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1

SIMPLIFIED MODELS OF FLUID FLOW

Quantitative behaviour of moving fluids:

• measurements (wind tunnels): time consuming, expensive

• mathematical and computer modelling

PDE’s describing the flow:

• quantitative research (uniqueness of a solution)

• numerical simulation (they constitute CFD (=Computation Fluid Dynam-
ics)

The goal of CFD is to simulate the flow with the aid of numerical methods and
computers in order to obtain results comparable with measurements.

1.1 Visualization of flow on the basis of computations

Isolines: curves on which a given quantity attains constant values.
Streamlines: such curves that at each point the tangent is parallel to the velocity
vector.
Velocity vectors: arrows with direction of the velocity and length proportional
to the magnitude of the velocity.

1.2 Basic equations

We shall assume that quantities describing the flow are suffciently smooth.

Continuity equation:
∂ρ

∂t
+ div (ρ~v) = 0 (1.2.1)

in M = {(x, t) : x ∈ Ωt, t ∈ (0, T )}.
Navier-Stokes equations of motion:

∂ (ρvi)

∂t
+ div (ρ~vvi) = ρfi −

∂p

∂xi

+
∂

∂xi

(λdiv~v) +

+

3∑

j=1

∂

∂xj

{

µ

(
∂vi

∂xj

+
∂vj

∂xi

)}

, (1.2.2)

i = 1, 2, 3, where λ, µ are viscosity coefficients. We assume that µ > 0 and usually
set 3λ + 2µ = 0.
Energy equation: is not needed in the case of incompressible fluids (our case).
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2 SIMPLIFIED MODELS OF FLUID FLOW

Simplification:
a) The fluid is incompressible: ρ = const > 0.

Assumption: ~v, p and all functions we use are sufficiently smooth.
Then (1.2.1) is equivalent to

div~v = 0 in M (1.2.3)

and (1.2.3) is equivalent to

∂vi

∂t
+ div (vi~v) = fi −

1

ρ

∂p

∂xi

+ 0 +

3∑

j=1

∂

∂xj

{
µ

ρ

(
∂vi

∂xj

+
∂vj

∂xi

)}

︸ ︷︷ ︸

(∗)

. (1.2.4)

We call µ dynamical viscosity and ν := µ
ρ

kinematical viscosity.

b) Further assumption: Let µ = const ⇒ ν = const.
Then term in (∗) takes the form:

ν

3∑

j=1

∂2vi

∂x2
j

+ ν

3∑

j=1

∂2vj

∂xi∂xj

= ν∆vi + ν
∂

∂xi

div~v
︸︷︷︸

=0

.

We know that

div (vi~v) = vidiv~v + (~v · ∇)vi = (~v · ∇)vi,

and thus equation (1.2.4) can be written as

∂vi

∂t
+ (~v · ∇)vi = fi −

1

ρ

∂p

∂xi

+ ν∆vi. (1.2.5)

The vector form of equations (1.2.5)

∂~v

∂t
+ (~v · ∇)~v = ~f −

1

ρ
∇p + ν∆~v. (1.2.6)

Together with

div~v = 0 in M,

we have a complete system: four equations for four unknows v1, v2, v3 and p .

1.3 Initial conditions

~v(~x, 0) = ~v0(~x), ~x ∈ Ω0. (1.3.7)



BOUNDARY CONDITIONS 3

1.4 Boundary conditions

Boundary conditions are based on the fact that viscous fluid adheres to walls.
Therefore, ~v = 0 on fixed impermeable walls.
This condition is generalized so that we set

~v = ~g, (1.4.8)

where ~g is a given vector function on ∂Ωt, t ∈ (0, T ).
Sometimes we need ’softer’ boundary conditions for the outlet:

−(p − pref )~n +
∂~v

∂~n
= 0 at outlet, (1.4.9)

where ~n is unit outler normal to ∂Ωt, pref is a prescribed pressure at outlet
(e.g. atmospheric pressure).

1.5 Incompressible Navier-Stokes problem

Let the following data be prescribed: ~f : M → R, ρ > 0, ρ = const, ν > 0, ν =
const, ~v0, ~g. Find ~v, p such that

• ∂~v
∂t

+ (~v · ∇)~v = ~f − ∇p
ρ

+ ν∆~v in M = {(x, t) : x ∈ Ωt, t ∈ (0, T )},

• div~v = 0 in M.

• Conditions (1.3.7) and (1.4.8) are satisfied.

Example 1 Flow past an airfoil in a wind tunnel.

1.6 Euler equations of motion

Often 0 < ν << 1. For example, ν = 1.007 · 10−6 for water at 20◦C and ν =
1.5·10−5 for air at 20◦C. Therefore, we set ν = 0. Then we get the Euler equations
(E.E.)

∂~v

∂t
+ (~v · ∇)~v = ~f −

1

ρ
∇p in M. (1.6.10)

They are considered together with the continuity equation (C.E.):

div~v = 0. (1.6.11)

This system is equipped with the initial condition (1.3.7).
Boundary conditions:
On impermeable fixed wall:

~v · ~n = 0,

where ~n is unit outer normal to ∂Ω.
On inlet/outlet:

~v · ~n = ϕ,

where ϕ is a given function on ∂Ω. Thus, we can consider the condition

~v · ~n = ϕ (1.6.12)

on the whole boundary.
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1.7 Stationary flow

All quantities describing the flow are time independent ( ∂
∂t

= 0): ~v = ~v(x), p =

p(x), ~f = ~f(x) and the domain occupied by the fluid is time independent: Ωt = Ω.
Model describing stationary inviscid incompressible flow:

(E.E.) (~v · ∇)~v = ~f −
∇p

ρ
in Ω, (1.7.13)

(C.E.) div~v = 0 in Ω. (1.7.14)

To this system we add the boundary condition (1.6.12).

1.8 Irrotational flow

rot~v = 0 in Ω. (1.8.15)

Physical meaning of rot~v = 0 : very small fluid volumes move so that they are
translated, deformed but do not rotate.

Simplification of the E.E. under rot~v = 0:

Lemma 1 Let ~v ∈ C1(Ω). Then

(~v · ∇)~v =

3∑

j=1

vj

∂~v

∂xj

=
1

2
∇|~v|2 − ~v × rot~v in Ω.

Proof (homework) rewrite equation in components.

Definition 1 We say that the field ~f : Ω → R
N is potential if there exists

U ∈ C1(Ω) such that
~f = gradU.

Theorem 1 (Bernoulli’s equation) Let ~v ∈ C1(Ω), p ∈ C1(Ω) satisfy (1.7.13)
and rot~v = 0 in a domain Ω. Let us assume that such U ∈ C1(Ω) exists that
~f = gradU in Ω. Then

p

ρ
+

1

2
|~v|2 − U = const in Ω. (1.8.16)

Proof If rot~v = 0, then ~v and p satisfy:

(E.E.) ⇔
1

2
∇|~v|2 − ~v × rot~v = ∇U −

∇p

ρ

⇔ ∇

(
p

ρ
+

1

2
|~v|2 − U

)

= 0 in Ω

⇔
p

ρ
+

1

2
|~v|2 − U = const in Ω.



MATHEMATICAL FORMULATION OF STATIONARY INVISCID IRROTATIONAL FLOW5

Remark 1.1 1. If the axis x3 is perpendicular to the Earth, then the gravity
force is ~f = (0, 0,−g) and the potential has the form U = −gx3, where g
is a gravity constant.

2. If U ≡ 0, then ~f = 0. In this case it follows from (B.E.) that for |~v| large
the pressure p is small and for |~v| small p is large.

3. From (B.E.) we can expres p as a function of |~v|2 and U .

4. The constant in (B.E.) can be determined on the basis of given |~v|2, p and
U at a fixed point.

1.9 Mathematical formulation of stationary inviscid irrotational
flow

Now we consider stationary inviscid incompressible and irrotational flow (I.F.).
We consider the problem to find ~v and p such that ~v ∈ C1(Ω)∩C(Ω), p ∈ C1(Ω)
and

div~v = 0 in Ω,

rot~v = 0 in Ω,

p = ρ

(

const −
1

2
|~v|2 + U

)

in Ω,

~v · ~n = ϕ on ∂Ω.

Definition 2 We say that Φ : Ω → R is a velocity potential, if Φ ∈ C2(Ω) and
~v = grad Φ in Ω.

Lemma 2 Let Φ be a potential to ~v in Ω. Then rot~v = 0.

Proof Components of rot~v

∂vi

∂xj

−
∂vj

∂xi

=
∂2Φ

∂xj∂xi

−
∂2Φ

∂xi∂xj

= 0,

in Ω, since Φ ∈ C2(Ω).

1.9.1 Transformation of the problem for ~v with the aid of the velocity potential
Φ

Let us assume that the velocity potential Φ to ~v exists. (Then rot~v = 0).
From (C.E.) we have

0 = div~v = div (∇Φ) = ∆Φ in Ω.

From the boundary condition we have

ϕ = ~v · ~n = ∇Φ · ~n ≡
∂Φ

∂~n
on ∂Ω.
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We are interested in the question, whether the following implication holds:
~v ∈ C1(Ω), rot~v = 0 in Ω =⇒ there exists Φ ∈ C2(Ω) such that ∇Φ = ~v in Ω.

Definition 3 1. We say that ϕ is a curve (in Ω), if ϕ : [a, b] → Ω ([a, b] is a
closed interval) and ϕ is continuous.

2. A curve ϕ : [a, b] → Ω is smooth, if ϕ ∈ C1([a, b]) and ϕ′(τ) 6= 0 for all
τ ∈ [a, b].

3. A curve ϕ : [a, b] → Ω is piecewise smooth, if there exists a partition
a = a0 < a1 < . . . < an = b such that ϕ|[ai,ai+1] is a smooth curve for all
i = 1, 2, . . . , n − 1.

4. A curve ϕ : [a, b] → Ω is piecewise linear, if there exists a partition a =
a0 < a1 < . . . < an = b, if the mapping τ ∈ [ai, ai+1] → ϕ(τ) is linear for
all i = 1, 2, . . . , n − 1.

A curve ϕ : [a, b] → Ω is closed, if ϕ(a) = ϕ(b).
i.p. ϕ = initial point of ϕ = ϕ(a), t.p. ϕ = terminal point of ϕ = ϕ(b).
Geometric image of ϕ

〈ϕ〉 = {ϕ(τ) : τ ∈ [a, b]} .

Unit tangent to ϕ at the point ϕ(τ): ~t(τ) = ϕ′(τ)
|ϕ′(τ)| .

Element of ϕ: ds = |ϕ′(τ)| dτ , so ~tds = ϕ′(τ)dτ .

Definition 4 We say that a domain Ω ⊂ R
3 is simply connected, if for each

smooth closed curve ϕ : [a, b] → Ω there exist a mapping H : [a, b] × [0, 1] → Ω,
H ∈ C1([a, b] × [0, 1]) and a point g ∈ Ω such that

H(a, s) = H(b, s) ∀s ∈ [0, 1],

H(τ, 0) = ϕ(τ) ∀τ ∈ [a, b],

H(τ, 1) = g ∀τ ∈ [a, b].

Simply, each smooth closed curve in Ω can be smoothly transformed in Ω to a
point.

Definition 5 We say that a domain Ω ⊂ R
2 is simply connected, if R

2−Ω does
not contain any bounded component.

Example 2 R
2 is simply connected. Circle is simply connected. In general, any

convex set is simply connected.

Definition 6 Let Ω ⊂ R
N , ~v : Ω → R

N , ~v ∈ C(Ω) and let ϕ : [a, b] → Ω be a
piecewise smooth curve. Then we define the circulation of ~v along ϕ

γ =

∫

ϕ

~v · ~t ds =

∫ b

a

~v(ϕ(τ)) · ϕ′(τ) dτ. (1.9.17)
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Theorem 2 Let ~v : Ω → R
N , ~v ∈ C1(Ω)(N = 2 or 3). Then there exists a

potential Φ in Ω to ~v if and only if

∫

ϕ

~v · ~t ds = 0 (1.9.18)

for arbitrary piecewise linear closed curve ϕ in Ω.

Proof Let, e.g. N = 3.
a) Let (1.9.18) be valid. We prove that there exists Φ ∈ C2(Ω) such that ∇Φ = ~v
in Ω. Let x0 ∈ Ω be arbitrary fixed, Φ(x0) ∈ R arbitrary fixed. Then we set

Φ(x) = Φ(x0) +

∫

ϕ(x0,x)

~v · ~t dS, x ∈ Ω,

where ϕ(x0, x) is a piecewise linear curve in Ω with i.p.ϕ(x0, x) = x0 and
t.p.ϕ(x0, x) = x.
(i) Now we prove that the above integral is independent of the choice of ϕ(x0, x).
Let us consider two piecewise linear curves ϕi = ϕi(x0, x), i = 1, 2, in Ω. Then
ϕ1 − ϕ2 is a closed piecewise linear curve in Ω and, in view of (1.9.18),

∫

ϕ1

~v · ~t dS −

∫

ϕ2

~v · ~t dS =

∫

ϕ1−ϕ2

~v · ~t dS = 0 (1.9.18).

(ii) Further, we shall show that ∇Φ(x) = ~v for each x ∈ Ω. Let us prove, e.g.
∂Φ
∂x1

(x) = v1(x) for all x ∈ Ω. Let x = (x1, x2, x3). Then x(h) = (x1 +h, x2, x3) ∈
Ω, if h is sufficiently small. We have

∂Φ

∂x1
(x) = lim

h→0

Φ(x1 + h, x2, x3) − Φ(x1, x2, x3)

h
, (1.9.19)

where Φ(x) = Φ(x0) +
∫

ϕ(x0,x))
~v · ~t dS.

It is clear that

Φ(x(h)) = Φ(x) +

∫ x1+h

x1

v1(ξ, x2, x3)dξ.

If we make the substitution h = s − x1, (1.9.19) takes the form

∂Φ(x)

∂x1
= lim

s→x1

∫ s

x1
v1(ξ, x2, x3)dξ −

∫ x1

x1
v1(ξ, x2, x3)dξ

s − x1
= lim

s→x1

F (s) − F (x1)

s − x1
,

= F ′(x1),

where F (s) =
∫ s

x1
v1(ξ, x2, x3)dξ. This and the relation F ′(x1) = v1(x1, x2, x3) =

v1(x) imply that ∂Φ(x)
∂x1

= v1(x) for all x ∈ Ω.

Of course, if ~v ∈ C1(Ω) and ∇Φ = ~v, then Φ ∈ C2(Ω).
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b) Let Φ ∈ C2(Ω) and ∇Φ = ~v in Ω. We prove that
∫

ϕ
~v · ~t dS = 0 for any

piecewise linear closed curve ϕ in Ω. For such ϕ we have

∫

ϕ

~v · ~t dS =

∫ b

a

~v(ϕ(τ)) · ϕ′(τ) dτ =

∫ b

a

(∇Φ)(ϕ(τ)) · ϕ′(τ) dτ =

=

∫ b

a

d

dτ
(Φ(ϕ(τ))) dτ = Φ(ϕ(b)) − Φ(ϕ(a)) = 0.

This completes the proof.

Theorem 3 Let Ω ⊂ R
3 be a simply connected domain, ~v ∈ C1(Ω), rot~v = 0 in

Ω. Then there exists a potential Φ to ~v in Ω.

Proof See, e.g., Feistauer: Mathematicals Method in Fluid Dynamics, Longman
1993.

Similar theorem for Ω ⊂ R
2 will be proven in the next section.

Remark 1.2 If Ω is not simply connected, then it may happen that Φ does not
exist.



2

2D MODEL OF FLOW

We speak about 2D flow, if Cartesian coordinates x1, x2, x3 can be chosen in
such a way that the domain occupied by fluid can be expressed in the form
Ω3 = Ω × (0, L), Ω ⊂ R

2, L > 0, the functions ~v and p depend on x1, x2 only
(

∂
∂x3

≡ 0
)

and v3 ≡ 0. Thus,

~v = ~v(x) = ~v(x1, x2) = (v1(x1, x2), v2(x1, x2)),

p = p(x) = p(x1, x2) for all x = (x1, x2) ∈ Ω.

Notice that

div~v =
∂v1

∂x1
+

∂v2

∂x2

and

rot~v =

(

0, 0,
∂v2

∂x1
−

∂v1

∂x2

)

.

Therefore, a 2D stationary irrotational incompressible flow is described by the
equations

∂v1

∂x1
+

∂v2

∂x2
= 0 in Ω, (2.0.1)

∂v2

∂x1
−

∂v1

∂x2
= 0 in Ω. (2.0.2)

and Bernoulli’s equation.

2.1 Velocity potential in 2D

Theorem 4 Let ~v ∈ C1(Ω), Ω ⊂ R
2 be a simply connected domain and

∂v1

∂x2
−

∂v2

∂x1
= 0 in Ω. (2.1.3)

Then there exists a potential Φ to ~v in Ω (i.e. Φ ∈ C2(Ω), ∇Φ = ~v in Ω).

Proof It is enough to show that

∫

ϕ

~v · ~t dS = 0

for all piecewise linear closed curves ϕ in Ω. It is clear that

9



10 2D MODEL OF FLOW

∫

ϕ

=

n∑

i=1

∫

ϕi

,

where ϕi are piecewise linear closed simple curves for all i = 1, 2, . . . , n. (Note
that a curve ϑ is a simple closed curve if ϑ : [a, b] → R

2 and ϑ(t) 6= ϑ(t′) for all
t, t′ ∈ [a, b], t 6= t′, |t − t′| < b− a.) Thus, R

2 −〈ϕi〉 has exactly two components.
One is bounded (denoted as Int ϕi = interior of ϕi)) and second one is unbounded
(Ext ϕi = exterior of ϕi). Since Ω is simply connected, we have Int ϕi ⊂ Ω. From
the condition

∂v1

∂x2
−

∂v2

∂x1
= 0

in Ω, by Green’s theorem we have

0 =

∫

Int ϕi

(
∂v1

∂x2
−

∂v2

∂x1

)

dx =

∫

∂(Int ϕi)

(v1n2 − v2n1)dS,

where ~n = (n1, n2) is the unit outer normal to ∂(Int ϕi). Then

∫

∂(Int ϕi)

(v1n2 − v2n1)dS = ±

∫

ϕi

(v1t1 + v2t2)dS = ±

∫

ϕi

~v · ~t dS,

where ~t = (t1, t2) = (n2,−n1) is unit tangent. This implies that

∫

ϕ

~v · ~t dS =
r∑

i=1

∫

ϕi

~v · ~t dS = 0,

what we wanted to prove.

Example 3 Flow in a 2D channel: Find ~v ∈ C1(Ω) ∩ C(Ω):

• ∂v1

∂x1
+ ∂v2

∂x2
= 0 in Ω,

• ∂v1

∂x2
− ∂v2

∂x1
= 0 in Ω,

• ~v · ~n|∂Ω = g.

Then there exist a potential Φ to ~v: ∇Φ = ~v.
The problem for ~v is equivalent to find Φ ∈ C2(Ω) ∩ C1(Ω) such that

• ∆Φ = 0 in Ω,

• ∂Φ
∂~n

|∂Ω = g.
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Remark 2.1 The necessary condition on g: Let ~v satisfy the continuity
equation. Then

0 =

∫

Ω

(
∂v1

∂x1
+

∂v2

∂x2

)

dx
Green

=

∫

∂Ω

(v1n1 + v2n2) dS

=

∫

∂Ω

~v · ~n dS =

∫

∂Ω

g dS.

The equation ∫

∂Ω

g dS = 0 (2.1.4)

means that flux through ∂Ω is zero.

2.2 Modelling of flow past a profile (airfoil)

This is important in the desing of airplane wings. Profile or airfoil means a
plane cut through a wing.

Mathematical interpretation: Profile C0 is the geometric image of a simple
closed negatively oriented curve ϕ in R

2, smooth with exception of at most one
point (lying at the backward side with respect to the flow direction).

Mathematical formulation of the flow past an airfoil
Let ~v∞ be given, Ω = Extϕ, C0 = 〈ϕ〉 = ∂Ω. Find ~v ∈ C1(Ω) ∩ C(Ω) such that

• ∂v1

∂x1
+ ∂v2

∂x2
= 0 in Ω,

• ∂v1

∂x2
− ∂v2

∂x1
= 0 in Ω,

• ~v · ~n|C0
= 0 (or ~v · ~n = 0 on C0),

• lim|x|→∞ ~v(x) = ~v∞.

Question: Does the velocity potential exist in Ω?
In general it does not exist because the domain Ω is not simply connected!

2.3 Velocity potential

We cut R
2 by a half line Σ starting from C0 and going to ∞. Then the domain

Ω̃ = Ω − Σ is simply connected, because R
2 − Ω̃ does not contain any bounded

component. Then there exists Φ in Ω̃ such that Φ ∈ C2(Ω̃) ∩ C1(Ω̃ ∪ C0) and
∇Φ = ~v in Ω̃.

Let x0 ∈ Ω̃ and Φ(x0) ∈ R be fixed. Then for arbitrary x ∈ Ω̃ we can write

Φ(x) = Φ(x0) +

∫

ϕ(x0,x)

~v · ~t dS, (2.3.5)

where ϕ(x0, x) is a piecewise linear curve in Ω̃, i.p.ϕ(x0, x) = x0, t.p.ϕ(x0, x) = x.
If x ∈ Σ, let U(x) be a sufficiently small neighbourhood of x. Then U(x)−Σ has
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C−
0

C+
0

ϕ̃

x0

ϕ(x0, x
+)

Ω∗∗

ϕ(x0, x
−)

Ω∗

ϕ∗

x+

x− Σ

Fig. 2.3.1. Curves ϕ− and ϕ+

exactly two components U−(x) and U+(x) and, thus, U(x)−Σ = U+(x)∪U−(x).
Question: Does exist limy→x∈Σ,y∈U±(x) Φ(y) ?
We have

• Φ|U±(x) is defined,

• ∇Φ|U±(x) = ~v, ~v ∈ C1(Ω).

Since ~v is bounded in U±(x), then ∇Φ|U±(x) is also bounded and thus, Φ|U±(x)

is Lipschitz-continuous. This implies that Φ can be extended from U±(x) con-
tinously to x ∈ Σ. By a similar arguments we can show that there exists
limy→x ∇Φ(x).

Since ∇Φ = ~v in Ω̃ and ~v ∈ C1(Ω) we have

• Φ ∈ C2(Ω̃) ∩ C1(Ω̃ ∪ C0),

• limy→x,y∈U±(x) Φ(y) ≡ Φ(x±) for x ∈ Σ,

• limy→x,y∈U±(x) ∇Φ(y) ≡ ∇Φ(x±) = ~v(x) for x ∈ Σ,

• Φ(x+) − Φ(x−) = γ, where γ is the velocity circulation along C0.

Proof of the last relation: Let us consider closed curves

ϕ− ≡ ϕ(x0, x
−) ⊕ ϕ⋆ ⊕ C−

0 ⊕ ϕ̃ ≡ boundary of Ω⋆,

ϕ+ ≡ ϕ(x0, x
+) ⊕ ϕ⋆ ⊖ C+

0 ⊕ ϕ̃ ≡ boundary of Ω⋆⋆.

shown in Figure 2.3.1.
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We have ∂v1

∂x2
− ∂v2

∂x1
= 0 in Ω⋆ ∪ Ω⋆⋆. Then, using Green’s theorem, we find

that

0 =

∫

Ω⋆∪Ω⋆⋆

(
∂v1

∂x2
−

∂v2

∂x1

)

dx =

∫

ϕ+

~v · ~t dS −

∫

ϕ−

~v · ~t dS

=

∫

ϕ̃

−

∫

C+

0

+

∫

ϕ⋆

−

∫

ϕ̃

−

∫

C−

0

−

∫

ϕ⋆

= (Φ(x+) − Φ(x0)) − (Φ(x−) − Φ(x0)).

This implies that

0 = Φ(x+) − Φ(x−) −

∫

C0

~v · ~t dS.

Hence,

γ =

∫

C0

~v · ~t dS = Φ(x+) − Φ(x−)

.
If ~v ∈ C(Ω) (~v is continuous across Σ) and x ∈ Σ, then

• ~v(x+) = ~v(x−),

• ~v(x+) · ~n = ~v(x−) · ~n with a unit normal ~n to Σ,

• ~v(x+) · ~t = ~v(x−) · ~t with a unit tangent ~t to Σ

We note that ~v(x±) · ~n = ∂Φ
∂~n

(x±) and ~v(x±) · ~t = ∂Φ
∂~t

(x±).

2.4 Problem for the velocity potential

Let a profile C0, v∞ ∈ R
2, γ ∈ R be given. Find Φ ∈ C2(Ω̃) ∩ C1(Ω̃ ∪ C0) such

that

• Φ, ∂Φ
∂xi

, ∂2Φ
∂xi∂xj

have one-sides limits on Σ,

• ∆Φ = 0 in Ω̃,

• ∂Φ
∂~n

= 0 on C0,

• ∂Φ
∂~n

(x+) = ∂Φ
∂~n

(x−) for all x ∈ Σ,

• Φ(x+) − Φ(x−) = γ for all x ∈ Σ,

• lim|x|→∞ ∇Φ(x) = ~v∞.

Remark 2.2 The fact that the domains Ω and Ω̃ are unbounded causes problems
in the numerical solutions. Therefore, in the numerical simulation, Ω or Ω̃ are
replaced by a bounded sufficiently large domain with an artificial outer boundary
Γ∞.
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2.5 Force acting on the profile

Let ~n be the unit outer normal to ∂Ω = C0 (pointing into the profile). If we
neglect the gravity force, then the force acting on C0 is

~F =

∫

C0

p~n dS. (2.5.6)

We shall use Bernoulli’s equation

p = ρ(const −
1

2
|v|2).

Theorem 2.3 (Chaplygin) Let us consider inviscid, incompressible and irro-
tational stacionary flow past a profile C0 (= closed simple negatively oriented

curve), Ω = ExtC0, ~v ∈ C1(Ω) ∩ C(Ω ∪ C0) (= velocity of the fluid with the
far field velocity ~v∞), velocity circulation γ along C0 and we denote by ρ (=
const> 0) the density of the fluid. Then the force acting on C0 has the form

~F = γρ |~v∞| (− sin Θ∞, cos Θ∞), (2.5.7)

where Θ∞ is the angle of attack (~v∞ = |~v∞| (cos Θ∞, sin Θ∞)).

Remark 2.4 ~F⊥~v∞. Let Θ∞ ∈ (−π
2 , π

2 ). The airplane flies, if F2 > 0 ⇔ γ > 0.

Proof will be carried out with the aid of the complex function theory. Let

z = x1 + ix2, w(z) = v1(x1, x2) − iv2(x1, x2).

w is called the complex velocity. Since

v1, v2 ∈ C1(Ω),
∂v1

∂x1
+

∂v2

∂x2
= 0,

∂v2

∂x1
−

∂v1

∂x2
= 0 in Ω,

w satisfies the Cauchy - Riemann conditions and w is a holomorphic function
in Ω. If v1, v2 ∈ C(Ω), then w ∈ C(Ω), limz→∞w(z) = V ∞ = v∞1 − iv∞2,
where C0 is the geometric image of a simple closed negatively oriented curve
ϕ : [a, b] → Ω(⊂ R

2), ϕ smoot except at most one point, ϕ(a) = ϕ(b). We have
ϕ = (ϕ1, ϕ2),~t = ϕ′(τ) = (ϕ′

1(τ), ϕ′
2(τ)), τ ∈ [a, b], ϕ′(τ) is a tangent vector to

C0. Let |ϕ′(τ)| = 1 for all τ ∈ [a, b], ϕ = ϕ1 + iϕ2, t = ϕ′
1 + iϕ′

2. If ~n is the
unit outer normal to C0 = ∂Ω, ~n = (n1, n2), then we set n = n1 + in2 = −i~t =
−iϕ′(τ) = −iϕ1(τ) + ϕ2(τ).
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In view of the Bernoulli equation we have

p = ρ(c −
1

2
|~v|2) = ρ(c −

1

2
|~w|2),

where c is a constant. Then

F := F1 + iF2 =

∫

C0

pn dS =

∫ b

a

ρ(c −
1

2
|~w(ϕ(τ))|2)(−iϕ′(τ)) dτ.

Now we compute

w(ϕ(τ))ϕ′(τ) = (v1 − iv2)(ϕ
′
1 + iϕ′

2)

= v1ϕ
′
1 + v2ϕ

′
2 + i(v1ϕ2 − v2ϕ1),

where the first term v1ϕ
′
1+v2ϕ

′
2 = ~v·~t and the second term v1ϕ2−v2ϕ1 = ~v·~n = 0.

Hence, Im(w(ϕ(τ))ϕ′(τ)) = 0 for all τ ∈ [a, b] and w(ϕ(τ))ϕ′(τ) = ~v ·~t is a real-
valued function.

Circulation along C0 is

γ =

∫

C0

~v · ~t dS =

∫ b

a

(v1(ϕ(τ))ϕ′
1(τ) + v2(ϕ(τ))ϕ′

2(τ)) dτ

=

∫ b

a

w(ϕ(τ))ϕ′(τ) dτ =

∫

ϕ

w(z) dz.

Theorem 2.5 (Cauchy-Goursat) Let Ω = Ext C0. Let C0 ⊂ IntKR, where
KR is a simple closed smooth negatively oriented curve, 〈KR〉 ⊂ ExtC0 = Ω.

Let ~w be a holomorphic function in Ω̃ = IntKR ∩ Ext C0, w ∈ C(Ω̃). Then

∫

ϕ

w(z) dz =

∫

KR

w(z) dz.

Let KR be a curve with geometric image, which is the circle with centre at
the origin and diameter R (sufficiently large). Let Kr be the circle with diameter
r < R, C0 ⊂ Int Kr. Since w is holomorphic in Ext Kr and lim|z|→∞ w(z) = V ∞,
the function w is holomorphic in a neighbourhood of ∞. From this we see that
w can be written in the form

w(z) = V ∞ +
a1

z
+

a2

z2
+ . . . , z ∈ ExtKr.

Using the Cauchy - Goursat theorem, we see that

γ =

∫

ϕ

w(z) dz =

∫

KR

w(z) dz =

∫

KR

a1

z
dz = −2πia1.

Hence, we can write
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w(z) = V ∞ −
γ

2πiz
+

a2

z2
+ . . . , z ∈ ExtKr.

Further, we have

|w(ϕ(τ))|2 ϕ′(τ) = w(ϕ(τ))w(ϕ(τ))ϕ′(τ) = (w(ϕ(τ)))2ϕ′(τ),

because we know that w(ϕ(τ))ϕ′(τ) is a real-valued function. Since

∫ b

a

ϕ′ dτ = 0,

we find that

F =
1

2
iρ

∫ b

a

w2(ϕ(τ))ϕ′(τ) dτ =
1

2
iρ

∫ b

a

w2(ϕ(τ))ϕ′(τ) dτ

=
1

2
iρ

∫

ϕ

w2(z) dz.

It follows from the above considerations that

• w2(z) is holomorphic function in Ω = ExtC0,

• w2 ∈ C(Ω),

• lim|z|→∞ = V
2

∞.

Then the Cauchy-Goursat theorem implies that
∫

ϕ

w2(z) dz =

∫

KR

w2(z) dz.

In ExtKr we have

w2(z) = (V ∞)2 +
b1

z
+

b2

z2
+ . . . .

On the other hand,

w2(z) = (V ∞ −
γ

2πiz
+

a2

z
+ . . .)(V ∞ −

γ

2πiz
+

a2

z
+ . . .)

= (V ∞)2 −
γV ∞

πiz
+

b2

z2
+ . . . .

Therefore,
∫

KR

w2(z) dz = −
V ∞

πi
γ(−2πi) = 2γV ∞. (2.5.8)

Finally we get

F =
1

2
iρ

∫

KR

w2(z) dz = 2γV ∞
1

2
iρ = ργ(v∞1 + iv∞2)i

= ργ(iv∞1 − v∞2) = ργ |~v∞| (− sin θ∞ + i cos θ∞),
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where we used ~v∞ = (v∞1, v∞2) = |~v∞| (cos θ∞, sin θ∞). This means that

~F = ργ |~v∞| (− sin θ∞, cos θ∞),

what we wanted to prove.

2.6 The choice of the velocity circulation γ

Let the profile have a sharp trailing edge at the point z0. If γ is not chosen in a
suitable way, then z0 behaves as a singularity, i.e. |~v(x)|x→z0

→ +∞ and from
the Bernoulli theorem p(x)x→z0

→ −∞! Nature causes that the stagnation point
z1 ∈ C0, where ~v(z1) = 0 is moved to the point z0 and the velocity becomes
bounded in a neighbourhood of z0. This implies that γ must be chosen so that
|~v| is bounded in a neighbourhood of z0. This condition is called the Kutta-
Joukowski condition for profiles with a sharp trailing edge.

2.7 Profile with a rounded trailing edge

Kutta-Joukowski condition is formulated now as ~v(z0) = 0 ⇔ (~v · ~t)(z0) = 0 ⇔
∂Φ
∂t

(z0) = 0.

2.8 Problem for the velocity potential describing the flow past an
airfoil

Let C0 be a smooth airfoil, let a point z0 ∈ C0 be given and let ~v∞ ∈ R
2 be

given (Let Σ be a suitable artificial cut in Ω = ExtC0.)
We want to find a function Φ and a constant γ ∈ R satisfying the following

conditions

1. Φ ∈ C2((Ω ∪ C0) − Σ),

2. Φ has one-sides limits Φ(x±) at each point x ∈ Σ and also first and second
derivatives of Φ have one-sided limits on Σ,

3. ∆Φ = 0 in Ω − Σ (⇔ continuity equation ),

4. ∂Φ
∂n

|C0
= 0 (normal component of ~v is zero on the profile),

5. Φ(x+) − Φ(x−) = γ (condition for the velocity circulation),

6. ∂Φ
∂~n

(x+) = ∂Φ
∂~n

(x−) (normal component of ~v is continuous across Σ),

7. lim|x|→∞ ∇Φ(x) = ~v∞ (lim|x|→∞ ~v(x) = ~v∞),

8. Kutta-Joukowski condition ∂Φ
∂~t

(z0) = 0 ( ∂

∂~t
= derivative in the tangential

direction to C0).

Note that if 5 and 6 hold, then ~v is continuous across Σ.
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Remark 2.6 If γ ∈ R is prescribed, then it is possible to solve the problem for
Φ satisfying 1, 2, . . . , 7. (It is posible to introduce the so called weak formulation
and then apply the FEM-finite element method).

Remark 2.7 In the case of the rounded trailing edge, the trailing stagnation
point z0 ∈ C0 is chosen as the point lying on the backward part of the airfoil
(with respect to the flow direction), with the largest curvature. If the backward
part of the airfoil is formed by a part of a circle, then z0 is chosen as the midpoint
of this circular arc.

Let us assume that we are able to solve problem 1. − 7. with an arbitrary
given γ ∈ R.
Question: How to obtain the solution (Φ, γ) of the problem 1. − 8.?

2.9 The solution of the problem

Let Φ0 (or Φ1) be the velocity potential and solution of problem 1. − 7. with
γ := γ0 = 0 (or γ := γ1 = 1). Let us set Φθ := Φ0 + θ(Φ1 − Φ0), θ ∈ R.

Lemma 3 Φθ is a solution of problem 1.−7. with prescribed γ = γ0+θ(γ1−γ0).

Proof Problem 1. − 7. is linear (Homework).

Goal: Determine θ ∈ R : ∂Φθ

∂~t
(z0) = 0

Solution:

0 =
∂Φθ

∂~t
(z0) =

∂Φ0

∂~t
(z0) + θ

(
∂Φ1

∂~t
(z0) −

∂Φ0

∂~t
(z0)

)

.

If ∂Φ1

∂~t
(z0) −

∂Φ0

∂~t
(z0) 6= 0, then

θ = −
∂Φ0

∂~t
(z0)

∂Φ1

∂~t
(z0) −

∂Φ0

∂~t
(z0)

.



3

POROUS MEDIA FLOW

Example 4 Infiltration

1. Infiltration through a dam. Water can flow through the concrete which
forms the dam.

2. Infiltration of liquids from reservois (danger of the pollution of groundwa-
ter).

3. Chemical mining of uranium.

4. Mining of oil.

3.1 Modelling of flow in porous media

Let Ω ⊂ R
N , N = 2, 3, be a domain in which we consider the flow,

Ω = Ωf ∪ Ωs,

where Ωf is a domain occupied by a fluid and Ωs is a domain formed by a solid
material (porous media). Note that Ωf and Ωs have an unknown microstructure
(difficult to describe). For x = (x1, . . . , xN ) ∈ Ω and ǫ > 0 we set

Vǫ(x) = (x1 − ǫ, x1 + ǫ) × (x2 − ǫ, x2 + ǫ) × . . . × (xN − ǫ, xN + ǫ).

Let us assume that the material has a periodic structure. Let Vǫ,f (x) = Vǫ(x) ∩
Ωf . Let ~v⋆ = ~v⋆(x, t) be fluid velocity at x ∈ Ωf and time t. Now we define the
averaged velocity ~v(x, t) at x ∈ Ω and time t

~v(x, t) =
1

|Vǫ(x)|

∫

Vǫ,f (x)

~v⋆(y, t) dy. (3.1.1)

3.2 Derivation of equations for velocity

Let q = q(x, t) denote sources of the liquid in Ω. Let the fluid be incompressible.
Then density ρ = const > 0. Moreover, we shall consider stationary flow, i.e.
∂
∂t

≡ 0. By the symbol σ(⊂ σ̄ ⊂ Ω) we denote a control volume.

Physical postulate: Total mass flux through the boundary ∂σ is equal to
the production of fluid in σ due to sources.
Mathematical formulation:

∫

∂σ

(ρ~v)(x, t) · ~n(x) ds =

∫

σ

ρ(x, t)q(x, t) dx ∀σ control volume (3.2.2)

19
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Let ~v ∈ C1(Ω)N , q ∈ C(Ω). By Green’s theorem we get

∫

σ

ρdiv~v dx =

∫

σ

ρq dx in ∀σ ⊂ Ω. (3.2.3)

This is equivalent with the differential equation

div~v = q in Ω. (3.2.4)

If q = 0 in Ω, then we get a standard continuity equation for incompressible flow.
We have N unknown functions and 1 equation.

3.3 Closing relations

Let us have a simple case when the domain Ω is a narrow layer orthogonal to
the Earth of the length l. Then the fluid moves in the direction x3 orthogonal to
the Earth. This motion is caused by the pressure drop p2−p1

l
and gravity force.

Thus,

v3 ∝
p2 − p1

l
+ ρg,

where g is the gravity constant. It is clear that v3 < 0, if p2−p1

l
+ ρg > 0. This

means that v3 ∝ −C(p2−p1

l
+ ρg), where C > 0 is a constant. Let l → 0+. Then

we get the relation

v3 = −C(
∂p

∂x3
+ ρg).

Its generalization reads

~v = −C(grad p + ρ~g) in Ω, (3.3.5)

called the Darcy law. Here ~g = (0, 0, g), C > 0 is a constant depending on
material properties, namely the permeability k and the liquid viscosity µ =:
C = k

µ
. In general, porous medium has different properties in different direction

(= anisotropy). Then we can write

~v = −K(∇p + ρ~g), (3.3.6)

where K is a symmetric positive definite matrix (K = K
T and ξ ·K ·ξT > 0 ∀ξ ∈

R
N , ξ 6= 0). If we substitute (3.3.6) into equation (3.2.4), we get

−div (K∇p) = q in Ω. (3.3.7)

This is a 2nd order PDE of elliptic type.

3.4 Boundary conditions

Let ∂Ω = ΓD ∪ΓN , ΓD ∩ΓN = ∅ .We consider two types of boundary conditions:
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1. p|ΓD
= pD (Dirichlet BC prescribing the pressure),

2. ~v · ~n|ΓN
= ϕ̃N (prescribed flux).

When we use equation (3.3.6), then we get

−K(∇p + ρ~g) · ~n = ϕ̃N on ΓN , (3.4.8)

i.e.

−(K∇p) · ~n = ϕ̃N + ρK~g · ~n =: ϕN on ΓN (3.4.9)

(Neumann boundary condition).

Example 5 What happens if we use the Darcy law in the form (3.3.5). Then If
K = CI and we get the boundary condition

−∇p · ~n = ϕN/C

or

−
∂p

∂~n
= ϕN/C

(standard Neumann BC).

3.5 Classical formulation of the problem

Let Ω ⊂ R
N be a bounded domain with a sufficiently smooth boundary ∂Ω. Let

K be a symmetric positive definite constant matrix (depending on the material
properties (i.e., permeability and fluid viscosity). Let ∂Ω = ΓD∪ΓN , ΓD∩ΓN = ∅.
Let

• q : Ω → R,

• pD : ΓD → R,

• ϕN : ΓN → R

be given functions. We want to find p ∈ C2(Ω) such that

• −div (K∇p) = q in Ω,

• p|ΓD
= pD,

• −(K∇p) · ~n|ΓN
= ϕN .

If we obtain the pressure p as a solution of the above problem, then we
compute the velocity

• ~v = − k
µ
(∇p + ρ~g) in Ω (Darcy Law)

or

• ~v = −K(∇p + ρ~g) (generalized Darcy Law).
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Remark 3.1 We derived the Darcy Law with the aid of a very simple engineer-
ing approach. Mathematically precise derivation of the Darcy Law can be carried
out by the homogenization (i.e. averaging) of the Stokes problem

div~v = 0,

−ν∆~v + ∇p = ~g.

(See, e.g. Sanchez-Palenzia: Non-homogenous media and vibration theory, Springer
1980).

3.6 Flow in a domain consisting of different porous materials

Let Ω ⊂ R
N be bounded, Ω = Ω1 ∪ . . . ∪ Ωr, where Ωi represent subdomains

formed by different materials. Let K
i, i = 1, . . . , r, be positive definite symmetric

constant matrices. Let

1.
−div (K(i)∇p(i)) = q in Ωi, i = 1, . . . , r, (3.6.10)

2. p(i) = p|Ωi
, p|Ωi

is the restriction of the pressure on the subdomain Ωi,

3. K :
⋃r

i=1 Ωi → R
N×N , K|Ωi

= K
(i), i = 1, . . . , r,

4. p :
⋃r

i=1 Ωi → R.

Instead of equations (3.6.10), i = 1, . . . , r, we simply write

−div (K∇p) = q in Ω.

This is a PDE with discontinuous coefficients, interpreted in the sense of equa-
tions (3.6.10).
Boundary conditions:

1. p|ΓD
= pD (i.e., p(i)|ΓD∩∂Ωi

= pD|ΓD∩∂Ωi
),

2. −(K(i)∇p(i)) · ~n = ϕN on ΓN ∩ ∂Ωi, i = 1, . . . , r.

3.7 Transmission conditions

Let ∂Ωi ∩ ∂Ωj = Γij = Γji, for i, j = 1, . . . , r. We consider such Γij that
measN−1(Γij) > 0. Denote by ~nij the unit normal to Γij pointing from Γi to Γj

(~nij = −~nji) and prescribe here the conditions

• continuity of the pressure across Γij : p(i)|Γij
= p(j)|Γij

,

• continuity of the flux across Γij : ~v(i) · ~nij |Γij
= −~v(j) · ~nji|Γij

.

This is equivalent with the relation

(K(i)∇p(i)) · ~nij + (K(j)∇p(j)) · ~nji (3.7.11)

= σij := −ρ
(

(K(i)~g) · ~nij + (K(j)~g) · ~nji

)

on Γij , i, j = 1, . . . , r, i < j.
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3.8 Classical formulation

Given K
(i) ∈ [C1(Ωi)]

N×N , K :
⋃r

i=1 Ωi → R
N×N , K|Ωi

= K
(i), pD, ϕN , q as

before. We want to find a function p : p|Ωi
= p(i) such that

1. p ∈ C(Ω),

2. p(i) ∈ C2(Ωi), i = 1, . . . , r,

3. −div (K∇p) = q in
⋃r

i=1 Ωi,

4. (Ki∇p(i)) · ~nij + (Kj∇p(j)) · ~nji = σij on Γij , meas(Γij) > 0, i, j =
1, . . . , r, i < j,

5. p|ΓD
= pD,

6. −(K(i)∇p(i)) · ~n = ϕN on ΓN ∩ ∂Ωi, i = 1, . . . , r.

3.9 Numerical method

An elegant numerical method, the FEM (= the finite element method), is based
on the so-called weak formulation, which is represented by an integral identity
valid for test functions from the space

V = {v ∈ C1(Ω) : v|ΓD
= 0}.

We derive this identity in such a way that we consider the equation −div (K∇p) =
q in

⋃r
i=1 Ωi, multiply by any function v ∈ V , integrate over Ωi, sum over all

i = 1, . . . , r and apply Green’s theorem. For the right-hand side of the resulting
equation we have

r∑

i=1

∫

Ωi

qv dx =

∫

Ω

qv dx. (3.9.12)

For the left-hand side of this equation we have

−
r∑

i=1

∫

Ωi

div (K∇p)v dx = −
r∑

i=1

∫

Ωi

div (Ki∇p(i))v dx
Green

=

= −
r∑

i=1

∫

∂Ωi

(Ki∇p(i)) · ~nv dS +

r∑

i=1

∫

Ωi

(Ki∇p(i)) · ∇v dx

Note that

∂Ωi =

r⋃

j=1

Γij ∪ (∂Ωi ∩ ΓD) ∪ (∂Ωi ∩ ΓN ).

Then
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−
r∑

i=1

∫

∂Ωi

(Ki∇pi) · ~nv dS = −
r∑

i=1

∫

∂Ωi∩ΓN

(Ki∇pi) · ~nv dS −

−
r∑

i=1

∫

∂Ωi∩ΓD

(Ki∇pi) · ~nv dS −
r∑

i,j=1

∫

Γij

(Ki∇pi) · ~nijv dS

From the boundary conditions we have −(K(i)∇p(i)) · ~n = ϕN on ΓN ∩ ∂Ωi,
i = 1, . . . , r, which implies that the first term takes the form

−
r∑

i=1

∫

∂Ωi∩ΓN

(Ki∇pi) · ~nv dS =

r∑

i=1

∫

∂Ωi∩ΓN

ϕNv dS. (3.9.13)

The second term is zero because v|ΓD
= 0 for v ∈ V . The third term is zero due

to the transmission conditions:

−
r∑

i,j=1

∫

Γij

(Ki∇pi) · ~nijv dS = −
r∑

i,j=1;i<j

∫

Γij

[(Ki∇pi) · ~nij + (Kj∇pj) · ~nji]v dS

= −
r∑

i,j=1;i<j

∫

Γij

σijv dS.

Moreover, we can write
∑r

i=1

∫

Ωi
(Ki∇pi) · ∇v dx =

∫

Ω
(K∇p) · ∇v dx and, thus,

we obtain the integral identity

∫

Ω

(K∇p) · ∇v dx =

∫

Ω

qv dx −
r∑

i=1

∫

∂Ωi∩ΓN

ϕNv dS (3.9.14)

−
r∑

i,j=1;i<j

∫

Γij

σijv dS ∀v ∈ V,

which is the basis for the application of the FEM.

3.10 FEM

The simpliest possibility is to use the piecewise linear conforming finite elements.
Let Ω, Ωi be polygonal 2D domains. Let T i

h be a partition of Ωi into a finite
number of triangles. Then Th = ∪r

i=1T
i

h = is a triangulation of Ω. For K,K ′ ∈ Th,
K 6= K ′, we assume that K ∩ K ′ is an empty set or a common vertex of K,K ′

or a common side of K,K ′.
Let ΓN ∩ ΓD be formed by vertices of some K ∈ Th. We denote Xh = {ϕh ∈

C(Ω) : ϕh|K is linear function ∀K ∈ Th} and Vh = {ϕh ∈ Xh : vh|ΓD
= 0}.

In the ’weak’ formulation (3.9.14) we approximate

V ≈ Vh, p ≈ ph ∈ Xh, v ≈ vh ∈ Vh

and get the discrete problem.



DISCRETE PROBLEM 25

3.11 Discrete problem

Find ph ∈ Xh such that

∫

Ω

(K∇ph) · ∇vh dx =

∫

Ω

qvh dx −
r∑

i=1

∫

∂Ωi∩ΓN

ϕNvh dS (3.11.15)

−
r∑

i,j=1;i<j

∫

Γij

σijvh dS ∀vh ∈ Vh

with Dirichlet boundary condition ph(P ) = pD(P ) for all vertices P ∈ ΓD.
Problem (3.11.15) is equivalent to a system of linear equations for unknown
values ph(P ), P ∈ σh, where σh is the set of all vertices of all K ∈ Th, P /∈ ΓD.
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PROPAGATION OF ALLOYS IN MOVING FLUID

Applications:

• propagation of exhalations in air, in water of rivers, lakes, seas, . . .

• propagation of some material in a blood,

• propagation of impurities in underground water,

• oil production.

Importance: In ecology, environmental protection, biology, medicine, meteo-
rology, oceanology, . . .
Description: Eulerian description of moving fluid

- x = (x1, . . . , xN ) point in the space R
N , N = 2, 3, xi cartesian coordinates in

R
N ,

- ~v = ~v(x, t) velocity vector,

- ρ = ρ(x, t) density of the fluid,

- c = c(x, t) concentration of alloys (refered to the density of the fluid)

Mass of alloys in a control volume σ at time t is equal to

m(σ, t) =

∫

σ

ρ(x, t)c(x, t) dx.

Let us consider the flow in a domain Ω ⊂ R
N and time interval (0, T ). Let

vi, ρ ∈ C1(Ω × (0, T )), c ∈ C2(Ω × (0, T )).

Physical pospulate: Let σ(t) be a control volume, σ(t) ⊂ σ(t) ⊂ Ω for
t ∈ (t0 − ǫ, t0 + ǫ), t0 ∈ (0, T ). Let σ(t) is formed by the same fluid parti-
cles for all t ∈ (t0 − ǫ, t0 + ǫ). Rate of change of the total amount of the alloy
in the control volume σ(t) is equal to the production of the alloy due to sources
and flux of the alloy through ∂σ(t).

4.1 Mathematical formulation

Total amount of the alloy in σ(t):

26
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m(σ(t), t) =

∫

σ(t)

ρ(x, t)c(x, t) dx. (4.1.1)

Production due to sources:

mpr(σ(t), t) =

∫

σ(t)

ρ(x, t)q(x, t) dx, (4.1.2)

where q is the density of sources (related to the unit of mass of the fluid). Flux
through ∂σ(t) is given by

Flux = mfl(σ(t), t) = −

∫

∂σ(t)

~q(x, t) · ~n(x, t) dx, (4.1.3)

where ~n(x, t) is unit outer normal to ∂σ(t) and ~q(x, t) denotes the flux at
x ∈ ∂σ(t) and time t.

Fourier law: ~q(x, t) = −k∇c(x, t), where k ≥ 0 is the diffusion coefficient
.

Then the physical postulate can be formulated mathematically as the identity

d

dt

∫

σ(t)

ρ(x, t)c(x, t) dx =

∫

σ(t)

ρ(x, t)q(x, t) dx +

∫

∂σ(t)

k∇c(x, t) · ~n(x, t) dS.

If we use the transport theorem and Green’s theorem, we get
∫

σ(t)

(
∂ρc

∂t
+ div (ρc~v)

)

(x, t) dx =

∫

σ(t)

(ρq)(x, t) dx +

∫

σ(t)

div (k∇c)(x, t) dS.

(4.1.4)
Since equation (4.1.4) holds for arbitrary time t = t0 and arbitrary control
volume σ = σ(t0), (4.1.4) implies the differential equation

∂ρc

∂t
+ div (ρc~v) = ρq + div (k∇c) in QT = Ω × (0, T ). (4.1.5)

Initial condition: c(x, 0) = c0(x), x ∈ Ω.
Boundary conditions on ∂Ω = ΓD(t) ∪ Γ1

N (t) ∪ Γ2
N (t), t ∈ (0, T ):

c(x, t) = cD(x, t), x ∈ ΓD(t),

k
∂c

∂~n
(x, t) ≡ k∇c · ~n(x, t) = ϕ1

N (x, t), x ∈ Γ1
N (t),

(

k
∂c

∂~n
− ρc~v · ~n

)

(x, t) = ϕ2
N (x, t), x ∈ Γ2

N (t).

In this problem we assume that the data ρ, ~v, k, q are known. The quantities ρ,
~v are obtained from the equations describing the fluid flow:
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- continuity equation

- equation of motion

- inviscid Euler equations or
- viscous Navier-Stokes equations

- energy equation and thermodynamical relations.

Since the velocity of air in atmosphere is small, is possible to apply the
incompresible model formed by the continuity equation

div~v = 0

and the Navier-Stokes equations

∂~v

∂t
+ (~v ∇)~v = ~f −

∇p

ρ
+ ν∆~v,

equipped with the initial condition ~v(x, 0) = ~v0(x), x ∈ Ω and the boundary
condition ~v|ΓD(t) = ~vD.
If the concentration c influences the flow, then it is necessary to use the Boussi-
nesq approximation of the Navier-Stokes equations:

∂~v

∂t
+ (~v ∇)~v = ~f −

∇p

ρ
+ ν∆~v + ~gc, (4.1.6)

where ~g = (0, 0,−g), if the axis x3 is orthogonal to the Earth.
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MODELLING OF COMPRESSIBLE FLOW

5.1 Inviscid flow

Let us consider inviscid, barotropic flow. It is described by the continuity equa-
tion Continuity equation

∂ρ

∂t
+ div (ρ~v) = 0, (5.1.1)

equations of motion (Euler equations)

∂ρvi

∂t
+ div (ρvi~v) = ρfi −

∂p

∂xi

, i = 1, . . . , N, (5.1.2)

and the equation of state of the barotropic flow

p = f(ρ), f ∈ C1(0,+∞).

We shall assume that the flow is stationary ( ∂
∂t

= 0). Then from equations (5.1.1)
and (5.1.2) we have

ρ(~v · ∇)~v = ρ~f −∇p. (5.1.3)

The outer volume force ~f is usually neglected.
Let us suppose that ρ0 = const > 0 is a reference density. We choose it in such
a way that it is the density at zero velocity (~v = 0). We define the so-called
pressure function

P (ρ) :=

∫ ρ

ρ0

f ′(τ)

τ
dτ. (5.1.4)

Then we find that

∇P (ρ) = ∇ (P ◦ ρ) = P ′(ρ)∇ρ

=
f ′(ρ)

ρ
∇ρ =

1

ρ
∇(f(ρ)) =

∇p

ρ

Let us note that

(~v · ∇)~v = −~v × rot~v + ∇

(
1

2
|~v|2

)

.

In what follow we shall assume that assume that the flow is irrotational, which
means that rot~v = 0. Then equation (5.1.3) becomes

∇

(
1

2
|~v|2

)

= −∇P (ρ)

29
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or

∇

(

P (ρ) +
1

2
|~v|2

)

= 0 in Ω. (5.1.5)

This is satisfied if and only if

P (ρ) +
1

2
|~v|2 = const in Ω. (5.1.6)

This is a generalization of the Bernoulli equation for compressible flow, called
the Saint-Venant equation.

Now we want to specify the constant const in equation (5.1.6). The function
P is increasing and thus, there exists P−1 such that P ◦P−1 = I. Since ρ0 is the
density at zero velocity (~v = 0), from equation (5.1.6) we get

P (ρ0) = const,

which yields the relation

P (ρ) +
1

2
|~v|2 = P (ρ0), (5.1.7)

allowing to express the density in the form

ρ = P−1

(

P (ρ0) −
1

2
|~v|2

)

.

In other words,

ρ = ρ
(

|~v|2
)

. (5.1.8)

5.2 Example of Adiabatic flow

In this case

p = p0

(
ρ

ρ0

)γ

,

where p0 > 0 is the pressure at ~v = 0, ρ0 > 0 is the density at ~v = 0, γ = cP

cV
∈

(1, 2) is the Poisson adiabatic constant. Then

dp

dρ
= γp0

1

ρ0

(
ρ

ρ0

)γ−1

= γ
p

ρ
.

We define the local speed of sound as

a =
√

f ′(ρ) =

√

dp

dρ
=

√

γ
p

ρ
,

and denote

a0 =

√

γ
p0

ρ0
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the speed of sound at ~v = 0.
Homework: Prove that

P (ρ) =
a2
0

γ − 1

[(
ρ

ρ0

)γ−1

− 1

]

, (5.2.9)

and

ρ = ρ0

(

1 −
γ − 1

2a2
0

|~v|2
) 1

γ−1

. (5.2.10)

As a consequence of (5.2.10) we get the boundedness of the velocity.
We write

ρ(s) = ρ0

(

1 −
γ − 1

2a2
0

s

) 1
γ−1

. (5.2.11)

5.3 System of equations

• div ρ~v = 0,

• rot~v = 0,

• ρ = ρ0

(

1 − γ−1
2a2

0

|~v|2
) 1

γ−1

in Ω,

• boundary condition ρ~v · ~n = ϕN on ∂Ω.

Velocity potential: Let us assume that the velocity potential Φ exists: Φ ∈
C2(Ω), ~v = ∇Φ in Ω. Then from the continuity equation we get the equation

div
[

ρ(|∇Φ|2)∇Φ
]

= 0 in Ω, (5.3.12)

which is a nonlinear second-order PDE. The boundary condition is transformed
to

(

ρ |∇Φ|2
) ∂Φ

∂~n
= ϕN on ∂Ω. (5.3.13)

An interesting question is the type of the equation for Φ. Let us consider the
case N = 2. The differentiation in (5.3.12) leads to the equation

(

1 + 2Φ2
x1

ρ′

ρ

)
∂2Φ

∂x2
1

+ 4Φx1
Φx2

ρ′

ρ

∂2Φ

∂x1∂x2
+

(

1 + 2Φ2
x2

ρ′

ρ

)
∂2Φ

∂x2
2

= 0.

Let us denote the first term by A, the second term byB and the third term by
C. Using (5.2.11), we find that

D = B2 − AC = −1 + M2, where M = |~v|
a

is the Mach number.

Then we can see that

D < 0 ⇔ M < 1, i.e. elliptic equation ⇔ subsonic flow,
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D > 0 ⇔ M > 1, i.e. hyperbolic equation ⇔ supersonic flow.

Thus, the equation for Φ is of the mixed of elliptic-hyperbolic type. There are
no result on the existence of the solution, but there are numerical methods for
the solution.

The above model is often used in the modelling of transonic flow past airplane
wings. The obtained results are in a good agreement with reality provided the
airfoils are thin, not curved too much and angles of attack are small.
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