Smagorinsky
type (8.67), for u or Ou, are often used. From the numerical point of view, the
turbulence model T .uI .u; p/ ; . Ou; Op/ ; . Ov; Oq// introduces additional viscosity that
acts as stabilization.

Let V;Q be spaces representing the large scales andbV;bQ spaces for the resolved
small scales. An abstract three-scale VMS method reads as a coupled system of the
form: Find .u; Ou; p; Op/ W .0;T� ! V �bV � Q �bQ such that

A .u C OuI .u; p/ ; .v; q//C A .u C OuI . Ou; Op/ ; .v; q// D F .v/ ;

A .u C OuI .u; p/ ; . Ov; Oq//C A .u C OuI . Ou; Op/ ; . Ov; Oq// (8.244)

CT .u C OuI .u; p/ ; . Ou; Op/ ; . Ov; Oq// D F . Ov/ (8.245)

for all .v; Ov; q; Oq/ 2 V �bV � Q �bQ.
Note that a characteristic feature of a three-scale VMS method is that the

model for the influence of the unresolved scales acts directly only on the small
resolved scales. Since the small resolved scales and the large scales are coupled
in (8.244), (8.245), the model T .uI .u; p/ ; . Ou; Op/ ; . Ov; Oq// influences the large scales
indirectly. This situation is in contrast to classical LES models, where the model
acts directly on all resolved scales.
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To specify a concrete three-scale VMS method, one has to define the spaces
V;bV;Q;bQ and a model T .u C OuI .u; p/ ; . Ou; Op/ ; . Ov; Oq//. ut
Remark 8.215 (Principal Approaches for Choosing Appropriate Spaces in
Three-Scale VMS Methods) Concerning finite element methods for discretiz-
ing (8.244), (8.245), there are at least two different approaches.

Standard finite element spaces can be used for the large scales V � Q. The finite
element spaces bV � bQ need to have a higher resolution since they should represent
smaller scales. A proposal consists in using mesh cell bubble functions for this
purpose, see Sect. 8.8.4 for details.

The second way for choosing the spaces consists in using a common standard
finite element space for all resolved scales and an additional large scale space.
Methods of this type will be presented in Sects. 8.8.5 and 8.8.6. ut
Remark 8.216 (Common Goal of Three-Scale VMS Methods and the Dynamic
Smagorinsky Model) Using for T .u C OuI .u; p/ ; . Ou; Op/ ; .Ov; Oq// a model of
Smagorinsky-type, as it is often done, then the principle goal of a three-scale
VMS method and the dynamic Smagorinsky model presented in Remark 8.126
is similar. Based on the experience that the use of the Smagorinsky model (8.67)
with a fixed constant CS as turbulence model introduces too much viscosity, one
tries to reduce the influence of this model in accordance to the local flow field.
In the dynamic Smagorinsky model, this reduction is done by using a function
CS .t; x/ and adjusting this function appropriately. In a three-scale VMS method,
the reduction is performed by choosing an appropriate small resolved scale space to
which the direct influence of the Smagorinsky model is restricted. ut
Remark 8.217 (Notation) To be consistent with the presentation of the other turbu-
lence models, the large scales computed with a VMS method are denoted by .wh; rh/

and the small resolved scales by
	

Owh; Orh



. ut

8.8.2 A Two-Scale Residual-Based VMS Method

Remark 8.218 (Contents) This section presents a two-scale VMS method that was
proposed in Bazilevs et al. (2007). The derivation of this method is based on a
perturbation series with respect to the norm of the residual of the resolved scales.
Truncating this series after the first term and applying some modeling of this term
leads finally to a turbulence model which can be considered as an extension of the
SUPG/PSPG/grad-div stabilization presented in Sect. 5.3.2. ut
Remark 8.219 (Scale Separation by Projection) It will be assumed that the decom-
position of the spaces for resolved and unresolved scales is of the form

V � Q D �
V ˚ V 0� � �Q ˚ Q0� ;
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where the scales are defined by a projection. For instance, let v 2 V , then
possibilities are the L2.˝/ projection v D PL2v or the elliptic projection v D PH1v.

The decomposition of V into a direct sum induces the assumption that the
resolved velocity scales and the unresolved velocity scales possess also homoge-
neous Dirichlet boundary conditions as the functions from V . ut
Remark 8.220 (The Perturbation Series) The derivation of the two-scale residual-
based VMS method is based on a perturbation series for a potentially small quantity.
This quantity is " D ��Res

�
U
���
.V�Q/0

. For this quantity to be small, the space V � Q

has to be sufficiently large. In fact, it is assumed that the larger V � Q, the better U
approximates U and the smaller is Res

�
U
�
. Then, the perturbation series is of the

form

U0 D "U0
1 C "2U0

2 C : : : D
1X

iD1
"iU0

i: (8.246)

Thus, this approach induces that if " D 0, i.e., Res
�
U
� D 0, then U0 D

FU
��Res

�
U
�� D 0. ut

Remark 8.221 (The Equation for the Unresolved Scales with Perturbation Series)
Inserting the perturbation series (8.246) in the terms of Eq. (8.240) for the unre-
solved scales and using the linearity of the forms in the respective arguments yields

AU

 1X
iD1

"iU0
i;V

0
!

D
1X

iD1
"iAU

�
U0

i;V
0�

and

n

 1X
iD1

"iu0
i;

1X
iD1

"iu0
i; v

0
!

D "2n
�
u0
1;u

0
1; v

0�C "3n
�
u0
1;u

0
2; v

0�C n
�
u0
2;u

0
1; v

0�C : : :

D
1X

iD2
"i

0
@ i�1X

jD1
n
�
u0

i;u
0
j; v

0�
1
A :

These terms can be inserted in (8.240) leading to

1X
iD1

"iAU
�
U0

i;V
0�C

1X
iD2

"i

0
@ i�1X

jD1
n
�
u0

i;u
0
j; v

0�
1
A

D �"
*

Res
�
U
�

��Res
�
U
���
.V�Q/0

;V0
+

.V�Q/0 ;.V�Q/

:
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Collecting terms with respect to powers of " gives

AU
�
U0
1;V

0� D �
*

Res
�
U
�

��Res
�
U
���
.V�Q/0

;V0
+

.V�Q/0;.V�Q/

; (8.247)

AU
�
U0

i;V
0� D �

i�1X
jD1

n
�
u0

i;u
0
j; v

0� i � 2:

This system is a system of variational problems where the computation of U0
i

requires the knowledge of all U0
j with j < i. All equations of this system have the

same operator on the left-hand side and the coupling occurs only on the right-hand
side. ut
Remark 8.222 (The Modeling Step) In Bazilevs et al. (2007), it is proposed to
truncate the series (8.246) after the first term, i.e.,

U0 
 "U0
1 D ��Res

�
U
���
.V�Q/0 U

0
1: (8.248)

The function U0
1 can be obtained formally by solving the linear partial differential

equation (8.247) with the operator AU
�
U0
1;V

0�. However, solving (8.247) analyti-
cally is in general not possible and the unresolved scale test functions are in practice
not available. From the analytical point of view, there is a formal representation of
the solution of (8.247) with a so-called fine-scale Green’s operator

U0
1 D G0

U

 
� Res

�
U
�

��Res
�
U
���
.V�Q/0

!
:

The proposal in Bazilevs et al. (2007) consists in using a linear approximation of
this operator

U0
1 
 �ı Res

�
U
�

��Res
�
U
���
.V�Q/0

;

where ı is a 4� 4 tensor-valued function. Inserting this model in (8.248), the model
of the unresolved scales, denoted by QU0

, becomes

QU0 D " QU0
1 D �ıRes

�
U
�
:

The choice of ı will be discussed in Remarks 8.227 and 8.229 as well as in
Example 8.228. ut
Remark 8.223 (Application to the Navier–Stokes Equations) The approximation
of the resolved scales in the two-scale residual-based VMS method, denoted by
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�
wh; rh

�
, is computed in a standard finite element space. It is proposed in Bazilevs

et al. (2007) that the parameter ı is a diagonal tensor-valued functions, i.e.,

ı D
�
ım 0

0T �

�
D

0
BB@
ım 0 0 0

0 ım 0 0

0 0 ım 0

0 0 0 �

1
CCA : (8.249)

The model of the unresolved scales has the form

QU0 D �ıRes
��

wh

rh

��
(8.250)

D �
�
ım
�
@twh � 	�wh C �

wh � r�wh C rrh � f
�

�
�r � wh

�
�

D �
�

resh
m

resh
c

�
:

The notation � for the last component is used because it will turn out that the model
of this component leads to a grad-div stabilization term, see Remark 8.226. Now,
this model can be inserted in the resolved scale equation (8.238).

In Bazilevs et al. (2007) it is suggested to neglect the models of the terms

�
@tu0; vh

�
and 2	

�
D
�
u0� ;D �vh

��
:

Defining the resolved scales with an appropriate projection, see Remark 8.219, then
one of these terms will vanish already in the derivation of the method, the first term
if the L2.˝/ projection is used and the second term in case of the elliptic projection.

Additionally, the term of the continuity equation with respect to the unresolved
scales in (8.238) is integrated by parts

�r � u0; q
� D � �u0;rq

�
:

In this way, there is no derivative of u0 in the model.
Inserting (8.250) in (8.238) and using the described modifications gives the

resolved scale equation: Find wh W .0;T� ! Vh; rh W .0;T� ! Qh satisfying

�
@twh; vh

�C �
2	D

�
wh
�
;D
�
vh
��C n

�
wh;wh; vh

�C �r � wh; qh
�

� �r � vh; rh
�C �

resh
m;rqh

�C �
resh

c ;r � vh
� � n

�
resh

m;w
h; vh

�
�n

�
wh; resh

m; v
h
�C n

�
resh

m; resh
m; v

h
� D h f ; vhiV0;V (8.251)

for all
�
vh; qh

� 2 Vh � Qh.
The terms �n

�
resh

m;w
h; vh

�
and �n

�
wh; resh

m; v
h
�

can be interpreted as models
of the cross terms and n

�
resh

m; resh
m; v

h
�

is a model for the subgrid scale term,
compare Remark 8.129. ut
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Remark 8.224 (The Trilinear Convective Terms in (8.251)) From the practical point
of view, it is advisable that one does not need to compute a derivative of the residual
of the momentum equation. For this reason, it is proposed in Bazilevs et al. (2007) to
use the following form of the convective term, which is obtained from the divergence
form, see Remark 6.6, with integration by parts

n.u; v;w/ D �r � �uvT
�
;w
� D � �uvT ;rw

�
: (8.252)

In the convective term of the resolved scales n
�
wh;wh; vh

�
there is no residual

and one can use in practice any other form of the convective term described in
Remark 6.8.

For the model of the cross terms, one obtains with (8.252), (6.18), and (6.8)

� n
�
resh

m;w
h; vh

� D
	

resh
m

�
wh
�T
;rvh



D
	�rvh

�T
resh

m;w
h



D
Z
˝

�
resh

m

�T �rvh
�
wh dx D �

resh
m;
�rvh

�
wh
�

D �
resh

m;
�
wh � r� vh

�
(8.253)

and with (8.252) and (6.18)

� n
�
wh; resh

m; v
h
� D

	
wh
�
resh

m

�T
;rvh



D
	

resh
m;
�rvh

�T
wh


: (8.254)

The model of the subgrid scale term is given by

n
�
resh

m; resh
m; v

h
� D �

	
.resh

m

�
.resh

m

�T
;rvh



: (8.255)

ut
Remark 8.225 (The SUPG Term in (8.251)) From (8.251) and (8.253), one finds
that

�n
�
resh

m;w
h; vh

�C �
resh

m;rqh
� D �

resh
m;
�
wh � r� vh C rqh

�
:

This term has just the form of the SUPG term for the convection field wh, see (5.34).
Of course, in comparison with a stationary equation, the residual contains the
temporal derivative of the velocity. ut
Remark 8.226 (The Grad-Div Stabilization in (8.251)) Inserting the concrete for-
mula of the residual of the continuity equation gives the term

�
�r � wh;r � vh

�
;

which is just a grad-div stabilization term. ut
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Remark 8.227 (The Stabilization Parameter ı) As already mentioned, a diagonal
tensor is used for ı with the components ım and �, see (8.249). The proposal for
choosing ım and � in Bazilevs et al. (2007) is based on dimensional arguments
and not on numerical analysis. A derivation of the stabilization parameter ım for
compressible flow equations based on such arguments can be found in Shakib
et al. (1991). In this paper, a product of a Jacobian matrix, ı, and the transposed
of the Jacobian is considered. The dimensional arguments lead to the conclusion
that the blocks of this product are dimensionally equivalent to some other matrix.
Based on this conclusion, an ansatz for the product is proposed, which contains this
matrix, and then the stabilization parameter is derived. Since the whole derivation is
somewhat involved, its details will not be presented here but only the results.

Consider parametric finite elements and the bijective map FK W OK ! K, see
Definition B.27. For simplicial meshes, FK is an affine map of the form (B.18). The
inverse map is F�1

K W K ! OK with x 7! Ox. Differentiating F�1
K leads to the definition

of the symmetric tensor G with

Gij D
3X

kD1

@Oxk

@xi

@Oxk

@xj
; i; j D 1; 2; 3:

Then, the stabilization parameter proposed in Bazilevs et al. (2007) is given by

ım D
�
4

�t2
C �

wh
�T

G
�
wh
�C Cinv	

2 kGk2F
��1=2

; (8.256)

where Cinv is the constant in the inverse estimate (C.35).
For the stabilization parameter �, the vector g with gi D P3

jD1 @Oxj=@xi is defined
and the proposal in Bazilevs et al. (2007) consists in setting

� D �
ımgTg

��1
: (8.257)

The stabilization parameters (8.256) and (8.257) will be discussed in detail for a
special case in Example 8.228. ut
Example 8.228 (K is a Cube with Edges Parallel to the Axes) Let OK D Œ�1; 1�3,
see Remark B.46, and let K be a cube with edges of length h that are parallel to the
coordinate axes. Then the reference map has the form

FK W OK ! K; Ox 7! 1

2

0
@h 0 0
0 h 0
0 0 h

1
A Ox C b D x:

Considering the inverse map, one finds that

@Oxi

@xj
D 2

h
ıij; Gij D 4

h2
ıij; kGk2F D 48

h4
;

�
wh
�T

G
�
wh
� D 4

h2
��wh

��2
2
:
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Then, the stabilization parameter ım becomes

ım D
 
4

�t2
C 4

��wh
��2
2

h2
C 48Cinv	

2

h4

!�1=2
: (8.258)

For the grad-div parameter, one obtains gi D 2=h for i D 1; 2; 3, such that gTg D
12=h2 and

� D h2

12ım
: (8.259)

Now, the parameters (8.258) and (8.259) will be discussed for the different cases
that one of the terms in (8.258) dominates.

• The term 4=�t2 dominates in (8.258), i.e., �t is very small. Then one obtains
ım � �t and � � h2=�t.

• The term 4
��wh

��2
2
=h2 dominates in (8.258), i.e., there is a strong convection and

�t & h. In this case, one gets ım � h and � � h.
• The term 48Cinv	

2=h4 is dominating in (8.258), i.e., the viscosity dominates or
the mesh is very fine and �t & h2. This situation leads to ım � h2 and � � 1.

Thus, the parameter choice in the second and third case is the same as for equal-
order discretizations of the Oseen equations, compare Remark 5.42. In fact, the
two-scale residual-based VMS method was applied with such a setting in Bazilevs
et al. (2007). ut
Remark 8.229 (On the Stabilization Parameters)

• Considering the physical units of the stabilization parameters, one finds that

ım W
h�

1=s2 C m2=.s2m2/ C m4=.s2m4/
��1=2i D Œs�

and

�
h
.s=m2/�1

i
D m2=s:

These are the same physical units as in the Oseen equations, see Remark 5.28.
Thus, ım is a time scale and � is a viscosity scale.

• Concerning the SUPG discretization for time-dependent problems, numerical
analysis seems to be available so far only for scalar convection-diffusion
equations in John and Novo (2011). For these equations, the analysis for general
assumptions on the data leads also to the proposal that the stabilization parameter
should scale with the length of the time step, like in (8.256) and (8.258).
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• For �t ! 0 one finds that ım ! 0 and � ! 1. A different, heuristic parameter
choice which avoids this behavior was discussed in Hsu et al. (2010).

• It can be expected that the parameter in the case of using velocity and pressure
finite element spaces that satisfy the discrete inf-sup condition (3.51) has to be
chosen in a different way than proposed in Bazilevs et al. (2007). This expectation
is based on the different choices for the Oseen equations, see Remark 5.42.
In addition, numerical analysis for the transient Oseen equations with grad-div
stabilization in de Frutos et al. (2016b) shows that � D O .1/ is the asymptotic
optimal choice in the convection-dominated regime, in contrast to � D O .h/
as it was found in Example 8.228. Since to the best of our knowledge, the two-
scale residual-based VMS method was not used so far with inf-sup stable pairs of
finite element spaces, the asymptotic correct choice of the stabilization parameter
seems to be an open problem in this situation.

ut
Remark 8.230 (Time-Dependent Model of the Unresolved Velocity Scales) In
Gamnitzer et al. (2010), it is proposed to model the unresolved velocity scales
or the subgrid scale velocity with

@t Qu0 C 1

Qım

Qu0 D @twh � 	�wh C �
wh � r�wh C rrh � f ; (8.260)

instead of (8.250). A time-dependent evolution of the unresolved velocity scales
of this form was proposed in Codina (2002) and Codina et al. (2007), see also
Sect. 8.8.3 for VMS methods based on time-dependent subgrid scales.

In Gamnitzer et al. (2010), Eq. (8.260) was discretized in a space consisting of
bubble functions. The stabilization parameter Qım that was proposed in Gamnitzer
et al. (2010) possesses the asymptotic Qım D O .h/ in the convection-dominated
regime. Equal order pairs of finite element spaces, e.g., Q1=Q1, were used in the
numerical studies in Gamnitzer et al. (2010). These studies were preformed at the
turbulent channel flow benchmark problem for Re� D 180 and Re� D 395, see
Example D.12. It turned out that in the case of a length of the time step which was
not too small, the differences of the results obtained with the steady-state model
of the unresolved scales (8.250) and the time-dependent model (8.260) were small.
However, for the time-dependent model (8.260), the results were more robust in the
sense that the length of the time step did not possess much impact on the results.
For the steady-state model, the length of the time step enters the definition of the
stabilization parameters (8.256) and (8.257). In particular, ım becomes small, see
Remark 8.229, and a notable impact of the length of the time step on second order
statistics was observed. ut
Remark 8.231 (Numerical Experience) In Gravemeier et al. (2010), the two-scale
residual-based VMS method from Bazilevs et al. (2007) and the algebraic VMS
method AVM3 described in Sect. 8.8.5, both applied with Q1=Q1 finite elements,
were compared for a turbulent channel flow problem, see Example D.12, and a
turbulent flow in a lid driven cavity. With respect to several quantities of interest,
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the two-scale residual-based VMS method showed less accurate results. In these
studies, the simulations with the two-scale residual-based VMS method were also
somewhat less efficient. Computational studies in Gravemeier et al. (2011) for a
turbulent flow around a cylinder, Example D.13, showed only small differences
between the residual-based VMS method and AVM3. From the point of view
of efficency, both VMS methods proved to be clearly superior to the dynamic
Smagorinsky model presented in Remark 8.126. ut

8.8.3 A Two-Scale VMS Method with Time-Dependent
Orthogonal Subscales

Remark 8.232 (Main Idea and Derivation of the Method) The VMS method with
orthogonal subscales (OSS-VMS) is based on the abstract two-scale VMS method
described in Remark 8.211. It was proposed in Codina (2002).

Let the space for the large scales be the pair of finite element spaces Vh � Qh. To
avoid confusion with the dual spaces, the spaces for the small scales are not marked
with a prime but they are denoted by QV 0 � QQ0. It is assumed to hold V D Vh ˚ QV 0
and Q D Qh ˚ QQ0.

Consider first Eq. (8.238) with the large scale test functions. In the VMS method
with orthogonal subscales, the term with the small scales is reformulated applying
integration by parts and using (6.24)

A
�
uI �u0; p0� ; .v; q/�

D �
@tu0; v

�C �
	ru0;rv�C n

�
u;u0; v

� � �r � v; p0�C �r � u0; q
�

D �
@tu0; v

�C ˝�	�v � .u � r/ v � rq;u0˛
V0;V

� �r � v; p0�

C
X

K2T h

Z
@K
.	rvC qI/n@K � u0 ds: (8.261)

Also for the small scale equation (8.240) integration by parts is applied, leading
to the equation

˝
@tu0 � 	�u0 C �

u0 � r�u C .u � r/ u0 C �
u0 � r� u0 C rp0; v0˛

V0;V

C �r � u0; q0�C
X

K2T h

Z
@K

�
	ru0 � p0I

�
n@K � v0 ds

D � ˝@tu � 	�u C .u � r/ u C rp � f ; v0˛
V0;V

� �r � u; q0�

�
X

K2T h

Z
@K
.	ru � pI/ n@K � v0 ds: (8.262)
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The terms with the integrals on the faces sum up to

X
K2T h

Z
@K
.	ru � pI/n@K � v0 ds:

It is assumed that the solution .u; p/ of the continuous problem is sufficiently smooth
such that there are no jumps across faces. Then, the term with sum over the faces
vanishes.

A first fundamental idea of the method consists in not neglecting the temporal
derivative of the small scales but approximating it by

@tu0 
 #
u0 � u0

old

�t
;

where u0
old is a known approximation of the small scales from a former discrete time

and the factor # depends on the used temporal discretization. Additionally, in the
trilinear cross term with the subgrid scale velocity as convection, u0 is approximated
with u0

old. Inserting these assumptions and approximations in (8.262) yields

�
#
u0

�t
� 	�u0 C .u � r/ u0 C �

u0 � r� u0 C rp0; v0
�

V0;V

C �r � u0; q0�

D �
�
�# u

0
old

�t
C @tu � 	�u C ��

u C u0
old

� � r�u C rp � f ; v0
�

V0;V

� �r � u; q0�

D �
Z
˝

Res
�
U;u0

old

� � V0 dx

D �
Z
˝

�
Res

�
U;u0

old

�C Vorth
� � V0 dx; (8.263)

for all Vorth that are L2.˝/ orthogonal to QV 0 � QQ0.
The ansatz for the small scales has the form, compare (8.242),

U0 D �ı �Res
�
U;u0

old

�C Vorth
�
; (8.264)

where ı is a diagonal tensor of form (8.249).
The second fundamental idea of the method consists in specifying the decom-

position into large and small scales in the way that the small scale space should be
orthogonal to the large scale space with respect to the inner product of L2.˝/. This
specification determines Vorth, because one obtains with (8.264) for all V 2 Vh �Qh

0 D �
U0;V

� D � �ı �Res
�
U;u0

old

�C Vorth
�
;V
�
; (8.265)



8.8 Variational Multiscale Methods 605

where this notation assumes that Res
�
U;u0

old

�
is defined in a way such that it

belongs to L2.˝/. Then, (8.265) defines the L2.˝/ projection in the finite element
space

ıVorth D �Ph
L2
�
ıRes

�
U;u0

old

��

and with (8.264), one obtains

U0 D � �I � Ph
L2
� �
ıRes

�
U;u0

old

��
; (8.266)

which is the model for the subgrid scales. ut
Remark 8.233 (The OSS-VMS Method with Time-Dependent Subscales) To derive
a numerical method that can be implemented and used efficiently, a number of
simplifications have been proposed in Codina (2002).

• The integrals on the faces of the mesh cells in the large scale Eq. (8.261) are
neglected.

• Instead of the dual pairing, a sum over the mesh cells is used in (8.261)
and (8.263). The residual defined in this way belongs to L2.˝/.

• The Laplacian operators in (8.261) and in the definition of Res
�
U;u0

old

�
in (8.263) are neglected.

• Instead of the projection (8.266), the small scales are defined by the standard
L2.˝/ projection

U0jK D �ıK
��

I � Ph
L2
� �

Res
�
U;u0

old

���ˇ̌
K
:

If ıK D ı is constant on ˝ , this expression is the same as (8.266).

Note that because of the L2.˝/ orthogonality of the subgrid scales and the large
scales, the term .@tu0; v/ in (8.261) and the term .@tu; v0/ in (8.263) vanish. For the
same reason, it is

�
I � Ph

L2

�
u0

old D u0
old.

Using the definition (8.263) of the residual, reordering terms, and using the
notation .wh; rh/ for the approximation of the large scales gives the model

�
@twh; vh

�C 	
�rwh;rvh

�C n
�
wh C w0;wh; vh

� � �r � vh; rh
�C �r � wh; rh

�

C
X

K2T h

 �
I � Ph

L2

� ���
wh C w0� � r�wh C rrh

�
;

ım;K
���

wh C w0� � r� vh C rqh
� !

K

C
X

K2T h

��
I � Ph

L2
� �r � wh

�
; �Kr � vh

�
K

(8.267)
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D �
f ; vh

�C
X

K2T h

��
I � Ph

L2

�
f ; ım;K

���
wh C w0� � r� vh C rqh

��
K

C #

�t

X
K2T h

�
w0

old; ım;K
���

wh C w0� � r� vh C rqh
��

K
:

Model (8.267) needs w0 explicitly, which is given by

w0jK D ım;K

�
#
w0

old

�t
� �

I � Ph
L2
� ���

wh C w0� � r�wh C rrh � f
��ˇ̌ˇ̌

K

: (8.268)

To keep the subgrid scales in the convection field of the convective terms can be
considered as the third main idea of the method. The convection field

�
wh C w0� is

called advection velocity. ut
Remark 8.234 (On the OSS-VMS Method with Time-Dependent Subscales)

• An implementation of this method with concrete time stepping schemes and
using a Picard iteration is described in Codina (2002).

• The sum over the mesh cells on the left-hand side of (8.267) includes a pressure-
pressure coupling, e.g., as in the PSPG method presented in Sect. 4.5.1. Thus, the
OSS-VMS method can be used with pairs of finite element spaces that do not
satisfy the discrete inf-sup condition (3.51). In fact, usually such pairs of spaces
were applied in the numerical studies that can be found in the literature.

• The cross terms and the subgrid scale term of the sgs tensor, compare (8.29) and
Remark 8.129, are modeled in the OSS-VMS method. None of them is neglected.

• The subscales have to be stored. They are needed to assemble matrix entries and
right-hand side entries in the OSS-VMS method (8.267). Thus, it suffices to store
these scales in the quadrature points. The update (8.268) can be computed in each
quadrature point.

• Proposals for stabilization parameters ım;K and�K were derived in Codina (2002)
on the basis of a Fourier analysis:

ım;K D

8̂
<
:̂

1

#�t
C
2
4	C1

	

h2


2 C
 

C2

��wh C w0��
2

h

!23
5
1=2
9>=
>;

�1

;

�K D
2
4	2 C

 
C2
C1

��wh C w0��
2

h

!23
5
1=2

;

with user-chosen constants C1;C2 > 0. Considering the convection-dominated
regime and time steps that are not very small, one finds that ım;K � h and
�K � h, which corresponds to the asymptotic optimal choice of the stabilization
parameters in the SUPG/PSPG/grad-div method for the Oseen equations and
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equal-order pairs, see Remark 5.42. Numerical studies investigating different
choices of C1;C2 were performed in Colomés et al. (2015).

• Note that the OSS-VMS method applies a global L2.˝/ projection and not a
local projection as LPS methods, see Remark 5.52.

• In Codina (2002), other algorithmic aspects are discussed, e.g., to compute
the subscales with an explicit time stepping scheme or to neglect the temporal
evolution of the subscales at all, i.e., setting w0

old D 0 in (8.267), (8.268). The
latter approach is called static or quasi-static subscales.

• There exist modifications and extensions of the prototype OSS-VMS
method (8.267), (8.268), e.g., see Colomés et al. (2015).

ut
Remark 8.235 (Energy Balance) The energy balance of the OSS-VMS method was
studied in Principe et al. (2010) and Codina et al. (2011). Assuming that a solution
exists and using this solution as test function, it turns out that there is also a scale
separation in the local kinetic energy, i.e., there are separate balances for the large
scales and the subscales because the temporal derivative of one kind of scales does
not enter the energy balance of the other kind of scales. This result holds only if
the subscales are L2.˝/ orthogonal to the finite element space since in this case the
respective terms vanish, see Remark 8.233. ut
Remark 8.236 (Backscatter of Energy) The term

˝�	�v � .u � r/v � rq;u0˛
V0;V

(8.269)

in (8.261) can be considered to describe the energy exchange between the large
scales and the subscales. For simplicity, f 2 Vh is assumed, such that

�
I � Ph

L2

�
f D

0, ım;K D ım is considered, the Laplacian in (8.269) is neglected, and the dual
pairing is replaced by a sum over the mesh cells. Setting

�
vh; qh

� D �
wh; rh

�
in (8.268), inserting the subscales (8.268), using w D wh Cw0, and using the L2.˝/
orthogonality of the different scales gives

ım

X
K2T h

�� .w � r/wh � rrh;� �I � Ph
L2

� ��
wh C w0� � r�wh C rrh

�
K

Cım

X
K2T h

�
� .w � r/wh � rrh; #

w0
old

�t

�
K

D ım

���I � Ph
L2
� ��

wh C w0� � r�wh
��2

L2.˝/

�ım

��
I � Ph

L2

� �
.w � r/wh C rrh

�
; #

w0
old

�t

�
: (8.270)
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Backscatter of energy is given if (8.270) is negative. The first term on the right-
hand side of (8.270) is non-negative. It follows that backscatter can only occur if
the subscales are time-dependent. Otherwise, the second term on the right-hand side
of (8.270) vanishes sincew0

old D 0. For time-dependent subscales, the sign of the this
term is not clear. In numerical studies in Principe et al. (2010), it was observed that
in fact backscatter occurred locally in space and time using the OSS-VMS method.

ut
Remark 8.237 (Finite Element Error Analysis) A finite element error analysis for a
stabilized method with orthogonal subscales is presented in Codina (2008). In this
paper, the Oseen Eq. (5.1), with c D 0, are considered and the analysis is performed
for equal-order pairs of finite element spaces. In contrast to (8.267), (8.268), not the
standard L2.˝/ projection is used in the definition of the method but the weighted
L2.˝/ projection with the stabilization parameters inside, see (8.266). As usual for
stabilized methods, the analysis is performed for a norm that involves contributions
from the stabilization terms. It turns out that the bilinear form of the method is
not coercive in this norm. Thus, for obtaining the existence and uniqueness of a
solution, an inf-sup condition is proved, see Lemma 5.38 and Corollary 5.40 where
this approach is applied for the SUPG/PSPG/grad-div method. Finally, it is shown
that the method converges with optimal order if the stabilization parameters are
ım;K D O .hK/, �K D O .hK/ and if the mesh width is sufficiently small.

Similarly as for the SUPG/PSPG/grad-div method, the norm that was used in
the error analysis possesses a term with the sum of the streamline derivative of
the velocity and the gradient of the pressure, see (5.40) and Theorem 5.41. There
is no separate control of these two terms. For this reason, in Codina (2008) a
second method is considered whose definition uses individual projections of the
streamline derivative of the velocity and the gradient of the pressure. For this
method, it is possible to control both terms separately and to show the optimal order
of convergence.

The long time behavior of the OSS-VMS method with dynamic subscales is
investigated in Badia et al. (2010). As a first step, the existence and uniqueness
of a solution of the considered continuous-in-time version of the method is proved.
Then, the stability of the solution is studied. With standard assumptions, the stability
of the finite element solution and also of the subscales is shown for a bounded
time interval. Using slightly stronger assumptions, also the stability for T ! 1
is proved, e.g., giving wh 2 L1 �

0;1I L2.˝/
�

and w0 2 L1 �
0;1I L2.˝/

�
. These

results imply the existence of an absorbing set in L2.˝/ for both wh and w0. In the
two-dimensional case, also the existence of an absorbing set for wh in H1.˝/ is
proved in Badia et al. (2010). From this result, one can conclude that, for f being
time-independent, the absorbing set of wh in L2.˝/ is even a global attractor for
d D 2. For the analysis presented in Badia et al. (2010) it was crucial that the
subscales are time-dependent. ut
Remark 8.238 (The Algebraic Subgrid Scale (ASGS) VMS Method) The ASGS-
VMS method, whose prototype was derived in the framework of a two-scale VMS
method in Codina (2001b), see also Codina et al. (2007), can be defined by choosing
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Vorth D 0 in (8.264), instead of employing the orthogonality of the subgrid scale
space and the finite element space for defining Vorth. Since these spaces are not
orthogonal, the terms .@tu0; v/ and .@tu; v0/ do not vanish. With similar assumptions
as for the OSS-VMS method, one obtains the prototype ASGS-VMS method

�
@twh; vh

�C 	
�rwh;rvh

�C n
�
wh C w0;wh; vh

� � �r � vh; rh
�

C �r � wh; rh
�C �

@tw0; vh
�

C
X

K2T h

���
wh C w0� � r�wh C rrh; ım;K

���
wh C w0� � r� vh C rqh

��
K

C
X

K2T h

�r � wh; �Kr � vh
�

K

D �
f ; vh

�C
X

K2T h

�
f ; ım;K

���
wh C w0� � r� vh C rqh

��
K

C #

�t

X
K2T h

�
w0

old; ım;K
���

wh C w0� � r� vh C rqh
��

K

with

w0jK D ım;K

�
#
w0

old

�t
� �
@twh C �

wh C w0� � r�wh C rrh � f
�ˇ̌
ˇ̌
K

:

Refinements of this method, taking into account for instance the discretizations of
temporal derivatives in the residual, can be found, e.g., in Colomés et al. (2015).

Note that the principles for deriving the quasi-static version of the ASGS-VMS
method, i.e., with w0

old D 0, are more or less the same as for deriving the residual-
based VMS method presented in Sect. 8.8.2, such that both methods are similar. ut
Remark 8.239 (Numerical Experience) There are a number of comparisons of the
OSS-VMS method and the ASGS-VMS method. All of them were performed for
equal-order pairs of finite element spaces. The most detailed assessment of these
methods can be found in Colomés et al. (2015), where for instance turbulent channel
flow problems, see Example D.12, were studied. By construction, it is to be expected
that the OSS-VMS method introduces less numerical viscosity than the ASGS-
VMS method, since in the former method only the fluctuation (identity operator
minus projection operator) of the residual occurs in the stabilization terms. This
expectation is often met in the numerical results, e.g., see Codina (2008).

In Colomés et al. (2015), it was found that overall the OSS-VMS and ASGS-
VMS methods give similar results. Both methods converged to reference solutions
when the mesh was refined or the polynomial degree of the finite element spaces
was increased. Furthermore, it was observed that both methods are sensitive to the
concrete choice of the stabilization parameters ım;K and �K . In fact, this choice
is more important for the numerical results than the choice of the VMS method



610 8 The Time-Dependent Navier–Stokes Equations: Turbulent Flows

itself. With respect to the computational cost, the OSS-VMS method with dynamic
subscales proved to be most efficient. ut

8.8.4 A Three-Scale Bubble VMS Method

Remark 8.240 (Realizations of Three-Scale Bubble VMS Methods) Bubble VMS
methods can be considered as the most direct realization of a three-scale VMS
method as described in Remark 8.214.

The main goal of using bubble functions for approximating the small resolved
scales consists in splitting the Eq. (8.245) for these scales into a number of local
problems to obtain an efficient method, see Remark 8.242. This idea was already
pointed out in Hughes et al. (2000).

A first realization of this idea can be found in Gravemeier et al. (2004, 2005)
and Gravemeier (2006c). In these papers, the velocity and the pressure were
approximated with bilinear or trilinear finite elements. Only the velocity space was
enriched with bubble functions for the small resolved scales. With this enrichment,
the pair of finite element spaces becomes inf-sup stable. The stabilizing effect of
bubble functions with respect to the discrete inf-sup condition (3.51) was already
seen for the MINI element in Sect. 3.6.1 or the pair Pbubble

2 =Pdisc
1 , see Remark 3.133.

The model for the small resolved pressure does not use bubble functions, compare
Remark 8.244. A main issue in Gravemeier et al. (2004, 2005) and Gravemeier
(2006c) was the investigation of the turbulence model applied to the small resolved
scales. A realization of a three-scale bubble VMS method with second order velocity
and first order pressure, which followed the principal ideas of Gravemeier et al.
(2004, 2005), was explored in John and Kindl (2010a).

In this section, just one possible approach for a bubble VMS method is sketched.
ut

Remark 8.241 (Bubble VMS Method: Basic Equations) Let the resolved scales
.uh; ph/ be decomposed into large scales .u; p/ and small resolved scales . Ou; Op/.

The equation with the large scale test functions, where the coupling of the large
scales and the unresolved scales has been neglected, has the form, compare (8.244),

�
@tuh; v

�C �
2	D

�
uh
�
;D .v/

�C n
�
uh;uh; v

� � �r � v; ph
�C �r � uh; q

� D . f ; v/ :

Applying the splitting of the resolved scales yields

.@tu; v/C .2	D .u/ ;D .v//C n .u;u; v/� .r � v; p/C .r � u; q/
D . f ; v/ �

h
.@t Ou; v/C .2	D .Ou/ ;D .v// (8.271)

Cn
�
uh; Ou; v�C n . Ou;u; v/ � .r � v; Op/C .r � Ou; q/

i
:
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Similarly, one obtains an equation for the small resolved scale test functions, where
the eddy viscosity model is already included,

.@t Ou; Ov/C ..2	 C 	T/D . Ou/ ;D . Ov//
Cn

�
uh; Ou; Ov� � .r � Ov; Op/C .r � Ou; Oq/ (8.272)

D . f ; Ov/ �
h
.@tu; Ov/C .2	D .u/ ;D . Ov//

Cn
�
uh;u; Ov� � .r � Ov; p/C .r � u; Oq/

i
:

ut
Remark 8.242 (Localization of the Small Resolved Velocity Scale Equation with
Bubble Functions) In a bubble-based finite element VMS method, standard finite
element spaces are used for the large scales V � Q D Vh � Qh. The finite element
spaces for the small resolved scales require a higher resolution than the finite
element spaces for the large scales. This goal can be achieved in various ways: by
using higher order finite elements, by refining the given grid, or by combining these
approaches. However, the result of all approaches is that the solution of the small
resolved scale Eq. (8.272) would be much more expensive than solving the large
scale Eq. (8.271). This difficulty is circumvented in a bubble-based finite element
VMS method by considering (8.272) in a space of bubble functions for the velocity.
A bubble function is a function from H1

0.˝/ whose support is only one mesh cell
and which vanishes on the faces of this mesh cell. With these functions, the solution
of (8.272) can be localized. Because of the modeling of the small resolved pressure
explained in Remark 8.244, only a bubble space for the small resolved velocity is
needed. In practice, this space has to be finite-dimensional and it will be denoted bybVh

bub. ut
Remark 8.243 (An Unphysical Property Introduced by Using Bubble Functions for
Modeling the Small Resolved Scales) There is a principal question in all bubble-
based VMS approaches concerning the physics of the modeling of the small
resolved scales. Since these scales are represented by bubble functions, they can
move within a mesh cell but they cannot move directly from one mesh cell to another
because of the homogeneous Dirichlet boundary conditions on the faces of the mesh
cells. The information contained in the small resolved scales can be distributed to
other mesh cells only indirectly by the coupling of the small resolved scales to the
large scales. This quasi-stationary modeling of the small resolved scales does not
reflect the physical reality. However, there are no numerical studies available that
investigate the impact of this unphysical modeling in detail. ut
Remark 8.244 (Modeling of the Small Resolved Pressure) It was proposed in
Gravemeier et al. (2004, 2005) to model the small resolved scale pressure in the
form

Op D �
X

K2T h

�K.r � u/: (8.273)
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In this way, the influence of the small resolved scale pressure onto the large scales
is not directly taken into account but this influence is modeled. Using (8.273), Op
vanishes from the small resolved scale Eq. (8.272). Since the small resolved pressure
disappeared, the imposition of a divergence constraint for the small resolved
velocity is not possible. Since there is no longer a divergence constraint for Ou, it
does not make sense to have a term with this function in the divergence constraint
of the large scale Eq. (8.271). Altogether, all terms in (8.271) and (8.272) coming
from the divergence constraint that include small resolved scales will be neglected
by setting

.r � Ou; q/ D .r � u; Oq/ D .r � Ou; Oq/ D 0: (8.274)

One obtains from (8.272) a vector-valued equation for Ou. The model (8.273) for the
small resolved scale pressure is included in the large scale equation leading to a
grad-div stabilization term.

A model of form (8.273) was also used in the two-scale residual-based VMS
method, see (8.250). It has the interpretation that the small (resolved) pressure is
driven by the residual of the large scale continuity equation. ut
Remark 8.245 (Further Simplifications) Usually, some additional simplifying
assumptions are made for the terms with the small resolved velocity scales. The
equation for the small resolved velocity scales is only solved once in each discrete
time, at the beginning, giving the solution Ou.1/. Consequently, this equation is
linearized and all terms with u are treated explicitly. For reasons of efficiency,
the gradient form of the viscous term is used in the small resolved scale equation
and some right-hand side terms in the large scale equation. In particular, the small
resolved scale equation decouples into three scalar equations since the system
matrix becomes a block diagonal matrix, see Remarks 4.66 and 4.69.

Because the equation for the small resolved scales is solved only at the beginning
of each time step, the temporal derivatives in (8.271) and (8.272) have to be
modified. For the large scale Eq. (8.271), one uses

@t Ou 
 OunC1 � Oun

�tnC1

 Ou.1/ � Oun

�tnC1
:

In the small resolved scale equations, one assumes that the temporal change in the
large scales can be neglected, i.e., that @tu D 0. ut
Remark 8.246 (Bubble VMS Method with Time-Dependent Small Resolved Velocity
Scales) Inserting the models and simplifications from Remarks 8.244 and 8.245
in (8.271) and (8.272) and using the convention for the notation from Remark 8.217
leads to the following system of equations: Find w W .0;T� ! V ; r W .0;T� ! Q
satisfying

.@tw; v/C .2	D .w/ ;D .v//

Cn .w;w; v/ � .r � v; r/C .r � w; q/C
X

K2T h

�K.r � w;r � v/K
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D . f ; v/�
" 

Ow.1/ � Own

�tnC1
; v

!
C
	
	r Ow.1/;rv



(8.275)

n
	
wn C Ow.1/; Ow.1/; v



C n

	
Ow.1/;wn; v


#

for all .v; p/ 2 V � Q. The equation for computing Ow.1/ W .0;T� ! bVh
bub reads as

follows

�
@tbw.1/;bv�C �

.	 C 	T/rbw.1/;rbv�C n
�
wh

n;bw.1/;bv�

D . f ;bv/ �
h
.	rwn;rbv/C n

�
wh

n;wn;bv� (8.276)

� .r �bv; rn/C
X

K2T h

�K.r � wn;r �bv/K
i

for all Ov 2 bVh
bub. The subscript n refers always to functions computed in the previous

discrete time.
Equation (8.276) can be interpreted in the way that the small resolved velocity

scales are driven by the residual of the large scale momentum equation. ut
Remark 8.247 (Other Bubble VMS Methods) The way for defining a bubble VMS
method described in this section is just one possible approach. Other simplifica-
tions are possible, leading to (slightly) different equations compared with (8.275)
and (8.276). For instance, in John and Kindl (2010a) a bubble VMS method was
studied with quasi-stationary small resolved scales that avoids the storage of the
bubble velocity from the previous discrete time, as it is necessary in (8.275), (8.276).

ut
Remark 8.248 (Residual-Free Bubble Methods) The use of bubble functions for
stabilizing dominant convection was already proposed prior to VMS methods.
Exactly as described in Remarks 8.244 and 8.246, these bubble functions solve
equations with the residual obtained with some standard finite element method. For
this reason, this approach is called residual-free bubble (RFB) method. This idea
was first proposed for scalar convection-diffusion equations in Brezzi and Russo
(1994) and applications to laminar incompressible flows can be found, e.g., in
Franca and Nesliturk (2001). Thus, the bubble VMS method can be considered as a
generalization of the RFB method in the sense that a turbulence model is introduced
in the equation for the small resolved velocity scales to account for the turbulent
character of the flow. ut
Remark 8.249 (Choice of the Turbulence Model) The definition of the small
resolved scale Eq. (8.276) requires the choice of the turbulence model 	T. In
Gravemeier et al. (2004, 2005), a dynamic Smagorinsky model, see Remark 8.126,
was used. The studies in John and Kindl (2010a) applied static Smagorinsky models



614 8 The Time-Dependent Navier–Stokes Equations: Turbulent Flows

of the form

	T D CSh2K

���D
	
w C Ow.1/


���
F

and 	T D CSh2K kD .w/kF : (8.277)

ut
Remark 8.250 (Approximating the Small Resolved Velocity Scales with Bubble
Functions) The space bVh

bub has to be specified in order to compute the solution
of the bubble Eq. (8.276). In Gravemeier et al. (2004, 2005), Gravemeier (2006c)
and John and Kindl (2010a), local grids in each hexahedral mesh cell were used. A
typical size of a local grid was 5� 5� 5 sub cells. On these local grids, the equation
for the bubble functions was discretized, usually with Q1 finite elements. For the
use of the dynamic Smagorinsky model in Gravemeier et al. (2004, 2005), a second
local grid was applied that was somewhat finer than the first local grid. ut
Remark 8.251 (Numerical Experience with Bubble VMS Methods) In John and
Kindl (2010a), it is mentioned that the application of a bubble finite element VMS
method is quite complicated: one has to decide about the simplifying assumptions
with respect to the small resolved scales and also the implementation is quite
involved. In addition, it turned out that the dominating term of the model is the
grad-div term that evolves from modeling the small resolved pressure, see (8.274).
Using only this term without modeling the small resolved velocity led to stable
simulations. However, applying in addition to the grad-div stabilization also the
bubble-based model for the small resolved velocity improved the accuracy of the
results. It is also mentioned in John and Kindl (2010a) that the rather coarse grids for
solving the localized Eq. (8.276) required to take large values for the parameter CS

of the Smagorinsky models (8.277). Altogether, the use of the bubble VMS method
is not recommended in John and Kindl (2010a). ut

8.8.5 Three-Scale Algebraic Variational Multiscale-Multigrid
Methods (AVM3 and AVM4)

Remark 8.252 (History) The AVM3 method was introduced in Gravemeier et al.
(2009, 2010) and developed further in Rasthofer and Gravemeier (2013) to AVM4.

ut
Remark 8.253 (The Definition of the Small Resolved Scales) The definition of the
small resolved scales uses an idea from algebraic multigrid (AMG) methods. The
motivation for this approach comes from the goal to define the scale separation of
the resolved scales without introducing another finite element space or another grid.

AMG methods are a proposal for transferring the ideas of geometric multigrid
methods, see Remark 9.11, to problems where coarser geometric grids are not
available, e.g., see Stüben (2001) for a description and a review. To this end,
a multilevel structure is constructed solely based on a matrix, which represents
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the problem on the given grid. Then, coarser levels, discrete operators on these
levels, and transfer operators (restriction and prolongation) are constructed. For
the scale separation in AVM3, only the construction of one coarser level and the
corresponding transfer operators is needed.

There are several possibilities for constructing coarser levels in AMG methods.
For AVM3, it is proposed to use the simplest one, namely plain aggregation, see
Vaněk et al. (1996). The degrees of freedom on the given grid correspond to the
rows of the given matrix A. In Gravemeier et al. (2009, 2010) some root degree of
freedom i is chosen and an aggregate is formed from the union of all degrees of
freedom j for which the matrix entry aij does not vanish. Then, these degrees of
freedom are removed from the list, a next root degree of freedom is chosen and this
procedure is continued until all degrees of freedom belong to an aggregate. There
are also other possibilities for choosing the aggregates, e.g., based on the strength
of the coupling in the matrix A, i.e., based on

ˇ̌
aij

ˇ̌
. The aggregates represent the

degrees of freedom on the coarse level. Denoting the fine and the coarse level in
terms of the mesh width h of the geometric grid corresponding to the fine level, then
the aggregates on the coarse level are usually denoted by 3h.

Next, operators for the restriction R3h
h and the prolongation of Ph

3h of vectors
have to be defined. To this end, consider the matrix QA which differs from A only
in the way that essential boundary conditions are replaced with natural boundary
conditions. Let QA0 be a matrix whose columns span the kernel of QA, i.e.,

QA QA0 D 0: (8.278)

The matrix on the coarse grid can be defined with the so-called Galerkin projection

QA3h D R3h
h

QAPh
3h:

Denoting the matrix which spans the kernel of QA3h by QA3h
0 , one obtains

0 D QA3h QA3h
0 D R3h

h
QAPh

3h
QA3h
0 :

With (8.278), it follows that this equation is satisfied if

Ph
3h

QA3h
0 D QA0: (8.279)

Based on (8.279), the operators Ph
3h and QA3h

0 can be determined simultaneously, see
Gravemeier et al. (2009) for details. Finally, one sets

R3h
h D �

Ph
3h

�T
:

Note that these operators are linear operators between finite-dimensional spaces and
thus they can be represented with matrices.
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Now, the operator for defining the large scales is given by

S3h
h W Vh ! Vh; u3h D Ph

3hR3h
h uh;

i.e., in the first step uh is restricted to the aggregates and in the second step, the
representation of the aggregates in the finite element space is obtained. The small
resolved scales are defined by

uh D u3h C Ouh ” Ouh D uh � u3h: (8.280)

In AVM3 from Gravemeier et al. (2010), the definition of the aggregates is based
on the matrix that contains the complete discretization of the velocity-velocity part
of the Navier–Stokes equations, including terms coming from stabilizations. ut
Remark 8.254 (AVM3) The derivation of this method can be explained by consid-
ering first a two-scale decomposition of the velocity and pressure

u D uh C u0; p D ph C p0; (8.281)

where .uh; ph/ 2 Vh � Qh and Vh;Qh are conforming finite element spaces. Then,
the equation with the unresolved test functions is neglected. For the equation
with the test functions from the finite element spaces, one obtains, using the
decomposition (8.281),

�
@tuh; vh

�C �
2	D

�
uh
�
;D
�
vh
��C ��

uh � r�uh; vh
�C �r � uh; qh

�
� �r � vh; ph

�
(8.282)

D �
f ; vh

� �
h �
@tu0; vh

�C �
2	D

�
u0� ;D �vh

��C ��
uh � r�u0; vh

�

C ��
u0 � r�uh; vh

�C ��
u0 � r�u0; vh

�� �r � vh; p0� i � �r � u0; qh
�
:

Now, the term in the brackets is considered and the test function is split into
vh D v3h C Ovh in this term. Then, the assumption for a three-scale VMS method are
applied, see Remark 8.214:

• The direct impact of the unresolved scales on the large scales is negligible, i.e.,
all terms in the brackets with test function v3h are neglected.

• The direct impact of the unresolved scales onto the small resolved scales is
modeled with a turbulence model, i.e., all terms in the brackets with test function
Ovh are modeled. In Gravemeier et al. (2010), a Smagorinsky model of the form

r �
	

CSh2
���D

	
Ouh

���

F
D

	
Ouh




D r �
	
	T

	
Ouh


D

	
Ouh




(8.283)

was used.
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Thus, the model of the term in the brackets in (8.282) reduces to (8.283). It contains
the deformation tensor of the small resolved scales. ut
Remark 8.255 (Realization of AVM3) A realization of AVM3 can be found so far
only for the Q1=Q1 pair of finite element spaces. To account for the violation of
the discrete inf-sup condition in this case, it was proposed in Gravemeier et al.
(2010) to include a consistent stabilization that includes the PSPG stabilization, see
Sect. 4.5.1, as model of the last term in (8.282)

�r � w0; qh
� 


X
K2T h

�
@twh � 	�wh C �

wh � r�wh C rrh � f ; ıp
Krqh

�
K
;

where the convention for the notation given in Remark 8.217 was used. Then, the
continuous-in-time AVM3 method reads as follows: Find wh W .0;T� ! Vh; rh W
.0;T� ! Qh satisfying

�
@twh; vh

�C �
2	D

�
wh
�
;D
�
vh
��C ��

wh � r�wh; vh
�

C �r � wh; qh
� � �r � vh; rh

�C
	
	T

	
Owh


D

	
Owh


;D
	

Ovh




C
X

K2T h

�
@twh � 	�wh C �

wh � r�wh C rrh; ı
p
Krqh

�
K
;

D �
f ; vh

�C
X

K2T h

�
f ; ıp

Krqh
�

K
; (8.284)

where Owh is computed with the help of the AMG approach sketched in
Remark 8.253.

Using the short form (8.243), the method AVM3 can be written as follows

A
�
whI �wh; rh

�
;
�
vh; qh

��C PSPG-type stabilization (8.285)

C
	
	T

	
Owh


D

	
Owh


;D
	

Ovh




D F
�
vh
�
:

ut
Remark 8.256 (Numerical Experience) The algebraic VMS method AVM3 was
compared in Gravemeier et al. (2010) with the two-scale residual-based VMS
method from Bazilevs et al. (2007) presented in Sect. 8.8.2. A turbulent channel flow
problem, as described in Example D.12, and a turbulent lid driven cavity problem
were considered. The simulations were performed for Q1=Q1 finite elements. It was
observed that the results with AVM3 were more accurate in several aspects and the
simulations were somewhat more efficient.

Only small differences in accuracy and efficiency between both VMS methods
were observed in Gravemeier et al. (2011) for the simulation of a turbulent flow
around a cylinder, see Example D.13. Both VMS methods turned out to be clearly
more efficient than the dynamic Smagorinsky model described in Remark 8.126.

ut
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Remark 8.257 (Multifractal Model of the Unresolved Scales—the Algebraic
Multiscale-Multigrid-Multifractal Method AVM4) In Rasthofer and Gravemeier
(2013), it is proposed to use a so-called multifractal model of u0 in (8.282) instead
of modeling the terms in the brackets all together with an eddy viscosity model.
Multifractal modeling of the unresolved scales is based on physical considerations,
see Burton and Dahm (2005a,b) for a detailed derivation. As final result, the
unresolved velocity scales can be represented in the form

u0 D Csgs
�
1 � ˛�4=3��1=2 2�2N=3

�
24N=3 � 1�1=2 Ouh; (8.286)

see Rasthofer and Gravemeier (2013). In (8.286), Csgs is a constant, the parameter
˛ comes from the definition of the large scales u˛h, i.e., ˛ D 3 in (8.280), and

N D log2

�
hK

�	

�
(8.287)

is the number of cascades, which depends on the local mesh width and the viscous
scale length �	 , see Remark 8.13. Model (8.286) is inserted in (8.282).

In Rasthofer and Gravemeier (2013), the value Csgs D 0:25 was used. The
viscous scale length is about six times larger than the Kolmogorov scale (8.3),
Rasthofer and Gravemeier (2013). The following approximations were proposed
in Rasthofer and Gravemeier (2013), Rasthofer (2015, Sect. 4.2.5)

hK

�	
D C	

�
Reh

K

�3=4

with C	 D 1=12:3 or C	 D 1=11:2 and

Reh
K D

��D �wh
���

F h2K
	

or Reh
K D

��wh
��
2

hK

	
:

With these definitions, the value obtained on the right-hand side of (8.287) is
usually not a natural number (as the notation “number of steps” would suggest). In
practice, the generally non-natural numbers that are computed with the right-hand
side of (8.287) are used for N, which can be seen, e.g., in Rasthofer and Gravemeier
(2013, Fig. 11) or Rasthofer (2015, Fig. 4.7).

The multifractal modeling can be adapted to wall-bounded turbulent flows and it
allows backscatter, see Rasthofer and Gravemeier (2013) and Rasthofer (2015) for
details. To enhance numerical stability, it is proposed in Rasthofer and Gravemeier
(2013) and Rasthofer (2015) to extend the multifractal model with residual-based
stabilization terms, namely the SUPG term, the grad-div term, and the PSPG term.
The arising method is called algebraic Multiscale-multigrid-multifractal method
AVM4 in Rasthofer (2015).

The method AVM4 is compared in Rasthofer (2015) with the two-scale residual-
based VMS method from Bazilevs et al. (2007), see Sect. 8.8.2, and the dynamic
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Smagorinsky model presented in Remark 8.126. The simulations were performed
with the Q1=Q1 pair of finite element spaces. It was shown that the adaption at
the wall that is described in Rasthofer (2015) is of great importance for computing
accurate solutions. For turbulent channel flows, see Example D.12, substantial better
results were obtained with AVM4 compared with the other methods. Also for the
turbulent flow around a cylinder, Example D.13, AVM4 gave the best results near
the cylinder. The computing times of AVM4 and the residual-based VMS method
were similar. ut

8.8.6 A Three-Scale Coarse Space Projection-Based VMS
Method

Remark 8.258 (Basic Idea of the Method) The basic idea of the method consists in
introducing an eddy viscosity term where the eddy viscosity does not act directly
on all resolved scales but only on small resolved scales. This idea is the same as for
the algebraic VMS methods described in Sect. 8.8.5. In the three-scale coarse space
projection-based VMS method, the scale separation of the large scales is performed
with the L2.˝/ projection of the deformation tensor of the resolved scale velocity.

ut

8.8.6.1 Definition of the Method

Remark 8.259 (A Coarse Space Projection-Based VMS Method) Let Vh � Qh be
finite element spaces for the velocity and pressure that satisfy the discrete inf-
sup stability condition (3.51), let LH be a finite-dimensional space of symmetric
d � d tensor-valued functions defined on ˝ and let 	T

��
wh; rh

�
; h
�

be a non-
negative function. Then, the semi-discrete coarse space projection-based VMS
method (continuous-in-time) is defined as follows: Find wh W .0;T� ! Vh; rh W
.0;T� ! Qh, and G

H W .0;T� ! LH satisfying

�
@twh; vh

�C .2	D
�
wh
�
;D
�
vh
�
/C n.wh;wh; vh/

� �r � vh; rh
�C �

	T
�
D
�
wh
�� G

H
�
;D
�
vh
�� D h f ; vhiV0;V ;�r � wh; qh
� D 0;

�
D
�
wh
� � G

H;LH
� D 0; (8.288)

for all
�
vh; qh

� 2 Vh � Qh and L
H 2 LH . The scales are defined by projection

in the last equation of (8.288), there are large scales and small resolved scales,
and the turbulence model is applied directly only to the small resolved scales, see
Remark 8.261 for a detailed discussion of the last two issues.
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Using the short form (8.243), the first two equations of (8.288) can be written in
the form

A
�
whI �wh; rh

�
;
�
vh; qh

��C �
	T
�
D
�
wh
� � G

H
�
;D
�
vh
�� D F

�
vh
�
: (8.289)

Comparing this representation with (8.285) shows that, apart of the PSPG-type
stabilization, the coarse space projection-based VMS method and AVM3 have
principally the same form. Only, in (8.289), the small resolved scales of the
deformation tensor appear whereas (8.285) contains the deformation tensor of the
small resolved scales. For constant turbulent viscosity 	T, the second term on the
left-hand side of (8.289) can be rewritten in terms of the deformation tensor of the
small resolved scales, compare Remark 8.264.

The method (8.288) was proposed in John and Kaya (2005) based on ideas from
Layton (2002). For applying this method, one has to choose two parameters: the
additional viscosity 	T

��
wh; rh

�
; h
�

and the space LH . ut
Remark 8.260 (Choice of the Additional Viscosity) Concerning the turbulent vis-
cosity 	T

��
wh; rh

�
; h
�
, numerical studies with the method (8.288) presented in John

and Kaya (2005), John and Roland (2007), John and Kindl (2010a,b) and Röhe and
Lube (2010) used a Smagorinsky models of the form

	T D CSı
2
��D �wh

���
F ; (8.290)

	T D CSı
2
��D �wh

� � G
H
��

F ; (8.291)

	TjK D CS
ı2

jKj1=2
��D �wh

� � G
H
��

L2.K/ : (8.292)

Altogether, the typical feature of a three-scale VMS method, namely that the
turbulence model is applied directly only to the small resolved scales, can be
observed very well in the last term on the left-hand side of the first equation
of (8.288). ut
Remark 8.261 (Choice of the Large Scale Projection Space) The other parameter
in (8.288) is the space of symmetric tensors LH . The last equation in (8.288) states
that the tensor GH is just the L2 .˝/ projection of D

�
wh
�

into LH : PLH W L D
D .V/ ! LH ; D .v/ ! PLHD .v/ D G

H with
�
PLHD .v/� D .v/ ;LH

� D 0 8 L
H 2 LH : (8.293)

With this notation, one can reformulate the short form (8.289) as follows: Find wh W
.0;T� ! Vh; rh W .0;T� ! Qh satisfying

A
�
whI �wh; rh

�
;
�
vh; qh

��C �
	T .I � PLH /D

�
wh
�
;D
�
vh
�� D h f ; vhiV0;V (8.294)

for all
�
vh; qh

� 2 Vh � Qh.
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The space LH plays the role of a large scale space, i.e., .I � PLH /D
�
wh
�

represents small resolved scales of D
�
wh
�
. To avoid a negative additional viscosity,

it is required that LH � fD �vh
� W vh 2 Vhg.

Considering the limit cases for LH gives the following models.

• In the case that both spaces are identical, the second term on the left-hand side
of (8.294) vanishes and the Galerkin finite element discretization of the Navier–
Stokes equations is recovered.

• If LH D fOg, one obtains an artificial viscosity stabilization of the Navier–
Stokes equations with a possible nonlinear artificial viscosity. If 	T

��
wh; rh

�
; h
�

is the Smagorinsky eddy viscosity model (8.67), the Smagorinsky LES model is
recovered.

Since LH represents large scales, it has to be in some sense a coarse finite element
space. There are essentially two possibilities:

• If Vh is a higher order finite element space, LH can be defined as low order finite
element space on the same grid as Vh. This approach was developed in John and
Kaya (2005) and it will be discussed in this section.

• The second possibility, in particular if Vh is a low order discretization, consists in
defining LH on a coarser grid, see John et al. (2006b) for a study of this approach
in the case of convection-dominated convection-diffusion equations.

Since D
�
wh
�

is a discontinuous piecewise polynomial tensor, choosing its L2.˝/
projection in the same way seems to be natural. Thus, LH should consist of
discontinuous piecewise polynomial tensors. It will be explained in Remark 8.275
that this choice is mandatory for the sake of an efficient implementation. ut

8.8.6.2 Imbedding the Method into the Basic Approach From Sect. 8.8.1

Remark 8.262 (Coarse Spaces for Velocity and Pressure and Corresponding Pro-
jections) The method (8.288) can be transformed, in the case 	T being a positive
constant, to the abstract form (8.244), (8.245) of a VMS method. To this end, the
three-scale partitioning given in Remark 8.214 has to be described by appropriately
chosen function spaces and projections.

Clearly, the continuous pair of spaces V�Q contains all scales. The finite element
spaces Vh � Qh contain the large and the small resolved scales.

Let VH � H1 .˝/ be a discrete space such that LH D D
�
VH
�
. The space

VH should be coarser than Vh. But in the definition of VH , no essential boundary
conditions, like no-slip conditions, are incorporated. Thus, in general VH 6� Vh.
The pair of spaces for the large scales is given by VH � QH , where QH is chosen
such that a discrete inf-sup condition of type (3.51) is fulfilled for VH � QH . Then,
the large scales PHu of the velocity are defined by an elliptic projection into VH

(with natural boundary conditions) and the large scales PHp of the pressure by the
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L2.˝/ projection into QH : PH W V � Q ! VH � QH

�
D .u � PHu/ ;D

�
vH
�� D 0 8 vH 2 VH ;

.u � PHu; 1/ D 0; (8.295)�
p � PHp; qH

� D 0 8 qH 2 QH:

ut
Lemma 8.263 (Commutation of the Definition of the Large Scales and Differ-
entiation) Let v 2 V, LH D D

�
VH
�

and denote by PLHD .v/ the L2.˝/ projection
of D .v/ into LH defined in the last equation of (8.288). Then

PLHD .v/ D D .PHv/ 8 v 2 V; (8.296)

where for simplicity of notation, the symbol PH is used just for the velocity part of
the map defined in (8.295).

Proof From LH D D
�
VH
�

and PLHD .v/ 2 LH , it follows that there is a wH 2 VH

such that PLHD .v/ D D
�
wH
�
. Using the last equation of (8.288) gives

�
D
�
v � wH

�
;LH

� D 0 8 L
H 2 LH : (8.297)

On the other hand, since LH D D
�
VH
�
, (8.295) is equivalent to

�
D .v � PHv/ ;L

H
� D 0 8 L

H 2 LH : (8.298)

The statement of the lemma follows now directly from (8.297) and (8.298) since the
elliptic projection is unique. �

Remark 8.264 (Transform to the Form (8.244), (8.245) for a Constant Additional
Viscosity) Let 	T be a positive constant. Since PLHD

�
vh
� 2 LH , it follows from the

last equation of (8.288) that

�
.I � PLH /D

�
wh
�
;PLHD

�
vh
�� D 0

and consequently, one gets for a constant viscosity 	T

�
	T .I � PLH /D

�
wh
�
;D
�
vh
�� D �

	T .I � PLH /D
�
wh
�
; .I � PLH /D

�
vh
��
:

Thus, (8.289) can be reformulated as follows: Find wh W .0;T� ! Vh; rh W
.0;T� ! Qh satisfying

A
�
whI �wh; rh

�
;
�
vh; qh

��
C �
	T .I � PLH /D

�
wh
�
; .I � PLH /D

�
vh
�� D h f ; vhiV0;V (8.299)
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for all
�
vh; qh

� 2 Vh � Qh. Decomposing Vh D VH CbVh and Qh D QH C bQh with
bVh D .I � PH/Vh, one obtains with (8.296)

.I � PLH /D
�
vh
� D D

�
vh � PHv

h
� D D

�
.I � PH/ v

h
� D D

	
Ovh


:

The decompositionswh D uH C Owh, rh D pH C OpH , vh D vH C Ovh, and qh D qH C OqH

are inserted in (8.299). Using the linearity of A .�I �; �/ with respect to the second and
third component and writing the arising equation formally as a coupled system gives

A
	
uH C OwhI �uH ; pH

�
;
�
vH ; qH

�


CA
	
uH C OwhI

	
Owh
; Orh


;
�
vH ; qH

�
 D F
�
vH
�

(8.300)

for all test functions
�
vH ; qH

� 2 VH � QH and

A
	
uH C OwhI �uH; pH

�
;
	

Ovh; Oqh




(8.301)

CA
	
uH C OwhI

	
Owh
; Orh


;
	

Ovh
; Oqh




C
	
	TD

	
Owh


;D
	

Ovh




D F
	

Ovh



for all test functions from bVh � bQh. The coupled system (8.300), (8.301) possesses
exactly the form (8.244), (8.245). The unresolved scales are modeled only in the
small scale equation (8.301) with the model

T
	
whI �uH ; pH

�
;
	

Ouh
; Oph


;
	

Ovh
; Oqh




D
	
	TD

	
Owh


;D
	

Ovh




and this model influences the large scales solely indirectly by the coupling of (8.300)
and (8.301). ut

8.8.6.3 Finite Element Error Analysis

Remark 8.265 (Finite Element Error Analysis in the Literature) A finite element
error analysis for different versions of the three-scale projection-based VMS method
can be found in John and Kaya (2008), John et al. (2008) and Röhe and Lube (2010).
The analysis was always performed for the continuous-in-time case.

• In John and Kaya (2008), the case of a constant viscosity 	T was considered.
• The case of 	T being of Smagorinsky type, using the small resolved scales in

the definition of the Smagorinsky term, was studied in John et al. (2008). In
this paper, the additional viscous term was defined differently than in (8.288).
There, it is the deformation tensor of the small resolved scales and not the small
resolved scales of the deformation tensor, i.e., differentiation and projection were
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interchanged. With this interchange, one gets an additional viscous term in the
momentum equation that has the same form as the Smagorinsky term (8.67), but
only with the small resolved scales instead with all resolved scales. Then the
analysis follows the lines of Sect. 8.3.3, using the same function spaces.

• The numerical analysis in Röhe and Lube (2010) considered the case of 	T being
a piecewise constant. In the discrete equations, also a grad-div stabilization term,
see Sect. 4.6.1, was introduced. Besides an estimate for the velocity error, also an
estimate for the pressure error was given.

ut
Remark 8.266 (Turbulent Viscosity in the Analysis and Goal of the Analysis) Here,
the analysis for 	T being a piecewise constant function, for the discrete equations
(8.288), i.e., without grad-div term, and for the continuous-in-time case will be
presented. The case of 	T being piecewise constant is much closer to the use of the
projection-based VMS method in practice than a global constant 	T. Neglecting the
grad-div term serves for concentrating on the effect of the additional viscous term on
the error bound. In Röhe and Lube (2010), a number of terms were estimated with
the help of the grad-div stabilization term. It is also known that the grad-div term
alone might give error estimates independent of the viscosity, see de Frutos et al.
(2016b) for the time-dependent Oseen equations, and turbulent flow simulations
might be stabilized strongly by using only this term, see John and Kindl (2010a).

The analysis follows John and Kaya (2008), Röhe and Lube (2010) and the
goal consists in proving an error estimate where some constants depend on inverse
powers of a modified viscosity and not, as for the Galerkin finite element method,
on inverse powers of the viscosity, see estimate (7.44). The modified viscosity is not
smaller than 	. ut
Remark 8.267 (The Continuous Equation) The continuous Navier–Stokes equa-
tions will be considered in the deformation tensor form Find u W .0;T� ! V
and p W .0;T� ! Q such that

.@tu; v/C .2	D .u/ ;D .v//C nskew .u;u; v/� .r � v; p/C .r � u; q/ D h f ; viV0;V

(8.302)

for all .v; q/ 2 V � Q and u.0; x/ D u0.x/ 2 Hdiv.˝/. Note that this form is
equivalent to (7.40).

Similarly to the proof of Lemma 7.21, using in addition Korn’s inequality (3.43),
the following stability estimate can be shown

ku.t/k2L2.˝/ C 2	 kD .u/k2L2.0;tIL2.˝// � ku.0/k2L2.˝/ C C

	
k fk2L2.0;tIH�1.˝// :

(8.303)
It follows that u 2 L1 �

0;TI L2.˝/
�\ L2 .0;TI Vdiv/. ut

Remark 8.268 (Definition of a Modified Viscosity) Let T h be a triangulation and
	T
�
wh
�

be piecewise constant with respect to T h. The turbulent viscosity might
depend on the solution of (8.288). The restriction to a mesh cell K 2 T h will be
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denoted by 	K
T

�
wh
�
. Define for all v 2 V

PK
LHD .v/ D

(
PLHD .v/ in K;

fOg else:
(8.304)

Since LH consists of discontinuous functions, it follows that PK
LHD .v/ 2 LH .

By definition, the support of PK
LHD .v/ is just the mesh cell K. Using (8.304),

PK
LHD .v/ 2 LH , the last equation of (8.288), and again (8.304) yields for all v 2 V

k.I � PLH /D .v/k2L2.K/
D kD .v/k2L2.K/ � 2 .D .v/ ;PLHD .v//K C kPLHD .v/k2L2.K/
D kD .v/k2L2.K/ � 2

�
D .v/ ;PK

LHD .v/
�C kPLHD .v/k2L2.K/

D kD .v/k2L2.K/ � 2
�
PLHD .v/ ;PK

LHD .v/
�C kPLHD .v/k2L2.K/

D kD .v/k2L2.K/ � 2 .PLHD .v/ ;PLHD .v//K C kPLHD .v/k2L2.K/
D kD .v/k2L2.K/ � kPLHD .v/k2L2.K/ : (8.305)

Using this Pythagorean identity, one gets for kD .v/kL2.K/ > 0

X
K2T h

	K
T

�
wh
� k.I � PLH /D .v/k2L2.K/

D
X

K2T h

	K
T

�
wh
� 	kD .v/k2L2.K/ � kPLHD .v/k2L2.K/




D
X

K2T h

	K
T

�
wh
� 
1 � kPLHD .v/k2L2.K/

kD .v/k2L2.K/

!
kD .v/k2L2.K/

D
X

K2T h

	K
VMS

�
wh; v

� kD .v/k2L2.K/ : (8.306)

One obtains with (8.304), the last equation of (8.288), again (8.304), and the
Cauchy–Schwarz inequality (A.10)

kPLHD .v/k2L2.K/
D .PLHD .v/ ;PLHD .v//K D �

PLHD .v/ ;PK
LHD .v/

�
D �

D .v/ ;PK
LHD .v/

� D .D .v/ ;PLHD .v//K

� kD .v/kL2.K/ kPLHD .v/kL2.K/ :
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Hence, it is 0 � kPLHD .v/kL2.K/ � kD .v/kL2.K/ and one concludes from the
definition (8.306) of 	K

VMS

�
wh; v

�
that

0 � 	K
VMS

�
wh; v

� � 	K
T

�
wh
�
: (8.307)

Usually, wh depends on time such that 	K
VMS

�
wh; v

�
will be also time-dependent.

In the case kD .v/kL2.K/ D 0, it is set 	K
VMS

�
wh; v

� D 0. ut
Remark 8.269 (Formulation of the Discrete Problem) Starting point for the formu-
lation of the discrete problem is (8.288). Since PK

LHD .v/ 2 LH and the support of
PK

LHD .v/ is just K, one gets

0 D �
.I � PLH /D

�
wh
�
;PK

LHD .v/
� D �

.I � PLH /D
�
wh
�
;PK

LHD .v/
�

K

D �
.I � PLH /D

�
wh
�
;PLHD .v/

�
K
: (8.308)

Using that 	K
T

�
wh
�

is piecewise constant and (8.308) gives

�
	T
�
D
�
wh
� � GH

�
;D
�
vh
��

D
X

K2T h

	K
T

�
wh
� �
.I � PLH /D

�
wh
�
;D
�
vh
��

K

D
X

K2T h

	K
T

�
wh
� �
.I � PLH /D

�
wh
�
; .I � PLH /D

�
vh
��

K
:

In this way, the projection can be inserted in the momentum equation of (8.288).
The discrete equation reads as follows: Find wh W .0;T� ! Vh; rh W .0;T� ! Qh

satisfying

�
@twh; vh

�C �
2	D

�
wh
�
;D
�
vh
��C nskew

�
wh;wh; vh

� � �r � vh; rh
�

C
X

K2T h

	K
T

�
wh
� �
.I � PLH /D

�
wh
�
; .I � PLH /D

�
vh
��

K D h f ; vhiV0;V ;

.r � wh; qh/ D 0; (8.309)

for all
�
vh; qh

� 2 Vh � Qh, where the projection PLH was defined in (8.293).
In the finite element error analysis for the velocity, problem (8.309) is considered

in Vh
div: Find wh W .0;T� ! Vh

div such that

�
@twh; vh

�C �
2	D

�
wh
�
;D
�
vh
��C nskew

�
wh;wh; vh

�
(8.310)

C
X

K2T h

	K
T

�
wh
� �
.I � PLH /D

�
wh
�
; .I � PLH /D

�
vh
��

K
D h f ; vhiV0;V

for all vh 2 Vh
div. ut
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Remark 8.270 (Assumptions on the Data and the Solution of the Navier–Stokes
Equations) For the finite element error analysis, some assumptions on the regularity
of the solution and the data of the Navier–Stokes equations are needed. It will be
assumed that

f 2 L2
�
0;TI H�1.˝/

�
; u0 2 Hdiv.˝/; (8.311)

and that (8.302) possesses a solution .u; p/ with

ru 2 L4
�
0;TI L2.˝/

�
; @tu 2 L2

�
0;TI H�1.˝/

�
; p 2 L2

�
0;TI L2.˝/

�
:

(8.312)ut
Lemma 8.271 (Stability of wh) Let ˝ be a bounded domain with polyhedral and
Lipschitz continuous boundary and let the regularity assumptions (8.311) hold.
Assume that the three-scale projection-based VMS method (8.310) has a unique
solution wh. Let for v 2 V

	K
mod

�
wh; v

� D 2	 C 	K
VMS

�
wh; v

�
(8.313)

and

	min
mod

�
wh; v

� D min
K2T h

	K
mod

�
wh; v

�
: (8.314)

Then, the solution wh of (8.310) satisfies the stability estimate

��wh.t/
��2

L2.˝/
C
Z t

0

X
K2T h

	K
mod

�
wh;wh

� ��D �wh
�
.�/
��2

L2.K/
d�

� ��wh.0/
��2

L2.˝/ C C
Z t

0

k fk2H�1.˝/

	min
mod .w

h;wh/
d� (8.315)

for all t 2 .0;T�. It follows that wh 2 L1 �
0;TI L2.˝/

�
and D

�
wh
� 2

L2
�
0;TI L2.˝/

�
.

Proof The stability estimate is derived as usual by using the solution as test
function. One gets with (7.13), (8.306) for v D wh, integration on .0; t/, the estimate
for the dual pairing, the Poincaré inequality (A.12), Korn’s inequality (3.43), and
Young’s inequality (A.5)

1

2

��wh.t/
��2

L2.˝/ C
Z t

0

X
K2T h

	K
mod

�
wh;wh

� ��D �wh
�
.�/
��2

L2.K/ d�

D 1

2

��wh.0/
��2

L2.˝/
C
Z t

0

�
f ;wh

�
d�

� 1

2

��wh.0/
��2

L2.˝/
C C

Z t

0

k fkH�1.˝/

��D �wh
���

L2.˝/
d�
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D 1

2

��wh.0/
��2

L2.˝/ C C
Z t

0

k fkH�1.˝/

 X
K2T h

	K
mod

�
wh;wh

�
	K

mod .w
h;wh/

��D �wh
���2

L2.K/

!1=2
d�

� 1

2

��wh.0/
��2

L2.˝/

CC
Z t

0

k fkH�1.˝/�
	min

mod .w
h;wh/

�1=2
 X

K2T h

	K
mod

�
wh;wh

� ��D �wh
���2

L2.K/

!1=2
d�

� 1

2

��wh.0/
��2

L2.˝/
C C

Z t

0

k fk2H�1.˝/

	min
mod .w

h;wh/
d� (8.316)

C1

2

Z t

0

X
K2T h

	K
mod

�
wh;wh

� ��D �wh
���2

L2.K/ d�:

Absorbing the last term on the right-hand side in the left-hand side gives esti-
mate (8.315).

The regularity wh 2 L1 �
0;TI L2.˝/

�
follows immediately from (8.315). Using

2	 C 	K
VMS

�
wh;wh

� � 2	 > 0 gives also D
�
wh
� 2 L2

�
0;TI L2.˝/

�
. �

Remark 8.272 (On the Stability Estimate) The stability bound in (8.315) does not
depend on 	�1 like for the Galerkin finite element discretization, see (8.303), but on
a viscosity term that is on no account smaller. ut
Theorem 8.273 (Error Estimate for the Velocity with Constants Depending on
a Modified Viscosity) Let ˝ � R

d, d 2 f2; 3g, be a bounded domain with poly-
hedral and Lipschitz continuous boundary, let the regularity assumptions (8.311)
and (8.312) be fulfilled and assume for the turbulent viscosity that

	T 2 L1 .0;TI L1.˝// : (8.317)

Let .u; p/ 2 V � Q be the solution of (8.302), let Vh � V and Qh � Q be finite
element spaces that satisfy the discrete inf-sup condition (3.51), and let wh 2 Vh

be the velocity solution of the three-scale projection-based VMS method (8.310).
Concerning the projection-based VMS method, it is assumed that LH 	 D

�
Vh
�

(otherwise the eddy viscosity model would be subtracted from scales where it was
not added previously). Then, the error u � wh satisfies for t 2 .0;T�
��.u � wh/.t/

��2
L2.˝/

C
Z t

0

X
K2T h

	K
mod

�
wh;wh � Ih

Stu
� ��D �u � wh

���2
L2.K/

d�

� C

( ��.u � Ih
Stu/.t/

��2
L2.˝/

C
Z t

0

X
K2T h

	K
mod

�
wh;wh � Ih

Stu
� ��D �u � Ih

Stu
���2

L2.K/
d�
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C exp

 Z t

0

C�
	min

mod

�
wh;wh � Ih

Stu
��3 kD .u/k4L2.˝/

!

�
" ��wh

0 � Ih
Stu.0/

��2
L2.˝/

C
Z t

0

X
K2T h

	K
mod

�
wh;u � Ih

Stu
� ��D �u � Ih

Stu
���2

L2.K/
d�

C
Z t

0

1

	min
mod

�
wh;wh � Ih

Stu
�
 ��@t

�
u � Ih

Stu
���2

H�1.˝/

C ��D �u � Ih
Stu
���2

L2.˝/ kD .u/k2L2.˝/ C inf
qh2L2.0;tIQh/

��p � qh
��2

L2.˝/

!
d�

C 1

min�2.0;t�
�
	min

mod .w
h;wh/

�1=2

�
 ��wh.0/

��2
L2.˝/

C
Z t

0

k fk2H�1.˝/

	min
mod .w

h;wh/
d�

!��D �u � Ih
Stu
���2

L4.0;tIL2/

C
Z t

0

X
K2T h

	K
T

�
wh
� k.I � PLH /D .u/k2L2.K/ d�

#)
; (8.318)

where 	min
mod is defined in (8.314) and Ih

Stu is the Stokes projection of u defined
in (4.54), for which it is assumed that

@tI
h
Stu 2 L2

�
0;TI V 0� : (8.319)

Proof The proof of the finite element error estimate follows the lines of the proof of
the estimate for the Galerkin discretization, compare Theorem 7.35. For the three-
scale projection-based VMS method, one obtains on the left-hand side of the error
equation a modified viscous term and on the right-hand side two additional terms
compared with the Galerkin discretization. Then, one estimates all terms on the
right-hand side with the modified viscosity.

1. Derivation of an error equation and splitting of the error. The same split-
ting (7.46) as for the Galerkin finite element method is used

e.t/ D u.t/ � wh.t/ D �
u.t/ � Ih

Stu.t/
�C �

Ih
Stu.t/ � wh.t/

� D �.t/ � �h.t/:
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With the same arguments as in the proof of Theorem 7.35, one finds that

D
�
Ih
Stu
� 2 L4

�
0;TI L2 .˝/

�
: (8.320)

Subtracting the discrete equation (8.310) from the continuous Eq. (8.302) gives for
the test function �h with a straightforward calculation the error equation

1

2

d

dt

���h
��2

L2.˝/
C
X

K2T h

	K
mod

�
wh;�h

� ��D ��h
���2

L2.K/

D .@t�;�
h/C .2	D .�/ ;D

�
�h
�
/C Cnskew.u;u;�h/� nskew.wh;wh;�h/

� �r � �h; p � qh
�C

X
K2T h

	K
T

�
wh
� �
.I � PLH /D .�/ ; .I � PLH /D

�
�h
��

K

X
K2T h

	K
T

�
wh
� �
.I � PLH /D .u/ ; .I � PLH /D

�
�h
��

K
(8.321)

with arbitrary qh 2 Qh.

2. Estimate all terms on the right hand-side of the error Eq. (8.321). All bilinear
terms in (8.321) are estimated more or less in the same way: using the
Cauchy-Schwarz inequality (or the estimate for the dual pairing), Korn’s inequal-
ity (3.43), and Young’s inequality (A.5). The treatment of the local viscosity
terms is done analogously as it was presented in detail in estimate (8.316). One
obtains for the term with the temporal derivative

�
@t�;�

h
� � k@t�kH�1.˝/

��r�h
��

L2.˝/ � C k@t�kH�1.˝/

��D ��h
���

L2.˝/

� C

	min
mod

�
wh;�h

� k@t�k2H�1.˝/ C 1

8

X
K2T h

	K
mod

�
wh;�h

� ��D ��h
���2

L2.K/
;

the viscous term

�
2	D .�/ ;D

�
�h
�� � 2	 kD .�/kL2.˝/

��D ��h
���

L2.˝/

� 8	 kD .�/k2L2.˝/ C 	

8

��D ��h
���2

L2.˝/
;

the term with the pressure, where in addition (3.170) is used,

.r � �h; p � qh/

� ��p � qh
��

L2.˝/

��r � �h
��

L2.˝/
� C

��p � qh
��

L2.˝/

��D ��h
���

L2.˝/

� C

	min
mod

�
wh;�h

� ��p � qh
��2

L2.˝/
C 1

8

X
K2T h

	K
mod

�
wh;�h

� ��D ��h
���2

L2.K/
;
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the first additional term, using the definition (8.306),

X
K2T h

	K
T

�
wh
� �
.I � PLH /D .�/ ; .I � PLH /D

�
�h
��

K

� 4
X

K2T h

	K
T

�
wh
� k.I � PLH /D .�/k2L2.K/

C 1

16

X
K2T h

	K
T

�
wh
� ��.I � PLH /D

�
�h
���2

L2.K/

D 4
X

K2T h

	K
VMS

�
wh;�

� kD .�/k2L2.K/ C 1

16

X
K2T h

	K
VMS

�
wh;�h

� ��D ��h
���2

L2.K/ ;

and in a similar way for the second additional term

X
K2T h

	K
T

�
wh
� �
.I � PLH /D .u/ ; .I � PLH /D

�
�h
��

K

� 4
X

K2T h

	K
T

�
wh
� k.I � PLH /D .u/k2L2.K/ C 1

16

X
K2T h

	K
VMS

�
wh;�h

� ��D ��h
���2

L2.K/ :

The trilinear terms are decomposed as in (6.65), leading to

ˇ̌
nskew

�
u;u;�h

� � nskew
�
wh;wh;�h

�ˇ̌

� ˇ̌
nskew

�
�;u;�h

�ˇ̌C ˇ̌
nskew

�
�h;u;�h

�ˇ̌C ˇ̌
nskew

�
wh;�;�h

�ˇ̌
:

Applying (6.41) with s D 1=2 and Young’s inequality yields

nskew.�;u;�h/ � C k�k1=2
L2.˝/

kD .�/k1=2
L2.˝/

kD .u/kL2.˝/

��D ��h
���

L2.˝/

� C

	min
mod

�
wh;�h

� k�kL2.˝/ kD .�/kL2.˝/ kD .u/k2L2.˝/

C1

8

X
K2T h

	K
mod

�
wh;�h

� ��D ��h
���2

L2.K/
;

nskew.wh;�;�h/ � C
��wh

��1=2
L2.˝/

��D �wh
���1=2

L2.˝/ kD .�/kL2.˝/

��D ��h
���

L2.˝/

� C C

	min
mod

�
wh;�h

� ��wh
��

L2.˝/

��D �wh
���

L2.˝/ kD .�/k2L2.˝/

C1

8

X
K2T h

	K
mod

�
wh;�h

� ��D ��h
���2

L2.K/ ;
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and

nskew.�
h;u;�h/ � C

���h
��1=2

L2.˝/ kD .u/kL2.˝/

��D ��h
���3=2

L2.˝/

� C�
	min

mod

�
wh;�h

��3
���h

��2
L2.˝/ kD .u/k4L2.˝/

C1

8

X
K2T h

	K
mod

�
wh;�h

� ��D ��h
���2

L2.K/
:

Collecting terms and using the definition (8.313) of 	K
mod gives

1

2

d

dt

���h
��2

L2.˝/ C 1

4

X
K2T h

	K
mod

�
wh;�h

� ��D ��h
���2

L2.K/

� C

(
1

	min
mod

�
wh;�h

�h k@t�k2H�1.˝/ C k�kL2.˝/ kD .�/kL2.˝/ kD .u/k2L2.˝/

C ��wh
��

L2.˝/

��D �wh
���

L2.˝/ kD .�/k2L2.˝/ C ��p � qh
��2

L2.˝/

i

C
X

K2T h

	K
mod

�
wh;�

� kD .�/k2L2.K/ C
X

K2T h

	K
T

�
wh
� k.I � PLH /D .u/k2L2.K/

C C�
	min

mod

�
wh;�h

��3
���h

��2
L2.˝/ kD .u/k4L2.˝/

)
: (8.322)

3. Application of Gronwall’s lemma A.54. For applying Gronwall’s lemma, the
L1.0;T/ regularity of the terms appearing in (8.322) has to be proved. From
assumption (8.317), it follows with (8.317), (8.313), and (8.314) that

	K
mod

�
wh;�

�
< 1; 	K

VMS

�
wh;u

�
< 1;

1

	min
mod

�
wh;�h

� 2 L1 .0;TI L1.˝// :

Thus, the viscosity terms on the right-hand side of (8.322) are bounded in ˝ for
all times and it suffices to consider the norms of the functions. One obtains in the
same way as in (7.54), with the gradient replaced by the deformation tensor,

k�kL2.˝/ kD .�/kL2.˝/ kD .u/k2L2.˝/ � C kD .�/k2L4.0;tIL2.˝// kD .u/k2L4.0;tIL2.˝// < 1;

because of the regularity assumptions (8.312) and (8.320). The estimate of the
other term is performed in the same way as estimate (7.55), but now the stability
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estimate (8.315) is applied

Z t

0

��wh.�/
��

L2.˝/

��D �wh
�
.�/
��

L2.˝/ kD .�/ .�/k2L2.˝/ d�

� ��wh
��

L1.0;tIL2/
��D �wh

���
L2.0;tIL2/ kD .�/k2L4.0;tIL2/

� C

min�2.0;t�
�
	min

mod .w
h;wh/

�1=2

�
 ��wh.0/

��2
L2.˝/

C
Z t

0

k fk2H�1.˝/

	min
mod .w

h;wh/
d�

!
kD .�/k2L4.0;tIL2/ < 1:

The L1.0;T/-regularity of the other terms is a direct consequence of (8.312), the
stability of the Stokes projection (4.55), (8.319), and (8.320). Now, Gronwall’s
inequality can be applied.

4. Application of the triangle inequality. The application of the triangle inequality
is done in the same way as in the proof of Theorem 7.35. �

Remark 8.274 (On Error Estimate (8.318))

• Even if the constants in the error bound (8.318) depend on a modified viscosity
that is on no account smaller than 	, the bound itself depends on inverse powers
of 	 via the norms of u, e.g., see the stability estimate (8.303) for the Navier–
Stokes equations. A dependency of this kind is inevitable if the error to the
solution of the Navier–Stokes equations is studied.

• All terms in the error bound (8.318) but the last one contain factors with
interpolation errors. The last term tends to zero if 	K

T

�
wh
� ! 0 or if LH tends to

D .V/. In both situations, the Galerkin finite element discretization of the Navier–
Stokes equations is recovered asymptotically. Otherwise, in particular if 	K

T

�
wh
�

and LH are fixed and h ! 0, one cannot expect that the solution of the discrete
system with the additional viscosity term tends to the solution of the continuous
Navier–Stokes equations where such a term is not present.

Note that in practice 	K
T

�
wh
�

depends on the (local) mesh width, e.g., if
Smagorinsky-type models of form (8.290)–(8.292) are used then generally ı D
O .h/.

• For fixed h and 	K
T

�
wh
� ! 0, the error bound (8.318) tends to the error

bound (7.44) for the Galerkin discretization of the Navier–Stokes equations (with
the gradient replaced by the deformation tensor).

• There is no improvement in the asymptotic of the exponential if

	min
mod

�
wh;wh � Ih

Stu
� D 2	

or equivalently if

	K
VMS

�
wh;wh � Ih

Stu
� D 0;
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i.e.,

��PLHD
�
wh � Ih

Stu
���

L2.K/ D ��D �wh � Ih
Stu
���

L2.K/

for all K 2 T h and all times. By squaring and summing up, it follows
that

��PLHD
�
wh � Ih

Stu
���2

L2.˝/
D ��D �wh � Ih

Stu
���2

L2.˝/
. From the Pythagorean

theorem, compare (8.305),

��D �wh � Ih
Stu
���2

L2.˝/

D ��PLHD
�
wh � Ih

Stu
���2

L2.˝/
C ��.I � PLH /D

�
wh � Ih

Stu
���2

L2.˝/
;

it follows that

.I � PLH /D
�
wh
� D .I � PLH /D

�
Ih
Stu
�
;

i.e., the small resolved scales of the discrete velocity solution and the Stokes
projection are the same. This situation is unlikely for turbulent flows since the
small resolved scales of wh are considerably influenced by the eddy viscosity
model whereas the Stokes projection does not possess any information about this
model Hence, this situation is only likely if there are no small resolved scales in
the flow but only large scales, which is not the case in turbulent flows.

ut

8.8.6.4 Implementation and Numerical Experience

Remark 8.275 (Implementation of Method (8.288)) The version of the three-scale
projection-based VMS method that uses all spaces on the same grid T h, see
Remark 8.261, can be implemented efficiently if the space LH possesses the
following two properties:

• the space LH is a discontinuous finite element space with respect to T h,
• the basis of LH is L2.˝/ orthogonal.

Here, some details of the implementation will be described.
Let the velocity vector wh and the symmetric tensor GH be given by

wh D
0
@wh

1

wh
2

wh
3

1
A ; G

H D

0
B@

g11 g12 g13
g12 g22 g23
g13 g23 g33

1
CA
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and let the spaces Vh and LH be equipped with the bases

Vh D span

8̂
<
:̂

8<
:
0
@�

h
i

0

0

1
A
9=
;

Nv

iD1

[
8<
:
0
@ 0�h

i

0

1
A
9=
;

Nv

iD1

[
8<
:
0
@ 00
�h

i

1
A
9=
;

Nv

iD1

9>=
>; ;

LH D span

8̂
<
:̂

8<
:
0
@lHj 0 0
0 0 0

0 0 0

1
A
9=
;

NL

jD1

;

8̂
<
:̂
1

2

0
B@
0 lHj 0
lHj 0 0

0 0 0

1
CA
9>=
>;

NL

jD1

;

8̂
<
:̂
1

2

0
B@
0 0 lHj
0 0 0

lHj 0 0

1
CA
9>=
>;

NL

jD1

;

8<
:
0
@0 0 00 lHj 0
0 0 0

1
A
9=
;

NL

jD1

;

8̂
<
:̂
1

2

0
B@
0 0 0

0 0 lHj
0 lHj 0

1
CA
9>=
>;

NL

jD1

;

8<
:
0
@0 0 00 0 0

0 0 lHj

1
A
9=
;

NL

jD1

9>=
>; :

After a discretization of (8.288) in time and a linearization of the convective term in
the current discrete time, one obtains a linear saddle point problem of the following
form

0
BBBBBBBBBBBBBBB@

A11 A12 A13 BT
1

QG11
QG12

QG13
QG14

QG15
QG16

A21 A22 A23 BT
2

QG21
QG22

QG23
QG24

QG25
QG26

A31 A32 A33 BT
3

QG31
QG32

QG33
QG34

QG35
QG36

B1 B2 B3 0 0 0 0 0 0 0

G11 G12 G13 0 M 0 0 0 0 0

G21 G22 G23 0 0 M
2

0 0 0 0

G31 G32 G33 0 0 0 M
2

0 0 0

G41 G42 G43 0 0 0 0 M 0 0

G51 G52 G53 0 0 0 0 0 M
2

0

G61 G62 G63 0 0 0 0 0 0 M

1
CCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBBB@

w1
w2
w3
p

g11
g12
g13
g22
g23
g33

1
CCCCCCCCCCCCCCCCA

D

0
BBBBBBBBBBBBBBBB@

f1
f2
f3
0

0

0

0

0

0

0

1
CCCCCCCCCCCCCCCCA

: (8.323)

The matrices A11; : : : ;A33 and B1;B2;B3 have to be assembled if (8.288) is
discretized without the terms involving G

H, i.e., if the turbulence model is applied
to all scales. The matrix M in (8.323) is the mass matrix of LH , i.e., .M/ij D .lHj ; l

H
i /.

The general entries of the matrices G11; : : : ;G63 and QG11; : : : ; QG36 can be computed
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using the bases of Vh and LH . Straightforward calculations give

.G11/ij D

0
B@
0
B@
@x�

h
j @y�

h
j =2 @z�

h
j =2

@y�
h
j =2 0 0

@z�
h
j =2 0 0

1
CA ;
0
@lHi 0 0
0 0 0

0 0 0

1
A
1
CA

D
	
@x�

h
j ; l

H
i



; G22 D G33 D 1

2
G11;

.G42/ij D
	
@y�

h
j ; l

H
i



; G21 D G53 D 1

2
G42;

.G63/ij D
	
@z�

h
j ; l

H
i



; G31 D G52 D 1

2
G63;

. QG11/ij D
	
	TlHj ; @x�

h
i



; QG22 D QG33 D 1

2
QG11;

. QG24/ij D
	
	TlHj ; @y�

h
i



; QG12 D QG35 D 1

2
QG24;

. QG36/ij D
	
	TlHj ; @z�

h
i



; QG13 D QG33 D 1

2
QG36:

(8.324)

All other blocks G˛ˇ and QG˛ˇ vanish. Thus, one has to assemble only the entries
of the blocks G11;G42;G63; QG11; QG24; QG36. If the space LH is static, the matrices
G11;G42;G63, and M have to be assembled only once since they are not time-
dependent. The matrices QG11; QG24; QG36 are time-dependent if 	T is time-dependent,
e.g., if 	T depends on the discrete solution or if the space LH changes in time.

Now, (8.323) can be solved for g11; : : : ; g33. This step leads to a saddle point
problem for .w1;w2;w3; p/ of the form

0
BB@

QA11 QA12 QA13 BT
1QA21 QA22 QA23 BT
2QA31 QA32 QA33 BT
3

B1 B2 B3 0

1
CCA

0
BBB@

w1
w2
w3
p

1
CCCA D

0
BBB@

f1
f2
f3
0

1
CCCA (8.325)

with

QA11 D A11 � QG11M
�1G11 � 1

2
QG24M

�1G42 � 1

2
QG36M

�1G63;

QA12 D A12 � 1

2
QG24M

�1G11;

QA13 D A13 � 1

2
QG36M

�1G11;

:::

QA33 D A33 � QG36M
�1G63 � 1

2
QG11M

�1G11 � 1

2
QG24M

�1G42:

Note that a different scaling of the basis functions of LH leads to the same result
since the scaling factor cancels.
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The .i; j/-th entry of QG11M�1G11 has the form

� QG11M
�1G11

�
ij

D
NLX

m;nD1
. QG11/im.M

�1/mn.G11/nj

D
NLX

m;nD1
.	TlHm ; @x�

h
i /.M

�1/mn.@x�
h
j ; l

H
n / (8.326)

D
NLX

m;nD1

 X
K2T h

.	TlHm ; @x�
h
i /K

!
.M�1/mn

 X
K2T h

.@x�
h
j ; l

H
n /K

!
:

This formula reveals that for an efficient implementation of the three-scale
projection-based VMS method the two requirements on LH given above have to
be fulfilled:

• An efficient computation of (8.326) is possible if M is a diagonal matrix. This
situation is given if and only if the basis functions of LH are L2.˝/ orthogonal.
One obtains in this case

� QG11M
�1G11

�
ij D

NLX
mD1

P
K2T h.	TlHm ; @x�

h
i /K

P
K2T h.@x�

h
j ; l

H
m/KP

K2T h.lHm ; l
H
m/K

: (8.327)

• For an efficient implementation, the sparsity pattern of QA˛ˇ must not be larger
than the sparsity pattern of A˛ˇ . Then, the entries coming from terms like (8.327)
can be simply added to A˛ˇ. An entry .A˛ˇ/ij generally does not vanish if the
intersection of the support of vh

i and the support of vh
j is at least one mesh cell K.

If the support of lHm is only one mesh cell, then the numerator in (8.327) may be
only not equal to zero if this mesh cell belongs also to the support of vh

i and to
the support of vh

j . In this case, the sparsity pattern of QG11M�1G11, and hence of
QA11, will be the same as of A11. The requirement on the support of lHm is fulfilled
if LH is a discontinuous finite element space.

Thus, LH has to consist of piecewise symmetric tensors and it has to be equipped
with a basis that is L2.˝/ orthogonal, e.g., with a basis of Legendre polynomials,
see Example B.54 for spaces with these properties.

In summary, the main extension of an existing finite element code for the
incompressible Navier–Stokes equations consists in the assembling of the matrices
QAij, instead of Aij, using formulas like (8.327). ut
Remark 8.276 (Adaptive Choice of the Projection Space LH) The basic intentions
for choosing the projection space adaptively are to focus the application of the eddy
viscosity model to sub-regions where the flow is highly turbulent and to switch off
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the turbulence model in sub-regions with laminar flow. In John and Kaya (2005,
2008), John and Roland (2007) and John and Kindl (2010a), numerical studies with
the three-scale projection-based VMS method were performed with the static spaces
LH D P0 and LH D Pdisc

1 . It was concluded in John and Kindl (2010a) that the choice
of the projection space has a much higher impact on the results than the choice of
the eddy viscosity model, compare also Example 8.277.

In John and Kindl (2010b), the three-scale projection-based VMS method with
adaptively chosen projection space was introduced. In this method, the projection
space might change during the simulations, either after every time step or in larger
time intervals. In strongly turbulent subregions, the projection space is chosen to be
locally small and the smaller the turbulence intensity is, the larger the projection
space becomes. The local turbulence intensity is estimated with the size of the local
small resolved scales

�K D
��GH � D

�
wh
� k��

L2.K/

k1kL2.K/

D
��GH � D

�
wh
� k��

L2.K/

jKj1=2 8 K 2 T h: (8.328)

Then, the local projection space is assigned in the following way. Given three non-
negative constants C1 � C2 � C3 and a reference value �, e.g., some mean value of
f�KgK2T h in space or space-time, the space LH.K/ was chosen as follows:

• for cells K with �K=� � C1 set LH.K/ D Pdisc
2 .K/, 	T.K/ D 0, i.e., the turbulence

model is switched off,
• for cells K with C1 < �K=� � C2 set LH.K/ D P1.K/,
• for cells K with C2 < �K=� � C3 set LH.K/ D P0.K/,
• for cells K with C3 < �K=� set LH.K/ D fOg, i.e., the turbulence model is

applied on K to all resolved scales.

Note that since LH is a discontinuous finite element space, the assignment of
different local spaces on different mesh cells is no difficulty.

Numerical studies in John and Kindl (2010b) showed in fact that with the
estimator (8.328) the space LH corresponds to the expectations. For the turbulent
channel flow at Re� D 180, see Example D.12, it was LH.K/ D fOg at the walls and
the turbulence model was switched off in the center of the channel. In simulations
of the turbulent flow around a cylinder, Example D.13, the space LH.K/ D fOg was
chosen at the cylinder In regions far away from the cylinder, which are not in the
wake, the turbulence model was switched off, compare Fig. 8.17 below. The studies
in John and Kindl (2010b) were performed on hexahedral meshes with the pair of
spaces Q2=Pdisc

1 , see Remark 3.141. The extension of the adaptive projection-based
VMS method to tetrahedral grids with the Bernardi–Raugel element PBR

2 =Pdisc
1 , see

Example 3.140, was presented in John et al. (2010). ut
Example 8.277 (Turbulent Channel Flow at Re� D 180) The definition of this
example is given in Example D.12 and the setup of the simulations was exactly
as described in Example 8.128.



8.8 Variational Multiscale Methods 639

Fig. 8.11 Example 8.277. Statistics of interest obtained with the three-scale coarse space
projection-based VMS method (8.288) with LH D P0

Results are presented in Figs. 8.11, 8.12 and 8.13 for the three-scale coarse space
projection-based VMS method (8.288) with LH D P0, LH D Pdisc

1 , and the adaptive
choice of the projection space, respectively.

As already noted in Remark 8.216, a goal of three-scale VMS methods consists in
reducing the influence of the Smagorinsky model by restricting its direct application
to the small resolved scales. The achievement of this goal can be seen clearly by the
fact that one gets reasonable results for a much wider range of parameters CS than
it was the case for the Smagorinsky LES model, compare with Fig. 8.4. Also the
most accurate results for the VMS methods are obtained for larger values of CS. As
for the Smagorinsky LES model, there is only little impact of using the van Driest
damping (8.152). Often, but not always, the results with the standard Smagorinsky
method are a little bit more accurate. ut
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Fig. 8.12 Example 8.277. Statistics of interest obtained with the three-scale coarse space
projection-based VMS method (8.288) with LH D Pdisc

1

8.9 Comparison of Some Turbulence Models in Numerical
Studies

Remark 8.278 (Contents) This section presents a few studies that compare the
numerical solutions obtained with some of the turbulence models introduced in this
chapter. It will be concentrated on the Smagorinsky model and the three-scale coarse
space projection-based VMS method since these methods showed the most accurate
results for the turbulent channel flow at Re� D 180. Simulations with the rational
LES model, the Leray-˛ model, and the Navier–Stokes-˛ model for the problems
presented in this section generally did not provide satisfactory solutions. ut
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Fig. 8.13 Example 8.277. Statistics of interest obtained with the three-scale coarse space
projection-based VMS method (8.288) with the adaptive choice of the projection space

Example 8.279 (Turbulent Channel Flow at Re� D 180) In this example, only
the best parameters for the considered turbulence models from Examples 8.128
and 8.277 will be presented. These parameters are:

• Smagorinsky model (8.69) (Smag): ıK D 2hK;short and CS D 0:005, van Driest
damping (8.152),

• coarse space projection-based method (8.288) with Lh D P0 (VMS0): ıK D
2hK;short and CS D 0:01, no van Driest damping,

• coarse space projection-based method (8.288) with Lh D Pdisc
1 (VMS1): ıK D

2hK;short and CS D 0:02, no van Driest damping,
• coarse space projection-based method (8.288) with adaptive choice of the

projection space (VMSadap): ıK D 2hK;short and CS D 0:02, van Driest
damping (8.152).

The results for these parameters are collected in Fig. 8.14. It can be deduced that
among the considered turbulence models, VMS0 and VMSadap gave the most
accurate results and the Smagorinsky model the least accurate ones. ut
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Fig. 8.14 Example 8.279. Statistics of interest for the best parameter choices of the Smagorinsky
model and the three-scale coarse space projection-based VMS models for the turbulent channel
flow at Re� D 180

Example 8.280 (Turbulent Channel Flow at Re� D 395) A description of this
example can be found in Example D.12. The setup of the simulations was similar to
the turbulent channel flow problem at Re� D 180, compare Example 8.128. Only,
finer grids in space and time were used. The spatial grid consisted of 16 � 16 � 32
cells, leading to 199,680 velocity degrees of freedom (including Dirichlet nodes)
and 32,768 pressure degrees of freedom for the Q2=Pdisc

1 pair of finite element
spaces. As time step in the Crank–Nicolson scheme, �t D 0:002 was chosen. All
other components of the setup, like the length of the time interval and the grading
of the grid towards the walls, were the same as in Example 8.128.

Results are presented in Fig. 8.15. The best results were obtained with VMS0 and
CS D 0:02. Also some other results, like Smag with CS D 0:01 and VMSadap with
CS D 0:02, are comparably good. Inaccurate results were computed using VMS1
with CS D 0:01 and Smag with CS D 0:005. Thus, the best parameter choice for
the Smagorinsky model for the turbulent channel flow at Re� D 180 was not an
appropriate choice in this example. ut
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Fig. 8.15 Example 8.280. Statistics of interest for the Smagorinsky model and the three-scale
coarse space projection-based VMS models for the turbulent channel flow at Re� D 395

Example 8.281 (Turbulent Flow Around a Cylinder at Re D 22000) This example
and the quantities of interest are described in Example D.13. Simulations were
performed on a hexahedral grid with the Q2=Pdisc

1 pair of finite element spaces
with 522,720 velocity degrees of freedom (including Dirichlet nodes) and 81,920
pressure degrees of freedom (level 2), see Fig. 8.16 for the initial grid (level 0). The
Crank–Nicolson scheme was applied with the equidistant time step �t D 0:005.
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Fig. 8.16 Example 8.281. Initial grid, level 0

Table 8.1 Example 8.281

Method CS clift clift;rms cdrag cdrag;rms St

Smag 0.005 Blow up

Smag 0.01 0.001 1.46 2.58 0.11 0.151

Smag 0.02 0.023 1.52 2.52 0.16 0.140

VMS0 0.01 �0:017 1.28 2.60 0.19 0.139

VMS0 0.02 �0:015 1.29 2.65 0.14 0.142

VMS1 0.01 �0:004 1.04 2.49 0.15 0.136

VMS1 0.02 �0:026 1.00 2.50 0.21 0.131

VMSadap 0.01 �0:006 1.15 2.49 0.21 0.131

VMSadap 0.02 �0:026 1.49 2.55 0.16 0.141

Experimental values 0 Œ0:7; 1:4� Œ1:9; 2:1� Œ0:1; 0:2� 0:132

Computed values for the quantities of interest

Van Driest damping was not applied. All flows were allowed to develop for 10 s and
then the statistics were computed for 30 periods.

Results computed with the considered methods are presented in Table 8.1. It
can be observed that most of the obtained results are qualitatively similar: the root
mean squared (rms) values are within the interval of the experimental values or
only slightly outside and the mean drag coefficient is considerably larger than in
the experiments. The latter observation can be found often in the literature, e.g., see
Gravemeier et al. (2011) and Rasthofer and Gravemeier (2013). Only the Strouhal
number shows some noticeable differences. It is worst with the Smagorinsky model
with CS D 0:01 and best with VMS1.
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Fig. 8.17 Example 8.281. Snapshot of the size of the small resolved scales (top) and the
corresponding projection space (bottom) in the three-level projection-based VMS method with
adaptive projection space

In addition, it is remarkable that the Smagorinsky model with CS D 0:005 blew
up. Hence, the best parameter in the turbulent channel flow at Re� D 180 failed
in this example. In contrast, it can be seen also in this example that the three-scale
coarse space projection-based VMS methods are much less sensitive to the choice
of CS.

Figure 8.17 provides an impression of the size and the distribution of the small
resolved scales and the corresponding choice of the adaptive projection space.
In this example, the highest turbulence intensity is expected at the cylinder and
downstream the cylinder. It can be observed that the size of the small resolved
scales corresponds well to this expectation. Thus, the quantity �K from (8.328) is an
appropriate estimate of the local turbulence intensity. In the picture of the projection
space, it can be seen that the turbulence model has the most impact at the cylinder,
the impact becomes smaller downstream the cylinder, and it is essentially switched
off in the other regions. ut
Example 8.282 (Turbulent Flow Around a Wall-Mounted Cube at Re D 40000)
This problem is described in Example D.14.
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Fig. 8.18 Example 8.282. Initial grid, level 0

Table 8.2 Example 8.282 Level Velocity Pressure All

2 134,739 20,224 154,963

3 1,023,651 161,792 1,185,443

Number of degrees of freedom in space
(including Dirichlet nodes)

Table 8.3 Example 8.282 Method CS Level 2 Level 3

Smag 0:005 1:16 1:46

Smag 0:01 1:26 1:45

VMS0 0:01 1:19 1:47

VMS0 0:02 1:23 1:45

VMS1 0:01 1:09 1:39

VMS1 0:02 1:11 1:38

VMSadap 0:01 1:13 1:37

VMSadap 0:02 1:21 1:33

Mean drag coefficients, reference cdrag �
1:5

Numerical simulations were performed with the Q2=Pdisc
1 pair of finite element

spaces on hexahedral grids. The initial grid (level 0) is depicted in Fig. 8.18 and
information on the number of degrees of freedom are provided in Table 8.2. The
time interval Œ0; 10�was considered. As temporal discretization, the Crank–Nicolson
scheme with equidistant time step �t D 0:01 was applied. Averaging in time of
the computed drag coefficients was performed in the interval Œ5; 10�. All turbulence
models were applied without van Driest damping.

Results for the different turbulence models are presented in Table 8.3. The
temporal evolution of the computed drag coefficient is exemplary shown for two
models in Fig. 8.19. It can be seen that all turbulence models underpredict the mean
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Fig. 8.19 Example 8.282. Computed drag coefficient for the Smagorinsky model with CS D
0:005 (left) and VMS0 with CS D 0:01 (right)

drag coefficient on the coarser level 2. On the finer grid, level 3, the Smagorinsky
model and VMS0 predict mean drag coefficients that are of the same order as the
reference value. The models VMS1 and VMSadap underpredict this coefficient
still considerably. Figure 8.19 shows that the oscillations of the computed drag
coefficients around the mean value are much smaller on the finer grid. ut



Chapter 9
Solvers for the Coupled Linear Systems
of Equations

Remark 9.1 (Motivation) Many methods for the simulation of incompressible flow
problems require the simulation of coupled linear problems for velocity and pressure
of the form

A x D
�

A D
B �C

� 
u
p

!
D
 

f
fp

!
D y; (9.1)

with

A 2 R
dNv�dNv ; D 2 R

dNv�Np ; B 2 R
Np�dNv ; C 2 R

Np�Np ;

u; f 2 R
dNv ; p; fp 2 R

Np ;

such that

A 2 R
.dNvCNp/�.dNvCNp/; x; y 2 R

dNvCNp :

If C D 0, then (9.1) is a linear saddle point problem.
For the Navier–Stokes equations and in particular for time-dependent problems,

systems of form (9.1) have to be solved over and over again. The efficient solution
of these systems is the core of the overall efficient simulation of incompressible flow
problems. ut
Remark 9.2 (Contents of This Chapter) The development of fast solvers for prob-
lems of type (9.1) is an active field of research. Properties of such systems and
classical approaches for their solution are surveyed in Benzi et al. (2005). Solvers for
systems of form (9.1) that arise in the discretization of incompressible flow problems
are discussed thoroughly in Elman et al. (2014, Chaps. 4 and 9) and Olshanskii and
Tyrtyshnikov (2014, Chap. 5.2).
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This chapter will concentrate on linear saddle point problems, i.e., C D 0

in (9.1), and on the solvers that were used for obtaining the numerical results in this
monograph. In addition, some other solvers proposed in the literature are described
briefly. ut
Remark 9.3 (Sparse Matrices, CSR Storage Format) All matrix blocks are sparse
matrices such that A is sparse, too. Usually, sparse matrices are stored in special
formats. The condensed sparse row (CSR) format is very popular. In this format, the
non-zero entries are stored row-wise. It is not necessary to order them with respect
to the columns. Let A 2 R

m�n and let nnz be the number of its non-zero entries.
Three arrays are needed to store a sparse matrix in the CSR format:

• an array of length nnz where the entries of A are stored,
• an array of length nnz with integers that contains the column indices of the

corresponding entries of the first array,
• an array of length .m C 1/ with integers whose i-th entry indicates where the i-th

row starts in the other two arrays. The last entry of this array indicates where the
.m C 1/-st row would start.

For incompressible flow problems, a popular approach is to store each block of A,
B, and D individually in this format. ut
Remark 9.4 (Some Properties of the System Matrix) In many situations, the system
matrix has a more special form compared with (9.1) or some matrix blocks have
special properties. In the case of inf-sup stable finite element spaces and the Galerkin
finite element method, there are C D 0 and D D BT . The second property depends
also on the boundary conditions of the concrete problem. For the Stokes equations,
the matrix block A is symmetric. Usually, C is also symmetric, e.g., in the PSPG
method. ut

9.1 Solvers for the Coupled Problems

Remark 9.5 (Sparse Direct Solvers) Easiest to apply are direct solvers for sparse
linear systems of equations, so-called sparse direct solvers. Popular solvers are

• MUMPS, Amestoy et al. (2001, 2006),
• pardiso, Schenk et al. (2008),
• umfpack, Davis (2004).

These solvers are particularly efficient for two-dimensional problems and small to
medium (.500,000 degrees of freedom) problems. However, they tend to become
inefficient for three-dimensional problems, compare Example 7.56. This feature
arises from the different sparsity structure of the matrices for discretizations of two-
and three-dimensional problems. An internal degree of freedom in three dimensions
possesses usually more neighbors than in two dimensions, such that there are more
matrix entries and the matrices are less sparse. Sparse direct solvers try to compute
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a factorization of the matrices with little fill-in, which is easier for matrices where
the structure is very sparse.

Direct solvers do not take advantage of situations where a good approximation of
the solution is already known. This situation appears in particular in time-dependent
problems, discretized with not too large time steps, where the solution from the
previous discrete time or some extrapolation of solutions from previous times give
usually a good approximation of the solution of the current time.

For ill-conditioned problems, it is known from numerical linear algebra that the
numerical results of direct solvers might become inaccurate. Then, it is advised to
apply a post-processing with an iterative method for improving the accuracy. ut
Remark 9.6 (Iterative Solvers, Krylov Subspace Methods) Let r 2 R

dNvCNp , then
the space

Kk.r;A / WD span
˚
r;A r; : : : ;A k�1r

�
; k � 1;

is called the Krylov subspace of dimension k that is spanned by r and A .
Popular iterative solves for systems of type (9.1) can be found in the family of

Krylov subspace methods. Let x.0/ be some initial approximation of the solution
of (9.1), then the residual vector is given by

r.0/ D y � A x.0/

and the Krylov subspace Kk
�
r.0/;A

�
is considered.

• GMRES, FGMRES. The method GMRES (generalized minimal residual), pro-
posed in Saad and Schultz (1986), computes the k-th iterate such that the
Euclidean norm of the residual vector is minimized in x.0/ C Kk

�
r.0/;A

�
.

The advantage of this method is that there is a control on the norm of the residual,
since this norm cannot increase. However, one has to store the whole basis of
Kk
�
r.0/;A

�
. These memory requirements can be afforded usually only for a

rather small number k. Also, the cost per iteration (number of floating point
operations) increases with each iteration. In practice, one prescribes a maximal
number k of iterations, often of the order 10; : : : ; 100. If the method did not
converge after k steps, it is stopped and restarted with the current iterate. This
strategy is called GMRES with restart, GMRES(restart).

As it will be discussed in Sect. 9.2, one has to apply usually a preconditioner
for accelerating the speed of convergence. If this preconditioner is not a fixed
matrix but a numerical method, then one should use the flexible GMRES methods
proposed in Saad (1993). The application of a method can be represented
by a matrix, which is usually unknown, but this matrix might change from
iteration to iteration. The flexible GMRES method can cope with changes of
the preconditioner during the iteration. However, one has to store in the flexible
GMRES method the bases of two Krylov spaces, which increases the memory
requirements further.
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• CGS. The main idea of CGS (conjugate gradient squared), proposed in Sonneveld
(1989), consists in computing the k-th iterate such that it is orthogonal to
Kk
�
r.0/;A T

�
. CGS is a realization of this approach which does not need the

knowledge of A T . This method can be implemented with a so-called short
recurrence, i.e., one needs only a few arrays and the needed number of arrays
does not increase during the iteration. Hence, the memory requirements are much
less compared with GMRES. However, the Euclidean norm of the residual vector
is not minimized and it can happen that this norm increases hugely during the
iteration. In this sense, an irregular convergence behavior is possible.

• BiCGStab. The BiCGStab (bi-conjugate gradient stabilized) method, developed
in van der Vorst (1992), relies on the same principle as the CGS method. It is a
modification of the CGS method that is usually more stable.

To accelerate the convergence of iterative solvers, one has to apply so-called
preconditioners, see Sect. 9.2.

Available libraries providing iterative solvers together with preconditioners for
linear saddle point problems are

• PETSc, Balay et al. (2016),
• Trilinos, Trilinos (2016).

ut
Remark 9.7 (Strategies for Solving (9.1) Iteratively) For the Navier–Stokes equa-
tions, systems of form (9.1) arise in the Picard or Newton iteration, see Sect. 6.3.
From experience, it is known that it is often inefficient to solve (9.1) to high accuracy
if an iterative solver is used. For this reason, one performs inexact solutions. This
strategy means that one prescribes as stopping criteria a small number of maximal
iterations or a small reduction factor for the Euclidean norm of the residual vector,
e.g., 10 to gain one digit. After having satisfied one of the stopping criteria, one
proceeds with the next Picard or Newton step. The performance of this strategy is
illustrated in Examples 6.47 and 7.56. ut

9.2 Preconditioners for Iterative Solvers

Remark 9.8 (Preconditioners) It is well known that the performance of iterative
solvers can be improved considerably if so-called preconditioners are used. Pre-
conditioners are approximations of A �1 that can be computed comparatively
efficiently. These approximations might be a fixed matrix or a numerical (iterative)
method or a combination of both.

One distinguishes between left and right preconditioners. Denote the precondi-
tioner by M�1. Then, for left preconditioning, one considers instead of (9.1) the
system

M�1A x D M�1y
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in the iterative solver. Iterative solvers with right preconditioner solve the problem

AM�1z D y; x D M�1z:

Iterative solvers with left preconditioner might behave differently than the same
solver with the same preconditioner used as right preconditioner. For instance, left
and right preconditioned GMRES minimize different residuals, e.g., see Saad (2003,
Sect. 9.3.4) for details. ut

9.2.1 Incomplete Factorizations

Remark 9.9 (On Incomplete Factorizations) Applying a LU factorization to a
sparse matrix A, the factors L and U are generally considerably denser than A. In
an incomplete LU factorization (ILU), one stores factors L and U with the same
sparsity pattern as A, i.e., L is stored with a sparsity pattern that corresponds to
the strict lower triangle of A and U with a sparsity pattern that corresponds to
the pattern of the upper triangle of A. Performing the algorithm of the standard
LU decomposition (without pivoting), one neglects all entries that do not fit in the
prescribed sparsity pattern. In this way, one obtains an incomplete decomposition

A D LU C E (9.2)

with the error matrix E.
It is noted, e.g., in Dahl and Wille (1992), that avoiding pivoting in the application

of the ILU factorization of A does not lead necessarily to a failure of this method.
First, one should order the degrees of freedom in the way that the pressure degrees
of freedom come last, like in (9.1). Second, one has to provide the sparse matrix C,
where the sparsity pattern contains all connections of pressure degrees of freedom,
like for an inf-sup stabilized method, and all entries of C are initialized with zero.
Under these two conditions, it was observed in Dahl and Wille (1992) that a division
by zero does not occur because the zero entries at the main diagonal vanish during
the incomplete factorization.

A so-called ILUT.l; �/ method, Saad (2003, Sect. 10.4.1), allows to accept
entries computed in the LU factorization whose absolute value is larger than � � 0,
even if they do not fit in the sparsity pattern. Only the l largest (with respect to the
absolute value) entries in the L part of the considered row and the l largest entries in
the U part of this row, plus the diagonal entry, are kept. In this way, an incomplete
decomposition of form (9.2) is obtained, with presumably smaller entries of the
error matrix and without the full fill-in of a complete LU decomposition. ut
Remark 9.10 (An Incomplete LU Preconditioner with Fill-in) In Konshin et al.
(2015), an ILU preconditioner for the solution of linear saddle point problems
arising in the discretization of the time-dependent Navier–Stokes equations was
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proposed. This preconditioner considers the factorization of the global matrix A ,
which does not use pivoting, and which is based on a factorization of the form

A D LU C LRu C RlU C E;

where Ru is a strictly upper triangular matrix, Rl is a strictly lower triangular
matrix, and E is again the error matrix. Given two parameters �1 � �2 > 0, the
decomposition is constructed in such a way that the off-diagonal elements of U
and L are either zero or they have an absolute value that is greater than �1, while
the off-diagonals in Ru;Rl are either zero or their absolute value belongs to .�2; �1�.
Consequently, the entries of the error matrix E are of order O.�2/. As explained in
Konshin et al. (2015), the fill-in of this method is determined by �1 and the quality
of the resulting preconditioner is ruled by �2 once �2 D O.�1/.

For the proposed preconditioner to work efficiently, in a first step, an appropriate
scaling of the matrix A is necessary. It was shown in Konshin et al. (2015) that
this preconditioner, with suitable values �1 and �2 worked efficiently for laminar,
three-dimensional, time-dependent Navier–Stokes problems for a wide range of the
viscosity. ut

9.2.2 A Coupled Multigrid Method

Remark 9.11 (Multigrid Methods) Multigrid methods use a hierarchy of grids or
levels for the solution of linear systems of equations. On each level, an appropriate
equation is solved approximately. Only on the coarsest level, which is called level 0,
the equation might be solved with high accuracy. Performing a multigrid method
requires the transport of information between subsequent levels. The transport from
finer to coarser levels is called restriction and the other way is called prolongation.
There are several introductions to multigrid methods, e.g., Hackbusch (1985),
Trottenberg et al. (2001) or Briggs et al. (2000), which describe their main ideas
in detail.

Here, the components of a multigrid method for problem (9.1) will be described.
This method solves (9.1) for both types of unknowns, u and p together and therefore
it is called coupled multigrid method. It is defined by

• the grid hierarchy, Remark 9.12,
• the definition of the system matrix on coarser levels, Remark 9.13,
• the grid transfer operators

ı function prolongation, Remark 9.14,
ı defect restriction, Remark 9.18,
ı function restriction, Remark 9.19,

• the smoother on finer levels, Remark 9.20,
• the coarse grid solver, Remark 9.24. ut
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Fig. 9.1 The standard multigrid approach (left) and the multiple discretization multilevel approach
for higher order discretizations (right)

Remark 9.12 (The Grid Hierarchy) There are several possibilities for defining a
multigrid hierarchy. The standard way consists in using the same levels for the
multigrid hierarchy as they are given by the hierarchy of the geometrical grids and
to use the same discretization on all levels. However, the multigrid hierarchy might
have more levels than the geometric grid hierarchy and other discretizations than on
the finest level might be used on coarser levels. A representative of this class is the
multiple discretization multilevel approach shown in Fig. 9.1.

In numerical studies of Example D.5 in John and Matthies (2001) and of
Example D.6 in John (2002), difficulties were observed with the standard multigrid
approach for solving linear saddle point problems arising in some higher order
finite element discretizations. Higher order finite element discretizations give
quite accurate results for the quantities of interest, compare Example 6.36. In
contrast, lowest order non-conforming discretization with upwind stabilization, see
Remark 5.58, were rather inaccurate but the standard multigrid approach has been
proved as a very efficient solver, see also John and Tobiska (2000). This situation
led to the idea of constructing a multilevel method for higher order finite element
discretizations that is based on a multilevel method for stable lowest order non-
conforming finite element discretizations. This is just the multiple discretization
multilevel method from Fig. 9.1. In this method, the multilevel hierarchy possesses
one level more than the geometric grid hierarchy. On the finest geometric grid,
level L, two discretizations are applied. One of them, which forms the finest level
of the multilevel hierarchy, is the discretization of interest, i.e., the higher order
discretization. The second discretization on the geometric level L is a lowest order
non-conforming discretization with upwind stabilization. On all coarser geometric
levels, also a stabilized lowest order non-conforming discretization is applied.

There are several possibilities for defining the sequence of grids, the so-called
cycles, in a multigrid method. The most common multigrid cycles are depicted in
Fig. 9.2. From the point of view of the number of floating point operations, the
cheapest cycle is the V-cycle and the W-cycle is most expensive. With respect
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Fig. 9.2 Multigrid V-cycle, F-cycle, W-cycle (top left, top right, bottom), s—smoothing, r—
restriction, p—prolongation, e—exact solver

to stability, the situation is vice versa. Often, the F-cycle is a good compromise
between computational costs and stability. ut

Remark 9.13 (The Definition of the Linear Systems on Coarser Levels) The so-
called Galerkin projection defines the system matrix on level .l�1/ with the help of
the system matrix on level l and the prolongation and restriction operators. However,
in this approach, it is not possible to apply different discretizations on different
levels, which is the idea of the multiple discretization multilevel method. In addition,
it seems to be easier from the point of view of implementation to directly assemble
the system matrices on coarser levels in the same way as the system matrix on the
finest level. Thus, the direct assembling is often used in practice. ut
Remark 9.14 (The Function Prolongation) Performing a multigrid method
requires the transfer of finite element functions from one level of the multigrid
hierarchy to the next finer level. It might happen, e.g., in the case of the multiple
discretization multilevel method, that the finite element spaces on subsequent
levels are not nested. The transfer operator has to cope with this situation. In
Schieweck (2000), a transfer operator was introduced and analyzed that allows
the transfer between almost arbitrary finite element spaces. This operator will be
described in some detail, for simplicity for scalar finite element functions. It is
based on the concept of nodal functionals, see Remark B.18, and the local basis, see
Remark B.20.

Consider the transfer (prolongation) from a finite element space Vh
l�1 to a finite

element space Vh
l . Let Tl�1 and Tl be the corresponding triangulations of the domain

˝ such that Tl originates either from a refinement of Tl�1 or Tl�1 D Tl. The second
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case is relevant in the multiple discretization multilevel method for l D L C 1, see
Fig. 9.1.

Let Sh
l be a discontinuous finite element space defined on Tl

Sh
l D ˚

w 2 L2 .˝/ W wjK 2 Sh
l .K/ 8 K 2 Tl

�
:

The choice of the local spaces Sh
l .K/ depends on Vh

l�1 and Vh
l . It has to be done in

such a way that the inclusion

Vh
l�1 C Vh

l � Sh
l (9.3)

holds. From the practical point of view, the spaces Sh
l .K/ are not needed for

implementing the transfer operator. From the theoretical point of view, it can be
proved that appropriate spaces Sh

l .K/ always exist for triangulations consisting of
simplices, see John et al. (2002).

The transfer operator for the prolongation is defined with the help of the global
nodal functionals, see Remark B.23,

Pl
l�1 W Sh

l ! Vh
l Pl

l�1
�
wh
� D

dim.Vh
l /X

iD1
Nl;i

�
wh
�
'h

l;i; (9.4)

where
˚
'h

l;i

�dim.Vh
l /

iD1 is a finite element basis of Vh
l and Nl;i

�
wh
�

is the global nodal

functional at level l such that Nl;i

	
'h

l;j



D ıij: From the inclusion (9.3), it follows

that the operator (9.4) is defined especially for functions from Vh
l�1. ut

Remark 9.15 (Evaluation of the Global Functionals with Local Functionals) Let˚
'h

l�1;i
�dim.Vh

l�1/
iD1 be a finite element basis of Vh

l�1 and let

wh
l�1 D

dim.Vh
l�1/X

iD1
wl�1;i'h

l�1;i 2 Vh
l�1:

For evaluating the coefficient of 'h
l;i for the prolongation of the function wh

l�1, one
has to compute

Nl;i
�
wh

l�1
� D 1

card .Tl;i/

X
K2Tl;i

NK
l;i

�
wh

l�1jK
�

D 1

card .Tl;i/

X
K2Tl;i

dim.Vh
l�1/X

jD1
wl�1;jNK

l;i

�
'h

l�1;jjK
�
:

ut
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Fig. 9.3 Red refined triangles, P1 .P .K// ! P1 .K/

Example 9.16 (Evaluation of Local Functionals) Some concrete situations for the

evaluation of NK
l;i

	
'h

l�1;jjK



are described in detail. For simplicity, the presentation is

restricted to two-dimensional finite elements. Let P .K/ 2 Tl�1 be the parent mesh
cell of K 2 Tl. The local degrees of freedom of P .K/ are represented by circles in
Figs. 9.3, 9.4, 9.5, and 9.6 and the local degrees of freedom of K by squares.

• Red refined triangles, P1 .P .K// ! P1 .K/. Consider the two situations given in
Fig. 9.3. For this finite element, the local nodal functionals are point values, i.e.,

NK
l;i

	
'h

l�1;jjK



is the value of 'h

l�1;j at the position of the local degree of freedom

i in K. One obtains the following values

Figure 9.3, left Figure 9.3, right

'h
l�1;0jK 'h

l�1;1jK 'h
l�1;2jK 'h

l�1;0jK 'h
l�1;1jK 'h

l�1;2jK

NK
l;0 1 0 0 0:5 0:5 0

NK
l;1 0:5 0:5 0 0 0:5 0:5

NK
l;2 0:5 0 0:5 0:5 0 0:5

It turns out for the prolongation that this is just the standard inclusion.
• Red refined triangles, Pnc

1 .P .K// ! Pnc
1 .K/. Consider again two situations, see

Fig. 9.4. In this case, the local nodal functionals are given by integral mean values
at the edges of K, e.g.,

NK
l;0

�
'h

l�1;jjK
� D 1

kx0 � x1k2

Z x1

x0

'h
l�1;jjK ds:

One obtains for the local nodal functionals

Figure 9.4, left Figure 9.4, right

'h
l�1;0jK 'h

l�1;1jK 'h
l�1;2jK 'h

l�1;0jK 'h
l�1;1jK 'h

l�1;2jK

NK
l;0 1 �0:5 0:5 0:5 0:5 0

NK
l;1 0:5 0 0:5 0 0:5 0:5

NK
l;2 0:5 �0:5 1 0:5 0 0:5



9.2 Preconditioners for Iterative Solvers 659

12

2

2 0

12

0

1
1

0

0

P(K)P(K)

KK

x1x0

Fig. 9.4 Red refined triangles, Pnc
1 .P .K// ! Pnc

1 .K/

0

1

1/4

1/4

−1/4

1/2

1/2

−1/4

Fig. 9.5 Red refined triangles, the weights of the prolongation for Pnc
1 .P .K// ! Pnc

1 .K/

Applying these local nodal functionals in the prolongation operator (9.4), one
gets a standard averaging operator, see Fig. 9.5. In this picture, the square denotes
the degree of freedom of Vh

l whose value has to be computed and the balls stand
for the nodes of Vh

l�1. The numbers give the weights that have to be applied to
the coefficients of the function from Vh

l�1 corresponding to these nodes. It can be
seen that the prolongated value in the left picture of Fig. 9.5 is just the average
in this point of the values of the finite element function of Vh

l�1 restricted to the
triangles in Tl�1.

• No refined affinely mapped quadrilaterals, Qrot
1 .P .K// ! Q2 .K/. In this case, it

is P .K/ D K. One starts by changing the basis in Qrot
1

	 OK



. It is straightforward

to check that for the local basis of Qrot
1

	 OK



given in (B.22) it holds

1ˇ̌
ˇ OEi

ˇ̌
ˇ
Z

OEi

O'h
l�1;j ds D ıij;

where the edges OEi of OK are numbered counter-clockwise, starting with the bot-
tom edge. Let K be an arbitrary mesh cell with an affine reference transformation
and let .Ox1; Ox2/ 2 OK be transformed to .x1; x2/ 2 K. Then, it holds for the
transformation of the basis functions that O'h .Ox1; Ox2/ D 'h .x1; x2/. Thus, the
values of the transformed basis functions can be easily computed by values of
the reference basis functions in OK. The affine reference transformation leads to
a situation as presented in Fig. 9.6. The local nodal functionals of Q2 .K/ are
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Fig. 9.6 No refined affine mapped quadrilaterals, Qrot
1 .P .K// ! Q2 .K/

defined as point values of the local basis functions of Qrot
1 .K/. As pointed out,

the evaluation of these point values can be done in OK which gives, independent
of K,

'h
l�1;0jK 'h

l�1;1jK 'h
l�1;2jK 'h

l�1;3jK

NK
l;0 3=4 �1=4 �1=4 3=4

NK
l;1 9=8 �1=8 1=8 �1=8

NK
l;2 3=4 3=4 �1=4 �1=4

NK
l;3 �1=8 1=8 �1=8 9=8

NK
l;4 1=4 1=4 1=4 1=4

NK
l;5 �1=8 9=8 �1=8 1=8

NK
l;6 �1=4 �1=4 3=4 3=4

NK
l;7 1=8 �1=8 9=8 �1=8

NK
l;8 �1=4 3=4 3=4 �1=4

In practice, the same values are used also in the situation that the reference
map FK is bilinear.

These examples demonstrate that the values of the local nodal functionals

NK
l;i

	
'h

l�1;jjK



are, in general, the same for a large number of mesh cells. The values

can be computed in a pre-processing step and stored in a data base. In computing
the prolongation, only local matrix-vector products have to be performed with these
values. This strategy is used to accelerate the computation of the prolongation (9.4).

ut
Remark 9.17 (Update After the Prolongation) Let

�
uh

l ; p
h
l

�
be the current iterate at

the multigrid level l and
�
ıuh

l ; ıp
h
l

�
be the update computed on level l � 1. Then, the

next iterate on level l is given by
�
uh

l ; p
h
l

�C �lPl
l�1
�
ıuh

l ; ıp
h
l

�
, where �l is a damping

factor. In practice, velocity and pressure have to be prolongated separately using
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different operators. Often, the choice �l D 1 works well, but sometimes smaller
values of �l are beneficial for the efficiency and robustness of the method. ut
Remark 9.18 (The Defect Restriction) The definition of the operator for the defect
restriction .R0/l�1l W �Vh

l

�0 ! �
Vh

l�1
�0

uses the prolongation operator given in (9.4).

Let dl 2 �
Vh

l

�0
be a given defect functional, then its restriction to

�
Vh

l�1
�0

is defined
by

Z
˝

�
R0�l�1

l
.dl/ '

h
l�1 dx D

Z
˝

dlP
l
l�1
�
'h

l�1
�

dx 8 'h
l�1 2 Vh

l�1:

Since the prolongation operator turns out to be a standard operator in many
situations, see Example 9.16, the same holds for the defect restriction operator. ut
Remark 9.19 (The Function Restriction) As described in Remark 9.13, the system
matrix on coarser levels will be obtained by direct assembling. The assembling of
the convective term of the linearized Navier–Stokes equations has as parameter the
current finite element velocity uh

old. An appropriate restriction of this function has to
be available on all levels. A restriction operator Rl�1

l W Vh
l ! Vh

l�1 that maps a finite
element function from the finite element space connected to level l in the multilevel
hierarchy to a finite element function connected to level .l � 1/ is necessary. A
possible definition of this operator is based on local projections in the sense of L2.K/
and averaging.

Denote the bases of Vh
l and Vh

l�1 by
˚
'h

l;i

�dim.Vh
l /

iD1 and
˚
'h

l�1;i
�dim.Vh

l�1/
iD1 , respec-

tively, and let vh
l 2 Vh

l be given. The goal consists in computing a function Rl�1
l

�
vh

l

�
.

Using the bases, vh
l and its restriction can be represented by

vh
l D

dim.Vh
l /X

iD1
vl;i'

h
l;i and Rl�1

l

�
vh

l

� D
dim.Vh

l�1/X
iD1

vl�1;i'h
l�1;i:

Consider a mesh cell K on the geometric grid that is connected with Vh
l�1 and

assume that K possesses an affine reference transformation. Local values of the
unknown coefficients vl�1;i are determined by the local L2.K/ projection

card.Il.K;Vh
l //X

iD1
vl;ijK

�
'h

l;i; '
h
l�1;j

�
K

D
card.Il�1.K;Vh

l�1//X
iD1

vl�1;ijK
�
'h

l�1;i; 'h
l�1;j

�
K

for all j 2 Il�1
�
K;Vh

l�1
�
, where Il

�
Vh

l

�
is the set of degrees of freedom of Vh

l and

Il
�
K;Vh

l

� D
n
i 2 Il

�
Vh

l

� W supp
�
'h

l;i

�\ VK ¤ ;
o
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is the set of local degrees of freedom with respect to the mesh cell K. The
transformation (B.32) to the reference cell OK yields

card.Il.K;Vh
l //X

iD1
vl;ijK

Z
OK

O'h
l;i O'h

l�1;j jdet JK .Ox/j d Ox

D
card.Il�1.K;Vh

l�1//X
iD1

vl�1;ijK

Z
OK

O'h
l�1;i O'h

l�1;j jdet JK .Ox/j d Ox

for all j 2 Il�1
�
K;Vh

l�1
�
. Since jdet JK .Ox/j is constant, this relation simplifies to

card.Il.K;Vh
l //X

iD1
vl;ijK

Z
OK

O'h
l;i O'h

l�1;j d Ox (9.5)

D
card.Il�1.K;Vh

l�1//X
iD1

vl�1;ijK

Z
OK

O'h
l�1;i O'h

l�1;j d Ox

for all j 2 Il�1
�
K;Vh

l�1
�
. Hence, one obtains a linear system of equations of the

form

GvljK D Mvl�1jK:

Thus, the local values of the unknown coefficients are given by

vl�1jK D M�1GvljK D RvljK: (9.6)

The matrix R is independent of K. Hence, for all other mesh cells whose basis on the
reference mesh cell has the same form as for K, it can be also used. This situation
occurs very often. For instance, if the grids are uniformly refined and the same finite
element space is used on every level, the matrix R is needed for each mesh cell on
each level. This matrix R can be computed once and then stored in a data base. Then,
only a local matrix-vector product has to be computed in (9.6), which leads to an
efficient algorithm. The final restriction is computed by an averaging

vl�1;i D 1

card .Tl�1;i/
X

K2Tl�1;i

vl�1;ijK :

For mesh cells with a non-affine reference transformation, one can use for
simplicity also (9.5) such that they are handled in the same way as mesh cells with an
affine transformation. This approach can be considered as a function restriction that
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is a local L2. OK/ projection on the reference mesh cell and that is an approximation
of a L2.K/ projection on the original mesh cell. ut
Remark 9.20 (Smoothing by Solving Local Problems, the Vanka Smoother) Cou-
pled multigrid methods for the linearized Navier–Stokes equations are usually used
with local smoothers, so-called Vanka-type smoothers, Vanka (1986). Vanka-type
smoothers can be considered as block Gauss–Seidel methods. Let Vh and Qh be
the set of velocity and pressure degrees of freedom, respectively. These sets are
decomposed into

Vh D [J
jD1Vh

j ; Qh D [J
jD1Qh

j : (9.7)

The subsets are not required to be disjoint.
Let Aj be the block of the matrix A that is connected with the degrees of freedom

ofWh
j D Vh

j [Qh
j , i.e., the intersection of the rows and columns of A with the global

indices belonging to Wh
j ,

Aj D
�

Aj Dj

Bj 0

�
2 R

dim
	
Wh

j



�dim

	
Wh

j



:

Similarly, denote by .�/j the restriction of a vector to the rows corresponding to
the degrees of freedom in Wh

j . Each smoothing step with a Vanka-type smoother
consists in a loop over all sets Wh

j , where for each Wh
j a local system of equations

connected with the degrees of freedom in this set is solved. The local solutions are
updated in a Gauss–Seidel manner. The Vanka smoother computes new velocity and
pressure values by

 
u
p

!

j

WD
 

u
p

!

j

C A �1
j

  
f

fp

!
� A

 
u
p

!!

j

:

The local systems of equations are usually solved with a direct solver.
A general strategy for choosing the sets Vh

j and Qh
j is as follows. First, one

picks some pressure degrees of freedom that define Qh
j . Second, Vh

j is formed by all
velocity degrees of freedom that are connected with the pressure degrees of freedom
from Qh

j by entries in the sparsity pattern of the matrix B. ut
Example 9.21 (The Mesh-Cell-Oriented Vanka Smoother for Pairs with Discontin-
uous Finite Element Pressure) For the mesh-cell-oriented Vanka smoother, Qh

j is
defined by all pressure degrees of freedom which are connected to the mesh cell
j. For this type of Vanka smoother, J coincides with the number of mesh cells.
The mesh-cell-oriented Vanka smoother is applied usually for discretizations with
discontinuous pressure approximation, i.e., Qh 2 ˚

P0;Q0;Pdisc
1 ;Pdisc

2

�
. Then, Vh

j
consists of all velocity degrees of freedom that are connected to the mesh cell j.
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Table 9.1 Degrees of freedom for the local systems of the mesh-cell-oriented Vanka smoother
(velocity: each component)

2d 3d

Velocity Pressure Total Velocity Pressure Total

Qrot
1 =Q0 4 1 9 6 1 19

Q2=Pdisc
1 9 3 21 27 4 85

Q3=Pdisc
2 16 6 38 64 10 202

Pnc
1 =P0 3 1 7 4 1 13

Using a discontinuous discrete pressure, the local matrix of the mesh-cell-
oriented Vanka smoother can be generated on the current mesh cell. The size of
the local systems is known a priori and it is given for several discretizations in
Table 9.1. ut

Example 9.22 (The Pressure-Node-Oriented Vanka Smoother for Pairs with Con-
tinuous Finite Element Pressure) For spaces with continuous pressure, usually
a decomposition is applied where Qh

j is defined by a single pressure degree
of freedom, i.e., dimQh

j D 1. For this so-called pressure-node-oriented Vanka
smoother, the number of subsets J in decomposition (9.7) is equal to the number
of pressure degrees of freedom.

For a continuous pressure approximation, a pressure degree of freedom on a
given mesh cell K is in general connected to velocity degrees of freedom on other
mesh cells.

The size of the local systems for the pressure-node-oriented Vanka smoother
applied in discretizations with continuous pressure approximation depends on the
particular pressure degree of freedom and on the given grid. In addition, the size
of the local systems cannot be bounded a priori if adaptive grid refinement is used
since it depends on the maximal number of neighbor cells of K. A neighbor is a
mesh cell K1 with K \ K1 ¤ ; and the maximal number of neighbor cells of a mesh
cell K can increase on adaptively refined grids. To illustrate the size of the local
systems, concrete values are given in Table 9.2 for the typical situations depicted
in Fig. 9.7. It can be observed that these sizes are considerably larger than for the
mesh-cell-oriented Vanka smoother for discretizations with discontinuous pressure,
compare Table 9.1. In addition, the number of local systems that must be solved
in each smoothing step is in general larger compared with the mesh-cell-oriented
Vanka smoother since there are generally more pressure degrees of freedom than
mesh cells. ut

Remark 9.23 (Damping of the Smoother Iterate) Sometimes it is beneficial to damp

the smoother iterate. Let
	

ul; pl



be the current iterate at the multigrid level l and	

ıul; ıpl



be the update computed by one iteration of the smoother. Then, the new
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Table 9.2 Degrees of freedom for the local systems of the pressure-node-oriented Vanka
smoother for the pressure degrees of freedom from Fig. 9.7 (velocity: each component)

2d 3d

Velocity Pressure Total Velocity Pressure Total

Q2=Q1 25 1 51 125 1 376

Q3=Q2 49 1 99 343 1 1030

P2=P1 19 1 39 65 1 196

P3=P2 37 1 75 175 1 526

Fig. 9.7 Degree of freedom for which the size of the local systems in the pressure-node-oriented
Vanka smoother is given in Table 9.2 (bottom right: 6 tetrahedra in two directions (coloured) and 2
tetrahedra in six directions, i.e., 24 tetrahedra are connected with this pressure degree of freedom)

iterate is computed by
	

ul; pl



C !l

	
ıul; ıpl



. The damping parameter can be

chosen differently on all levels of the multigrid hierarchy. Instead of choosing a
fixed damping factor !l, an automatic step length control as proposed in John and
Tobiska (2000) is sometimes helpful. ut
Remark 9.24 (The Coarse Grid Solver) As coarse grid solver, one can apply the
Vanka smoother or a direct solver. If the Vanka smoother is used, then usually more
iterations are performed than on finer grids, often of the order 10–50. ut
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Remark 9.25 (Coupled Multigrid Methods as Solver and as Preconditioner) Cou-
pled multigrid methods can be used as solver or as preconditioner. The experience is
that the application as preconditioner is more efficient, e.g., see John (2002). Since
the preconditioner is in this case not a fixed matrix but a method, it should be used
in a flexible Krylov subspace method, e.g., in FGMRES, see Remark 9.6. The right
preconditioned FGMRES was used, e.g., in John (2002, 2006) and in the simulations
presented in this monograph. ut

9.2.3 Preconditioners Treating Velocity and Pressure
in a Decoupled Way

Remark 9.26 (Motivation) The straightforward application of many standard
schemes for the solution or preconditioning of linear systems of equations becomes
difficult because of the block structure of the system matrix A from (9.1). For
this reason, preconditioners have been developed where individual linear systems
of equations for the pressure and for each component of the velocity have to be
solved. These individual systems do not possess a block structure, which enables
the application of standard solvers and preconditioners. This class of methods is
sometimes called segregated schemes. ut
Remark 9.27 (A Factorization of the System Matrix, Schur Complement Matrix)
Let in (9.1) D D BT and C D 0, then a straightforward calculation shows that

�
A BT

B 0

�
D
�

I 0

BA�1 I

��
A 0

0 �BA�1BT

��
I A�1BT

0 I

�
: (9.8)

The matrix

S D �BA�1BT (9.9)

is called Schur complement matrix or pressure Schur complement matrix. This
matrix is generally not explicitly available. Since it contains the factor A�1, it is
usually not a sparse matrix. ut
Example 9.28 (Semi-implicit Method for Pressure-Linked Equations (SIMPLE))
SIMPLE is a classical preconditioner that was introduced in Patankar (1980). Its
principal approach is as follows:

• An approximation of the pressure is assumed to be known, e.g., from the previous
iteration.

• Then, the velocity is computed from the momentum equation, see (9.14). This
velocity will usually not satisfy the discrete continuity equation since the used
pressure is only an approximation of the pressure that corresponds to the new
velocity.



9.2 Preconditioners for Iterative Solvers 667

• Finally, the velocity and the pressure are corrected such that the discrete
continuity equation is satisfied, see (9.15) and (9.16).

From the point of view of linear algebra, SIMPLE relies on the factorization

�
A BT

B 0

� 
u
p

!
D
�

A 0

B �BA�1BT

��
I A�1BT

0 I

� 
u
p

!
D
 

f

fp

!
; (9.10)

where the first and second factor in (9.8) are multiplied. The factorization (9.10) is
of the form of a block LU factorization. The SIMPLE method is obtained by the
approximation

A�1 
 .diag.A//�1 D A�1
diag:

The approximation of the Schur complement matrix is denoted by

Sd D �BA�1
diagBT : (9.11)

Since BT represents a discrete gradient operator and B a discrete divergence
operator, the matrix Sd can be thought of representing a discrete diffusion operator
with non-constant diffusion. The non-constant diffusion is given by A�1

diag. Thus, one
iteration of SIMPLE solves the following system

�
A 0

B Sd

� 
I A�1

diagBT

0 I

! 
u
p

!
D
 

f
fp

!
: (9.12)

In practice, one can compute with one step of the iteration directly the new
iterate or one can compute just updates of the old iterate. Here, the version with
the updates will be presented. Given the iterates at iteration m, then the ansatz for
the next iterates is

 
u.mC1/
p.mC1/

!
D
 

u.m/

p.m/

!
C !

 
ıu
ıp

!
; (9.13)

where ! 2 .0; 1� is some damping factor. Inserting this ansatz in (9.10) gives

!

�
A 0

B �BA�1BT

��
I A�1BT

0 I

� 
ıu
ıp

!
D
 

f

fp

!
�
�

A BT

B 0

� 
u.m/

p.m/

!
D
 

ru

rp

!
:
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Now, SIMPLE proceeds as follows:

• Solve

�
A 0

B Sd

� 
ıu�

ıp�

!
D
 

ru

rp

!
;

i.e., one has to solve the first

Aıu� D ru (9.14)

and then

Sdıp
� D rp � Bıu�: (9.15)

• Solve
 

I A�1
diagBT

0 I

! 
ıu
ıp

!
D
 
ıu�

ıp�

!
;

which is nothing else than to set first

ıp D ıp� (9.16)

and then to set

ıu D ıu� � A�1
diagBTıp:

• Compute the new iterate with (9.13).

SIMPLE can be used as left and as right preconditioner. The application as left
preconditioner gives, using (9.12),

 �
A 0

B Sd

� 
I A�1

diagBT

0 I

!!�1 �
A BT

B 0

�
D
 

I �A�1
diagBT

0 I

!�
A�1 0

�S�1
d BA�1 S�1

d

��
A BT

B 0

�

D
 

I A�1BT C A�1
diagBTS�1

d BA�1BT

0 �S�1
d BA�1BT

!
;
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which is an approximation of the identity because (9.11) is an approximation
of (9.9). Likewise, one finds for using SIMPLE as right preconditioner

�
A BT

B 0

� �
A 0

B Sd

� 
I A�1

diagBT

0 I

!!�1

D
�

A BT

B 0

� 
I �A�1

diagBT

0 I

!�
A�1 0

�S�1
d BA�1 S�1

d

�

D
 

I C AA�1
diagBTS�1

d BA�1 � BTS�1
d BA�1 �AA�1

diagBTS�1
d C BTS�1

d

0 I

!
;

which is an approximation of the identity if A�1
diag is an approximation of A�1. ut

Remark 9.29 (Concerning SIMPLE) SIMPLE is easily to implement, which makes
it attractive. It relies on the already assembled matrix blocks. Only the approxima-
tion Sd of the Schur complement matrix given in (9.11) has to be computed. This
matrix couples pressure degrees of freedom that are usually not coupled in finite
element approximations of the diffusion operator, but Sd is still a sparse matrix.

The efficiency of SIMPLE depends on how good A�1 is approximated by A�1
diag. It

is known, e.g., from Elman et al. (2008b), that the efficiency is bad for convection-
dominated problems since the diagonal of A does not contain sufficient information
about the convective term. In addition, it can be observed that the number of
iterations increases with mesh refinement, e.g., see Schönknecht (2015). ut
Example 9.30 (Least Squares Commutator (LSC) Preconditioner) The inefficient
behavior of SIMPLE comes from the fact that the approximation (9.11) of the Schur
complement is usually bad for convection-dominated problems. In Elman et al.
(2006), a preconditioner is proposed that contains information about the convection,
the so-called Least Squares Commutator (LSC) preconditioner.

Starting point is the multiplication of the second and third factor of (9.8) yielding

�
A BT

B 0

�
D
�

I 0

BA�1 I

��
A BT

0 S

�
:

Taking the inverse of the last matrix gives

�
A BT

B 0

��
A BT

0 S

��1
D
�

I 0

BA�1 I

�
: (9.17)

This representation leads to the idea that

�
A BT

0 S

��1
(9.18)
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might be a good right-oriented preconditioner since the matrix on the right-hand
side of (9.17) is a triangular matrix. In order to apply an approximation of this
preconditioner, the Schur complement matrix S has to be approximated.

The approximation of the Schur complement is based on the construction of the
approximation

A
�
D�1

lsc BT
� 
 BTApres; (9.19)

where Apres represents a discretization of a convection-diffusion operator for the
pressure. The diagonal matrix Dlsc with positive diagonal entries is a scaling matrix.
Taking for the moment Dlsc to be the identity, then the left-hand side of (9.19)
represents the discretization of a convection-diffusion operator for the velocity
applied to a discrete gradient and the right-hand side the discrete gradient applied
to a convection-diffusion operator for the pressure, compare Elman et al. (2014,
Sect. 9.2.3). If the equal sign would hold in (9.19), there would be a commutation
of a convection-diffusion operator and a gradient operator.

Multiplying (9.19) with �BA�1 from left and A�1
pres from right gives, com-

pare (9.9),

S D �BA�1BT 
 �BD�1
lsc BTA�1

pres D Slsc: (9.20)

Now, Apres is determined by minimizing the commutation error (9.19) column-by-
column in a weighted norm. Denoting the k-th column of a matrix by Œ��k, the
minimization problem is of the form

min
ŒApres�k

���AD�1
lsc BT

�
k

� BT
�
Apres

�
k

��2
D�1

lsc
; k D 1; : : : ;Np; (9.21)

where the norm is given by the vector product

	
x; y



D�1
lsc

D xTD�1
lsc y:

Thus, the normal equation corresponding to the least squares problem (9.21) is given
by

BD�1
lsc

��
A
�
D�1

lsc BT
��

k
� BT

�
Apres

�
k

� D 0:

It follows that

�
Apres

�
k

D �
BD�1

lsc BT
��1 �

BD�1
lsc

�
AD�1

lsc BT
��

k

and thus

Apres D �
BD�1

lsc BT
��1 �

BD�1
lsc AD�1

lsc BT
�
:



9.2 Preconditioners for Iterative Solvers 671

Inserting this expression in (9.20) gives the approximation of the Schur complement
matrix

Slsc D �BD�1
lsc BT

�
BD�1

lsc AD�1
lsc BT

��1
BD�1

lsc BT : (9.22)

In Elman et al. (2006), it is proposed to use the diagonal of the velocity mass matrix,
see (7.87), as Dlsc.

The application of the LSC preconditioner requires to solve as preconditioning
step a problem of the form

�
A BT

0 Slsc

� 
v

q

!
D
 

bv
bq

!

for a given vector
	

bv; bq


T
. In the first step, one solves

Slscq D bq;

which requires the solution of two discrete diffusion problems for the pressure with
the same matrix BD�1

lsc BT since

S�1
lsc D � �BD�1

lsc BT
��1 �

BD�1
lsc AD�1

lsc BT
� �

BD�1
lsc BT

��1
: (9.23)

After having computed q, one finds v by solving

Av D bv � BTq;

which requires the solution of a problem for the velocity unknowns. ut
Remark 9.31 (Boundary-Corrected LSC Preconditioner) The LSC preconditioner
derived in Example 9.30 does not account for the concrete boundary condition of the
considered problem in the construction of Apres. However, it was observed in Elman
and Tuminaro (2009) that modifications for some kinds of boundary conditions
might improve the efficiency of this preconditioner considerably.

A careful analysis of a one-dimensional model problem in Elman and Tuminaro
(2009) showed that the commutator error does not vanish if a commutator of the
form (9.19) is considered. Instead, a commutator of the form BA 
 ApresB can be
studied. For this form, the commutator error in the one-dimensional model problem
vanishes if for the definition of Apres Robin boundary conditions are used at the
inflow and Dirichlet boundary conditions at the outflow.

Investigating rectangular domains whose boundaries are parallel to the coordi-
nate axes, it was shown that it is not possible to find boundary conditions such that
all commutator errors vanish at the boundary. An analysis of different boundary
conditions and the resulting commutator errors led finally to the proposal that the
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LSC preconditioner should be augmented with a diagonal weighting matrix Wlsc

with

.Wlsc/ii D

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

"; if the velocity degree of freedom with index i is

associated with a basis function.�i; 0/
T and

bji ¤ 0 for some pressure degree of freedom j on a

horizontal boundary 
diri;

"; if the velocity degree of freedom with index iis

associated with a basis function .0; �i/
T and

bji ¤ 0 for some pressure degree of freedom j on a

vertical boundary 
diri;

1; else.

(9.24)

Minimizing the commutator error in the least squares sense similarly as in the
derivation of the LSC preconditioner, see Elman et al. (2014, Sect. 9.2.4) for details,
gives finally the so-called boundary-corrected LSC preconditioner

Sbdr-lsc D �BH�1BT
�
BD�1

lsc AH�1BT
��1

BD�1
lsc BT

with H D W�1=2
lsc DlscW�1=2

lsc and Dlsc is the diagonal of the velocity mass matrix.
For the weight in (9.24), it is proposed to use " D 0:1, see Elman et al. (2014,

Sect. 9.2.4). It is noted in Elman et al. (2014, p. 379) that the construction of a
boundary-corrected LSC preconditioner can be generalized to domains that are not
aligned with the coordinate axes and to domains in three dimensions. ut
Remark 9.32 (LSC Preconditioner for Inf-Sup Stabilized Discretizations) LSC pre-
conditioners can be constructed also for pairs of finite element spaces that do not
satisfy the discrete inf-sup condition (3.51) and where the discretization contains
some stabilization with respect to the violation of this condition. So-called stabilized
LSC preconditioners for lowest order pairs of spaces, e.g., P1=P0 or P1=P1, were
derived in Elman et al. (2008a). ut
Remark 9.33 (Further Preconditioners Involving an Approximation of the Pressure
Schur Complement) Three preconditioners needing an approximation of the pres-
sure Schur complement were compared in Olshanskii and Vassilevski (2007). One
of them was the LSC preconditioner described in Example 9.30. The other ones
were:

• The pressure convection-diffusion (PCD) preconditioner from Kay et al. (2002),
see also Elman et al. (2014, Sect. 9.2.1). This preconditioner involves approxi-
mations to a convection-diffusion operator and a Laplace operator in the discrete
pressure space Qh. These approximations have to be assembled additionally to
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the other matrices and they have to take into account the boundary condition of
the considered problem.

• Based on investigations of the LSC preconditioner for the mesh width h ! 0, a
preconditioner is proposed that commutes the application of the discrete scaled
pressure Laplacian and the discrete divergence operator, i.e., the first factor
of (9.23) with B and the last factor of (9.23) with BT . This commutation gives
rise to the solution of a velocity Poisson problem instead of a pressure Poisson
problem.

ut
Remark 9.34 (Numerical Experience with LSC Preconditioners) Numerical inves-
tigations in Olshanskii and Vassilevski (2007) considered the LSC preconditioner
and the preconditioners described in Remark 9.33 in BiCGStab and GMRES. It
was shown that all of these preconditioners worked satisfactorily if the viscosity 	
was large or of modest size, showing only a mild dependency on 	. The efficiency
became notably worse for small 	.

Results of a comparison of the LSC preconditioner with the augmented
Lagrangian-based preconditioner are described in Remark 9.36. ut
Remark 9.35 (An Augmented Lagrangian-Based Preconditioner) This kind of pre-
conditioner was introduced in Benzi and Olshanskii (2006) and analyzed in Benzi
and Wang (2011).

Consider (9.1) with C D 0 and D D BT , then the linear saddle point
problem (9.1) is equivalent to

�
A C �BTW�1B BT

B 0

� 
u
p

!
D

 
f C �BTW�1B BTg

fp

!

” (9.25)
�

A� BT

B 0

� 
u
p

!
D

 
f
�

fp

!
;

where W is an arbitrary symmetric positive definite matrix and � > 0 is a parameter.
It was shown in Benzi and Olshanskii (2006) that a theoretical good choice for the
matrix is the pressure mass matrix

�
Mp
�

ij
D �

 h
j ;  

h
i

�
; i D 1; : : : ;Np:

In practice, its diagonal W D diag.Mp/ is used.
The term �BTW�1B is the so-called augmented Lagrangian term. Since B

represents the negative of a discrete divergence operator, (4.92), and BT a discrete
gradient, the augmented Lagrangian term represents a scaled strong grad-div
stabilization term, compare Remark 4.117.
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The main goal of the augmented Lagrangian-based preconditioner consists in
constructing an upper triangular block matrix of the form

� OA� BT

0 OS�
�
; (9.26)

where OA� is also an upper triangular block matrix. Consider for simplicity of
presentation the two-dimensional case and

A D
�

A1 0
0 A2

�
; B D .B1;B2/ :

A straightforward calculation gives

A� D
�

A1 C �BT
1W�1B1 �BT

1W�1B2
�BT

2W�1B1 A2�BT
2W�1B2

�
D
� OA11 OA12

OA21 OA22
�
:

Now, the approximation

OA� D
� OA11 OA12
0 OA22

�

is used. From the analysis performed in Benzi and Wang (2011), it follows that one
can choose OS�1

� D �W�1. The inverse of (9.26) can be written in the form

 OA�1
� 0

0 I

!�
I BT

0 �I

��
I 0

0 �OS�
�
: (9.27)

It follows from (9.27) that one preconditioning step consists of the solution of one
system with the matrix OS� , which is in practice a diagonal matrix, and one system
for each component of the velocity with the matrices OA22 and OA11, respectively. A
pressure Schur complement system does not appear in this method.

This approach can be extended in a straightforward way to matrices A with a full
block structure and to three-dimensional problems.

The crucial issue for the efficiency of the augmented Lagrangian-based precon-
ditioner is the choice of � . It was found in Benzi and Wang (2011), based on a
Fourier analysis and after having applied several simplifications, that the optimal
� is the solution of a non-convex and non-smooth optimization problem. Since the
solution of this optimization problem is too complicated, it was proposed in Benzi
and Wang (2011) that a norm of the vector-valued function to be minimized should
be computed for a large set of parameters and the parameter which gives the smallest
norm should be used.
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It is possible to use the augmented Lagrangian-based preconditioner as left or
right preconditioner. Only little differences in the efficiency were reported in Benzi
and Wang (2011).

The construction of the augmented Lagrangian-based preconditioner can be
extended to stabilized discretizations that do not satisfy the discrete inf-sup con-
dition (3.51), see Benzi and Wang (2011). ut
Remark 9.36 (Numerical Experience with the Augmented Lagrangian-Based Pre-
conditioner) The augmented Lagrangian-based preconditioner and the LSC pre-
conditioner were compared for the solution of two-dimensional steady-state prob-
lems, actually Oseen problems (5.1) with c D 0 and b was an iterate obtained
with some Picard iterations. For the heuristic parameter choice of � described
in Remark 9.35, both preconditioners behaved similarly for large values of the
viscosity and the augmented Lagrangian-based preconditioner was more efficient
for small values of the viscosity. The augmented Lagrangian-based preconditioner
was also able to cope with stretched grids and with inexact solutions of the linear
system of equations arising in its application (9.27).

In a numerical study for a two-dimensional problem in ur Rehman et al.
(2008), the augmented Lagrangian-based preconditioner was more efficient than the
LSC preconditioner and the LSC preconditioner was more efficient than the PCD
preconditioner. ut



Appendix A
Functional Analysis

Remark A.1 (Motivation) The study of the existence and uniqueness of solutions
of the Navier–Stokes equations as well as the finite element error analysis requires
tools from functional analysis, in particular the use of function spaces, certain
inequalities, and imbedding theorems. There will be no difference in the notation
for functions spaces for scalar, vector-valued, and tensor-valued functions.

Let ˝ � R
d, d 2 f2; 3g, be a domain, i.e., ˝ is an open set. ut

A.1 Metric Spaces, Banach Spaces, and Hilbert Spaces

Definition A.2 (Metric Space) Let X ¤ ; be a set. A map d W X � X ! R is
called a metric on X if for all x; y; z 2 X it is

(i) d.x; y/ D 0 ” x D y,
(ii) symmetry: d.x; y/ D d.y; x/,

(iii) triangle inequality: d.x; y/ � d.x; z/C d.z; y/.

Then .X; d/ is called a metric space. ut
Definition A.3 (Isometric Metric Space) Two metric spaces .X1; d1/ and X2; d2/
are called isometric, if there is a surjective map g W X1 ! X2 such that for all
x; y 2 X1 it is d1.x; y/ D d2.g.x/; g.y//. ut
Definition A.4 (Cauchy Sequence, Convergent Sequence) Let fxng1

nD1 be a
sequence in a metric space .X; d/. It is called a Cauchy sequence if for each " > 0

there is a N 2 N such that

d.xk; xl/ < " 8 k; l � N:
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V. John, Finite Element Methods for Incompressible Flow Problems, Springer
Series in Computational Mathematics 51, DOI 10.1007/978-3-319-45750-5

677



678 A Functional Analysis

The sequence fxng1
nD1 converges to x 2 X, denoted by xn ! x, if

lim
n!1 d.xn; x/ D 0:

ut
Definition A.5 (Complete Metric Space) A metric space .X; d/ is called com-
plete, if each Cauchy sequence converges in X. That means, for each Cauchy
sequence fxng1

nD1 there exists an element x 2 X such that xn ! x. ut
Definition A.6 (Norm, Triangle Inequality, Seminorm, Normed Space) Let X
be a linear space over R (or C). A mapping k�kX W X ! R is called a norm on X
if

(i) definiteness: kxkX D 0 if and only if x D 0,
(ii) homogeneity: k˛xkX D j˛j kxkX for all x 2 X, ˛ 2 R,

(iii) the triangle inequality holds: kx C ykX � kxkX C kykX for all x; y 2 X.

A mapping from X to R that satisfies only (ii) and (iii) is called a seminorm on
X.

The space .X; k�kX/ is called normed space. ut
Definition A.7 (Equivalent Norms) Two norms k�kX;1, k�kX;2 of a normed space X
are called equivalent, if there are two positive constants C1 and C2 such that

C1 kxkX;1 � kxkX;2 � C2 kxkX;1 8 x 2 X:

ut
Remark A.8 (On Norms)

• All norms in finite-dimensional spaces are equivalent.
• A normed space .X; k�kX/ becomes a metric space with the induced metric

d.x1; x2/ D kx1 � x2kX ; x1; x2 2 X:
ut

Definition A.9 (Banach Space) A normed space is called complete if it is a
complete metric space with the induced metric. A complete normed space is called
Banach space. ut
Remark A.10 (Compact Set, Precompact Set) A subset Y of a normed space X is
called compact if every sequence of elements in Y has a subsequence that converges
in the norm of X to an element of Y. The set Y is called precompact if its closure Y
is compact.

Compact sets are closed and bounded. The reverse statement is only true for
finite-dimensional spaces. ut
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Definition A.11 (Inner Product, Scalar Product) Let X be a linear space over R.
A map .�; �/X W X�X ! R is called symmetric sesquilinear form if for all x; y; z 2 X
and all ˛ 2 R it holds that

(i) symmetry: .x; y/X D .y; x/X ,
(ii) .˛x; y/X D ˛.x; y/,

(iii) .x; y C z/ D .x; y/C .x; z/.

The symmetric sesquilinear form .�; �/X is called positive semi-definite if for all x 2
X it is .x; x/X � 0. A positive semi-definite symmetric sesquilinear form with

.x; x/X D 0 ” x D 0

is called inner product or scalar product on X. ut
Definition A.12 (Induced Norm, Inner Product Space, Hilbert Space) Let .�; �/X
be an inner product on X, then .X; .�; �/X/ is called pre Hilbert space. The inner
product induces the norm

kxkX D .x; x/1=2X

in X. A complete inner product space is called Hilbert space.
For simplicity of notation, the subscript at the inner product symbol will be

neglected if the inner product is clear from the context. ut
Lemma A.13 (Cauchy–Schwarz Inequality) Let .X; .�; �// be an inner product
space, then it holds the so-called Cauchy–Schwarz inequality

j.x; y/j � kxkX kykX 8 x; y 2 X: (A.1)

Example A.14 (Cauchy–Schwarz Inequality for Sums) Consider X D R
n with the

standard inner product for vectors, then one obtains with the triangle inequality and
the Cauchy–Schwarz inequality (A.1)

ˇ̌
ˇ̌
ˇ

nX
iD1

xiyi

ˇ̌
ˇ̌
ˇ �

nX
iD1

jxij jyij �
 

nX
iD1

x2i

!1=2  nX
iD1

y2i

!1=2
; (A.2)

for all x D .x1; : : : ; xn/
T ; y D .y1; : : : ; yn/

T 2 R
n. ut

Example A.15 (Hölder Inequality for Sums) The Cauchy–Schwarz inequality (A.2)
is a special case of the Hölder inequality

nX
iD1

jaibij �
 

nX
iD1

jaijp

!1=p  nX
iD1

jbijq

!1=q

; 1 < p; q < 1;
1

p
C 1

q
D 1:

(A.3)
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The following inequalities for sums of non-negative real numbers hold:

nX
iD1

ai �
 

nX
iD1

a1=p
i

!p

� np=q
nX

iD1
ai; ai � 0; p 2 .1;1/;

1

p
C 1

q
D 1: (A.4)

The right inequality of (A.4) is just a consequence of (A.3). ut
Definition A.16 (Orthogonal Elements, Orthogonal Complement of a Sub-
space) Let X be a normed space endowed with an inner product .�; �/. Two elements
x; y 2 X are said to be orthogonal if .x; y/ D 0.

Let Y � X be a subspace of X, then Y? D fx 2 X W .x; y/ D 0 for all y 2 Yg is
the orthogonal complement of Y. ut
Lemma A.17 (Orthogonal Complement is Closed Subspace) Let W � V be a
subspace of a Hilbert space V. Then, W? is a closed subspace of V.

Lemma A.18 (Young’s Inequality) Let a; b 2 R, then the following inequality is
called Young’s inequality:

ab � t

p
ap C t�q=p

q
bq;

1

p
C 1

q
D 1; 1 < p; q < 1; t > 0: (A.5)

Proof The proof is based on the strict convexity of the exponential, which follows
from the strict positivity of the second derivative. This property reads for ˛; ˇ 2 R

and p; q as in (A.5)

exp

�
˛

p
C ˇ

q

�
� 1

p
exp.˛/C 1

q
exp.ˇ/:

Choosing ˛ D ln .tap/ and ˇ D ln
�
t�q=pbq

�
gives (A.5). �

Lemma A.19 (Estimate for a Rayleigh Quotient) Let A 2 R
m�n be a matrix,

then it is

inf
x2Rn;x¤0

xTATAx

xTx
D �min

�
ATA

�
;

where �min
�
ATA

�
is the smallest eigenvalue of ATA. The infimum is taken, i.e., it is

even a minimum. The quotient on the left-hand side is called Rayleigh quotient.

Proof The matrix ATA is symmetric and positive semi-definite. Hence, all eigenval-
ues are non-negative, the (normalized eigenvectors) f�

i
gn

iD1 form a basis of Rn, and
they are mutually orthonormal. Let the eigenvalues be ordered such that

0 � �min
�
ATA

� D �1 � �2 � : : : � �n:
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Each vector x 2 R
n can be written in the form x D Pn

iD1 xi� i
. Using that the

eigenvectors are orthonormal, it follows that xTx D Pn
iD1 x2i and

xTATAx D xT
nX

iD1
xiA

TA�
i
D

nX
jD1

nX
iD1

�ixjxi� j
�

i
D

nX
iD1

�ix
2
i � �min

�
ATA

� nX
iD1

x2i :

Hence, one gets

inf
x2Rn;x¤0

xTATAx

xTx
� �min

�
ATA

�
:

Choosing x D x1�
1
, x1 ¤ 0, leads to

xTATAx

xTx
D �1x21

x21
D �1 D �min

�
ATA

�
;

such that the equal sign holds. �

A.2 Function Spaces

Definition A.20 (Derivatives and Multi-index) A multi-index ˛ is a vector ˛ D
.˛1; : : : ; ˛n/ with ˛i 2 N [ f0g, i D 1; : : : ; n. Derivatives are denoted by

D˛ D @j˛j

@x˛11 : : : @x˛n
n
; with j˛j D

nX
iD1

˛i:

Low order derivatives are also denoted by subscripts, e.g.,

@xu D @u

@x
:

ut
Definition A.21 (Spaces of Continuously Differentiable Functions Cm.˝/,
Cm.˝/, and Cm

B .˝/) Let m 2 N [ f0g, then the space of m-times continuously
differentiable functions in ˝ is denoted by

Cm.˝/ D ˚
f W f and all its derivatives up to order m

are continuous in ˝
�
:
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It is

C1.˝/ D
1\

mD0
Cm.˝/:

The space Cm.˝/ for m < 1 is defined by

Cm.˝/ D ˚
f W f 2 Cm.˝/ and all derivatives can be extended

continuously to ˝
�
:

One defines

C1.˝/ D
1\

mD0
Cm.˝/:

Finally, the following space is introduced

Cm
B .˝/ D ˚

f W f 2 Cm.˝/ and f is bounded
�
: (A.6)

ut
Remark A.22 (Spaces of Continuously Differentiable Functions Cm.˝/, Cm.˝/,
and Cm

B .˝/)

• If ˝ is bounded, then Cm.˝/, equipped with the norm

kf kCm.˝/ D
X

0	j˛j	m

max
x2˝

jD˛f .x/j ;

is a Banach space.
• The space Cm

B .˝/ becomes a Banach space with the norm

kf kCm
B .˝/

D max
0	j˛j	m

sup
x2˝

jD˛f .x/j :

• It is

Cm.˝/ � Cm
B .˝/ � Cm.˝/:

Consider, e.g., ˝ D .0; 1/ and f .x/ D sin.1=x/, then f 2 CB.˝/ but f 62 C.˝/.
ut

Definition A.23 (Support) Let f 2 C.˝/, then

supp. f / D fx W f .x/ ¤ 0g
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is the support of f .x/. The closure is taken with respect to R
d. A function f 2 C.˝/

is said to have a compact support, if the support of f .x/ is bounded in R
d and if

supp. f / � ˝ . ut
Definition A.24 (The Space Cm

0 .˝/) The space Cm
0 .˝/ is given by

Cm
0 .˝/ D f f W f 2 Cm.˝/ and supp. f / is compact in ˝g:

In the literature, the space C1
0 .˝/ is often denoted by D.˝/.

An important space for the study of the Navier–Stokes equations is

C1
0;div.˝/ D ff W f 2 C1

0 .˝/;r � f D 0g: (A.7)

ut
Definition A.25 (The Spaces Cm;˛.˝/, Spaces of Hölder Continuous Functions)
Let M 2 R

d, d 2 f2; 3g, be a set and let ˛ 2 .0; 1�. Then, the constant

jf jC0;˛.M/ D sup
x¤y2M

� jf .x/� f .y/j
jx � yj˛



is called Hölder coefficient or Hölder constant. For ˛ D 1, it is usually called
Lipschitz constant.

Let ˝ be bounded. For m 2 N [ f0g, the following spaces are defined

Cm;˛.˝/ D ˚
f 2 Cm.˝/ W ˇ̌Dˇf

ˇ̌
C0;˛.˝/

< 1; jˇj D m
�
:

For m D 0, these spaces are called spaces of Hölder continuous functions and for
˛ D 1, space of Lipschitz continuous functions. ut
Remark A.26 (The Spaces Cm;˛.˝/) The spaces Cm;˛.˝/ are Banach spaces if they
are equipped with the norm

kf kCm;˛.˝/ D kf kCm.˝/ C
X

jˇjDm

ŒDˇ f �C0;˛.˝/:

ut

Definition A.27 (Spaces of (Lebesgue) Integrable Functions Lp.˝/) The
Lebesgue spaces are defined by

Lp.˝/ D
�

f W
Z
˝

jf .x/jp dx < 1

; p 2 Œ1;1/;
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where the integral is to be understood in the sense of Lebesgue. The space L1.˝/
is the space of all functions that are bounded for almost all x 2 ˝

L1.˝/ D ff W jf .x/j < 1 for almost all x 2 ˝g :

ut
Remark A.28 (Lebesgue Spaces)

• The space Lp.˝/ is a normed vector space with norm

kf kLp.˝/ D
�Z

˝

jf .x/jp dx
�1=p

; p 2 Œ1;1/:

• An important special case is L2.˝/ since this space is a Hilbert space. The inner
product . f ; g/L2.˝/ of L2.˝/ and the induced norm are given by

. f ; g/L2.˝/ D
Z
˝

f .x/g.x/ dx; kf kL2.˝/ D . f ; f /1=2
L2.˝/

:

• The space L1.˝/ becomes a Banach space if it is equipped with the norm

kf kL1.˝/ D ess sup
x2˝

jf .x/j;

where ess supx2˝ is the essential supremum.
• Let j˝j < 1 and 1 � p � q � 1. If u 2 Lq .˝/, then u 2 Lp .˝/ and

kukLp.˝/ �
�Z

˝

dx
�1=p�1=q

kukLq.˝/ ; (A.8)

see Adams (1975, Theorem 2.8).
ut

Example A.29 (Cauchy–Schwarz Inequality and Hölder’s Inequality) Let f 2
Lp.˝/ and g 2 Lq.˝/ with p; q 2 Œ1;1� and 1=p C 1=q D 1. Then it is fg 2 L1.˝/
and the Hölder inequality holds

kfgkL1.˝/ � kf kLp.˝/ kgkLq.˝/ : (A.9)

For p D q D 2, this inequality is called Cauchy–Schwarz inequality

kfgkL1.˝/ � kf kL2.˝/ kgkL2.˝/ : (A.10)

ut
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Definition A.30 (Sobolev Spaces Wk;p.˝/) Let k 2 N and p 2 Œ1;1�. The
Sobolev space Wk;p.˝/ consists of all integrable functions f W ˝ ! R such
that for each multi-index ˛ with j˛j � k, the derivative D˛f exists in the weak sense
and it belongs to Lp.˝/. ut
Remark A.31 (Sobolev Spaces)

• It is Lp.˝/ D W0;p.˝/.
• A norm in Sobolev spaces is defined by

kf kWk;p.˝/ D
8<
:
	P

j˛j	k kD˛f kp
Lp.˝/


1=p
if p 2 Œ1;1/;P

j˛j	k ess supx2˝ jD˛f j if p D 1:

Sobolev spaces equipped with this norm are Banach spaces, e.g., see Evans
(2010, p. 262).

• The Sobolev spaces for p D 2 are Hilbert spaces. They are often denoted by
Wm;2.˝/ D Hm.˝/ and they are equipped with the inner product

. f ; g/Hk.˝/ D
X
j˛j	k

.D˛f ;D˛g/L2.˝/ :

• In particular, the Sobolev spaces of first order are important for the study of the
Navier–Stokes equations

W1;p.˝/ D
�

f W
Z
˝

jf .x/jp C jrf .x/jp dx < 1

; p 2 Œ1;1/;

which are equipped with the norm

kf kW1;p.˝/ D
�Z

˝

jf .x/jp C jrf .x/jp dx
�1=p

; p 2 Œ1;1/:

• The definition of Sobolev spaces can be extended to k 2 R, e.g., see Adams
(1975).

ut
Definition A.32 (Sobolev Spaces Wk;p

0 .˝/) The Sobolev spaces Wk;p
0 .˝/ are

defined by the closure of C1
0 .˝/ in the norm of Wk;p.˝/. ut

Remark A.33 (On the Smoothness of the Boundary) The Sobolev imbedding the-
orem requires that ˝ has the so-called cone property or the strong local Lipschitz
property. In the case that˝ is bounded, these assumptions reduce to the requirement
that ˝ has a locally Lipschitz boundary, Adams (1975, p. 67). That means, each
point x on the boundary @˝ of ˝ has a neighborhood Ux such the @˝ \ Ux is the
graph of a Lipschitz continuous function. ut
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Theorem A.34 (Trace Theorem, Lions and Magenes (1972, Theorem 9.4),
Galdi (2011, Theorem II.4.1 for m D 1)) Let˝ be a bounded domain with locally
Lipschitz boundary @˝ . Then, there is a bounded linear operator T W W1;q.˝/ !
Lr.@˝/, q 2 Œ1;1/, such that

(i) r 2 Œ1; q.d � 1/=.d � q/� if q < d and r 2 Œ1;1/ else,
(ii) Tf D f j@˝ if f 2 W1;q.˝/\ C

�
˝
�
,

(iii) kTf kLr.@˝/ � C kf kW1;q.˝/ for each f 2 W1;q.˝/, with the constant C
depending only on q and˝ .

The mapping

Hs.˝/ !
s0Y

jD0
Hs�j�1=2.@˝/; f 7!

�
@jf

@nj
; j D 0; 1; : : : ; s0


(A.11)

is continuous, where s0 is the greatest integer such that s0 < s � 1=2, and n is the
outward pointing unit normal vector. The mapping is surjective and there exists a
continuous right inverse.

Theorem A.35 (Functions with Vanishing Trace, Galdi (2011, Theorem II.4.2),
Evans (2010, p. 273)) Let the assumptions of Theorem A.34 be given. Then f 2
W1;p
0 .˝/ if and only if Tf D 0 on @˝ .

Theorem A.36 (Poincaré’s Inequality, Poincaré–Friedrichs’ Inequality, Galdi
(2011, Theorem II.5.1), Gilbarg and Trudinger (1983, p. 164)) Let f 2
W1;p
0 .˝/, then

kf kLp.˝/ �
� j˝j
!d

�1=d

krf kLp.˝/ D CPF krf kLp.˝/ p 2 Œ1;1/; (A.12)

where !d is the volume of the unit ball in R
d.

Remark A.37 (Poincaré’s Inequality) Poincaré’s inequality (A.12) holds also for
functions v 2 H1 .˝/ with v D 0 on 
0 � 
 with j
0j > 0.

Poincaré’s inequality stays valid for vector-valued functions v if ˝ is bounded
with a locally Lipschitz boundary, v 2 W1;q .˝/, 1 � q < 1, and v � n D 0 on @˝ ,
see Galdi (1994, Sect. II.4). ut
Theorem A.38 (Density of Continuous Functions in Sobolev Spaces, Gilbarg
and Trudinger (1983, p. 154)) The subspace C1.˝/ \ Wk;p.˝/ is dense in
Wk;p.˝/.

Remark A.39 (Density of Continuous Functions in Sobolev Spaces) For C1.˝/ to
be dense in Wk;p.˝/, one needs some smoothness assumptions on the boundary @˝ ,
like @˝ is C1 or the so-called segment property, e.g., see Gilbarg and Trudinger
(1983, p. 155). This segment property follows from the strong local Lipschitz
property, see Adams (1975, p. 67). ut
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Theorem A.40 (Interpolation Theorem for Sobolev Spaces, Adams (1975,
Theorem 4.17)) Let ˝ � R

d be a bounded domain with a locally Lipschitz
boundary and let p 2 Œ1;1/. Then there exists a constant C.m; p;˝/ such that for
0 � j � m and any u 2 Wm;p.˝/

kukWj;p.˝/ � C.m; p;˝/ kukj=m
Wm;p.˝/ kuk.m�j/=m

Lp.˝/ : (A.13)

In addition, (A.13) is valid for all u 2 Wm;p
0 .˝/ with a constant C.m; p; d/

independent of ˝ .

Remark A.41 (Imbedding Theorems) Imbedding theorems for Sobolev spaces are
used frequently in the analysis of partial differential equations. The imbedding
theorems state that all functions belonging to a certain space do belong also to
another space and that the norm of the functions in the larger space can be estimated
by the norm in the smaller space. Let V be a Banach space such that an imbedding
Wm;p .˝/ ! V holds. Then, there is a constant C depending on ˝ such that

kvkV � C kvkWm;p.˝/

for all functions v 2 Wm;p .˝/. The validity of imbeddings depends on the
dimension d of the domain ˝ . The larger the dimension, the less imbeddings are
valid, compare Example A.44. ut
Theorem A.42 (The Sobolev Imbedding Theorem, Adams (1975, Theorem 5.4,
Remark 5.5 (6), Theorem 6.2)) Let ˝ � R

d be a bounded domain with a locally
Lipschitz boundary. Let j and m be non-negative integers and let p satisfy 1 � p <
1.

(i) Let mp < d, then the imbedding

WjCm;p.˝/ ! Wj;q.˝/; 1 � q � dp

d � mp
(A.14)

holds. In particular, it is

Wm;p.˝/ ! Lq.˝/; 1 � q � dp

d � mp
: (A.15)

(ii) Suppose mp D d. Then the imbedding

Wm;p.˝/ ! Lq.˝/; 1 � q < 1 (A.16)

is valid. If in addition p D 1, then this imbedding holds also for q D 1

Wd;1.˝/ ! L1.˝/: (A.17)
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and even

Wd;1.˝/ ! CB.˝/;

see (A.6) for the definition of latter space.
(iii) Suppose that mp > d, then the imbedding

Wm;p.˝/ ! CB.˝/ (A.18)

holds.
(iv) Suppose mp > d > .m � 1/p, then

WjCm;p.˝/ ! Cj;�
�
˝
�

for 0 < � � m � d

p
: (A.19)

(v) Suppose d D .m � 1/p, then

WjCm;p.˝/ ! Cj;�
�
˝
�

for 0 < � < 1:

This imbedding holds for � D 1 if p D 1 and d D m � 1.
(vi) All imbeddings are true for arbitrary domains provided the W spaces under-

going the imbedding are replaced with the corresponding W0 spaces.
(vii) Rellich–Kondrachov theorem: The imbeddings (A.14)–(A.16) are compact

with the conditions on ˝ stated at the beginning of the theorem, i.e., the
imbedding operator is compact, see Definition A.63.

Remark A.43 (Spaces of Continuous Functions in˝) Since the compact imbedding

Cj;�
�
˝
� ! Cj

�
˝
�

j � 0; 0 < � � 1;

holds for bounded domains, Adams (1975, Theorem 1.31), one can derive from
Theorem A.42, cases (iv) and (v), also imbeddings for Cj

�
˝
�
: if mp > d � .m�1/p,

p 2 Œ1;1/, then

WjCm;p.˝/ ! Cj
�
˝
�
: (A.20)

ut
Example A.44 (Important Sobolev Imbeddings) Let d D 2. Then, it follows
from (A.16) that

H1.˝/ D W1;2.˝/ ! Lq.˝/; q 2 Œ1;1/: (A.21)
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For d D 3, one gets with (A.15) that

H1.˝/ D W1;2.˝/ ! Lq.˝/; q 2 Œ1; 6�: (A.22)

ut
Remark A.45 (Spaces of Functions Defined in Space-Time Domains) Let X be any
normed space introduced above that is equipped with the norm k � kX and let .t0; t1/
be a time interval. Then, the following function space on the space-time domain can
be defined

Lp.t0; t1I X/ D
�

f .t; x/ W
Z t1

t0

kf kp
X.�/ d� < 1


; p 2 Œ1;1/:

The norm of Lp.t0; t1I X/ is

kf kLp.t0;t1IX/ D
�Z t1

t0

kf kp
X.�/ d�

�1=p

; p 2 Œ1;1/:

The modifications for p D 1 are the same as for the Lebesgue spaces. ut

A.3 Some Definitions, Statements, and Theorems

Remark A.46 (Convolution) The convolution of two scalar functions f and g is
defined by

. f  g/ .y/ D
Z
R

f .y � x/ g .x/ dx D
Z
R

f .x/ g .y � x/ dx D .g  f / .y/ ;

provided that the integrals exist for almost all y 2 R. ut
Remark A.47 (Fourier Transform: Definition and Some Properties) The Fourier
transform of a scalar function f is defined by

F .f / .y/ D
Z
R

f .x/ e�ixy dx (A.23)

and the inverse Fourier transform of F .y/ by

F�1 .F/ .x/ D 1

2�

Z
R

F .y/ eixy dy: (A.24)
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It holds

F .f  g/ D F .f /F .g/ ; F .fg/ D F .f /  F .g/ : (A.25)

If f is differentiable and limjxj!1 f .x/ D 0, integration by parts yields

yF .f / .y/ D �iF
�
f 0� .y/ :

This formula implies the relations

kyk22 F .f / D �F .�f / ; (A.26)

1

kyk22
F .f / D �F

�
��1 .f /

�
; (A.27)

1

1C c kyk22
F .f / D F

	
.I � c�/�1 .f /



: (A.28)

The Lr .˝/ norm of f  g, 1 � r � 1, can be estimated by Young’s inequality
for convolutions (sometimes also called Hölder’s inequality for convolutions), e.g.,
see Hörmander (1990, Sect. IV.4.5). Let 1 � p; q � 1, p�1 C q�1 � 1, and
r�1 D p�1 C q�1 � 1. For f 2 Lp

�
R

d
�

and g 2 Lq
�
R

d
�
, it is f  g 2 Lr

�
R

d
�

and
Young’s inequality for convolution

kf  gkLr.˝/ � kf kLp.˝/ kgkLq.˝/ (A.29)

holds. If p�1 C q�1 � 1 D 0, then f  g 2 Lr
�
R

d
�

is continuous and bounded. ut
Definition A.48 (Absolutely Continuous Function) Let I � R be an interval. A
function f W I ! R is called absolutely continuous if for every " > 0 there is a
ı > 0 such that whenever a finite sequence of pairwise disjoint sub-intervals .xk; yk/

of I satisfies
P

k .yk � xk/ < ı; then
P

k jf .yk/� f .xk/j < ": ut
Remark A.49 (Absolutely Continuous Functions) Absolute continuity of a function
is a stronger condition than continuity and even uniform continuity. On a compact
interval I D Œa; b�, absolute continuity of a function f is equivalent to the property
that this function has a derivative f 0 almost everywhere, the derivative is Lebesgue
integrable, and it holds

f .t/ D f .a/C
Z t

a
f 0.�/ d� 8 t 2 Œa; b�

(fundamental theorem of calculus). ut
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Theorem A.50 (Local Existence and Uniqueness Theorem of Carathéodory,
Carathéodory (1918, Kap. 11), Kamke (1944, p. 34), Filippov (1988, Sect. 1.1))
Let fm.t; y1; : : : ; yn/, m D 1; : : : ; n, be defined in

˝T D .t0; t0 C T/ �˝y

with ˝y D fy D .y1; : : : ; yn/
T W ky � y0k2 � bg for some b > 0, let the functions

f1; : : : ; fn for each fixed system y1; : : : ; yn be measurable with respect to t, let for
each fixed t the functions f1; : : : ; fn be continuous with respect to y1; : : : ; yn, and let

jfm.t; y1; : : : ; yn/j � F.t/; m D 1; : : : ; n;

where F.t/ is a Lebesgue integrable function in .t0; t0 C T/. Then there exists a
system of absolutely continuous functions y1.t/; : : : ; yn.t/ that satisfies for all t in
some interval Œt0; t0 C a�, 0 < a � T,

ym.t/ D y0m C
Z t

t0

fm.s; y1.s/; : : : ; yn.s// ds; m D 1; : : : ; n: (A.30)

At each point where the term in the integral is continuous, the functions satisfy the
ordinary differential equation

d

dt
ym.t/ D fm.t; y1; : : : ; yn/; m D 1; : : : ; n: (A.31)

If in addition for any two points .t; y1; : : : ; yn/; .t; Oy1; : : : ; Oyn/ 2 ˝T the Lipschitz
condition

jfm.t; y1; : : : ; yn/ � fm.t; Oy1.t/; : : : ; Oyn.t//j � G.t/
nX

lD1
jyl � Oyl.t/j ;

m D 1; : : : ; n, with a Lebesgue integrable function G.t/ is satisfied, then there exists
exactly one solution of (A.30) in Œt0; t0 C a�.

Remark A.51 (On Carathéodory’s Theorem) The theorem of Carathéodory is an
extension of the theorem of Peano to ordinary differential equations of type (A.31)
with discontinuous right-hand side. ut
Remark A.52 (On Gronwall’s Lemma) Gronwall’s lemma is an important tool for
the analysis and finite element analysis of time-dependent problems. Two versions
of this lemma in the continuous setting will be given below, see Emmrich (1999) for
complete proofs and a discussion of the differences of these versions. ut
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Lemma A.53 (Gronwall’s Lemma in Integral Form) Let T 2 R
C [ 1, f ; g;2

L1 .0;T/, and � 2 L1 .0;T/, � .t/ � 0 for almost all t 2 Œ0;T�. Then

f .t/ � g .t/C
Z t

0

� .s/ f .s/ ds a:e: in Œ0;T� (A.32)

implies for almost all t 2 Œ0;T� that

f .t/ � g .t/C
Z t

0

exp

�Z t

s
� .�/ d�

�
� .s/ g .s/ ds: (A.33)

If g 2 W1;1 .0;T/, it follows that

f .t/ � exp

�Z t

0

� .�/ d�

��
g .0/C

Z t

0

exp

�
�
Z s

0

� .�/ d�

��
g0 .s/ ds:

Moreover, if g.t/ is a monotonically increasing continuous function, it holds

f .t/ � exp

�Z t

0

� .�/ d�

�
g .t/ : (A.34)

Proof For illustration, the derivation of (A.33) and (A.34) will be presented.
(A.33). Let

Qf .t/ D exp

�
�
Z t

0

� .�/ d�

�Z t

0

�.s/f .s/ ds;

then one obtains for almost all t 2 Œ0;T� with the product rule, the Leibniz integral
rule, (A.32), and �.t/ � 0

Qf 0.t/ D exp

�
�
Z t

0

� .�/ d�

��
��.t/

Z t

0

�.s/f .s/ ds C �.t/f .t/

�

� exp

�
�
Z t

0

� .�/ d�

�
.�.t/ .g.t/� f .t//C �.t/f .t//

D exp

�
�
Z t

0

� .�/ d�

�
�.t/g.t/:

Integration yields, using Qf .0/ D 0,

Qf .t/ �
Z t

0

exp

�
�
Z s

0

� .�/ d�

�
�.s/g.s/ ds:
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With (A.32), one obtains

exp

�
�
Z t

0

� .�/ d�

�
. f .t/ � g.t// � exp

�
�
Z t

0

� .�/ d�

�Z t

0

� .s/ f .s/ ds

D Qf .t/ �
Z t

0

exp

�
�
Z s

0

� .�/ d�

�
�.s/g.s/ ds:

Multiplying this inequality with exp
�R t
0
� .�/ d�

�
and bringing g.t/ to the right-hand

side gives (A.33).
Equation (A.34). If g.t/ is a monotonically increasing continuous function, one

gets from (A.33), using that g.t/ takes its largest value at the final time and that
�.t/ � 0, and applying the fundamental theorem of calculus

f .t/ � g.t/

�
1C

Z t

0

exp

�Z t

s
� .�/ d�

�
� .s/ ds

�

D g.t/

�
1C exp

�Z t

0

� .�/ d�

�Z t

0

exp

�
�
Z s

0

� .�/ d�

�
� .s/ ds

�

D g.t/

�
1C exp

�Z t

0

� .�/ d�

�Z t

0

d

ds

�
� exp

�
�
Z s

0

� .�/ d�

��
ds

�

D g.t/

�
1C exp

�Z t

0

� .�/ d�

��
� exp

�
�
Z t

0

� .�/ d�

�
C 1

��

D exp

�Z t

0

� .�/ d�

�
g.t/:

�

Lemma A.54 (Gronwall’s Lemma in Differential Form) Let T 2 R
C [ 1, f 2

W1;1 .0;T/, and g; � 2 L1 .0;T/. Then

f 0 .t/ � g .t/C � .t/ f .t/ a:e: in Œ0;T� (A.35)

implies for almost all t 2 Œ0;T�

f .t/ � exp

�Z t

0

� .�/ d�

�
f .0/C

Z t

0

exp

�Z t

s
� .�/ d�

�
g .s/ ds: (A.36)

Proof Defining

Qf .t/ D exp

�
�
Z t

0

� .�/ d�

�
f .t/ D exp.��.t//f .t/; (A.37)
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applying the chain rule, the Leibniz integral rule, and (A.35) gives

Qf 0.t/ D ��0.t/ exp.��.t//f .t/C exp.��.t//f 0.t/ D exp.��.t// � f 0.t/ � �.t/f .t/
�

� exp.��.t//g.t/:

Integration in .0; t/ and using (A.37) yields

Qf .t/ � Qf .0/ D exp

�
�
Z t

0

� .�/ d�

�
f .t/ � f .0/ �

Z t

0

exp.��.s//g.s/ ds:

Multiplication with exp
�R t
0
� .�/ d�

�
gives (A.36). �

Lemma A.55 (Variation of Gronwall’s Lemma in Differential Form) Let T 2
R

C [ 1, f 2 W1;1 .0;T/, h; g; � 2 L1 .0;T/, and h .t/ ; � .t/ � 0 a.e. in .0;T/.
Then,

f 0 .t/C h .t/ � g .t/C � .t/ f .t/ a:e: in Œ0;T� (A.38)

implies for almost all t 2 Œ0;T�

f .t/C
Z t

0

h .s/ ds (A.39)

� exp

�Z t

0

� .�/ d�

�
f .0/C

Z t

0

exp

�Z t

s
� .�/ d�

�
g .s/ ds:

Moreover, if g .t/ � 0 a.e. in .0;T/, it holds

f .t/C
Z t

0

h .s/ ds � exp

�Z t

0

� .�/ d�

��
f .0/C

Z t

0

g .s/ ds

�
: (A.40)

Proof From (A.38), it follows a.e. in Œ0;T� that

f 0 .s/ � � .s/ f .s/C h .s/ � g .s/ :

The positivity of the exponential implies

exp

�
�
Z s

0

� .�/ d�

� �
f 0 .s/ � � .s/ f .s/C h .s/

� � exp

�
�
Z s

0

� .�/ d�

�
g .s/ :
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Integration on .0; t/ � Œ0;T� gives

exp

�
�
Z t

0

� .�/ d�

�
f .t/ � f .0/C

Z t

0

exp

�
�
Z s

0

� .�/ d�

�
h .s/ ds

�
Z t

0

exp

�
�
Z s

0

� .�/ d�

�
g .s/ ds: (A.41)

Using the monotonicity of the exponential yields

exp

�
�
Z t

0

� .�/ d�

�Z t

0

h .s/ ds �
Z t

0

exp

�
�
Z s

0

� .�/ d�

�
h .s/ ds:

Applying this inequality to bound the left-hand side of (A.41) from below and
multiplication of the resulting inequality with exp

�R t
0 � .�/ d�

�
proves (A.39).

If g is non-negative, one obtains

Z t

0

exp

�Z t

s
� .�/ d�

�
g .s/ ds � exp

�Z t

0

� .�/ d�

�Z t

0

g .s/ ds;

from which (A.40) follows. �

Lemma A.56 (Discrete Gronwall’s Lemma, Heywood and Rannacher (1990,
Lemma 5.1)) Let k;B; an; bn; cn; ˛n be non-negative numbers for integers n � 1

and let the inequality

aNC1 C k
NC1X
nD1

bn � B C k
NC1X
nD1

cn C k
NC1X
nD1

˛nan for N � 0 (A.42)

hold. If k˛n < 1 for all n D 1; : : : ;N C 1, then

aNC1 C k
NC1X
nD1

bn � exp

 
k

NC1X
nD1

˛n

1 � k˛n

! 
B C k

NC1X
nD1

cn

!
for N � 0: (A.43)

If the inequality

aNC1 C k
NC1X
nD1

bn � B C k
NC1X
nD1

cn C k
NX

nD1
˛nan for N � 0 (A.44)

is given, then it holds

aNC1 C k
NC1X
nD1

bn � exp

 
k

NX
nD1

˛n

! 
B C k

NC1X
nD1

cn

!
for N � 0: (A.45)
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Definition A.57 (Weak Convergence and Weak� Convergence, Yosida (1995,
p. 120, p. 125)) A sequence fxng1

nD1 in a normed linear space X is said to be weakly
convergent if a finite limit limn!1 f .xn/ exists for each f 2 X0, where X0 is the
(strong) dual space of X. If

lim
n!1 f .xn/ D f .x/ 8 f 2 X0;

then fxng1
nD1 is called to be weakly convergent to x, in notation xn * x.

A sequence f fng1
nD1 in the (strong) dual space X0 of a linear space X is said to

be weakly� convergent if a finite limit limn!1 fn.x/ exists for every x 2 X. The
sequence is said to converge weakly� to an element f 2 X0 if

lim
n!1 fn.x/ D f .x/ 8 x 2 X;

in notation fn
�
* f . ut

Remark A.58 (On the Weak and Weak� Convergence)

• If the limit x or f exist, then the limit is unique, Yosida (1995, p. 120).
• If X is a reflexive Banach space and if fxng1

nD1 � X is bounded, then there exists
a subsequence fxnlg1

lD1 � fxng1
nD1 and an element x 2 X such that xnl * x, see

Evans (2010, p. 723).
• If f fng1

nD1 � X0 is bounded in the dual X0 of X and X is a separable Banach space,
then there exists a weakly� convergent subsequence.

ut
Definition A.59 (Linear Operator, Range, Kernel) Let X and Y be real Banach
spaces. A mapping A W X ! Y is a linear operator if

A .˛x1 C ˇx2/ D ˛Ax1 C ˇAx2 8 x1; x2 2 X; ˛; ˇ 2 R:

The range or image of A is given by

range.A/ D fy 2 Y W y D Ax for some x 2 Xg :

The kernel or the null space of A is defined by

ker.A/ D fx 2 X W Ax D 0g :

ut
Definition A.60 (Bounded Operator, Continuous Operator) An operator A W
X ! Y, X;Y Banach spaces, is bounded if

kAk D sup
x2X

kAxkY

kxkX

D sup
x2X;kxkX	1

kAxkY D sup
x2X;kxkXD1

kAxkY < 1: (A.46)
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The operator A is continuous in x0 2 X if for each " > 0 there is a ı > 0 such that
for all x 2 X with kx � x0kX < ı, it follows that kAx � Ax0kY < ". The operator A
is called a continuous operator if A is continuous for all x 2 X. ut
Remark A.61 (Equivalent Definition of a Continuous Operator) The operator A W
X ! Y, X;Y Banach spaces, is continuous in x0 2 X if and only if for all sequences
fxng1

nD1, xn 2 X, with xn ! x0 it holds that Axn ! Ax0 in Y. ut
Lemma A.62 (Properties of Bounded Linear Operators, Kolmogorov and
Fomı̄n (1975, §4.5.2, §4.5.3), Yosida (1995, p.43)) Let X;Y be Banach spaces.

(i) A bounded linear operator A W X ! Y is continuous.
(ii) A continuous linear operator A W X ! Y is bounded.

(iii) The set

L.X;Y/ D fA W A is a bounded linear operator from X to Yg

is a Banach space endowed with the norm (A.46).

Definition A.63 (Compact Operator) An operator A W X ! Y is compact, if
A.x/ is precompact in Y for every bounded set QX � X. ut
Theorem A.64 (Rank-Nullity Theorem) Let A W V ! W be a linear map
between two finite-dimensional linear spaces V and W, then it holds

dim V D dim .ker .A//C dim .range.A// :

Definition A.65 (Linear Functional) A (real) linear functional f defined on a
Banach space X is a linear operator with range.f / � R. ut
Definition A.66 (Bounded Bilinear Form, Coercive Bilinear Form, V-elliptic
Bilinear Form) Let b.�; �/ W V � V ! R be a bilinear form on the Banach space
V . Then, it is bounded if

jb.u; v/j � M kukV kvkV 8 u; v 2 V;M > 0; (A.47)

where the constant M is independent of u and v. The bilinear form is coercive or
V-elliptic if

b.u; u/ � m kuk2V 8 u 2 V;m > 0; (A.48)

where the constant m is independent of u. ut
Remark A.67 (Application to an Inner Product) Let V be a Hilbert space. Then the
inner product a.�; �/ is a bounded and coercive bilinear form, since by the Cauchy–
Schwarz inequality

ja.u; v/j � kukV kvkV 8 u; v 2 V;
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and obviously a.u; u/ D kuk2V . Hence, the constants can be chosen to be M D 1 and
m D 1. ut
Theorem A.68 (Banach’s Fixed Point Theorem, Gilbarg and Trudinger (1983,
Theorem 5.1)) A contraction mapping T in a Banach space B has a unique fixed
point, that is there exists a unique solution x 2 B of the equation Tx D x.

The statement holds true if B is replaced by any closed subset, see Gilbarg and
Trudinger (1983, p. 74).

Theorem A.69 (Brouwer’s Fixed Point Theorem, Gilbarg and Trudinger (1983,
Theorem 11.1)) Let S be a compact convex set in a Banach space B and let T be
a continuous mapping of S into itself. Then T has a fixed point, that is, Tx D x for
some x 2 S.

Theorem A.70 (Theorem of Banach on the Inverse Operator, Kolmogorov and
Fomı̄n (1975, p. 225)) Let A W X ! Y be a bounded linear operator that defines a
one-to-one mapping between the Banach spaces X and Y. Then, the inverse operator
A�1 is bounded.

Theorem A.71 (Closed Range Theorem of Banach, Yosida (1995, p. 205)) Let
X;Y be Banach spaces, let A W X ! Y be a bounded linear operator, and let
A0 W Y 0 ! X0 be its dual. Then, the following statements are equivalent:

(i) range.A/ is closed in Y,
(ii) range.A/ D fy 2 Y W hy0; yiY0 ;Y D 0 for all y0 2 ker.A0/g,

(iii) range.A0/ is closed in X,
(iv) range.A0/ D fx0 2 X0 W hx0; xiX0;X D 0 for all x 2 ker.A/g.

Theorem A.72 (Hahn–Banach Theorem, Yosida (1995, Sect. IV.1), Triebel
(1972, p. 67)) Let X be a Banach space, let Y be a subspace of X, and let f be
a bounded linear functional defined on Y. Then, there exists an extension g of f to
X, where g is a linear functional with the same norm as f .



Appendix B
Finite Element Methods

Remark B.1 (Contents) This appendix provides a short introduction into finite
element methods. In particular, notations are introduced that are used throughout
this monograph and finite element spaces are described that are of importance for
the discretization of incompressible flow problems. ut

B.1 The Ritz Method and the Galerkin Method

Remark B.2 (Contents) This section studies abstract problems in Hilbert spaces.
The existence and uniqueness of solutions will be discussed. Approximating this
solution with finite-dimensional spaces is called Ritz method or Galerkin method.
Some basic properties of this method will be proved.

In this section, a Hilbert space V will be considered with inner product a.�; �/ W
V � V ! R and norm kvkV D a.v; v/1=2. ut
Theorem B.3 (Representation Theorem of Riesz) Let f 2 V 0 be a continuous
and linear functional, then there is a uniquely determined u 2 V with

a.u; v/ D f .v/ 8 v 2 V: (B.1)

In addition, u is the unique solution of the variational problem

F.v/ D 1

2
a.v; v/ � f .v/ ! min 8 v 2 V: (B.2)

Proof First, the existence of a solution u of the variational problem will be proved.
Since f is continuous, it holds

jf .v/j � c kvkV 8 v 2 V;

© Springer International Publishing AG 2016
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from what follows that

F.v/ � 1

2
kvk2V � c kvkV � �1

2
c2;

where in the second estimate the necessary criterion for a local minimum of the
expression of the first bound is used. Hence, the function F.�/ is bounded from
below and

d D inf
v2V

F.v/

exists.
Let fvkgk2N be a sequence with F.vk/ ! d for k ! 1. A straightforward

calculation (parallelogram identity in Hilbert spaces) gives

kvk � vlk2V C kvk C vlk2V D 2 kvkk2V C 2 kvlk2V :

Using the linearity of f .�/ and d � F.v/ for all v 2 V , one obtains

kvk � vlk2V

D 2 kvkk2V C 2 kvlk2V � 4
����vk C vl

2

����
2

V

� 4f .vk/� 4f .vl/C 8f

�
vk C vl

2

�

D 4F.vk/C 4F.vl/� 8F

�
vk C vl

2

�

� 4F.vk/C 4F.vl/� 8d ! 0

for k; l ! 1. Hence fvkgk2N is a Cauchy sequence. Because V is a complete space,
there exists a limit u of this sequence with u 2 V , see Definition A.5. Since F.�/ is
continuous, it is F.u/ D d and u is a solution of the variational problem.

In the next step, it will be shown that each solution of the variational prob-
lem (B.2) is also a solution of (B.1). It is

˚."/ D F.u C "v/ D 1

2
a.u C "v; u C "v/ � f .u C "v/

D 1

2
a.u; u/C "a.u; v/C "2

2
a.v; v/ � f .u/� "f .v/:

If u is a minimum of the variational problem, then the function ˚."/ has a local
minimum at " D 0. The necessary condition for a local minimum leads to

0 D ˚ 0.0/ D a.u; v/� f .v/ for all v 2 V:
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Finally, the uniqueness of the solution will be proved. It is sufficient to prove the
uniqueness of the solution of Eq. (B.1). If the solution of (B.1) is unique, then the
existence of two solutions of the variational problem (B.2) would be a contradiction
to the fact proved in the previous step. Let u1 and u2 be two solutions of (B.1).
Computing the difference of both equations gives

a.u1 � u2; v/ D 0 for all v 2 V:

This equation holds, in particular, for v D u1 � u2. Hence, ku1 � u2kV D 0, such
that u1 D u2. �

Theorem B.4 (Theorem of Lax–Milgram) Let b.�; �/ W V �V ! R be a bounded
and coercive bilinear form on the Hilbert space V. Then, for each bounded linear
functional f 2 V 0 there is exactly one u 2 V with

b.u; v/ D f .v/ 8 v 2 V: (B.3)

Proof One defines linear operators T;T 0 W V ! V by

a.Tu; v/ D b.u; v/ 8 v 2 V; a.T 0u; v/ D b.v; u/ 8 v 2 V: (B.4)

Since b.u; �/ and b.�; u/ are continuous linear functionals on V , it follows from
Theorem B.3 that the elements Tu and T 0u exist and they are defined uniquely. The
operators satisfy the relation

a.Tu; v/ D b.u; v/ D a.T 0v; u/ D a.u;T 0v/; (B.5)

T 0 is called adjoint operator of T. Setting v D Tu in (B.4) and using the boundedness
of b.�; �/ yields

kTuk2V D a.Tu;Tu/ D b.u;Tu/ � M kukV kTukV H) kTukV � M kukV

for all u 2 V . Hence, T is bounded. Since T is linear, it follows that T is continuous,
see Lemma A.62. Using the same argument, one shows that T 0 is also bounded and
continuous.

Define the bilinear form

d.u; v/ WD a.TT 0u; v/ D a.T 0u;T 0v/ 8 u; v 2 V;

where (B.5) was used. Hence, this bilinear form is symmetric. Using the coercivity
of b.�; �/ and the Cauchy–Schwarz inequality (A.10) gives

m2 kvk4V � b.v; v/2 D a.T 0v; v/2 � kvk2V
��T 0v

��2
V

D kvk2V a.T 0v;T 0v/

D kvk2V d.v; v/:
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Applying now the boundedness of a.�; �/ and of T 0 yields

m2 kvk2V � d.v; v/ D a.T 0v;T 0v/ D ��T 0v
��2

V
� M kvk2V : (B.6)

Hence, d.�; �/ is also coercive and, since it is symmetric, it defines an inner product
on V . From (B.6), one has that the norm induced by d.v; v/1=2 is equivalent to the
norm kvkV . From Theorem B.3, it follows that there is a exactly one w 2 V with

d.w; v/ D f .v/ 8 v 2 V:

Inserting u D T 0w in (B.3) gives with (B.4)

b.T 0w; v/ D a.TT 0w; v/ D d.w; v/ D f .v/ 8 v 2 V

and consequently, u D T 0w is a solution of (B.3).
The uniqueness of the solution is proved analogously as in the symmetric case.

�
Remark B.5 (Basic Idea of the Ritz Method) For approximating the solution
of (B.2) or (B.1) with a numerical method, it will be assumed that V has a countable
orthonormal basis (Schauder basis), i.e., V is a separable Hilbert space. Then,
using Parseval’s equality, one finds that there are finite-dimensional subspaces
V1;V2; : : : � V with dimVk D k, which have the following property: for each u 2 V
and each " > 0 there is a K 2 N and a uk 2 Vk with

ku � ukkV � " 8 k � K: (B.7)

Note that it is not required that there holds an inclusion of the form Vk � VkC1.
The Ritz approximation of (B.2) and (B.1) is defined by: Find uk 2 Vk with

a.uk; vk/ D f .vk/ 8 vk 2 Vk: (B.8)

ut
Lemma B.6 (Existence and Uniqueness of a Solution of (B.8)) There exists
exactly one solution of (B.8).

Proof Finite-dimensional subspaces of Hilbert spaces are Hilbert spaces as well.
For this reason, one can apply the representation theorem of Riesz, Theorem B.3,
to (B.8) which gives the statement of the lemma. In addition, the solution of (B.8)
solves a minimization problem on Vk. �
Lemma B.7 (Best Approximation Property) The solution of (B.8) is the best
approximation of u in Vk, i.e., it is

ku � ukkV D inf
vk2Vk

ku � vkkV : (B.9)
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Proof Since Vk � V , one can use the test functions from Vk in the weak
equation (B.1). Then, the difference of (B.1) and (B.8) gives the orthogonality, the
so-called Galerkin orthogonality,

a.u � uk; vk/ D 0 8 vk 2 Vk: (B.10)

Hence, the error u � uk is orthogonal to the space Vk: u � uk ? Vk. That means, uk

is the orthogonal projection of u onto Vk with respect of the inner product of V .
Let now wk 2 Vk be an arbitrary element, then it follows with the Galerkin

orthogonality (B.10) and the Cauchy–Schwarz inequality (A.10) that

ku � ukk2V D a.u � uk; u � uk/ D a.u � uk; u � .uk � wk/„ ƒ‚ …
vk

/ D a.u � uk; u � vk/

� ku � ukkV ku � vkkV :

Since wk 2 Vk was arbitrary, also vk 2 Vk is arbitrary. If ku � ukkV > 0, division by
ku � ukkV gives the statement of the lemma. If ku � ukkV D 0, the statement of the
lemma is trivially true. �

Theorem B.8 (Convergence of the Ritz Approximation) The Ritz approximation
converges

lim
k!1 ku � ukkV D 0:

Proof The best approximation property (B.9) and property (B.7) give

ku � ukkV D inf
vk2Vk

ku � vkkV � "

for each " > 0 and k � K."/. Hence, the convergence is proved. �

Remark B.9 (Formulation of the Ritz Method as Linear System of Equations) One
can use an arbitrary basis f�igk

iD1 of Vk for the computation of uk. First of all, the
equation for the Ritz approximation (B.8) is satisfied for all vk 2 Vk if and only if
it is satisfied for each basis function �i. This statement follows from the linearity of
both sides of the equation with respect to the test function and from the fact that each
function vk 2 Vk can be represented as linear combination of the basis functions.
Let vk D Pk

iDi ˛i�i, then from (B.8), it follows that

a.uk; vk/ D
kX

kD1
˛ia.uk; �i/ D

kX
kD1

˛if .�i/ D f .vk/:

This equation is satisfied if a.uk; �i/ D f .�i/, i D 1; : : : ; k. On the other hand,
if (B.8) hold, then it holds in particular for each basis function �i.
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One uses as ansatz for the solution also a linear combination of the basis
functions

uk D
kX

jD1
uj�j

with unknown coefficients uj 2 R. Using as test functions now the basis functions
yields

kX
jD1

a.uj�j; �i/ D
kX

jD1
a.�j; �i/u

j D f .�i/; i D 1; : : : ; k:

This equation is equivalent to the linear system of equations Au D f ; where

A D �
aij
�k

i;jD1 D a.�j; �i/
k
i;jD1

is called stiffness matrix. Note that the order of the indices is different for the entries
of the matrix and the arguments of the inner product. The right-hand side is a vector
of length k with the entries fi D f .�i/, i D 1; : : : ; k.

Using the one-to-one mapping between the coefficient vector .v1; : : : ; vk/T and
the element vk D Pk

iD1 vi�i, one can show that the matrix A is symmetric and
positive definite

A D AT ” a.v;w/ D a.w; v/ 8 v;w 2 Vk;

xTAx > 0 for x ¤ 0 ” a.v; v/ > 0 8 v 2 Vk; v ¤ 0:

ut
Remark B.10 (The Case of a Bounded and Coercive Bilinear Form) If b.�; �/ is
bounded and coercive, but not symmetric, it is possible to approximate the solution
of (B.3) with the same idea as for the Ritz method. In this case, it is called Galerkin
method. The discrete problem consists in finding uk 2 Vk such that

b.uk; vk/ D f .vk/ 8 vk 2 Vk: (B.11)

ut
Lemma B.11 (Existence and Uniqueness of a Solution of (B.11)) There is
exactly one solution of (B.11).

Proof The statement of the lemma follows directly from the Theorem of Lax–
Milgram, Theorem B.4. �

Lemma B.12 (Lemma of Cea, Error Estimate) Let b W V�V ! R be a bounded
and coercive bilinear form on the Hilbert space V and let f 2 V 0 be a bounded linear
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functional. Let u be the solution of (B.3) and let uk be the solution of (B.11), then
the following error estimate holds

ku � ukkV � M

m
inf
vk2Vk

ku � vkkV ; (B.12)

where the constants M and m are given in (A.47) and (A.48).

Proof Considering the difference of the continuous equation (B.3) and the discrete
equation (B.11), one obtains the error equation

b.u � uk; vk/ D 0 8 vk 2 Vk;

which is also called Galerkin orthogonality. With (A.48), the Galerkin orthogonality,
and (A.47), it follows that

ku � ukk2V � 1

m
b.u � uk; u � uk/ D 1

m
b.u � uk; u � vk/

� M

m
ku � ukkV ku � vkkV 8 vk 2 Vk;

from what the statement of the lemma follows immediately. �

Remark B.13 (On the Best Approximation Error) It follows from estimate (B.12)
that the error is bounded by a multiple of the best approximation error, where the
factor depends on properties of the bilinear form b.�; �/. Thus, concerning error
estimates for concrete finite-dimensional spaces, the study of the best approximation
error will be of importance. ut
Remark B.14 (The Corresponding Linear System of Equations) The corresponding
linear system of equations is derived analogously to the symmetric case. The system
matrix is still positive definite but not symmetric. ut
Lemma B.15 (Inf-Sup Criterion for Finite-Dimensional Spaces) Let Vh be a
finite-dimensional space with inner product .�; �/Vh and induced norm k�kVh D
.�; �/1=2

Vh . Consider a bilinear form a W Vh � Vh ! R and a linear functional
f W Vh ! R. Then, the problem to find uh 2 Vh such that

a
�
uh; vh

� D f
�
vh
�

(B.13)

has a unique solution for all f .�/ if and only if

inf
wh2Vhnf0g

sup
vh2Vhnf0g

a
�
vh;wh

�
kvhkVh kwhkVh

� ˇh
is > 0: (B.14)
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Proof Denote by n 2 N the dimension of Vh and let
˚
'h

i

�n

iD1 be a basis of Vh. Then
there are representations

vh D
nX

iD1
vi'

h
i ; wh D

nX
iD1

wi'
h
i ;

with v D .v1; : : : ; vn/
T , w D .w1; : : : ;wn/

T and there are matrices A;M 2 R
n�n

such that

a
�
vh;wh

� D vTATw;
��vh

��
Vh D �

vTMTv
�1=2

;
��wh

��
Vh D �

wTMTw
�1=2

:

The matrix M is symmetric and positive definite. The inf-sup condition (B.14) can
be written in the form

inf
w2Rnnf0g

sup
v2Rnnf0g

vTATw

.vTMv/1=2 .wTMw/1=2
� ˇh

is > 0: (B.15)

Problem (B.13) has a unique solution for all f if and only if the matrix A is non-
singular.

(B.15) Holds H) A is Non-singular Assume that (B.15) holds and A is a singular
matrix. Then there is a vector v ¤ 0 such that Av D 0 or equivalently vTAT D 0T .
Hence, the supremum in (B.15) is zero such that (B.15) cannot hold, which is a
contradiction to the assumption.

A is Non-singular H) (B.15) Holds With A also AT is non-singular. Then, for each
v 2 R

n n f0g there is a unique w 2 R
n n f0g such that v D M�1ATw, since M and

AT are non-singular matrices. Inserting this vector in (B.15) and using the symmetry
and positive definiteness of M gives

inf
w2Rnnf0g

wTAM�1ATw

.wTAM�1MM�1ATw/1=2 .wTMw/1=2

D inf
w2Rnnf0g

wTAM�1ATw

.wTAM�1ATw/1=2 .wTMw/1=2

D inf
w2Rnnf0g

�
wTAM�1ATw

wTMw

�1=2

D inf
w2Rnnf0g

 �
wM1=2

�T �
M�1=2AM�1=2� �M�T=2ATM�T=2

� �
M1=2w

�
�
wM1=2

�T �
M1=2w

�
!1=2

:
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Hence, one obtains a Rayleigh quotient. From Lemma A.19, it is known that the
infimum of a Rayleigh quotient is attained and it is the smallest eigenvalue of the
eigenvalue problem

�
M�1=2AM�1=2� �M�T=2ATM�T=2

� �
M1=2w

� D �
�
M1=2w

�
:

This problem is an eigenvalue problem for a symmetric matrix, hence all eigenvalues
are real. Since

wT
�
M�1=2AM�1=2� �M�T=2ATM�T=2

�
w

D ��
M�T=2ATM�T=2

�
w
�T ��

M�T=2ATM�T=2
�

w
�

D ���M�T=2ATM�T=2
�

w
��2
2

� 0;

the matrix is positive semi-definite, such that all eigenvalues are non-negative.
Finally, since A and M are non-singular matrices, the matrix of this eigenvalue
problem is non-singular and all eigenvalues are positive. Hence, there is a positive
constant ˇh

is such that

inf
w2Rnnf0g

vTATw

.vTMv/1=2 .wTMw/1=2
� ˇh

is

with v D M�1ATw. Taking now the supremum with respect to v might only increase
the left-hand side and (B.15) follows. �

B.2 Finite Element Spaces

Remark B.16 (Mesh Cells, Faces, Edges, Vertices) A mesh cell K is a compact
polyhedron in R

d, d 2 f2; 3g, whose interior is not empty. The boundary @K of K
consists of m-dimensional linear manifolds (points, pieces of straight lines, pieces
of planes), 0 � m � d � 1, which are called m-faces. The 0-faces are the vertices of
the mesh cell, the 1-faces are the edges, and the .d � 1/-faces are just called faces.

ut
Remark B.17 (Finite-Dimensional Spaces Defined on K) Let s 2 N. Finite element
methods use finite-dimensional spaces P.K/ � Cs.K/ that are defined on K. In
general, P.K/ consists of polynomials. The dimension of P.K/ will be denoted by
dim P.K/ D NK . ut
Remark B.18 (Linear Functionals Defined on P.K/, Nodal Functionals) For the
definition of finite elements, linear functional that are defined on P.K/ are of
importance. These functionals are called nodal functionals.
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Consider linear and continuous functionals˚K;1; : : : ; ˚K;NK W Cs.K/ ! R which
are linearly independent. There are different types of functionals that can be utilized
in finite element methods:

• point values: ˚.v/ D v.x/, x 2 K,
• point values of a first partial derivative:˚.v/ D @iv.x/, x 2 K,
• point values of the normal derivative on a face E of K: ˚.v/ D rv.x/ � nE, nE is

the outward pointing unit normal vector on E,
• integral mean values on K: ˚.v/ D 1

jKj
R

K v.x/ dx,

• integral mean values on faces E: ˚.v/ D 1
jEj
R

E v.s/ ds.

The smoothness parameter s has to be chosen in such a way that the functionals
˚K;1; : : : ; ˚K;NK are continuous. If, e.g., a functional requires the evaluation of a
partial derivative or a normal derivative, then one has to choose at least s D 1. For
the other functionals given above, s D 0 is sufficient. ut
Definition B.19 (Unisolvence of P.K/ with Respect to the Functionals ˚K;1;

: : : ; ˚K;NK ) The space P.K/ is called unisolvent with respect to the functionals
˚K;1; : : : ; ˚K;NK if there is for each a 2 R

NK , a D .a1; : : : ; aNK /
T , exactly one

p 2 P.K/ with

˚K;i. p/ D ai; 1 � i � NK :

ut
Remark B.20 (Local Basis) Unisolvence means that for each vector a 2 R

NK ,
a D .a1; : : : ; aNK /

T , there is exactly one element in P.K/ such that ai is the image
of the ith functional, i D 1; : : : ;NK .

Choosing in particular the Cartesian unit vectors for a, then it follows from the
unisolvence that a set f�K;igNK

iD1 exists with �K;i 2 P.K/ and

˚K;i.�K;j/ D ıij; i; j D 1; : : : ;NK :

Consequently, the set f�K;igNK
iD1 forms a basis of P.K/. This basis is called local

basis. ut
Remark B.21 (Transform of an Arbitrary Basis to the Local Basis) If an arbitrary
basis fpigNK

iD1 of P.K/ is known, then the local basis can be computed by solving
a linear system of equations. To this end, represent the local basis in terms of the
known basis

�K;j D
NKX

kD1
cjkpk; cjk 2 R; j D 1; : : : ;NK ;
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with unknown coefficients cjk. Applying the definition of the local basis leads to the
linear system of equations

˚K;i.�K;j/ D
NKX

kD1
cjkaik D ıij; i; j D 1; : : : ;NK ; aik D ˚K;i. pk/:

Because of the unisolvence, the matrix A D .aij/ is non-singular and the coefficients
cjk are determined uniquely. ut
Remark B.22 (Triangulation, Grid, Mesh, Grid Cell) For the definition of global
finite element spaces, a decomposition of the domain˝ into polyhedra K is needed.
This decomposition is called triangulation T h and the polyhedra K are called mesh
cells. The union of the polyhedra is called grid or mesh.

A triangulation is called admissible, see the definition in Ciarlet (1978, p. 38,
p. 51), if:

• It holds˝ D [K2T h K.
• Each mesh cell K 2 T h is closed and the interior VK is non-empty.
• For distinct mesh cells K1 and K2 there holds VK1 \ VK2 D ;.
• For each K 2 T h, the boundary @K is Lipschitz continuous.
• The intersection of two mesh cells is either empty or a common m-face, m 2

f0; : : : ; d � 1g.
ut

Remark B.23 (Global and Local Functionals) Let ˚1; : : : ; ˚N W Cs.˝/ ! R con-
tinuous linear functionals of the same types as given in Remark B.18. The restriction
of the functionals to Cs.K/ defines a set of local functionals˚K;1; : : : ; ˚K;NK , where
it is assumed that the local functionals are unisolvent on P.K/. The union of all
mesh cells Kj, for which there is a p 2 P.Kj/ with ˚i. p/ ¤ 0, will be denoted by
!i. ut
Example B.24 (On Subdomains !i) Consider the two-dimensional case and let ˚i

be defined as nodal value of a function in x 2 K. If x 2 VK, then !i D K. In the case
that x is on a face of K but not in a vertex, then !i is the union of K and the other
mesh cell whose boundary contains this face. Last, if x is a vertex of K, then !i is
the union of all mesh cells that possess this vertex. ut
Definition B.25 (Finite Element Space, Global Basis) A function v.x/ defined
on ˝ with vjK 2 P.K/ for all K 2 T h is called continuous with respect to the
functional˚i W ˝ ! R if

˚i.vjK1 / D ˚i.vjK2 /; 8 K1;K2 2 !i:
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The space

S D
n
v 2 L1.˝/ W vjK 2 P.K/ and v is continuous with respect to

˚i; i D 1; : : : ;N
o

is called finite element space.
The global basis f�jgN

jD1 of S is defined by the condition

�j 2 S; ˚i.�j/ D ıij; i; j D 1; : : : ;N:

ut
Remark B.26 (On Global Basis Functions) A global basis function coincides on
each mesh cell with a local basis function. This property implies the uniqueness of
the global basis functions.

Whether the continuity with respect to f˚igN
iD1 implies the continuity of the finite

element functions depends on the functionals that define the finite element space.
ut

Definition B.27 (Parametric Finite Elements) Let OK be a reference mesh cell
with the local space P. OK/, the local functionals O̊

1; : : : ; O̊ ON , and a class of bijective
mappings fFK W OK ! Kg. A finite element space is called a parametric finite
element space if:

• The images fKg of fFKg form the set of mesh cells.
• The local spaces are given by

P.K/ D
n
p W p D Op ı F�1

K ; Op 2 OP. OK/
o
: (B.16)

• The local functionals are defined by

˚K;i.v.x// D O̊ i .v.FK.Ox/// ; (B.17)

where Ox D .Ox1; : : : ; Oxd/
T are the coordinates of the reference mesh cell and it

holds x D FK.Ox/.
ut

Remark B.28 (Motivations for Using Parametric Finite Elements) Definition B.25
of finite elements spaces is very general. For instance, different types of mesh cells
are allowed. However, as well the finite element theory as the implementation of
finite element methods become much simpler if only parametric finite elements are
considered. ut
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B.3 Finite Elements on Simplices

Definition B.29 (d-Simplex) A d-simplex K � R
d is the convex hull of .d C 1/

points a1; : : : ; adC1 2 R
d which form the vertices of K. ut

Remark B.30 (On d-Simplices) It will be always assumed that the simplex is not
degenerated, i.e., its d-dimensional measure is positive. This property is equivalent
to the non-singularity of the matrix

A D

0
BBBBB@

a11 a12 : : : a1;dC1
a21 a22 : : : a2;dC1
:::

:::
: : :

:::

ad1 ad2 : : : ad;dC1
1 1 : : : 1

1
CCCCCA
;

where ai D .a1i; a2i; : : : ; adi/
T , i D 1; : : : ; d C 1.

For d D 2, the simplices are the triangles and for d D 3 they are the tetrahedra.
ut

Definition B.31 (Barycentric Coordinates) Since K is the convex hull of the
points faigdC1

iD1 , the parametrization of K with a convex combination of the vertices
reads as follows

K D
(
x 2 R

d W x D
dC1X
iD1

�iai; 0 � �i � 1;

dC1X
iD1

�i D 1

)
:

The coefficients �1; : : : ; �dC1 are called barycentric coordinates of x 2 K. ut
Remark B.32 (On Barycentric Coordinates) From the definition, it follows that the
barycentric coordinates are the solution of the linear system of equations

dC1X
iD1

aji�i D xj; 1 � j � d;
dC1X
iD1

�i D 1:

Since the system matrix is non-singular, see Remark B.30, the barycentric coordi-
nates are determined uniquely.

The barycentric coordinates of the vertex ai, i D 1; : : : ; d C 1, of the simplex are
�i D 1 and �j D 0 if i ¤ j. Since �i.aj/ D ıij, the barycentric coordinate �i can
be identified with the linear function that has the value 1 in the vertex ai and that
vanishes in all other vertices aj with j ¤ i.
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The barycenter of the simplex is given by

SK D 1

d C 1

dC1X
iD1

ai D
dC1X
iD1

1

d C 1
ai:

Hence, its barycentric coordinates are �i D 1=.d C 1/, i D 1; : : : ; d C 1. ut
Remark B.33 (Simplicial Reference Mesh Cells) A commonly used reference mesh
cell for triangles and tetrahedra is the unit simplex

OK D
(

Ox 2 R
d W

dX
iD1

Oxi � 1; Oxi � 0; i D 1; : : : ; d

)
;

see Fig. B.1. The class fFKg of admissible mappings are the bijective affine
mappings

FK Ox D BK Ox C b; BK 2 R
d�d; det .BK/ ¤ 0; b 2 R

d: (B.18)

The images of these mappings generate the set of the non-degenerated simplices
fKg � R

d. ut

Definition B.34 (Affine Family of Simplicial Finite Elements) Given a simplicial
reference mesh cell OK, affine mappings fFKg, and an unisolvent set of functionals
on OK. Using (B.16) and (B.17), one obtains a local finite element space on each
non-degenerated simplex. The set of these local spaces is called affine family of
simplicial finite elements. ut

z

xx

y

y

11

1

̂K
̂K

11

Fig. B.1 The unit simplices in two and three dimensions
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Fig. B.2 The finite element P0.K/

Definition B.35 (Polynomial Space Pk) Let x D .x1; : : : ; xd/
T , k 2 N [ f0g, and

˛ D .˛1; : : : ; ˛d/
T . Then, the polynomial space Pk is given by

Pk D span

(
dY

iD1
x˛i

i D x˛ W ˛i 2 N [ f0g for i D 1; : : : ; d;
dX

iD1
˛i � k

)
:

ut
Remark B.36 (Lagrangian Finite Elements) In many examples given below, the
linear functionals on the reference mesh cell OK are the values of the polynomials
with the same barycentric coordinates as on the general mesh cell K. Finite elements
whose linear functionals are values of the polynomials on certain points in K are
called Lagrangian finite elements. ut
Example B.37 (P0: Piecewise Constant Finite Element) The piecewise constant
finite element space consists of discontinuous functions. The linear functional is
the value of the polynomial in the barycenter of the mesh cell, see Fig. B.2. It is
dim P0.K/ D 1. ut

Example B.38 (P1: Conforming Piecewise Linear Finite Element) This finite
element space is a subspace of C.˝/. The linear functionals are the values of the
function in the vertices of the mesh cells, see Fig. B.3. It follows that dim P1.K/ D
d C 1.

The local basis for the functionals f˚i.v/ D v.ai/, i D 1; : : : ; d C 1g, is f�igdC1
iD1

since ˚i.�j/ D ıij, compare Remark B.32. Since a local basis exists, the functionals
are unisolvent with respect to the polynomial space P1.K/.

Now, it will be shown that the corresponding finite element space consists of
continuous functions. Let K1;K2 be two mesh cells with the common face E and let
v 2 P1.D S/. The restriction of vK1 on E is a linear function on E as well as the
restriction of vK2 on E. It has to be shown that both linear functions are identical.
A linear function on the .d � 1/-dimensional face E is uniquely determined with
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a2

a3

a1

Fig. B.3 The finite element P1.K/

a2

a3

a1

a12

a23

a13

Fig. B.4 The finite element P2.K/

d linearly independent functionals that are defined on E. These functionals can be
chosen to be the values of the function in the d vertices of E. The functionals in S are
continuous by the definition of S. Thus, it must hold that both restrictions on E have
the same values in the vertices of E. Hence, it is vK1 jE D vK2 jE and the functions
from P1 are continuous. ut
Example B.39 (P2: Conforming Piecewise Quadratic Finite Element) This finite
element space is also a subspace of C.˝/. It consists of piecewise quadratic
functions. The functionals are the values of the functions in the d C 1 vertices of the
mesh cell and the values of the functions in the centers of the edges, see Fig. B.4.
Since each vertex is connected to each other vertex, there are

Pd
iD1 i D d.d C 1/=2

edges. Hence, it follows that dim P2.K/ D .d C 1/.d C 2/=2.
The part of the local basis that belongs to the functionals f˚i.v/ D v.ai/, i D

1; : : : ; d C 1g, is given by

f�i.�/ D �i.2�i � 1/; i D 1; : : : ; d C 1g:
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a112
a221

a223

a332

a123

a331

a113

a2

a3

a1

Fig. B.5 The finite element P3.K/

Denote the center of the edges between the vertices ai and aj by aij. The correspond-
ing part of the local basis is given by

f�ij D 4�i�j; i; j D 1; : : : ; d C 1; i < jg:

The unisolvence follows from the fact that there exists a local basis. The continuity
of the corresponding finite element space is shown in the same way as for the P1
finite element. The restriction of a quadratic function defined in a mesh cell to a
face E is a quadratic function on that face. Hence, the function on E is determined
uniquely with d.d C 1/=2 linearly independent functionals on E.

The functions �ij are called in two dimensions edge bubble functions. ut
Example B.40 (P3: Conforming Piecewise Cubic Finite Element) This finite ele-
ment space consists of continuous piecewise cubic functions. It is a subspace of
C.˝/. The functionals in a mesh cell K are defined to be the values in the vertices
(.d C 1/ values), two values on each edge (dividing the edge in three parts of equal
length) (2

Pd
iD1 i D d.d C1/ values), and the values in the barycenter of the 2-faces

of K, see Fig. B.5. Each 2-face of K is defined by three vertices. If one considers for
each vertex all possible pairs with other vertices, then each 2-face is counted three
times. Hence, there are .d C 1/.d � 1/d=6 2-faces. The dimension of P3.K/ is given
by

dim P3.K/ D .d C 1/C d.d C 1/C .d � 1/d.d C 1/

6
D .d C 1/.d C 2/.d C 3/

6
:

For the functionals
n
˚i.v/ D v.ai/; i D 1; : : : ; d C 1; (vertex);

˚iij.v/ D v.aiij/; i; j D 1; : : : ; d C 1; i ¤ j; (point on edge);

˚ijk.v/ D v.aijk/; i D 1; : : : ; d C 1; i < j < k; (point on 2-face)
o
;
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the local basis is given by

(
�i.�/ D 1

2
�i.3�i � 1/.3�i � 2/; �iij.�/ D 9

2
�i�j.3�i � 1/;

�ijk.�/ D 27�i�j�k

)
:

In two dimensions, the function �ijk.�/ is called cell bubble function. ut
Example B.41 (Pbubble

1 ) The Pbubble
1 finite element is just the P1 finite element

enriched with mesh cell bubbles. In two dimensions, the functionals are given by
the point values of a function v.x/ in the vertices a1; a2, a3, and by

3
�
v.a1/C v.a2/C v.a3/

�C 8
�
v .a12/C v .a13/C v .a23/

�C 27v .a123/

27
;

see Figs. B.4 and B.5 for the notations. The corresponding local basis is

˚
�1 � 20�1�2�3; �1 � 20�1�2�3; �1 � 20�1�2�3; 27�1�2�3

�
:

ut
Example B.42 (Pbubble

2 ) In this space, the P2 finite element is enriched with bubble
functions.

In two dimensions, one can take as nodal functionals the same functionals as for
the P2 element and as seventh functional

3
�
v.a1/C v.a2/C v.a3/

�C 8
�
v .a12/C v .a13/C v .a23/

�C 27v .a123/

20
;

compare Figs. B.4 and B.5 for the notations. Then, the local basis is given by

˚
4�1�2 � 20�1�2�3; 4�1�3 � 20�1�2�3; 4�2�3 � 20�1�2�3;

2�1.�1 � 0:5/; 2�2.�2 � 0:5/; 2�1.�2 � 0:5/; 20�1�2�3
�
:

In the three-dimensional case, the enrichment is performed with the mesh cell
bubble function and with the four bubble functions on the faces. The functionals are
the four values in the vertices, the six values on the mid points of the edges, the four
values in the barycenters of the faces, and the value in the barycenter of the mesh
cell. Altogether, there are 15 functionals. The local basis is given by

˚
�1.2�1 � 1/C 3�1.�2�3 C �2�4 C �3�4/� 4�1�2�3�4; : : : ;

�1�2.4 � 12�4 � 12�3 C 32�3�4/; : : : ;
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27�1�2�3.1 � 4�4/; 27�1�2.1 � 4�3/�4; 27�1.1 � 4�2/�3�4;
27.1� 4�1/�2�3�4; 256�1�2�3�4

�
;

where the remaining basis functions are given by appropriate permutations of the
indices. ut
Example B.43 (Pnc

1 : Non-conforming Linear Finite Element, Crouzeix–Raviart
Finite Element, Crouzeix and Raviart (1973)) This finite element consists of
piecewise linear but discontinuous functions. The functionals are given by the values
of the functions in the barycenters of the faces such that dim Pnc

1 .K/ D .d C 1/.
It follows from the definition of the finite element space, Definition B.25, that the
functions from Pnc

1 are continuous in the barycenter of the faces

Pnc
1 D ˚

v 2 L2.˝/ W vjK 2 P1.K/; v.x/ is continuous at the barycenter

of all faces
�
: (B.19)

Equivalently, the functionals can be defined to be the integral mean values on the
faces and then the global space is defined to be

Pnc
1 D

(
v 2 L2.˝/ W vjK 2 P1.K/;

Z
E
vjK ds D

Z
E
vjK0 ds 8 E 2 E.K/ \ E.K0/

)
; (B.20)

where E.K/ is the set of all .d � 1/-dimensional faces of K (Fig. B.6).
For the description of this finite element, one defines the functionals by

˚i.v/ D v.ai�1;iC1/ for d D 2; ˚i.v/ D v.ai�2;i�1;iC1/ for d D 3;

a13

a12

a23

Fig. B.6 The finite element Pnc
1 .K/
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where the points are the barycenters of the faces with the vertices that correspond to
the indices. This system is unisolvent with the local basis

�i.�/ D 1� d�i; i D 1; : : : ; d C 1:

ut
Example B.44 (Pdisc

1 ) This space consists of piecewise linear but discontinuous
functions.

On the reference mesh cell OK in two dimensions, one can use the functionals
applied to a function v.Ox/ given by

Z
OK
2v.Ox/ d Ox;

Z
OK
.24Ox � 8/ v.Ox/ d Ox;

Z
OK
.24Oy � 8/ v.Ox/ d Ox

and the corresponding local basis is

n
1; O�2 � O�1; O�3 � O�1

o
D f1; 2Ox C Oy � 1; Ox C 2Oy � 1g :

In three dimensions, let a1; a2; a3; a4 be the vertices of the tetrahedron and SK its
barycenter. Then, the following functionals can be used

v.a1/C v.a2/C v.a3/C v.a4/C 16v.SK/

120
;

�v.a1/C 3v.a2/� v.a3/ � v.a4/
4

;
�v.a1/ � v.a2/C 3v.a3/ � v.a4/

4
;

�v.a1/� v.a2/ � v.a3/C 3v.a4/
4

:

The corresponding local basis is given by

f6; �2 � �1; �3 � �1; �4 � �1g:

ut
Example B.45 (Raviart–Thomas Finite Elements RTk) Raviart–Thomas finite ele-
ments are a class of vector-valued finite elements that approximate the space
H .div;˝/, see (3.37). Details of their definition and important properties can be
found, e.g., in Boffi et al. (2013, p. 84).

Consider a simplicial triangulation with mesh cells fKg and let Pk.K/ D
.Pk.K//

d, k � 0. Then, the following local polynomial space is defined directly
on K

RTk.K/ D fv 2 .Pk.K/C xPk.K// W v � n@K 2 Rk.@K/g ; k � 0;
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where

Rk.@K/ D ˚
' 2 L2.@K/ W 'jE 2 Pk.E/ for all faces E � @K

�
:

It is noted in Boffi et al. (2013, Remark 2.3.1) that this definition of RTk.K/ is
different than the original definition in Raviart and Thomas (1977).

In particular, the Raviart–Thomas element of lowest order is given by

RT0.K/ D fv 2 .P0.K/C xP0.K// W v � n@K 2 R0.@K/g ;

i.e., it is linear on K. Its local functionals are v � nEi , i D 1; : : : ; d C 1. A function
from RT0.K/ can be written in the form

v.x/ D a C bx; a 2 R
d; b 2 R; x 2 K: (B.21)

A face E � @K is a hyperplane that can be represented in the form

x � nE D c; c 2 R; 8 x 2 E:

Inserting this representation in (B.21) yields

v.x/ � nE D a � nE C bx � nE D a � nE C bc D const 8 x 2 E:

Thus, the normal component of v on each face is a constant.
The global space RT0 is defined as usual by defining global functionals on the

basis of the local functionals and requiring the continuity of the global functionals,
see Definition B.25. Consequently, the normal component of functions from RT0 is
continuous across faces of the mesh cells. Since the normal component on each face
is a constant, it is sufficient for requiring its continuity to require the continuity in
the barycenters fmEg of fEg. From Lemma 3.66, it follows that RT0 � H .div;˝/.

ut

B.4 Finite Elements on Parallelepipeds and Quadrilaterals

Remark B.46 (Reference Mesh Cells, Reference Map to Parallelepipeds) One can
find in the literature two reference cells: the unit cube Œ0; 1�d and the large unit
cube Œ�1; 1�d. It does not matter which reference cell is chosen. Here, the large unit
cube will be used: OK D Œ�1; 1�d. The class of admissible reference maps fFKg to
parallelepipeds consists of bijective affine mappings of the form

FK Ox D BK Ox C b; BK 2 R
d�d; b 2 R

d:

If BK is a diagonal matrix, then OK is mapped to d-rectangles.
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The class of mesh cells that is obtained in this way is not sufficient to triangulate
general domains. If one wants to use more general mesh cells than parallelepipeds,
then the class of admissible reference maps has to be enlarged, see Remark B.55.

ut
Definition B.47 (Polynomial Space Qk) Let x D .x1; : : : ; xd/

T and denote by ˛ D
.˛1; : : : ; ˛d/

T a multi-index. Then, the polynomial space Qk is given by

Qk D span

(
dY

iD1
x˛i

i D x˛ W 0 � ˛i � k for i D 1; : : : ; d

)
:

ut
Remark B.48 (Finite Elements on d-Rectangles) For simplicity of presentation, the
examples below consider d-rectangles. In this case, the finite elements are just tensor
products of one-dimensional finite elements. In particular, the basis functions can be
written as products of one-dimensional basis functions. ut
Example B.49 (Q0: Piecewise Constant Finite Element) Similarly to the P0 space,
the space Q0 consists of piecewise constant, discontinuous functions. The functional
is the value of the function in the barycenter of the mesh cell K and it holds
dim Q0.K/ D 1. ut
Example B.50 (Q1: Conforming Piecewise d-Linear Finite Element) This finite
element space is a subspace of C.˝/. The functionals are the values of the function
in the vertices of the mesh cell, see Fig. B.7. Hence, it is dim Q1.K/ D 2d.

a2a1

a3 a4

Fig. B.7 The finite element Q1.K/
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The one-dimensional local basis functions, which will be used for the tensor
product, are given by

O�1.Ox/ D 1

2
.1 � Ox/; O�2.Ox/ D 1

2
.1C Ox/:

With these functions, e.g., the basis functions in two dimensions are computed by

O�1.Ox/ O�1.Oy/; O�1.Ox/ O�2.Oy/; O�2.Ox/ O�1.Oy/; O�2.Ox/ O�2.Oy/:

The continuity of the functions of the finite element space Q1 is proved in the
same way as for simplicial finite elements. It is used that the restriction of a function
from Qk.K/ to a face E is a function from the space Qk.E/, k � 1. ut
Example B.51 (Q2: Conforming Piecewise d-Quadratic Finite Element) It holds
that Q2 � C.˝/. The functionals in one dimension are the values of the function
at both ends of the interval and in the center of the interval, see Fig. B.8. In d
dimensions, they are the corresponding values of the tensor product of the intervals.
It follows that dim Q2.K/ D 3d.

The one-dimensional basis function on the reference interval are defined by

O�1.Ox/ D �1
2

Ox.1 � Ox/; O�2.Ox/ D .1 � Ox/.1C Ox/; O�3.Ox/ D 1

2
.1C Ox/Ox:

The basis function
Qd

iD1 O�2.Oxi/ is called cell bubble function. ut
Example B.52 (Q3: Conforming Piecewise d-Cubic Finite Element) This finite
element space is a subspace of C.˝/. The functionals on the reference interval are
given by the values at the end of the interval and the values at the points Ox D �1=3,
Ox D 1=3. In multiple dimensions, it is the corresponding tensor product, see Fig. B.9.
The dimension of the local space is dim Q3.K/ D 4d.

Fig. B.8 The finite element Q2.K/
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Fig. B.9 The finite element Q3.K/

The one-dimensional basis functions in the reference interval are given by

O�1.Ox/ D � 1

16
.3Ox C 1/.3Ox � 1/.Ox � 1/; O�2.Ox/ D 9

16
.Ox C 1/.3Ox � 1/.Ox � 1/;

O�3.Ox/ D � 9

16
.Ox C 1/.3Ox C 1/.Ox � 1/; O�4.Ox/ D 1

16
.3Ox C 1/.3Ox � 1/.Ox C 1/:

ut
Example B.53 (Qrot

1 : Rotated Non-conforming Element of Lowest Order,
Rannacher–Turek Element, Rannacher and Turek (1992)) This finite element space
is a generalization of the Pnc

1 finite element to quadrilateral and hexahedral mesh
cells. It consists of discontinuous functions that are continuous at the barycenter of
the faces. The dimension of the local finite element space is dim Qrot

1 .K/ D 2d. The
space on the reference mesh cell is defined by

Qrot
1

	 OK



D ˚Op W Op 2 spanf1; Ox; Oy; Ox2 � Oy2g� for d D 2;

Qrot
1

	 OK



D ˚Op W Op 2 spanf1; Ox; Oy; Oz; Ox2 � Oy2; Oy2 � Oz2g� for d D 3:

Note that the transformed space

Qrot
1 .K/ D fp D Op ı F�1

K ; Op 2 Qrot
1 .

OK/g

contains polynomials of the form ax2 � by2, where a; b depend on FK .
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Fig. B.10 The finite element Qrot
1 .K/

For d D 2, the local basis on the reference cell is given by

O�1.Ox; Oy/ D �3
8
.Ox2 � Oy2/ � 1

2
Oy C 1

4
; O�2.Ox; Oy/ D 3

8
.Ox2 � Oy2/C 1

2
Ox C 1

4
;

O�3.Ox; Oy/ D �3
8
.Ox2 � Oy2/C 1

2
Oy C 1

4
; O�4.Ox; Oy/ D 3

8
.Ox2 � Oy2/ � 1

2
Ox C 1

4
:

(B.22)

Analogously to the Crouzeix–Raviart finite element, the functionals can be
defined as point values of the functions in the barycenters of the faces, see Fig. B.10,
or as integral mean values of the functions at the faces. Consequently, the finite
element spaces are defined in the same way as (B.19) or (B.20), with Pnc

1 .K/
replaced by Qrot

1 .K/.
For a discussion of the practical use of this finite element, it is referred to

Remark 3.155. ut
Example B.54 (Pdisc

k , k � 1) The space Pdisc
k , k � 1, is given by

Pdisc
k D ˚

v 2 L2 .˝/ W vjK 2 Pk .K/
�
:

The construction of a basis on the reference mesh cell is based on the Legendre
polynomials in Œ�1; 1�, which are given by

1; Ox; 1
2

�
3Ox2 � 1� ; : : : : (B.23)

Then, the basis of Pdisc
k . OK/ in multiple dimensions is defined as a tensor product of

polynomials of type (B.23) that gives a polynomial of degree smaller than or equal
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to k. Concretely, the basis of Pdisc
1 . OK/ is given by

(
2d W f1; Ox; Oyg;
3d W f1; Ox; Oy; Ozg; (B.24)

and of Pdisc
2 . OK/

(
2d W ˚

1; Ox; Oy; OxOy; 1
2

�
3Ox2 � 1

�
; 1
2

�
3Oy2 � 1

��
;

3d W ˚
1; Ox; Oy; Oz; OxOy; OxOz; OyOz; 1

2

�
3Ox2 � 1

�
; 1
2

�
3Oy2 � 1

�
; 1
2

�
3Oz2 � 1

��
:

(B.25)

For the definition of the local nodal functionals, the L2. OK/ orthogonality of the
Legendre polynomials is used. Denoting the basis functions of (B.24) and (B.25)
by O�j.Ox/, then these functionals are defined by

˚ OK;i
	 O�j



D
�Z

OK
O�2j d Ox

��1 Z
OK

O�i O�j d Ox;

such that ˚ OK;i
	 O�j



D ıij. ut

Remark B.55 (Parametric Mappings) The image of an affine mapping of the
reference mesh cell OK D Œ�1; 1�d, d 2 f2; 3g, is a parallelepiped. If one wants
to consider finite elements on general d-quadrilaterals, then the class of admissible
reference maps has to be enlarged.

The simplest non-affine parametric finite element on quadrilaterals in two
dimensions uses bilinear mappings. Let OK D Œ�1; 1�2 and let

FK.Ox/ D
�

F1K.Ox/
F2K.Ox/

�
D
�

a11 C a12Ox C a13Oy C a14OxOy
a21 C a22Ox C a23Oy C a24OxOy

�
;Fi

K 2 Q1; i D 1; 2;

be a bilinear mapping from OK on the class of admissible quadrilaterals. A quadrilat-
eral K is called admissible if

• the length of all edges of K is larger than zero,
• the interior angles of K are smaller than � , i.e., K is convex.

This class contains, e.g., trapezoids and rhombi. ut
Remark B.56 (Parametric Finite Element Functions) The functions of the local
space P.K/ on the mesh cell K are defined by p D Op ı F�1

K . These functions are
in general rational functions. However, using d-linear mappings, then the restriction
of FK on an edge of OK is an affine map. For instance, in the case of the Q1 finite
element, the functions on K are linear functions on each edge of K. It follows that
the functions of the corresponding finite element space are continuous, compare
Example B.38. ut
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B.5 Transform of Integrals

Remark B.57 (Motivation) The transformation of integrals from the reference mesh
cell to mesh cells of the grid and vice versa is used as well for the analysis as for the
implementation of finite element methods. This section provides an overview of the
most important formulae for transformations.

Let OK � R
d be the reference mesh cell, K be an arbitrary mesh cell, and FK W

OK ! K with x D FK.Ox/ be the reference map. It is assumed that the reference
map is a continuous differentiable one-to-one map. The inverse map is denoted by
F�1

K W K ! OK. For the integral transforms, the derivatives (Jacobians) of FK and
F�1

K are needed

DFK.Ox/ij D @xi

@j
; DF�1

K .x/ij D @i

@xj
; i; j D 1; : : : ; d:

ut
Remark B.58 (Integral with a Function Without Derivatives) This integral trans-
forms with the standard rule of integral transforms

Z
K
v.x/ dx D

Z
OK

Ov.Ox/ jdet DFK.Ox/j d Ox; (B.26)

where Ov.Ox/ D v.FK.Ox//. ut
Remark B.59 (Transform of Derivatives) Using the chain rule, one obtains

@v

@xi
.x/ D

dX
jD1

@ Ov
@j
.Ox/ @j

@xi
D rOx Ov.Ox/ �

	�
DF�1

K .x/
�T



i

D rOx Ov.Ox/ �
	�

DF�1
K .FK.Ox//

�T



i
; (B.27)

@ Ov
@
.Ox/ D

dX
jD1

@v

@xj
.x/
@xj

@i
D rv.x/ �

	
.DFK.Ox//T



i

D rv.x/ �
	�

DFK.F
�1
K .x//

�T



i
: (B.28)

The index i denotes the ith row of a matrix. Derivatives on the reference mesh cell
are marked with a symbol on the operator. ut
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Remark B.60 (Integrals with a Gradients) Using the rule for transforming integrals
and (B.27) gives

Z
K
b.x/ � rv.x/ dx

D
Z

OK
b .FK.Ox// �

h�
DF�1

K

�T
.FK.Ox//

i
rOx Ov.Ox/ jdet DFK.Ox/j d Ox: (B.29)

Similarly, one obtains

Z
K

rv.x/ � rw.x/ dx

D
Z

OK

h�
DF�1

K

�T
.FK.Ox//

i
rOx Ov.Ox/ �

h�
DF�1

K

�T
.FK.Ox//

i
rOx Ow.Ox/

� jdet DFK.Ox/j d Ox: (B.30)

ut
Remark B.61 (Integral with the Divergence) Integrals of the following type are
important for the Navier–Stokes equations

Z
K

r � v.x/q.x/ dx D
Z

K

dX
iD1

@vi

@xi
.x/q.x/ dx

D
Z

OK

dX
iD1

h	�
DF�1

K .FK.Ox//
�T



i
� rOx Ovi.Ox/

i
Oq.Ox/ jdet DFK.Ox/j d Ox

D
Z

OK

h�
DF�1

K .FK.Ox//
�T W DOx Ov.Ox/

i
Oq.Ox/ jdet DFK.Ox/j d Ox: (B.31)

In the derivation, (B.27) was used. ut
Example B.62 (Affine Transform) The most important class of reference maps are
affine transforms (B.18), where the invertible matrix BK and the vector b are
constants. It follows that

Ox D B�1
K .x � b/ D B�1

K x � B�1
K b:

In this case, there are

DFK D BK ; DF�1
K D B�1

K ; det DFK D det .BK/ :
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One obtains for the integral transforms from (B.26), (B.29), (B.30), and (B.31)

Z
K
v.x/ dx D jdet .BK/j

Z
OK

Ov.Ox/ d Ox; (B.32)

Z
K
b.x/ � rv.x/ dx D jdet .BK/j

Z
OK
b .FK.Ox// � B�T

K rOx Ov.Ox/ d Ox; (B.33)

Z
K

rv.x/ � rw.x/ dx D jdet .BK/j
Z

OK
B�T

K rOx Ov.Ox/ � B�T
K rOx Ow.Ox/ d Ox; (B.34)

Z
K

r � v.x/q.x/ dx D jdet .BK/j
Z

OK
�
B�T

K W DOx Ov.Ox/� Oq.Ox/ d Ox: (B.35)

Setting v.x/ D 1 in (B.32) yields

jdet .BK/j D jKjˇ̌
ˇ OK
ˇ̌
ˇ : (B.36)

ut



Appendix C
Interpolation

Remark C.1 (Motivation) Variational forms of partial differential equations use
functions in Sobolev spaces. The solution of these equations shall be approximated
with the Ritz method in finite-dimensional spaces, the finite element spaces. The
best possible approximation of an arbitrary function from the Sobolev space by a
finite element function is a factor in the upper bound for the finite element error,
e.g., see the Lemma of Cea, estimate (B.12).

This section studies the approximation quality of finite element spaces. Estimates
are proved for interpolants of functions. Interpolation estimates are of course upper
bounds of the best approximation error and they can serve as factors in finite element
error estimates. ut

C.1 Interpolation in Sobolev Spaces by Polynomials

Lemma C.2 (Unique Determination of a Polynomial with Integral Conditions)
Let ˝ be a bounded domain in R

d with Lipschitz boundary. Let m 2 N [ f0g be
given and let for all derivatives with multi-index ˛, j˛j � m, a value a˛ 2 R be
prescribed. Then, there is a uniquely determined polynomial p 2 Pm.˝/ such that

Z
˝

@˛p.x/ dx D a˛; j˛j � m: (C.1)

Proof Let p 2 Pm.˝/ be an arbitrary polynomial. It has the form

p.x/ D
X

jˇj	m

bˇxˇ:

© Springer International Publishing AG 2016
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Inserting this representation in (C.1) leads to a linear system of equations Mb D a
with

M D .M˛ˇ/; M˛ˇ D
Z
˝

@˛xˇ dx; b D .bˇ/; a D .a˛/;

for j˛j ; jˇj � m. Since M is a squared matrix, the linear system of equations
possesses a unique solution if and only if M is non-singular.

The proof is performed by contradiction. Assume that M is singular. Then, there
exists a non-trivial solution of the homogeneous system. That means, there is a
polynomial q 2 Pm.˝/ n f0g with

Z
˝

@˛q.x/ dx D 0 for all j˛j � m:

The polynomial q.x/ has the representation q.x/ D P
jˇj	m cˇxˇ . Now, one can

choose a cˇ ¤ 0 with maximal value jˇj. Then, it is @ˇq.x/ D Ccˇ D const ¤
0, where C > 0 comes from the differentiation rule for polynomials, which is a
contradiction to the vanishing of the integral for @ˇq.x/. �
Lemma C.3 (Poincaré-Type Inequality) Denote by Dkv.x/, k 2 N[f0g, the total
derivative of order k of a function v.x/, e.g., for k D 1 the gradient of v.x/. Let ˝
be convex and be included into a ball of radius R. Let l 2 N[ f0g with k � l and let
p 2 R with p 2 Œ1;1/. Assume that v 2 Wl;p.˝/ satisfies

Z
˝

@˛v.x/ dx D 0 for all j˛j � l � 1;

then it holds the estimate

��Dkv
��

Lp.˝/
� CRl�k

��Dlv
��

Lp.˝/
;

where the constant C does not depend on ˝ and on v.x/.

Proof There is nothing to prove if k D l. In addition, it suffices to prove the lemma
for k D 0 and l D 1, since the general case follows by applying the result to @˛v.x/.

Since˝ is assumed to be convex, the integral mean value theorem can be written
in the form

v.x/ � v.y/ D
Z 1

0

rv.tx C .1 � t/y/ � .x � y/ dt; x; y 2 ˝:

Integration with respect to y yields

v.x/
Z
˝

dy �
Z
˝

v.y/ dy D
Z
˝

Z 1

0

rv.tx C .1 � t/y/ � .x � y/ dt dy:
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It follows from the assumption that the second integral on the left-hand side vanishes
that

v.x/ D 1

j˝j
Z
˝

Z 1

0

rv.tx C .1 � t/y/ � .x � y/ dt dy:

Now, taking the absolute value on both sides, using that the absolute value of an
integral is estimated from above by the integral of the absolute value, applying
the Cauchy–Schwarz inequality for vectors (A.2), and the estimate kx � yk2 � 2R
yields

jv.x/j D 1

j˝j
ˇ̌
ˇ̌Z
˝

Z 1

0

rv.tx C .1 � t/y/ � .x � y/ dt dy

ˇ̌
ˇ̌

� 1

j˝j
Z
˝

Z 1

0

jrv.tx C .1� t/y/ � .x � y/j dt dy

� 2R

j˝j
Z
˝

Z 1

0

krv.tx C .1 � t/y/k2 dt dy: (C.2)

Then, (C.2) is raised to the power p and integrated with respect to x. One obtains
with Hölder’s inequality (A.9), with p�1 C q�1 D 1 H) p=q � p D p.1=q � 1/ D
�1, that

Z
˝

jv.x/jp dx � CRp

j˝jp

Z
˝

�Z
˝

Z 1

0

krv.tx C .1 � t/y/k2 dt dy
�p

dx

� CRp

j˝jp

Z
˝

"�Z
˝

Z 1

0

1q dt dy
�p=q

„ ƒ‚ …
j˝jp=q

�
�Z

˝

Z 1

0

krv.tx C .1 � t/y/kp
2 dt dy

�#
dx

D CRp

j˝j
Z
˝

�Z
˝

Z 1

0

krv.tx C .1 � t/y/kp
2 dt dy

�
dx:

Applying the theorem of Fubini allows the commutation of the integration

Z
˝

jv.x/jp dx � CRp

j˝j
Z 1

0

Z
˝

�Z
˝

krv.tx C .1 � t/y/kp
2 dy

�
dx dt:
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Using the integral mean value theorem in one dimension gives that there is a t0 2
Œ0; 1� such that

Z
˝

jv.x/jp dx � CRp

j˝j
Z
˝

�Z
˝

krv.t0x C .1 � t0/y/kp
2 dy

�
dx:

The function krv.x/kp
2 will be extended to R

d by zero and the extension will be
also denoted by krv.x/kp

2. Then, it is

Z
˝

jv.x/jp dx � CRp

j˝j
Z
˝

�Z
Rd

krv.t0x C .1 � t0/y/kp
2 dy

�
dx: (C.3)

Let t0 2 Œ0; 1=2�. Since the domain of integration is Rd, a substitution of variables
t0x C .1 � t0/y D z can be applied and leads to

Z
Rd

krv.t0x C .1 � t0/y/kp
2 dy D 1

1 � t0

Z
Rd

krv.z/kp
2 dz � 2 krvkp

Lp.˝/ ;

since 1=.1� t0/ � 2. Inserting this expression in (C.3) gives

Z
˝

jv.x/jp dx � 2CRp krvkp
Lp.˝/ :

If t0 > 1=2 then one changes the roles of x and y, applies the theorem of Fubini
to change the sequence of integration, and uses the same arguments. �

Remark C.4 (On Lemma C.3) Lemma C.3 proves an inequality of Poincaré-type. It
says that it is possible to estimate the Lp.˝/ norm of a lower derivative of a function
v.x/ by the same norm of a higher derivative if the integral mean values of some
lower derivatives vanish.

An important application of Lemma C.3 is in the proof of the Bramble–Hilbert
lemma. The Bramble–Hilbert lemma considers a continuous linear functional that
is defined on a Sobolev space and that vanishes for all polynomials of degree less
than or equal to m. It states that the value of the functional can be estimated by the
Lebesgue norm of the .m C 1/th total derivative of the functions from this Sobolev
space. ut
Theorem C.5 (Bramble–Hilbert Lemma) Let m 2 N [ f0g, m � 0, p 2 Œ1;1�,
and F W WmC1;p.˝/ ! R be a continuous linear functional, and let the conditions
of Lemmas C.2 and C.3 be satisfied. Let

F. p/ D 0 8 p 2 Pm.˝/;

then there is a constant C.˝/, which is independent of v and F, such that

jF.v/j � C.˝/
��DmC1v

��
Lp.˝/

8 v 2 WmC1;p.˝/:
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Proof Let v 2 WmC1;p.˝/. It follows from Lemma C.2 that there is a polynomial
from Pm.˝/ with

Z
˝

@˛.v C p/.x/ dx D 0 for j˛j � m:

Lemma C.3 gives, with l D m C 1 and considering each term in k�kWmC1;p.˝/

individually, the estimate

kv C pkWmC1;p.˝/ � C.˝/
��DmC1.v C p/

��
Lp.˝/

D C.˝/
��DmC1v

��
Lp.˝/

:

From the vanishing of F for p 2 Pm.˝/ and the continuity of F, it follows that

jF.v/j D jF.v C p/j � c kv C pkWmC1;p.˝/ � C.˝/
��DmC1v

��
Lp.˝/

:

�
Remark C.6 (Strategy for Estimating the Interpolation Error) The Bramble–
Hilbert lemma will be used for estimating the interpolation error for finite elements.
The strategy is as follows:

• Show first the estimate on the reference mesh cell OK.
• Transform the estimate on an arbitrary mesh cell K to the reference mesh cell OK.
• Apply the estimate on OK.
• Transform back to K.

One has to study what happens if the transforms are applied to the estimate. ut
Remark C.7 (Assumptions, Definition of the Interpolant) Let OK � R

d; d 2 f2; 3g,
be a reference mesh cell (compact polyhedron), OP. OK/ a polynomial space of
dimension N, and O̊

1; : : : ; O̊N W Cs. OK/ ! R continuous linear functionals. It
will be assumed that the space OP. OK/ is unisolvent with respect to these functionals.
Then, there is a local basis O�1; : : : ; O�N 2 OP. OK/.

Consider Ov 2 Cs. OK/, then the interpolant I OK Ov 2 OP. OK/ is defined by

I OK Ov.Ox/ D
NX

iD1
O̊i. Ov/ O�i.Ox/:

The operator I OK is a continuous and linear operator from Cs. OK/ to OP. OK/. From the
linearity, it follows that I OK is the identity on OP. OK/

I OK Op D Op 8 Op 2 OP. OK/:

ut
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Theorem C.8 (Interpolation Error Estimate on a Reference Mesh Cell) Let
Pm. OK/ � OP. OK/, let p 2 Œ1;1/, and let Os 2 N [ f0g such that .m C 1 � Os/p >

d � .m � Os/p and Os � s, where s appears in the definition of the interpolation
operator. Then there is a constant C that is independent of Ov.Ox/ such that

�� Ov � I OK Ov��WmC1;p. OK/ � C
��DmC1 Ov��Lp. OK/ 8 Ov 2 WmC1;p. OK/: (C.4)

Proof Since OK is a bounded, one has the Sobolev imbedding (A.20)

WmC1;p. OK/ D W.mC1�Os/COs;p. OK/ ! COs. OK/:

Because OK is convex, the imbedding COs. OK/ ! Cs. OK/ is compact, see Adams (1975,
Theorem 1.31), such that the interpolation operator is well defined in WmC1;p. OK/.
From the identity of the interpolation operator in Pm. OK/, the triangle inequality, the
boundedness of the interpolation operator (it is a linear and continuous operator
mapping Cs. OK/ ! OP. OK/ � WmC1;p. OK/), and the Sobolev imbedding, one obtains
for Oq 2 Pm. OK/

�� Ov � I OK Ov��
WmC1;p. OK/ D �� Ov C Oq � I OK. Ov C Oq/��

WmC1;p. OK/
� k Ov C OqkWmC1;p. OK/ C ��I OK. Ov C Oq/��

WmC1;p. OK/
� k Ov C OqkWmC1;p. OK/ C c k Ov C OqkCs. OK/
� c k Ov C OqkWmC1;p. OK/ :

Now, Oq.Ox/ is chosen such that

Z
OK
@˛. Ov C Oq/ d Ox D 0 8 j˛j � m

holds. Hence, the assumptions of Lemma C.3 are satisfied. It follows that

k Ov C OqkWmC1;p. OK/ � c
��DmC1. Ov C Oq/��

Lp. OK/ D c
��DmC1 Ov��

Lp. OK/ :

�
Definition C.9 (Quasi-Uniform and Regular Family of Triangulations, Brenner
and Scott (2008, Definition 4.4.13)) Let fT hg with 0 < h � 1, be a family of
triangulations such that

max
K2T h

hK � h diam.˝/;

where hK is the diameter of K D FK. OK/, i.e., the largest distance of two points that
are contained in K. The family is called to be quasi-uniform, if there exists a C > 0
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such that

min
K2T h

�K � Ch diam.˝/ (C.5)

for all h 2 .0; 1�, where �K is the diameter of the largest ball contained in K.
The family is called to be regular, if there is exists a C > 0 such that for all

K 2 T h and for all h 2 .0; 1�

�K � ChK :

ut
Remark C.10 (Euler’s Formula for a Simple Closed Polygon) Consider an admis-
sible triangulation of a simply connected domain with polygonal boundary with
triangles. Then, there is a relation of the numbers of mesh cells fKg, vertices fVg,
and edges fEg, which is called Euler’s formula

#K � #E C #V D 1;

where # denotes the cardinality of the set. ut
Remark C.11 (Assumptions on the Reference Mapping and the Triangulation) For
deriving the interpolation error estimate for arbitrary mesh cells K, and finally for
the finite element space, one has to study the properties of the affine mapping from
K to OK and of the inverse mapping. Here, only the case of an affine family of finite
elements whose mesh cells are generated by affine mappings

FK Ox D BK Ox C b;

will be considered, see (B.18), where BK is a non-singular d � d matrix and b is a d
vector.

For the global estimate, a quasi-uniform family of triangulations will be consid-
ered. ut
Lemma C.12 (Estimates of Matrix Norms) For each matrix norm k�k, one has
the estimates

kBKk � chK ;
��B�1

K

�� � ch�1
K ; (C.6)

where the constants depend on the matrix norm and on CR.

Proof Since OK is a Lipschitz domain with polyhedral boundary, it contains a ball
B.Ox0; r/ with Ox0 2 OK and some r > 0. Hence, Ox0C Oy 2 OK for all kOyk2 D r. It follows
that the images

x0 D BK Ox0 C b; x D BK.Ox0 C Oy/C b D x0 C BK Oy
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are contained in K. Since the triangulation is assumed to be quasi-uniform, one
obtains for all Oy

kBK Oyk2 D kx � x0k2 � CRhK:

Now, it holds for the spectral norm that

kBKk2 D sup
Oz¤0

kBK Ozk2
kOzk2

D 1

r
sup

kOzk2Dr
kBK Ozk2 � CR

r
hK :

A bound of this form, with a possible different constant, holds also for all other
matrix norms since all matrix norms are equivalent, see Remark A.8.

The estimate for
��B�1

K

�� proceeds in the same way with interchanging the roles

of K and OK. �

Theorem C.13 (Local Interpolation Estimate) Let an affine family of finite ele-
ments be given by its reference cell OK, the functionals f O̊ ig, and a space of
polynomials OP. OK/. Let all assumptions of Theorem C.8 be satisfied. Then, for all
v 2 WmC1;p.K/, p 2 Œ1;1/, there is a constant C, which is independent of v, such
that

��Dk.v � IKv/
��

Lp.K/
� ChmC1�k

K

��DmC1v
��

Lp.K/
; 0 � k � m C 1: (C.7)

Proof The idea of the proof consists in transforming the left-hand side of (C.7)
to the reference cell, using the interpolation estimate on the reference cell, and
transforming back.

(i) Denote the elements of the matrices BK and B�1
K by bij and b.�1/ij , respectively.

Since kBKk1 D maxi;j

ˇ̌
bij

ˇ̌
is also a matrix norm, it holds that

ˇ̌
bij

ˇ̌ � ChK ;
ˇ̌
ˇb.�1/ij

ˇ̌
ˇ � Ch�1

K : (C.8)

Using element-wise estimates for the matrix BK (Leibniz formula for determi-
nants), one obtains

jdet BK j � Chd
K ;

ˇ̌
det B�1

K

ˇ̌ � Ch�d
K : (C.9)

(ii) The next step consists in proving that the transformed interpolation operator is
equal to the natural interpolation operator on K. The latter one is given by

IKv D
NX

iD1
˚K;i.v/�K;i; (C.10)
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where f�K;ig is the basis of the space

P.K/ D
n
p W K ! R W p D Op ı F�1

K ; Op 2 OP. OK/
o
;

which satisfies ˚K;i.�K;j/ D ıij. The functionals are defined by

˚K;i.v/ D O̊ i.v ı FK/:

Hence, it follows with v D O�j ı F�1
K from the condition on the local basis on OK

that

˚K;i. O�j ı F�1
K / D O̊i. O�j/ D ıij;

i.e., the local basis on K is given by �K;j D O�j ı F�1
K . Using (C.10), one gets

I OK Ov D
NX

iD1
O̊ i. Ov/ O�i D

NX
iD1

˚K;i. Ov ı F�1
K„ ƒ‚ …

Dv
/ �K;i ı FK D

 
NX

iD1
˚K;i.v/�K;i

!
ı FK

D IKv ı FK :

Consequently, I OK Ov is transformed correctly.
(iii) One obtains with the chain rule

@v.x/
@xi

D
dX

jD1

@ Ov.Ox/
@Oxj

b.�1/ji ;
@ Ov.Ox/
@Oxi

D
dX

jD1

@v.x/
@xj

bji:

It follows with (C.8) that (with each derivative one obtains an additional factor of
BK or B�1

K , respectively)

��Dk
xv.x/

��
2

� Ch�k
K

��Dk
Ox Ov.Ox/��

2
;

��Dk
Ox Ov.Ox/��

2
� Chk

K

��Dk
xv.x/

��
2
:

One gets with (C.9)

Z
K

��Dk
xv.x/

��p

2
dx � Ch�kp

K jdet BK j
Z

OK

��Dk
Ox Ov.Ox/��p

2
d Ox � Ch�kpCd

K

Z
OK

��Dk
Ox Ov.Ox/��p

2
d Ox

(C.11)
and
Z

OK

��Dk
Ox Ov.Ox/��p

2
d Ox � Chkp

K

ˇ̌
det B�1

K

ˇ̌ Z
K

��Dk
xv.x/

��p

2
dx � Chkp�d

K

Z
K

��Dk
xv.x/

��p

2
dx:

(C.12)
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Using now the interpolation estimate on the reference cell (C.4) yields

��Dk
Ox. Ov � I OK Ov/��p

Lp. OK/ � C
��DmC1

Ox Ov��p

Lp. OK/ ; 0 � k � m C 1: (C.13)

It follows that

��Dk
x.v � IKv/

��p

Lp.K/ � Ch�kpCd
K

��Dk
Ox. Ov � I OK Ov/��p

Lp. OK/

� Ch�kpCd
K

��DmC1
Ox Ov��p

Lp. OK/

� Ch.mC1�k/p
K

��DmC1
x v

��p

Lp.K/
:

Taking the pth root proves the statement of the theorem. �
Remark C.14 (On Estimate (C.7))

• Note that the power of hK does not depend on p and d.
• Consider a quasi-uniform triangulation and define

h D max
K2T h

fhKg:

Then, one obtains by summing over all mesh cells an interpolation estimate for
the global finite element space

��Dk.v � Ihv/
��

Lp.˝/
D
 X

K2T h

��Dk.v � IKv/
��p

Lp.K/

!1=p

�
 X

K2T h

ch.mC1�k/p
K

��DmC1v
��p

Lp.K/

!1=p

� ch.mC1�k/
��DmC1v

��
Lp.˝/

: (C.14)
ut

Corollary C.15 (Interpolation Estimate for Faces) Let the assumptions of The-
orem C.13 be satisfied. Let K 2 T h be a mesh cell with the face E � @K, then it
holds

kv � IKvkLp.E/ � Ch.mC1/�1=p
K

��DmC1v
��

Lp.K/
: (C.15)

Proof The idea of the proof consists in transforming the norm on the face to the
norm on a face of the reference cell, applying the trace theorem, and applying the
back transform for the reference mesh cell.

Performing the transform of the integral on E to a face OE � @ OK gives as factor the
determinant of the transform. As the determinant of the transform of an integral from
K to OK is proportional to the volume of K, see (C.9), the determinant of the transform



C.2 Interpolation of Non-smooth Functions 739

of an integral from E to OE is proportional to the area of E, which is jEj D Chd�1
E .

Thus, one gets

kv � IKvkp
Lp.E/ � Chd�1

E

�� Ov � I OK Ov��p

Lp. OE/ � Chd�1
E

�� Ov � I OK Ov��p

Lp.@ OK/ :

With the trace theorem, Theorem A.34, one obtains

kv � IKvkp

Lp.@ OK/ � Chd�1
E

	�� Ov � I OK Ov��p

Lp. OK/ C ��r � Ov � I OK Ov���p

Lp. OK/


:

Applying the interpolation estimate on the reference cell (C.4), compare (C.13), the
transform from OK to K, see (C.12), and hE � hK yields for m � 0

kv � IKvkp
Lp.E/ � Chd�1

E

��DmC1
Ox Ov��p

Lp. OK/

� Chd�1
E h.mC1/p�d

K

��DmC1
x v

��p

Lp.K/ � Ch.mC1/p�1
K

��DmC1
x v

��p

Lp.K/ :

Taking the pth root proves (C.15). �

C.2 Interpolation of Non-smooth Functions

Remark C.16 (Motivation) The interpolation theory of Sect. C.1 requires that the
interpolation operator is continuous on the Sobolev space to which the function
belongs that should be interpolated. But if, e.g., discontinuous functions should be
interpolated with continuous, piecewise linear functions, then Sect. C.1 does not
provide estimates.

There are two often used interpolation operators for non-smooth functions. The
interpolation operator of Clément (1975) is defined for functions from L1.˝/
and it can be generalized to more or less all finite elements. The interpolation
operator of Scott and Zhang (1990) is more special. It has the advantage that it
preserves homogeneous Dirichlet boundary conditions in a natural way. For the
Clément interpolation operator, one needs a modification for the preservation of
homogeneous Dirichlet boundary conditions, which cannot be generalized easily to
the non-homogeneous case. Here, only the interpolation operator of Clément, for
linear finite elements, will be considered.

Let T h be a regular triangulation of the polyhedral domain ˝ � R
d; d 2 f2; 3g,

with simplices K. Denote by P1 the space of continuous, piecewise linear finite
elements on T h. ut

Remark C.17 (Construction of the Interpolation Operator of Clément) For each
vertex Vi of the triangulation, the union of all grid cells that possess Vi as vertex
will be denoted by !i, see Fig. C.1.
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ωi

vi vi

ωi ωK

K

Fig. C.1 Subdomains !i (left and center) and a subdomain !K (right)

Let v 2 L1.˝/ and let P1.!i/ be the space of continuous piecewise linear finite
elements on !i. The local contribution of the interpolation operator of Clément is
the solution pi 2 P1.!i/ of

Z
!i

.v � pi/.x/q.x/ dx D 0 8 q 2 P1.!i/: (C.16)

If v 2 L2.!i/, then (C.16) is a local L2.!i/ projection. The Clément interpolation
operator is defined by

Ph
Clev.x/ D

NX
iD1

pi.Vi/�
h
i .x/; (C.17)

where f�h
i gN

iD1 is the standard basis of the global finite element space P1. Since
Ph

Clev.x/ is a linear combination of basis functions of P1, it defines a map Ph
Cle W

L1.˝/ ! P1. ut
Theorem C.18 (Interpolation Estimate) Let k; l 2 N [ f0g and q 2 R with k �
l � 2, 1 � q � 1, and let !K be the union of all subdomains !i that contain the
mesh cell K, see Fig. C.1. Then, it holds for all v 2 Wl;q.!K/ the estimate

��Dk.v � Ph
Clev/

��
Lq.K/

� Chl�k
��Dlv

��
Lq.!K /

; (C.18)

with h D diam.!K/, where the constant C is independent of v and h.

Proof The statement of the lemma is obvious in the case k D l D 2 since it is
D2Ph

Clev.x/jK D 0.
Let k 2 f0; 1g. Since P1.!K/ � L2.!K/ and because the L2.!i/ projection gives

an element with best approximation, one gets with (C.16)

Ph
Clep D p in K 8 p 2 P1.!K/: (C.19)
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Hence, Ph
Cle is a consistent operator.

The next step consists in proving the stability of Ph
Cle. One obtains with the

inverse inequality, see (C.35) below,

kpkL1.!i/
� Ch�d=2 kpkL2.!i/

for all p 2 P1.!i/:

The inverse inequality and definition (C.16) with the test function q D pi gives

kpik2L1.!i/
� Ch�d kpik2L2.!i/

� Ch�d kvkL1.!i/
kpikL1.!i/

:

Dividing by kpikL1.!i/
and applying Hölder’s inequality, one obtains for p�1 D

1 � q�1

jpi.Vi/j � kpikL1.!i/
� Ch�d kvkL1.!i/

D Ch�d k1vkL1.!i/
(C.20)

� Ch�d kvkLq.!i/
k1kLp.!i/„ ƒ‚ …

DChd=p

D Chd.1=p�1/ kvkLq.!i/
D Ch�d=q kvkLq.!i/

for all Vi 2 K. From the regularity of the triangulation, it follows for the basis
functions that (inverse estimate)

��Dk�i

��
L1.K/

� Ch�k; k D 0; 1: (C.21)

Using the triangle inequality and combining (C.20) and (C.21) yields the stability
of Ph

Cle

��DkPh
Clev

��
Lq.K/ �

X
Vi2K

jpi.Vi/j
��Dk�i

��
Lq.K/

� C
X
Vi2K

h�d=q kvkLq.!i/

��Dk�i

��
L1.K/ k1kLq.K/

� C
X
Vi2K

h�d=q kvkLq.!i/
h�khd=q

D Ch�k kvkLq.!K /
: (C.22)

The remainder of the proof follows the proof of the interpolation error estimate
for the polynomial interpolation, Theorem C.8, apart from the fact that a reference
cell is not used for the Clément interpolation operator. Using Lemmas C.2 and C.3,
one can find a polynomial p 2 P1.!K/ with

��Dj.v � p/
��

Lq.!K /
� Chl�j

��Dlv
��

Lq.!K /
; 0 � j � l � 2: (C.23)
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With (C.19), the triangle inequality, k�kLq.K/ � k�kLq.!K /
, (C.22), and (C.23), one

obtains

��Dk
�
v � Ph

Clev
���

Lq.K/
D ��Dk

�
v � p C Ph

Clep � Ph
Clev

���
Lq.K/

� ��Dk.v � p/
��

Lq.K/
C ��DkPh

Cle.v � p/
��

Lq.K/

� ��Dk.v � p/
��

Lq.!K /
C Ch�k kv � pkLq.!K /

� Chl�k
��Dlv

��
Lq.!K /

C Ch�khl
��Dlv

��
Lq.!K /

D Chl�k
��Dlv

��
Lq.!K /

:

�

Remark C.19 (Uniform Meshes)

• If all mesh cells in !K are of the same size, then h can be replaced by hK in the
interpolation error estimate (C.18).

• If one assumes that the number of mesh cells in !K is bounded uniformly for all
considered triangulations, the global interpolation estimate

��Dk.v � Ph
Clev/

��
Lq.˝/

� Chl�k
��Dlv

��
Lq.˝/

; 0 � k � l � 2;

follows directly from (C.18).
ut

Remark C.20 (Other Finite Element Spaces) The idea of the Clément interpolation
can be extended to other finite element spaces, see Clément (1975). In this paper, it
is just assumed that the global functionals are values or derivatives of the function
in the nodes. Optimal interpolation estimates are given in Clément (1975). ut
Remark C.21 (Estimate for Faces) Let Q!E be the union of all mesh cells who
possess at least one vertex which belongs to a face E. Then there holds the
interpolation estimate, see Clément (1975) and Verfürth (1996, Lemma 1.4)

��v � Ph
Clev

��
L2.E/

� Ch1=2E krvkL2. Q!E/
: (C.24)

ut
Remark C.22 (Preservation of Homogeneous Dirichlet Boundary Conditions) For
global finite element spaces Vh � H1

0.˝/, it is shown in Clément (1975) that
homogeneous Dirichlet boundary conditions can be preserved under some (weak)
assumptions on the finite element space. First, the analysis of Clément (1975) is
restricted to finite element spaces with certain global functionals as mentioned in
Remark C.20. In addition, it is assumed that for the nodes on the boundary the
functionals are only values of the function (and no derivatives). For the definition
of the global Clément interpolation operator, these values are left unchanged, i.e.,
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equal to zero, and the interpolation is computed for all other degrees of freedom. For
this construction, optimal interpolation estimates were proved in Clément (1975).

As a consequence, for finite element spaces Vh D Pk \ H1
0.˝/ or Vh D

Qk \ H1
0.˝/, the Clément interpolant of v 2 H1

0.˝/ into Vh is well defined and,
in particular, the homogeneous Dirichlet boundary values are preserved. ut

C.3 Orthogonal Projections

Remark C.23 (On Orthogonal Projections) Let V be a Hilbert space with inner
product .�; �/V and let Vh � V be a finite-dimensional space. Another possibility
to assign to a function v 2 V a function Phv 2 Vh is the orthogonal projection

�
v � Phv; vh

�
V

D 0 8 vh 2 Vh:

The function Phv is the best approximation to v with respect to the norm induced
by .�; �/V .

This section introduces the most important orthogonal projections together with
their properties. A short overview on orthogonal projections can be found in Ern
and Guermond (2004, Sect. 1.6.3). ut
Definition C.24 (L2.˝/ Projection) The L2.˝/ projection is defined by

Ph
L2 W L2.˝/ ! Vh; v 7! Ph

L2v

with
Z
˝

�
v � Ph

L2v
�
vh.x/ dx D �

v � Ph
L2v; v

h
� D 0 8 vh 2 Vh: (C.25)

ut
Definition C.25 (Elliptic Projection, Riesz Projection) The elliptic projection or
Riesz projection is defined by

Ph
H1 W H1.˝/ ! Vh; v 7! Ph

H1v

with
Z
˝

h �
v � Ph

H1v
�
vh C r �v � Ph

H1v
� � rvh

i
.x/ dx

D �
v � Ph

H1v; v
h
�C �r �

v � Ph
H1v

�
;rvh

� D 0 8 vh 2 Vh:

ut
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Lemma C.26 (Stability of the L2.˝/ and the Elliptic Projection) The following
stability estimates hold:

��Ph
L2v
��

L2.˝/
� kvkL2.˝/ 8 v 2 L2.˝/; (C.26)

��Ph
H1v

��
L2.˝/

� kvkH1.˝/ 8 v 2 H1.˝/: (C.27)

Proof Choosing vh D Ph
L2
v in (C.25) and applying the Cauchy–Schwarz inequal-

ity (A.10) yields

��Ph
L2v
��2

L2.˝/
D �

Ph
L2v;P

h
L2v
� D �

v;Ph
L2v
� � kvkL2.˝/

��Ph
L2v
��

L2.˝/
:

Dividing by
��Ph

L2
v
��

L2.˝/
¤ 0 gives (C.26). For

��Ph
L2
v
��

L2.˝/
D 0, the validity

of (C.26) is obvious.
Estimate (C.27) is proved in the same way as estimate (C.26). �

Theorem C.27 (Error Estimates for the Orthogonal Projections, Ern and Guer-
mond (2004, Propositions 1.134 and 1.135)) Consider finite element spaces
Vh D Pk or Vh D Qk. Let k � 0 and 0 � l � k, then there is a constant C,
independent of h, such that

��v � Ph
L2v
��

L2.˝/
� ChlC1 jvjHlC1.˝/ 8 v 2 HlC1.˝/; 8 h: (C.28)

If the family of triangulations
˚
T h
�

is quasi-uniform, then it is for k � 1, 1 � l � k

��v � Ph
L2v
��

H1.˝/
� Chl jvjHlC1.˝/ 8 v 2 HlC1.˝/; 8 h; (C.29)

with C independent of h.
If k � 1 and 1 � l � k, then the estimate

��v � Ph
H1v

��
H1.˝/

� Chl jvjHlC1.˝/ 8 v 2 HlC1.˝/; 8 h; (C.30)

holds with C independent of h. If ˝ is convex, then (C.30) can be improved to

��v � Ph
H1v

��
H1.˝/

� ChlC1 jvjHlC1.˝/ 8 v 2 HlC1.˝/; 8 h; (C.31)

with C independent of h.

Remark C.28 (Jumps Across Faces for the L2.˝/ Projection on Piecewise Constant
Functions) Let K be a mesh cell and E � @K be one of its faces. Transforming
the integral on E to a face of the reference mesh cell, applying the trace theorem,
Theorem A.34, and transforming the integral from the reference mesh cell to K,
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which is the same procedure as in the proof of Corollary C.15, yields

��v � Ph
L2v
��2

L2.E/
� C

	
h�1

K

��v � Ph
L2v
��2

L2.K/
C hK

��r �
v � Ph

L2v
���2

L2.K/



:

(C.32)
With Young’s inequality (A.5), it is

���ˇ̌v � Ph
L2v
ˇ̌�

E

��2
L2.E/

D
Z

E

	�
v � Ph

L2v
�ˇ̌

K1
� �

v � Ph
L2v
�ˇ̌

K2


2
ds (C.33)

� 2

Z
E

	�
v � Ph

L2v
�ˇ̌

K1


2
ds C 2

Z
E

	�
v � Ph

L2v
�ˇ̌

K2


2
ds;

where K1 and K2 are the mesh cells with the common face E. For quasi-uniform
triangulations, one gets from (C.32), (C.33), and (C.28) for Ph

L2
v 2 P0 (or Ph

L2
v 2

Q0) and v 2 H1.˝/

X
E2Eh

���ˇ̌v � Ph
L2v
ˇ̌�

E

��2
L2.E/

� C

 
h�1 X

E2Eh

��v � Ph
L2v
��2

L2.!E/
C h

X
E2Eh

X
K2!E

��r �
v � Ph

L2v
���2

L2.K/

!

� C
	

h�1 ��v � Ph
L2v
��2

L2.˝/
C h krvk2L2.˝/




� Ch krvk2L2.˝/ : (C.34)

ut

C.4 Inverse Estimate

Remark C.29 (On Inverse Estimates) The approach for proving interpolation error
estimates can be uses also to prove so-called inverse estimates. With inverse
estimates, a norm of a higher order derivative of a finite element function is
estimated by a norm of a lower order derivative of this function. Likewise, norms
in different Lebesgue spaces are estimated. One obtains as penalty a factor with
negative powers of the diameter of the mesh cell. ut
Theorem C.30 (Inverse Estimate) Let 0 � k � l be natural numbers and
let p; q 2 Œ1;1�. Then there is a constant Cinv, which depends only on
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k; l; p; q; OK; OP. OK/, such that

��Dlvh
��

Lq.K/ � Cinvh.k�l/�d.p�1�q�1/
K

��Dkvh
��

Lp.K/ 8 vh 2 P.K/: (C.35)

Proof In the first step, (C.35) is shown for h OK D 1 and k D 0 on the reference mesh
cell. Since all norms are equivalent in finite-dimensional spaces, one obtains

��Dl Ovh
��

Lq. OK/ � �� Ovh
��

Wl;q. OK/ � C
�� Ovh

��
Lp. OK/ 8 Ovh 2 OP. OK/: (C.36)

If k > 0, then one sets

QP. OK/ D
n
@˛ Ovh W Ovh 2 OP. OK/; j˛j D k

o
;

which is also a space consisting of polynomials. The application of (C.36) to QP. OK/
gives

��Dl Ovh
��

Lq. OK/ D
X

j˛jDk

��Dl�k
�
@˛ Ovh

���
Lq. OK/ � C

X
j˛jDk

��@˛ Ovh
��

Lp. OK/ D C
��Dk Ovh

��
Lp. OK/ :

This estimate is transformed to an arbitrary mesh cell K analogously as for
the interpolation error estimates, compare the proof of Theorem C.13. From the
estimates for the transformations, one obtains

��Dlvh
��

Lq.K/
� Ch�lCd=q

K

��Dl Ovh
��

Lq. OK/ � Ch�lCd=q
K

��Dk Ovh
��

Lp. OK/

� Cinvhk�lCd=q�d=p
K

��Dkvh
��

Lp.K/ :

�

Remark C.31 (On the Proof) The crucial point in the proof is the equivalence of
all norms in finite-dimensional spaces. Such a property does not hold in infinite-
dimensional spaces. ut
Corollary C.32 (Global Inverse Estimate) Let p D q and let

˚
T h
�

be a quasi-
uniform family of triangulations of ˝ , then

��Dlvh
��

Lp;h.˝/
� Cinvhk�l

��Dkvh
��

Lp;h.˝/
; (C.37)

where

k�kLp;h.˝/ D
 X

K2T h

k�kp
Lp.K/

!1=p

:
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Remark C.33 (On k�kLp;h.˝/) The cell-wise definition of the norm is important for
k � 2 or l � 2 since in these cases finite element functions generally do not possess
the regularity for the global norm to be well defined. It is also important for l � 1

and non-conforming finite element functions. ut



Appendix D
Examples for Numerical Simulations

Remark D.1 (General Considerations) The definition of good test examples is of
importance for the assessment of numerical schemes. There are different classes of
test problems:

• Academic test examples with prescribed solution. In these examples, the velocity
field u and the pressure p are prescribed by analytical functions. The right-hand
side, boundary conditions, and the initial condition are chosen such that the
strong form of the considered equation is fulfilled.
These examples serve for supporting convergence estimates. A connection to real
life problems is generally not given.
In the definition of these examples, one has to take care that the velocity field is
divergence-free. Depending on the type of boundary condition, see Sect. 2.4, the
integral mean value of the pressure has to vanish or the integral of the Dirichlet
boundary data has to satisfy the compatibility condition (2.33).

• Academic test examples with features of real life flows. These examples contain
on the one hand some important features of real life flow problems, but on the
other hand, a number of simplifications are used to facilitate their implementation
and the assessment of the results. Generally, an analytical solution is not known.
Reference values for quantities of interest are obtained by performing simulations
on very fine grids in space and time.

• Real life examples. A proposed numerical method should work well for this
type of examples. However, often the data are incomplete in real life examples,
e.g., temporally and spatially resolved boundary conditions are generally not
known. In addition, reference values to compare with are coming often from
measurements. These values are generally mean values in space or in time. A
certain measurement error has always to be expected.
In conclusion, special care and special techniques are necessary to assess
numerical methods at real world problems. Generally, none of the methods will
produce results that agree completely with the real world flow, already because of

© Springer International Publishing AG 2016
V. John, Finite Element Methods for Incompressible Flow Problems, Springer
Series in Computational Mathematics 51, DOI 10.1007/978-3-319-45750-5
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the incomplete data. Thus, one has to evaluated the differences in an appropriate
sense.

Appendix D presents some examples that were used in the numerical illustrations
presented in this monograph. Most of them are standard test problems from the
literature. The simulations were performed with the code MooNMD, see John and
Matthies (2004). ut
Remark D.2 (Forces Exerted by the Flow on Bodies) Consider a body with bound-
ary 
body in a flow. Then, the force that is exerted by the flow on the body in the
(unit) direction w is given by

Fw D �
Z

body

.Sn/ � w ds D �
Z

body

..2�D .v/� PI/n/ � w ds ŒN� :

Here, n is the unit normal vector that points outward with respect to the flow domain
˝ and the stress tensor is given in (2.18). Thus, the force is defined by the projection
of the (negative of the) normal stress into the direction w. For the dimensionless
quantities, one obtains with (2.23)

Fw D �Ld�1
Z

body

��
2�U

L
D .u/� �U2pI

�
n
�

� w ds

D ��U2Ld�1
Z

body

��
2�

�UL
D .u/ � pI

�
n
�

� w ds

D ��U2Ld�1
Z

body

..2	D .u/� pI/n/ � w ds; (D.1)

where 	 D Re�1. The factor 1=L in the first line comes from the transform of the
spatial derivatives and the factor Ld�1 from the transform of the integral.

Formula (D.1) fits well into a variational formulation of the Navier–Stokes
equations. Assuming that 
body is not attached to the rest of the boundary, 
body \

 n 
body D ;, one can extend w to a function in ˝ such that w 2 H1.˝/ and
w vanishes at 
 n 
body. Testing the momentum equation of (2.25) with w and
applying integration by parts gives

.@tu;w/C .2	D .u/ ;D .w//C ..u � r/u;w/� .r � w; p/

�hf ;wi.H1.˝//
0

;H1.˝/
D
Z

body

..2	D .u/� pI/n/ � w ds;



D Examples for Numerical Simulations 751

such that

Fw D ��U2Ld�1h .@tu;w/C .2	D .u/ ;D .w//C ..u � r/u;w/

� .r � w; p/� hf ;wi.H1.˝//
0

;H1.˝/

i
: (D.2)

The term with the time derivative vanishes for steady-state problems. For the viscous
and convective term there are different forms, see (4.5) and Sect. 6.1.2. In the
continuous setting, these forms are equivalent, since u is weakly divergence-free,
and they lead to equivalent formulas. However, the equivalence is usually lost for
finite element methods such that the use of different forms for the viscous and
convective term leads to different values for the discrete approximation of Fw. To the
best of our knowledge, there are no investigations on the size of these differences.

In practice, Fw is computed with (D.2) also if the body is attached to the rest
of the boundary of the flow domain, e.g., for the flows around a cylinder in John
(2002), see also Example D.6, and around a wall-mounted cube (Example D.14) in
Hoffman (2005), Hoffman and Johnson (2006).

Of importance in applications is the force in main flow direction, the so-called
drag force. Based on this force, a dimensionless coefficient, the drag coefficient is
defined by

cdrag D 2Fdrag

�AV2
; (D.3)

where V is a measure for the speed of the obstacle relative to the fluid and A is
a reference area. The quantity �V2=2 is called dynamic pressure. With (D.1), one
obtains

cdrag D �2U2Ld�1

AV2

Z

body

..2	D .u/ � pI/ n/ � wdrag ds (D.4)

and with (D.2), one gets

cdrag D �2U2Ld�1

AV2

h �
@tu;wdrag

�C �
2	D .u/ ;D

�
wdrag

��C �
.u � r/u;wdrag

�

� �r � wdrag; p
� � hf ;wdragi.H1.˝//

0

;H1.˝/

i
: (D.5)

Similarly important is the force exerted perpendicular to the main flow direction,
the so-called lift force. Let the main flow direction be given by wdrag D .w1;w2; 0/T ,
then the orthogonal direction is set to be wlift D .�w2;w1; 0/T . The dimensionless
lift coefficient is defined by

clift D 2Flift

�AV2
; (D.6)
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such that one gets the representations

clift D �2U2Ld�1

AV2

Z

body

..2	D .u/� pI/n/ � wlift ds (D.7)

with (D.1) and

clift D �2U2Ld�1

AV2

h
.@tu;wlift/C .2	D .u/ ;D .wlift//C ..u � r/u;wlift/

� .r � wlift; p/� hf ;wlifti.H1.˝//
0

;H1.˝/

i
(D.8)

with (D.2).
In the literature, one can find also other formulas for the drag and lift force,

e.g., in Schäfer and Turek (1996) formulas are given for the special case wdrag D
.1; 0; 0/T and @zu3j
body D 0. ut

D.1 Examples for Steady-State Flow Problems

Example D.3 (A Two-dimensional Steady-State Example with Prescribed Solution
in the Unit Square and with Homogeneous Dirichlet Boundary Conditions) Con-
sider ˝ D .0; 1/2 and the stream function

� D 1000x2.1 � x/4y3.1 � y/2:

Then, the velocity field is defined by

u D
�

u1
u2

�
D
�
@y�

�@x�

�
D 1000

�
x2.1 � x/4y2.1 � y/.3 � 5y/

�2x.1� x/3.1 � 3x/y3.1 � y/2

�
: (D.9)

It follows, using the Theorem of Schwarz, that

r � u D @xu1 C @yu2 D @xy� � @yx� D @xy� � @xy� D 0:

The equations will be equipped with Dirichlet boundary conditions on the whole
boundary. It is u D 0 on 
 such that the compatibility condition (2.33) is fulfilled.

Because of the Dirichlet boundary conditions on 
 , the pressure should be in
L20.˝/. This is the only essential requirement. The following pressure was chosen
for the definition of this example

p D �2.xy3 cos.2�x2y/� x2y sin.2�xy//C 1

8
:
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Fig. D.1 Example D.3. Stream function (top left) velocity (top right) and pressure (bottom). These
plots are based on results obtained with numerical simulations

The stream function, velocity, and pressure are presented in Fig. D.1. It can be seen
that the velocity field consists essentially of one big vortex.

Because of the homogeneous Dirichlet boundary conditions on 
 , this example
fits into the framework of many results obtained in the numerical analysis of finite
element methods. ut
Example D.4 (The Driven Cavity Problem in Two Dimensions) The two-dimen-
sional driven cavity problem is probably the most popular test example for two-
dimensional steady-state flows. It is defined in ˝ D .0; 1/2. There are no body
forces, i.e., the right-hand side of the Navier–Stokes equations (6.1) is f D 0, the
boundary conditions of the classical driven cavity problem are prescribed in the
literature often in the form

u D
�
0

0

�
at x D 0; x D 1; y D 0I u D

�
1

0

�
at y D 1; (D.10)

and the concrete examples are defined with the Reynolds number Re D 	�1.
The boundary condition (D.10) has a jump at the upper corners of the domain. If

pairs of finite element spaces like the Taylor–Hood pair are used, then one needs the



754 D Examples for Numerical Simulations

specification of the values of u in these corners. Such a specification can be found
only in some papers, e.g., in Olshanskii (2002) the values u.0; 1/ D u.1; 1/ D
.1; 0/T were used. Independently of the concrete choice of u.0; 1/ and u.1; 1/, the
Dirichlet boundary condition does not belong to H1=2.
 / and by the trace theorem,
Theorem A.34 for s D 1, the velocity cannot belong to H1.˝/. Consequently, the
classical driven cavity problem does not fit into the framework of Chap. 6. Strictly
speaking, the solution is not sufficiently regular for the application of conforming
finite element methods.

Concerning reference solutions for the classical driven cavity problem, it
is usually referred to Ghia et al. (1982). Streamlines, profiles of the solution
on cut lines, and the position of vortex centers are provided for Re 2
f100; 400; 1000; 3200; 5000; 7500; 10;000g. However, it was shown, e.g., in
Cazemier et al. (1998), Tiesinga et al. (2002), Bruneau and Saad (2006), that in
the classical lid driven cavity example, the stationary solution becomes unstable
at a Reynolds number of around Re D 8000 and that at Re D 10000 there is a
stable periodic solution. Thus, numerical methods that compute a stable steady-
state solution for Re D 10000 have to introduce additional numerical viscosity. In
fact, the simulations in Ghia et al. (1982) were performed with a finite difference
scheme and some stabilization of upwind type.

To avoid the irregularity of the solution at the upper corners, regularized driven
cavity problems have been proposed, e.g., in Elman et al. (2014, p. 125). In the
definition of such regularized problems, one has to pay attention that r � u D 0

holds also on the boundary and that the divergence at the corners is completely
defined by the prescribed boundary condition. A regularized driven cavity problem
that satisfies this requirement was proposed in de Frutos et al. (2016c), which is
equipped with the boundary condition

u.x; 1/ D
�

u1.x/
0

�
; (D.11)

u1.x/ D

8̂
ˆ̂<
ˆ̂̂:

1 � 1
4

	
1 � cos

	
x1�x

x1
�


2

for x 2 Œ0; x1�;
1 for x 2 .x1; 1 � x1/;

1 � 1
4

	
1 � cos

	
x�.1�x1/

x1
�


2

for x 2 Œ1 � x1; 1�:

All simulations of this example presented in this monograph were performed with
x1 D 0:1. The solutions of this problem for Re D 1 and Re D 3200 are presented
in Fig. D.2. In the low Reynolds number case Re D 1, there is a big vortex whose
center is close to the upper boundary. The pressure shows large peaks at both upper
corners. For Re D 3200, the velocity field consists of one big vortex whose center
is located near the center of the cavity. There are smaller counter-rotating vortices
in both lower corners and at the upper part of the left boundary. The pressure has a
positive peak in the upper right corner. ut
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Fig. D.2 Example D.4, regularized driven cavity problem with boundary conditions (D.11).
Stream function (left, 36 intervals in Œ�0:12; 0�, 15 intervals in Œ0; 0:03�) and pressure (right) for
Re D 1 (top) and Re D 3200 (bottom)

2.2 m

Γcyl

0.1 m

0.15 m

0.41 mΓout

0.
15

m

Γin

Fig. D.3 Example D.5. Domain

Example D.5 (A Steady-State Flow Around a Cylinder at Re D 20 in Two
Dimensions) This example was defined in Schäfer and Turek (1996). It considers
a flow in a two-dimensional domain with a two-dimensional cylinder (circle), see
Fig. D.3 for a sketch of this domain.

The dynamic viscosity of the fluid is given by � D 10�3 Pa s and its density by
� D 1 kg=m3. These values are approximately the coefficients for water. The parabolic
inflow profile is defined by

v.0m; y/ D 1

0:412

�
1:2y.0:41� y/

0

�
m=s; 0m � y � 0:41m: (D.12)
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At the top and the bottom of the channel and at the surface 
body of the cylinder,
no-slip boundary conditions are prescribed. With respect to the outlet there are two
possible boundary conditions in this example. Either, a parabolic outflow boundary
condition

v.2:2m; y/ D 1

0:412

�
1:2y.0:41� y/

0

�
m=s; 0m � y � 0:41m;

is applied or the do-nothing boundary condition

Sn D .��rvC PI/ n D 0 N=m2 on 
out (D.13)

is used, where n is the outward pointing unit normal vector. The mean inflow
velocity is given by

Umean D 1

0:412

R 0:41
0

1:2y.0:41� y/ dyR 0:41
0

dy
m=s D 1

5

0:413

0:413
m=s D 0:2 m=s:

Based on the mean inflow, the diameter d D 0:1m of the cylinder, and the kinematic
viscosity �=�, the Reynolds number of the flow is Re D 20. There are no external
forces acting on the flow, i.e., f ext D 0 N=m3. This setup admits a stable steady-state
solution, see Figs. D.4 and D.5.

Using the characteristic length scale L D 1m and the characteristic velocity
scale U D 1 m=s, one obtains the steady-state Navier–Stokes equations (6.1) without
dimensions with 	 D �=.�UL/ D 10�3, the inflow condition

u.0; y/ D 0:41�2
��
1:2y.0:41� y/

0

��
; 0 � y � 0:41;

Fig. D.4 Example D.5. Absolute value of the velocity (top) and pressure (bottom) in the flow
around a cylinder
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Fig. D.5 Example D.5. Velocity and pressure at the cylinder

and the outflow condition

u.2:2; y/ D 0:41�2
��
1:2y.0:41� y/

0

��
; 0 � y � 0:41; (D.14)

or

Sn D .�	ru C pI/n D 0 on 
out: (D.15)

Quantities of interest in this example are the forces that are exerted on the body,
concretely, the drag coefficient given in (D.3) and the lift coefficient given in (D.6).
For the considered two-dimensional example, the main flow direction is wdrag D
.1; 0/T , the orthogonal direction is wlift D .0; 1/T , the relative speed is taken as
V D Umean, and the reference area is the diameter of the cylinder A D d.

In Remark D.2, two ways are described for evaluating the drag and lift coeffi-
cient. In this example, 
body is a circle, which cannot be represented exactly in finite
element methods. Hence, the commitment of a substantial error can be expected if
the boundary integral formulations (D.4) and (D.7) are used, just arising from the
approximation of the boundary. Thus, the volume (area in two dimensions) integral
formulations (D.5) and (D.8) should be preferred. Since the considered example is
stationary and f D 0, the drag coefficient can be computed with

cdrag D �500�.	ru;rwdrag/C n.u;u;wdrag/� .r � wdrag; p/
�

(D.16)

for any function wdrag 2 H1.˝/ with wdrag D 0 on 
 n 
body and wdragj
body D
.1; 0/T . In (D.16), the typical form of the viscous term utilized in steady-state
simulations is used and n.u;u;wdrag/ can be any of the forms of the convective
term from Sect. 6.1.2. Similarly, the lift coefficient can be computed by

clift D �500�.	ru;rwlift/C n.u;u;wlift/ � .r � wlift; p/
�

(D.17)

for any function wlift 2 H1.˝/ with wlift D 0 on 
 n 
body and wliftj
body D .0; 1/T .
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Another quantity of interest is the difference of the pressure between the front
and the back of the cylinder

�P D P.0:15; 0:2/� P.0:25; 0:2/;

which becomes for the dimensionless variables

�P D �U2
�

p.0:15; 0:2/� p.0:25; 0:2/
�
: (D.18)

Rather accurate reference values are known for the coefficients in the case of
Dirichlet boundary conditions at the outlet (D.14) from John and Matthies (2001)

cdrag;ref D 5:57953523384; (D.19)

clift;ref D 0:010618937712; (D.20)

�pref D 0:11752016697: (D.21)

Using the do-nothing outflow boundary condition (D.15), the reference values for
the drag coefficient and the pressure difference are the same. Only the lift coefficient
is a little bit sensitive to the boundary condition at 
out. A reference value in this case
was found in Nabh (1998) to be

clift;ref D 0:010618948146: (D.22)

ut
Example D.6 (A Steady-State Flow Around a Cylinder at Re D 20 in Three
Dimensions) This problem is an extension of Example D.5 to three dimensions.
It was also defined in Schäfer and Turek (1996). The domain˝ is the channel with
a cylinder shown in Fig. D.6. The height of the channel is H D 0:41m and the
diameter of the cylinder d D 0:1m. There are no external forces such that the right-
hand side of the momentum equation vanishes, i.e., f D 0. The dynamic viscosity
of the fluid is given by � D 10�3 Pa s and its density by � D 1 kg=m3. The inflow
condition is prescribed by

vjin D 1

H4

0
@16Uyz.H � y/.H � z/

0

0

1
A m=s;

with U D 0:45 m=s. Based on 	; d, and the mean inflow

Umean D
R H
0

R H
0
vjin dydzR H

0

R H
0

dydz
D 16 � 0:45

36
D 0:2 m=s;

the flow has the Reynolds number Re D 20.
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outlet

y

x

z

0.1 m

0.45 m

0.15 m

0.16 m
1.95 m

(0,0,0.41)

(0,0.41,0)

inlet

(0,0,0)

Fig. D.6 Example D.6. Domain

With the characteristic length scale L D 1m and the characteristic velocity
scale U D 1 m=s, the non-dimensional steady-state Navier–Stokes equations (6.1)
are derived with 	 D �=.�UL/ D 10�3. At the outlet, either the same boundary
condition as at the inlet can be used or some form of the do-nothing condition.
At all other boundaries, no-slip conditions u D 0 are prescribed. As in the two-
dimensional situation, Example D.5, counter-rotating vortices form behind the
cylinder. Considering a cut plane, e.g., z D 0:41=2, the flow field looks similarly
to the field depicted in Figs. D.4 and D.5.

Quantities of interest are the drag and the lift coefficient at the cylinder and the
pressure difference

�p D p.0:45; 0:2; 0:205/� p.0:55; 0:2; 0:205/: (D.23)

The computation of drag and lift coefficients was discussed in detail in Remark D.2.
Because finite element methods need to approximate the cylinder, the use of volume
integrals should be preferred. However, in this example there is the situation that the
body is attached to the rest of the boundary such that one has to make a compromise
in the definition of the functions wdrag and wlift. For instance, in John (2002), the
function wdrag was defined as finite element function with the same polynomial
degree as the finite element velocity. All degrees of freedom of wdrag on 
body, i.e.,
also the degrees of freedom that are on the connections of the cylinder to the left
and right boundary of the domain in Fig. D.6, were set to wdrag D .1; 0; 0/T and all
other degrees of freedom to wdrag D 0. The same construction was used for wlift
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Table D.1 Example D.6 Coefficient Schäfer and Turek (1996) John (2002)

cdrag Œ6:05; 6:25� 6.1853329

clift Œ0:008; 0:01� 0.0094009839

�p Œ0:165; 0:175� 0.1708

Reference intervals and reference values

with wlift D .0; 1; 0/T for the degrees of freedom on 
body. Then, formulas (D.5)
and (D.8) were used with A D d � H D 0:041m2 and V D Umean, leading
to

cdrag D � 500

0:41

�
.	ru;rwdrag/C n.u;u;wdrag/ � .r � wdrag; p/

�
;

clift D � 500

0:41

�
.	ru;rwlift/C n.u;u;wlift/ � .r � wlift; p/

�
:

Using quadrature rules for the evaluation of cdrag and clift with interior quadrature
points, like Gaussian quadrature, the modification of wdrag and wlift does not enter
directly the numerical quadrature (values at the boundary of mesh cells are not seen
by the quadrature points) and thus the impact of this modification is negligible.
Table D.1 provides reference intervals from Schäfer and Turek (1996) and some
reference values from John (2002).

ut

D.2 Examples for Laminar Time-Dependent Flow Problems

Example D.7 (A Time-Dependent Example with Prescribed Solution in the Unit
Square and with Homogeneous Dirichlet Boundary Conditions) Let ˝ D .0; 1/2.
The prescribed solution of this example is

u D 2� sin.t/

�
sin2.�x/ sin.�y/ cos.�y/

� sin.�x/ cos.�x/ sin2.�y/

�
; p D 20 sin.t/

�
x2y � 1

6

�
;

(D.24)

see Fig. D.7 for a snapshot of the solution. By definition, it is uj
 D 0. For a given
value 	 of the viscosity, the right-hand side f is computed such that (D.24) satisfies
the Navier–Stokes equations (7.1).

This test problem might serve for supporting error estimates. To include the
increasing as well as the decreasing temporal regime in (D.24), the final time should
be chosen to be sufficiently large, e.g., T D 5 as in de Frutos et al. (2016c). ut



D.2 Examples for Laminar Time-Dependent Flow Problems 761

Fig. D.7 Example D.7. Computed solution at t D 1:7

Example D.8 (A Time-Dependent Flow Around a Cylinder at Re D 100with Steady-
State Inflow) This example describes a laminar Kármán vortex street. Its setup
is very similar to Example D.5: the same domain, the same viscosity, the same
boundary conditions at the cylinder, the lower and the upper wall, the do-nothing
boundary condition (D.13) at the outlet, and also f D 0. Only the inflow is five
times as fast as in (D.12), given by

v.0m; y/ D 1

0:412

�
6y.0:41� y/

0

�
m=s; 0m � y � 0:41m: (D.25)

Thus, the characteristic velocity scale and the Reynolds number multiply also with
this factor, compared with Example D.5, and they become Umean D 1 m=s and
Re D 100, respectively. It turns out that the problem does not admit a stable
steady-state solution in this situation, such that one has to consider as model
the time-dependent incompressible Navier–Stokes equations (7.1). Using the same
characteristic scales as in Example D.5 leads to the dimensionless viscosity 	 D
10�3 in (7.1).

Describing an initial condition becomes necessary. There is no analytical
expression for this condition. Instead, one starts a simulation with some initial
condition and one lets the simulation run. Eventually, a Kármán vortex street
develops, which finally turns out to be periodic. Having reached this state, the
computed solution at some discrete time is saved and this solution will be used as
initial condition for further simulations.

Analogously to Example D.5, the drag and lift coefficient at the cylinder and the
pressure difference between the front and the back of the cylinder are quantities of
interest. Similarly to the steady-state problem from Example D.5, it is possible to
derive formulations with volume integrals. The only difference is that one has to
take into account that the momentum equation possesses a term with the temporal
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derivative of the velocity. From (D.5) and (D.8), one obtains

cdrag D �20�.@tu;wdrag/C .	ru;rwdrag/C n.u;u;wdrag/� .r � wdrag; p/
�
;

(D.26)

clift D �20�.@tu;wlift/C .	ru;rwlift/C n.u;u;wlift/� .r � wlift; p/
�
;

(D.27)

where the definitions of wdrag and wlift are given in Example D.5. A way for
approximating the first terms consists in applying a backward difference, e.g.,

.@tu;wdrag/ 
 1

�tnC1
�
.unC1 � un/ ;wdrag

�
:

The pressure drop is computed according to (D.18). Typical evolutions of the drag
coefficient, the lift coefficient, and the pressure drop are depicted in Fig. D.8.

Another functional of interest is the Strouhal number (2.23), which is closely
connected to the length of the period (T� in (2.23) is the length of the period). In

Fig. D.8 Example D.8. Temporal evolution of the quantities of interest
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Table D.2 Example D.8 Coefficient Reference interval

cdrag;max Œ3:22; 3:24�

clift;max Œ0:98; 1:02�

�p.t0;per C Tper=2/ Œ2:46; 2:50�

Strouhal number Œ0:295; 0:305�

Reference intervals from Schäfer and
Turek (1996). Here, t0;per is the start of a
period (maximal value of the lift coeffi-
cient) and Tper is the length of a period

practice, one can compute the length of the period by considering the extrema of
the drag or lift coefficient or the roots of the lift coefficient. Simulating the flow for
a while, one takes the average length of a few subsequent periods.

Table D.2 presents reference intervals for the quantities of interest from Schäfer
and Turek (1996). ut

Example D.9 (A Time-Dependent Flow Around a Cylinder at Re 2 Œ0; 100� with
Time-Dependent Inflow) This example describes the start and the decay of a vortex
shedding. Its setup is almost the same as that of Example D.5. Only the inflow
boundary condition is different. It is given by

v.0m; y/ D sin

�
�t0

8

�
1

0:412

�
6y.0:41� y/

0

�
m=s; (D.28)

with y 2 Œ0; 0:41�m, t0 2 Œ0; 8� s, and the frequency � D � 1=s. One obtains for the
mean inflow in this example

Umean.t
0/ D sin

�
�t0

8

�
1

0:412

R 0:41
0

6y.0:41� y/ dyR 0:41
0

dy
m=s D sin

�
�t0

8

�
m=s:

Based on the diameter of d D 0:1m of the cylinder, the mean inflow, and the
kinematic viscosity �=�, the Reynolds number of this flow 0 � Re.t0/ � 100.
For the boundary conditions at the outlet, one can use either Dirichlet boundary
conditions that correspond to (D.28)

v.2:2m; y/ D sin

�
�t0

8

�
1

0:412

�
6y.0:41� y/

0

�
m=s; (D.29)

y 2 Œ0; 0:41�m, t0 2 Œ0; 8� s, or do-nothing conditions

S.t0/n D �
2�D .v/ .t0/ � P.t0/I

�
n D 0 N=m2 on 
out; t0 2 Œ0; 8� s: (D.30)

The initial condition is set to be v0 D 0 m=s. A visualization of the flow field at
different times is presented in Fig. D.9.
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Fig. D.9 Example D.9. Temporal evolution of the velocity field, snapshots at 2, 4, 5, 6, 7, and 8 s

The inflow condition in dimensionless form is given by

u.0; y/ D sin
	�t

8



0:41�2

�
6y.0:41� y/

0

�
; 0 � y � 0:41; t 2 Œ0; 8�:

Like in Example D.5, quantities of interest are the drag coefficient (D.3), the lift
coefficient (D.6), and the difference of the pressure between the front and the back
of the cylinder

�P.t/ D P.t; .0:15; 0:2//� P.t; .0:25; 0:2//:
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Since the boundary of the circle cannot be represented exactly with a finite element
triangulation, drag and lift should be computed with the area formulas (D.5)
and (D.8) instead with the line formulas (D.4) or (D.7). In these formulas, one takes
U D 1 m=s, L D 1m, A D 0:1m, and V D Umean.4 s/ D 1 m=s. Then, one obtains the
formulas (D.26) and (D.27).

For the quantities of interest, accurate reference curves were computed in John
and Rang (2010), see Fig. D.10. These curves were obtained for the case that the
Dirichlet boundary condition (D.29) at the outlet was applied. Reference values are
provided in Table D.3. ut

Example D.10 (Exponentially Decaying Flows in Two and Three Dimensions,
Beltrami Flows) Let ˝ � R

3 be a domain and consider a family of velocity and

Fig. D.10 Example D.9. Reference curves for the quantities of interest from John and Rang (2010)

Table D.3 Example D.9 Coefficient Value Time

cref
drag;max 2:950918381 3:93625

cref
lift;max 0:47787543 5:69250

�p.8/ref �0:11161567
Reference values from John and Rang
(2010)
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pressure fields

u D �˛ exp
��	�2t�

0
@exp .˛x/ sin .˛y ˙ �z/C exp .˛z/ cos .˛x ˙ �y/

exp .˛y/ sin .˛z ˙ �x/C exp .˛x/ cos .˛y ˙ �z/
exp .˛z/ sin .˛x ˙ �y/C exp .˛y/ cos .˛z ˙ �x/

1
A ;

p D �˛
2

2
exp

��2	�2t� h exp.2˛x/C exp.2˛y/C exp.2˛z/

C2 sin .˛x ˙ �y/ cos .˛z ˙ �x/ exp .˛.y C z// (D.31)

C2 sin .˛y ˙ �z/ cos .˛x ˙ �y/ exp .˛.z C x//

C2 sin .˛z ˙ �x/ cos .˛y ˙ �z/ exp .˛.x C y//
i

C C;

where ˛; � 2 R are user-chosen parameters, see Fig. D.11, and C has to be chosen,
in case of imposing Dirichlet boundary conditions at @˝ , such that the integral
mean of p vanishes. Inserting (D.31) in the Navier–Stokes equations (7.1) reveals
with a direct calculation that f D 0. The derivation of this family of solutions
was performed in Ethier and Steinman (1994). It was based on the following
principles:

• the velocity should be divergence-free,
• the temporal derivative should balance the viscous term @tu � 	�u D 0,
• the convective term can be expressed by the gradient of a scalar function, which

is the negative of the gradient of the pressure, .u � r/u C rp D 0.

A straightforward calculation shows that

r � .r � u/ D 0: (D.32)

Fig. D.11 Example D.10. ˝ D .�1; 1/ � .�1; 1/ � .0; 2/, velocity and pressure at t D 0 for
˛ D �=4 and � D �=2
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Flows with property (D.32) are called Beltrami flows.
A two-dimensional exponentially decaying flow problem in ˝ D .0; �/2 was

already proposed in Taylor (1923)

u D exp
��2	�2t�

�� cos .�x/ sin .�y/
sin .�x/ cos .�y/

�
;

p D �1
4

exp
��4	�2t� Œcos .2�x/C cos .2�y/� :

Numerical studies with a solution of this type can be found, e.g., in Chorin (1968).
ut

Remark D.11 (A Time-Dependent Flow Around a Cylinder in Three Dimensions
at Re 2 Œ0; 100� with Time-Dependent Inflow) A three-dimensional extension
of Example D.9 was also defined in Schäfer and Turek (1996) whose definition
is similar to Example D.6. In comparison with the latter example, the inflow is
time-dependent and in the most part of the time interval it is stronger. However,
in John (2006), it was observed that in the proposed example there is no
vortex shedding. The absence of this feature reduces the interest in using this
example. �

D.3 Examples for Turbulent Flow Problems

Example D.12 (Turbulent Channel Flows) Turbulent channel flow problems are
governed by the dimensionless incompressible Navier–Stokes equations of the form

@tu � 2r � .Re�1
� D.u//C .u � r/ u C rp D f in .0;T� �˝;

r � u D 0 in .0;T� �˝; (D.33)

with f D .1; 0; 0/T . The dimensionless equations (D.33) were derived with the
characteristic scales L D 1m and U D 1 m=s. It follows that the dimensionless
viscosity is Re�1 D 	 D Re�1

� , see Remark 2.19. In addition, one obtains
with (2.23) that the kinematic viscosity of the fluid is 	 D Re�1

�
m2=s.

There are benchmark problems for several values of Re� .

The Turbulent Channel Flow at Re� D 180 The domain of this problem is given by

˝ D .�2�; 2�/ � .0; 2H/�
�

�2
3
�;
2

3
�

�
;

with H D 1 being the channel half width and Re� D 180 being the Reynolds number
based on the channel half width, the kinematic viscosity 	 of the fluid, and the shear
or friction velocity U� , see Remark 8.13. It follows for the friction velocity that
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Re� D U�H

	
H) U� D Re�	

H
D Re�Re�1

�

H
D 1 m=s H) u� D U�

U
D 1:

There are periodic conditions in the streamwise x- and the spanwise z-direction
and no-slip conditions u D 0 at the solid walls at y D 0 and y D 2.

The definition of an initial condition might be based on the known mean velocity
profile Umean.y/ from the data file chan180.means provided in Moser et al.
(1999), see Fig. D.12. This mean velocity profile is interpolated linearly and noise
is added, e.g., in the form as proposed in Gravemeier (2006b),

u1.0I x; y; z/ D Umean.y/C 0:1Ubulk .x; y; z/;

u2.0I x; y; z/ D 0:1Ubulk .x; y; z/; (D.34)

u3.0I x; y; z/ D 0:1Ubulk .x; y; z/:

Here,

Ubulk D 1

H

Z H

0

Umean.y/ dy 
 15:6803; (D.35)

where Umean.y/ was interpolated by a cubic spline for obtaining this value by
numerical integration. As noise often a random function of the form (using C++–
notation)

 .x; y; z/ D 2 rand./

RAND_MAX./
� 1 2 Œ�1; 1�

Fig. D.12 Example D.12.
Mean velocity profile
Umean.y/ for the turbulent
channel flow at Re� D 180

from the data file
chan180.means provided
in Moser et al. (1999)
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Fig. D.13 Example D.12. Snapshot of the velocity computed in a turbulent channel flow problem
with Re� D 180, whole channel (top) and at a cut plane perpendicular to the x-direction (bottom,
plane y D 0 in light gray, z D 2�=3 in dark gray)

is used. Altogether, the initial velocity field (D.34) is obtained by disturbing the
interpolated mean velocity profile Umean.y/ by a random velocity fluctuation of
20% of the bulk velocity Ubulk (10% in negative and 10% in positive direction).
A snapshot of the computed flow field is presented in Fig. D.13. It can be seen that
the flow is in the mean from left to right. The velocity at the cut plan reveals that the
flow is in the mean faster in the interior of the channel than close to the boundary,
which is expected. However, close to the boundary, there are eddies such that also a
flow in the opposite direction occurs.

The Turbulent Channel Flow at Re� D 395 This problem is given in

˝ D .��; �/ � .0; 2/ �
	
��
2
;
�

2



;

again with the solid walls at y D 0 and y D 2 and periodic boundary conditions
at the other boundaries. In the same way as in the case Re� D 180, one finds that
u� D U�=U D 1. With the reference mean velocity from Moser et al. (1999), one
obtains for the bulk velocity Ubulk D 17:5452. The initial condition can be defined
the same way as for Re� D 180.
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Statistics of Interest Let h�it and h�is denote averages in time and in the spatial direc-
tion(s) of homogeneity. These directions are for turbulent channel flow problems the
streamwise x-direction and the spanwise z-direction. Using an equidistant time step,
the average in time, e.g., of the finite element velocity can be computed with the
arithmetic mean

huh.t; x/it D 1

Nt C 1

NtX
nD0

uh.tn; x/;

where Nt is the number of time steps. Likewise, if equidistant grids are used in the
directions of homogeneity, the arithmetic mean can be applied for computing the
spatial average, e.g.,

huh.tn; x; y; z/is D 1

Nx

1

Nz

NxX
iD1

NzX
jD1

uh.tn; xi; y; zj/;

where Nx and Nz are the numbers of degrees of freedom in the x- and z-direction,
respectively.

Statistics of interest include the mean velocity and the Reynolds stresses, which
are defined as the first order averaged quantity

uh
mean.y/ D hhuh.t; x; y; z/isit

and the second order averaged quantities

T
h
ij;mean D hhuh

i uh
j isit � hhuh

i isithhuh
j isit; i; j D 1; 2; 3; (D.36)

see Remark 8.32 for the definition of the Reynolds stress tensor. Concerning the
mean velocity, in particular the first component uh

1;mean.y/ of uh
mean.y/ is of interest.

The definition of the Reynolds stress is not unique in the literature, see the
discussion in John and Roland (2007). It was pointed out in Winckelmans et al.
(2002) that the diagonal Reynolds stresses, i.e., i D j in (D.36), computed with
the solution of turbulent flow simulations cannot be compared with the diagonal
stresses of the turbulent flow field. The reason is that in the turbulence modeling
the trace of the subgrid scale stress tensor is used to define a modified pressure, see
Remark 8.65, and this trace is not available in the simulations. Only, the so-called
rms (root mean squared) turbulence intensities

uh
i;rms D

ˇ̌
ˇ̌
ˇ̌Th

ii;mean � 1

3

3X
jD1

T
h
jj;mean

ˇ̌
ˇ̌
ˇ̌
1=2

i D 1; 2; 3; (D.37)

can be studied directly.
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In addition, it is pointed out in Winckelmans et al. (2002) that for the second
order statistics (D.36) and (D.37), a contribution from the used turbulence model
should be included. For some turbulence models, this contribution is rather easy to
identify and to implement, e.g., for the Smagorinsky model from (8.62) and (8.66),
see also John and Roland (2007). However, there are turbulence models where the
inclusion of their contribution is difficult.

Aspects of the Discretization In simulations, usually uniform grids are used in x-
and z-direction and graded grids in the wall-normal direction (y-direction), which
become finer towards the walls, e.g., see Gravemeier (2006a,b) for two proposals.
The length of the (equidistant) time step has to be chosen sufficiently small to
resolve the temporal dynamics of the flow. Studies in Choi and Moin (1994) suggest
to choose

�tC D u�Re��t � 0:4: (D.38)

An Aspect of Finite Element Simulations Since the flow is incompressible, the
bulk velocity should be constant during the simulation. However, finite element
functions are in general not weakly divergence-free, but only discretely divergence-
free. Thus, a finite element discretization cannot be expected to lead automatically
to a conservation of the bulk velocity, which corresponds to the conservation of
mass. A possibility to account for the difference of the computed bulk velocity
and (D.35) consists in a dynamical adjustment of the right-hand side of the Navier–
Stokes equations as proposed in John and Roland (2007). The flow is driven by a
pressure gradient. Let Ubulk;sim.tn/ be the bulk velocity of the computed solution at
time tn. Then, the right-hand side of the Navier–Stokes equations (D.33) at tnC1 is
defined by

f D
0
@ 10
0

1
AC 1

�tn

0
@Ubulk � Ubulk;sim.tn/

0

0

1
A ; (D.39)

where �tn is the length of the time step. Note that for quantities with physical
dimensions, the correction term in (D.39) possesses the correct physical unit. Thus,
if Ubulk;sim.tn/ < Ubulk, the flow will be accelerated which leads to an increase of
the bulk velocity of the computed solution. In the case Ubulk;sim.tn/ > Ubulk, the
forcing becomes smaller than 1 and Ubulk;sim becomes smaller in the next discrete
time.

It is reported in John and Roland (2007) that if the dynamical adjustment
of the driving force (D.39) is not applied, as well an increase as a decrease of
the bulk velocity of the computed solution could be observed, depending on the
turbulence model. Using (D.39), the bulk velocity still showed some oscillations
but they stayed always close (differences in general less than 1%) to the value given
in (D.35). �
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0.1
0.1

1.4

0.65

0.45

2.5(0,0)

Fig. D.14 Example D.13. Cross section (x-y plane) of the domain (all length in m), the height of
the channel is H D 0:4m

Example D.13 (A Turbulent Flow Around a Cylinder with Square-Shaped Cross
Section at Re D 22000) This example, describing a channel flow around an
obstacle, was defined in Rodi et al. (1997). Even if the obstacle is actually a column,
it is usually called a cylinder in the literature. Figure D.14 presents a sketch of the
cross section of the flow domain, where the height of the channel is H D 0:4m. The
inflow is prescribed by

u.t; 0; y; z/ D
0
@1C 0:04 rand

0

0

1
A ; (D.40)

where rand is a random function with values in Œ�0:5; 0:5�. The noise in the inflow
serves to stimulate the turbulence. No-slip boundary conditions are prescribed at
the column. Outflow boundary conditions (2.37) are set at x D 2:5m. On all other
boundaries, free slip conditions (2.34) are used. Since the initial condition is not
known, one starts the simulations with some condition, e.g., the interpolation of the
inlet condition at the initial time into the domain, and performs the simulations until
the flow has been developed, before the statistics of interest are computed. There are
no external forces acting on the flow. This example describes a statistically periodic
flow, see Fig. D.15 for a snapshot.

The Reynolds number of the flow, based on the mean inflow U D 1 m=s, the
side length of the cylinder D D 0:1m, and the viscosity 	 D 1=220000 m2=s is
Re D UD=	 D 22000.

As usual for flows around bodies, one is interested in the drag and the lift
coefficient. These coefficients can be computed as volume integrals, see (D.5)
and (D.8) for the formulas with dimensionless quantities. For this example, the
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Fig. D.15 Example D.13. Snapshot of isosurfaces of the velocity magnitude kuk2 (left) and the
third component of r � u, see (3.151), (right). The vortex shedding behind the cylinder is clearly
visible

parameters in these formulas are

L D 1m; V D U; A D DH; wdrag D
0
@10
0

1
A ; wlift D

0
@01
0

1
A :

At the connections of the cylinder and the free slip boundaries, the vectors wdrag and
wlift should be set as described in Example D.6. The Strouhal number is defined by

St D DU

T
;

where T is the average length of a period. Quantities of interest are the Strouhal
number, time-averaged drag and lift coefficients, cdrag and clift, and root mean
squared (rms) values for cdrag, clift, which are defined by

cdrag;rms D
 
1

Nt

NtX
nD1

�
cdrag.tn/ � cdrag

�2
!1=2

;

clift;rms D
 
1

Nt

NtX
nD1

.clift.tn/ � clift/
2

!1=2
;

where the summation covers all discrete times in the time interval for which
cdrag; clift are computed. Some experimental values are provided in Rodi et al. (1997)

cdrag 2 Œ1:9; 2:1�; cdrag;rms 2 Œ0:1; 0:2�; clift;rms 2 Œ0:7; 1:4�; St D 0:132:

Because of the statistically periodic vortex shedding, it is clift D 0. ut
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Example D.14 (A Turbulent Flow Around a Wall-Mounted Cube at Re D 40000) In
this example, the fluid flows not only around a body but also across that body. It is
defined, e.g., in Hoffman (2005), Hoffman and Johnson (2006). An example of this
type was also proposed in Rodi et al. (1997). The bottom of the domain, at z D 0, is
sketched in Fig. D.16. The height of the cube is H and the height of the channel 2H.
In Hoffman (2005), Hoffman and Johnson (2006), simulations for H D 0:1m were
presented.

There are no body forces in this example, i.e., f D 0. In Table D.4, nodal
values of the mean velocity in streamwise direction are provided. To obtain an inlet
condition for simulations, these values can be interpolated to the degrees of freedom
on the inlet boundary and some noise can be added. In this way, one obtains an inlet
condition of form (D.40) with 1 replaced by the interpolation of u1;mean and possibly

15H

3H

7H 3.5H
H

H

Fig. D.16 Example D.14. Bottom plane z D 0 of the domain

Table D.4 Example D.14

Point u1;mean Point u1;mean Point u1;mean Point u1;mean

0 0

1 0:2166 17 1:0315 33 1:0930 49 1:0083

2 0:6292 18 1:0461 34 1:0928 50 0:9871

3 0:6926 19 1:0587 35 1:0924 51 0:9654

4 0:7307 20 1:0661 36 1:0921 52 0:9445

5 0:7671 21 1:0723 37 1:0911 53 0:9229

6 0:7941 22 1:0770 38 1:0898 54 0:9029

7 0:8191 23 1:0813 39 1:0885 55 0:8814

8 0:8466 24 1:0843 40 1:0869 56 0:8622

9 0:8716 25 1:0868 41 1:0835 57 0:8360

10 0:8931 26 1:0890 42 1:0796 58 0:8091

11 0:9168 27 1:0890 43 1:0747 59 0:7851

12 0:9367 28 1:0890 44 1:0679 60 0:7582

13 0:9586 29 1:0890 45 1:0606 61 0:7199

14 0:9787 30 1:0900 46 1:0527 62 0:6857

15 0:9986 31 1:0930 47 1:0388 63 0:4141

16 1:0153 32 1:0930 48 1:0222 64 0

Mean values for the inlet condition at 65 equally distributed points (from J. Hoffman, personal
communication), point 0 corresponds to z D 0, point 64 corresponds to z D 2H
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Fig. D.17 Example D.14. Snapshot of the velocity magnitude kuk2 in the cut planes z D H (top)
and y D 3:5H (bottom)

with some other factor in front of the random term (the simulations for Fig. D.17
were performed with the factor 0:1). There are no-slip boundary conditions at
the cube, the lower, and the upper boundary. On the lateral boundaries, free slip
conditions (2.34) are prescribed. At the outflow, the do-nothing condition (2.37) can
be used.

An initial condition is not known. One can start the simulations by interpolating
the inflow condition at the initial time into the domain, setting the no-slip boundary
conditions at all boundaries that are equipped with these conditions, and letting the
simulations run until the flow field is developed. In Hoffman (2005), Hoffman and
Johnson (2006), it can be seen that this state is reached after 3–5 s.

The mean inlet velocity is around 1 m=s. Thus, taking as characteristic scales
for defining the Reynolds number U D 1 m=s, H D 0:1m and considering a fluid
with kinematic viscosity 	 D 2:5 � 10�6 m2=s leads to Re D 40000. Hence, the
flow is turbulent. Deriving the dimensionless Navier–Stokes equations (7.1) with
the characteristic scales U D 1 m=s and L D 1m gives the dimensionless viscosity
	 D 1=400000 in (7.1). A snapshot of a simulation of the flow field is depicted in
Fig. D.17.

In Hoffman (2005), Hoffman and Johnson (2006), the mean drag coefficient
at the cube was in the focus of the numerical studies. Adaptively refined grids
were used and the SUPG stabilization was applied, see the last term of (5.34)
with @tu to be added in the residual, which gives a so-called implicit LES model.
The adaptive refinement was controlled with a DWR approach, compare Sect. 6.4.
Having applied the time averaging in an interval of 4 s, the time-averaged drag
coefficient cdrag 
 1:5 was obtained. The flow turns out to be statistically periodic
such that clift D 0. For evaluating the drag and lift coefficient, formulas (D.5)
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and (D.8) can be used with

L D 1m; V D U; A D H2; wdrag D
0
@10
0

1
A ; wlift D

0
@01
0

1
A :

The boundary of the body is attached to the boundary of the channel. Thus, in the
actual definitions of wdrag and wlift, one has to use a modification compared with
Remark D.2, e.g., the modification that is described in Example D.6. ut
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