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3.4 Babuška–Brezzi condition 37

3.4.1 Verification of the validity of the BB condition 38
3.4.2 Examples 39

3.5 Existence of an approximate solution 39
3.6 Error estimates 41

3.6.1 Abstract error estimate for the velocity 41
3.6.2 Abstract error estimate for the pressure 42

3.7 Numerical realization of the discrete problem 43
3.7.1 Solution of the saddle point system 44

3.8 Discrete Navier-Stokes problem 44
3.8.1 Iterative processes 44
3.8.2 Discretization of the nonstationary Navier-Stokes

problem 46

4 Compressible flow 47
4.1 Results for the full system of compressible Navier–

Stokes equations 47
4.2 Results for equations of barotropic flow 48
4.3 Basic properties of the Euler equations 50
4.4 The finite volume method for the Euler equations 52

4.4.1 Finite volume mesh 52
4.4.2 Derivation of a general finite volume scheme 54
4.4.3 Properties of the numerical flux 55
4.4.4 Examples of numerical fluxes 56
4.4.5 Boundary conditions 57
4.4.6 Stability of the finite volume schemes 57
4.4.7 Extension of the stability conditions to the Eu-

ler equations 58

5 Finite element methods for compressible flow 59
5.1 Combined finite volume–finite element method for vis-

cous compressible flow 59
5.1.1 Computational grids 62
5.1.2 FV and FE spaces 63
5.1.3 Space semidiscretization of the problem 63
5.1.4 Time discretization 65
5.1.5 Realization of boundary conditions in the con-

vective form bh 65
5.2 Discontinuous Galerkin finite element method 65

5.2.1 DGFEM for conservation laws 66



CONTENTS ix

5.2.2 Limiting of the order of accuracy 69
5.2.3 Approximation of the boundary 70
5.2.4 DGFEM for convection–diffusion problems and

viscous flow 71
5.2.5 Numerical examples 80

References 85

Index 87



1

BASIC EQUATIONS

Problems of fluid dynamics play an important role in many areas of science and
technology. Let us mention, e.g.

airplane industry,
mechanical engineering,
turbomachninery,
ship industry,
civil engineering,
chemical engineering,
food industry,
environmental protection,
meteorology,
oceanology,
medicine.
The image of the flow can be obtained with the aid of
a) experiments (e.g. in wind tunnels), which are expensive and lengthy, some-

times impossible,
b) mathematical models and their realization with the use of numerical meth-

ods on modern computers. The numerical simulation of flow problems constitutes
the Computational Fluid Dynamics (CFD). Its goal is to obtain results compa-
rable with measurements in wind tunnels and to replace expensive and lengthy
experiments.

1.1 Governing equations

Let (0, T ) ⊂ IR be a time interval, during which we follow the fluid motion,
and let Ω ⊂ IRN , N = 1, 2, 3, denote the domain occupied by the fluid. (For
simplicity we assume that it is independent of time t.)

1.1.1 Description of the flow

There are two possibilities for describing the fluid motion: Lagrangian and Eu-
lerian.

We shall use here the Eulerian description based on the determination of the
velocity v(x, t) = (v1(x, t), . . . , vN (x, t)) of the fluid particle passing through the
point x at time t.

We shall use the following basic notation: ρ – fluid density, p – pressure, θ –
absolute temperature. These quantities are called state variables.

In what follows, we shall introduce the mathematical formulation of funda-
mental physical laws: the law of conservation of mass, the law of conservation
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2 BASIC EQUATIONS

of momentum and the law of conservation of energy, called in brief conservation
laws.

1.1.2 The continuity equation

∂ρ

∂t
(x, t) + div (ρ(x, t)v(x, t)) = 0, t ∈ (0, T ), x ∈ Ω, (1.1.1)

is the differential form of the law of conservation of mass.

1.1.3 The equations of motion

Basic dynamical equations equivalent with the law of conservation of momentum
have the form

∂

∂t
(ρvi) + div (ρviv) = ρfi +

N∑

j=1

∂τji

∂xj
, i = 1, . . . , N. (1.1.2)

This can be written as

∂

∂t
(ρv) + div (ρv ⊗ v) = ρf + divT . (1.1.3)

Here v⊗v is the tensor with components vivj , i, j = 1, . . . , N , τij are components
of the stress tensor T and fi are components of the density of the outer volume
force f .

1.1.4 The law of conservation of the moment of momentum

Theorem 1.1 The law of conservation of the moment of momentum is valid if
and only if the stress tensor T is symmetric.

1.1.5 The Navier–Stokes equations

The relations between the stress tensor and other quantities describing fluid flow,
particularly the velocity and its derivatives, represent the so-called rheological
equations of the fluid. The simplest rheological equation

T = −p I, (1.1.4)

characterizes inviscid fluid. Here p is the pressure and I is the unit tensor:

I =




1, 0, 0
0, 1, 0
0, 0, 1



 for N = 3. (1.1.5)

Besides the pressure forces, the friction shear forces also act in real fluids as a
consequence of the viscosity. Therefore, in the case of viscous fluid, we add a
contribution T ′ characterizing the shear stress to the term −p I:

T = −p I + T ′. (1.1.6)
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On the basis of the so-called Stokes’ postulates, it is possible to derive the de-
pendence of the stress tensor on the thermodynamic variables and the velocity
deformation tensor D(v) = (dij(v))3i,j=1 with

dij(v) =
1

2

(
∂vi

∂xj
+
∂vj

∂xi

)
. (1.1.7)

Theorem 1.2 The stress tensor has the form

T = (−p+ λdiv v) I + 2µD(v), (1.1.8)

where λ, µ are constants or scalar functions of thermodynamical quantities.

If the stress tensor depends linearly on the velocity deformation tensor as in
(1.1.8), the fluid is called Newtonian.

We get the so-called Navier–Stokes equations

∂(ρv)

∂t
+ div(ρv ⊗ v) (1.1.9)

= ρf − grad p+ grad(λdiv v) + div(2µD(v)).

1.1.6 Properties of the viscosity coefficients

Here µ and λ are called the first and the second viscosity coefficients, respectively,
µ is also called dynamical viscosity. In the kinetic theory of gases the conditions

µ ≥ 0, 3λ+ 2µ ≥ 0, (1.1.10)

are derived. For monoatomic gases, 3λ+ 2µ = 0. This condition is usually used
even in the case of more complicated gases.

1.1.7 The energy equation

The law of conservation of energy is expressed as the energy equation. To this
end we define the total energy

E = ρ(e+ |v|2/2), (1.1.11)

where e is the internal (specific) energy.
Energy equation has the form

∂E

∂t
+ div(Ev) (1.1.12)

= ρf · v + div(T v) + ρq − div q.

For a Newtonian fluid we have

∂E

∂t
+ div(Ev) = ρf · v − div(pv) + div(λv div v) (1.1.13)
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+ div(2µD(v)v) + ρq − div q.

Here q is the density of heat sources and q is the heat flux, which depends on the
temperature by Fourier’s law:

q = −k∇θ. (1.1.14)

Here k ≥ 0 denotes the heat conduction coefficient.

1.2 Thermodynamical relations

In order to complete the conservation law system, additional equations derived
in thermodynamics have to be included.

The absolute temperature θ, the density ρ and the pressure p are called the
state variables. All these quantities are positive functions. The gas is character-
ized by the equation of state

p = p(ρ, θ) (1.2.1)

and the relation
e = e(ρ, θ). (1.2.2)

Here we shall consider the so-called perfect gas (also called ideal gas) whose
state variables satisfy the equation of state in the form

p = Rθ ρ. (1.2.3)

R > 0 is the gas constant, which can be expressed in the form

R = cp − cv, (1.2.4)

where cp and cv denote the specific heat at constant pressure and the specific heat
at constant volume, respectively. Experiments show that cp > cv, so that R > 0
and cp, cv are constant for a wide range of temperature. The quantity

γ =
cp
cv

> 1 (1.2.5)

is called the Poisson adiabatic constant. For example, for air, γ = 1.4.
The internal energy of a perfect gas is given by

e = cvθ. (1.2.6)

1.2.1 Entropy

One of the important thermodynamical quantities is the entropy S, defined by
the relation

θ dS = de+ pdV, (1.2.7)

where V = 1/ρ is the so-called specific volume. This identity is derived in ther-
modynamics under the assumption that the internal energy is a function of S
and V : e = e(S, V ), which explains the meaning of the differentials in (1.2.7).
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Theorem 1.3 For a perfect gas we have

S = cv ln
p/p0

(ρ/ρ0)γ
+ const (1.2.8)

where p0 and ρ0 are fixed (reference) values of pressure and density.

1.2.2 Barotropic flow

We say that the flow is barotropic if the pressure can be expressed as a function
of the density:

p = p(ρ). (1.2.9)

This means that p(x, t) = p(ρ(x, t)) or, more briefly, p = p◦ρ. We assume that

p : (0,+∞) → (0,+∞) (1.2.10)

and there exists the continuous derivative

p′ > 0 on (0,+∞).

In the special case of adiabatic barotropic flow of a perfect gas we have the
relation

p = p0

(
ρ

ρ0

)γ

, (1.2.11)

where the positive constants p0 and ρ0 are reference values of the pressure and
the density.

1.2.3 Complete system describing the flow of a heat-conductive perfect gas:

ρt + div (ρv) = 0, (1.2.12)

(ρv)t + div (ρv ⊗ v) = ρf −∇p+ ∇(λdivv) + div (2µD(v)), (1.2.13)

Et + div(Ev) = ρf · v − div(pv) + div(λv div v) (1.2.14)

+div(2µD(v)v) + ρq + div (k∇θ),

p = (γ − 1)(E − ρ|v|2/2), θ = (E/ρ− |v|2/2)/cv. (1.2.15)

1.2.4 Euler equations for a perfect gas

If we set µ = λ = k = 0, we obtain the model of inviscid compressible flow,
described by the continuity equation, the Euler equations, the energy equation
and thermodynamical relations. Since gases are light, usually it is possible to
neglect the effect of the volume force. Neglecting heat sources also, we get the
system

ρt + div (ρv) = 0, (1.2.16)

(ρv)t + div (ρv ⊗ v) + ∇p = 0, (1.2.17)

Et + div((E + p)v) = 0, (1.2.18)

p = (γ − 1)(E − ρ|v|2/2). (1.2.19)

This system is simply called the compressible Euler equations.
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In the case of a barotropic flow, equations (1.2.14), (1.2.15) or (1.2.18),
(1.2.19) are replaced by(1.2.9).

1.2.5 Speed of sound; Mach number

It is shown in thermodynamics that the pressure can be expressed as a con-
tinuously differetiable function of the density and entropy: p = p(ρ, S) with
∂p/∂ρ > 0. For example, for a perfect gas, in view of Theorem 1.3, we have

p = p(ρ, S) = κ

(
ρ

ρ0

)γ

exp(S/cv), κ = const > 0. (1.2.20)

(The adiabatic barotropic flow of an ideal perfect gas with S = const is obviously
a special case of this model.) Let us introduce the quantity

a =

√
∂p

∂ρ
(1.2.21)

which has the dimension m s−1 of velocity and is called the speed of sound. This
terminology is based on the fact that a represents the speed of propagation of
pressure waves of small intensity.

A further important characteristic of gas flow is the Mach number

M =
|v|

a
(1.2.22)

(which is obviously a dimensionless quantity). We say that the flow is subsonic
or sonic or supersonic at a point x and time t, if

M(x, t) < 1 or M(x, t) = 1 or M(x, t) > 1, (1.2.23)

respectively.

1.3 Incompressible flow

We divide fluids in liquids and gases. Gases, also called compressible fluids, have
variable density, whereas liquids, called incompressible fluids, have a constant
density ρ = const. > 0. For incompressible fluids, equations (1.2.12) and (1.2.13)
can be written in the form

div v = 0, (1.3.1)

vt +
N∑

i=1

vj
∂v

∂xj
= f −

∇p

ρ
+ div

(
2µ

ρ
D(v)

)
. (1.3.2)

Moreover, assuming that µ = const. > 0 and denoting ν = µ/ρ (=kinematic
viscosity), equation (1.3.2) reads

vt +

N∑

i=1

vj
∂v

∂xj
= f −

∇p

ρ
+ ν∆v. (1.3.3)



2

MATHEMATICAL THEORY OF VISCOUS INCOMPRESSIBLE

FLOW

In this chapter we shall be concerned with the theory of the incompressible
Navier-Stokes system (1.3.1), (1.3.3):

div u = 0, (2.0.1)

∂u

∂t
+

N∑

i=1

uj
∂u

∂xj
= f −∇p+ ν∆u,

considered in the space-time cylinder QT = Ω × (0, T ), where T > 0 and Ω ⊂
IRN (N = 2, 3) is a bounded domain occupied by the fluid. We denote the velocity
by u and for simplicity we set p := p/ρ (it is called kinematic pressure). System
(2.0.1) is equipped with the initial condition

u(x, 0) = u0(x), x ∈ Ω, (2.0.2)

and boundary conditions. We assume that on the whole boundary ∂Ω × (0, T ),
the velocity is prescribed:

u|∂Ω×(0,T ) = ϕ. (2.0.3)

In the case of stationary flow, when ∂/∂t = 0,u = u(x), p = p(x), x ∈ Ω, we
get the system

div u = 0, in Ω, (2.0.4)
N∑

i=1

uj
∂u

∂xj
= f −∇p+ ν∆u, in Ω

with the boundary condition
u|∂Ω = ϕ. (2.0.5)

2.1 Function spaces and auxiliary results

In the whole chapter we shall assume that N = 2 or N = 3 and Ω ⊂ R
N is a

bounded domain with a Lipschitz-continuous boundary ∂Ω. We shall work with
spaces of continuous and continuously differentiable functions C(Ω), Ck(Ω), C∞

0 (Ω),
Lebesgue spaces Lp(Ω), Sobolev spaces H1(Ω), H1

0 (Ω), W k,p(Ω), Hk(Ω) =

W k,2(Ω) and spaces L2(∂Ω), H
1
2 (∂Ω) = W 1− 1

2 ,2(∂Ω) of functions defined on
∂Ω.

7



8 MATHEMATICAL THEORY OF VISCOUS INCOMPRESSIBLE FLOW

Let us recall that

H1
0 (Ω) =

{
u ∈ H1(Ω); u|∂Ω = 0

}
. (2.1.6)

L2(Ω) and H1(Ω) are Hilbert spaces with the scalar product

(u, v)L2(Ω) =

∫

Ω

uv dx (2.1.7)

and

(u, v)H1(Ω) =

∫

Ω

(uv + grad u · grad v) dx, (2.1.8)

respectively. In virtue of the Friedrichs inequality

‖u‖L2(Ω) ≤ cF ‖u‖H1
0 (Ω) = cF

(∫

Ω

|gradu|2 dx

)1/2

, u ∈ H1
0 (Ω), (2.1.9)

besides the norm ‖ · ‖H1(Ω) induced in the space H1
0 (Ω) by the scalar product

(·, ·)H1(Ω) also the norm ‖ · ‖H1
0 (Ω) determined by the scalar product

(u, v)H1
0 (Ω) =

∫

Ω

grad u · grad v dx (2.1.10)

can be used. These two norms are equivalent in the space H1
0 (Ω).

In this chapter we shall work with N -component vector-valued functions,
whose components are elements of some of the above spaces. We shall use the
following notation:

C∞
0 (Ω) = [D(Ω)]N ={u=(u1, . . . , uN ); ui ∈ C∞

0 (Ω), i=1, . . . , N} ,(2.1.11)

L2(Ω) = [L2(Ω)]N =
{
u=(u1, . . . , uN ); ui ∈ L2(Ω), i=1, . . . , N

}
,

H1(Ω) = [H1(Ω)]N , H1
0(Ω) = [H1

0 (Ω)]N , etc.

In these spaces, the sum of elements and their product with a real number are
defined in an obvious way:

(u1, . . . , uN ) + (v1, . . . . . . , vN ) = (u1 + v1, . . . , uN + vN ), (2.1.12)

λ(u1, . . . , uN ) = (λu1, . . . , λuN ).

The scalar product in L2(Ω) is introduced by

(u,v)L2(Ω) =

N∑

i=1

(ui, vi)L2(Ω), (2.1.13)
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u = (u1, . . . , uN ), v = (v1, . . . , vN ) ∈ L2(Ω).

In a similar way the scalar product can be defined in H1(Ω). In H1
0(Ω), two

scalar products

(u,v)H1
0(Ω) =

∫

Ω

N∑

i=1

grad ui · grad vi dx = (2.1.14)

=

∫

Ω

N∑

i,j=1

∂ui

∂xj

∂vi

∂xj
dx

and

(u,v)H1(Ω) = (u,v)L2(Ω) + (u,v)H1
0(Ω), (2.1.15)

can be used. They induce in H1
0(Ω) equivalent norms

‖u‖H1
0(Ω) = (u,u)

1
2

H1
0(Ω)

, (2.1.16)

‖u‖H1(Ω) = (u,u)
1
2

H1(Ω).

It means that there exists a constant c > 0 such that

‖u‖H1
0(Ω) ≤ ‖u‖H1(Ω) ≤ c ‖u‖H1

0(Ω) ∀u ∈ H1
0(Ω). (2.1.17)

In what follows it will be convenient to work with the norm ‖ · ‖H1
0(Ω) and the

scalar product (·, ·)H1
0(Ω). We shall use the following simplified notation:

(u, v) = (u, v)L2(Ω), (2.1.18)

(u,v) = (u,v)L2(Ω),

((u,v)) = (u,v)H1
0(Ω),

‖u‖ = ‖u‖L2(Ω), |||u||| = ‖u‖H1
0(Ω).

In order to avoid a misunderstanding in some cases, a scalar product or a norm
will be equipped with a subscript denoting the space considered.

Further, let us recall that H
1
2 (∂Ω) is the subspace of L2(∂Ω) formed by the

traces on ∂Ω of all functions from H1(Ω). Similarly we denote by H
1
2 (∂Ω) the

subspace of L2(∂Ω) formed by the traces on ∂Ω of all vector functions which
are elements of H1(Ω). We use the notation u|∂Ω = (u1|∂Ω, . . . , uN |∂Ω) for the
trace of a vector function u = (u1, . . . , uN ) ∈ H1(Ω) on ∂Ω.

By X⋆ we denote the dual of a normed linear space X. The symbol 〈·, ·〉
denotes the duality: if f ∈ X⋆, ϕ ∈ X, then 〈f, ϕ〉 = f(ϕ).
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For q ∈ L2(Ω) the symbol ∂q/∂xj (i = 1, . . . , N) will denote the derivative
in the sense of distributions, i. e., the continuous linear functional on C∞

0 (Ω)
defined by

〈
∂q

∂xi
, ϕ

〉
= −

∫

Ω

q
∂ϕ

∂xi
dx = −(q,

∂ϕ

∂xi
) ∀ϕ ∈ C∞

0 (Ω). (2.1.19)

If v ∈ H1(Ω), then

grad v =

(
∂v

∂x1
, . . . ,

∂v

∂xN

)
∈ L2(Ω).

For q ∈ L2(Ω) we understand by grad q the vector whose components are the
distributions ∂v/∂xj , j = 1, ..,N. Let u = (u1, . . . , uN ) ∈ H1(Ω). Then

div u =

N∑

i=1

∂ui

∂xi
∈ L2(Ω).

If u ∈ H1(Ω), then we put

∆u =

N∑

i=1

∂2u

∂x2
i

,

where the second order derivatives are considered in the sense of distributions.
For u ∈ H1(Ω) we denote by ∆u = (∆u1, . . . ,∆uN ) the vector formed by the
distributions ∆ui.

In the theory of Navier–Stokes problems we shall work with spaces of solenoidal
functions satisfying the condition div u = 0. We put

V = {u ∈ C∞
0 (Ω); div u = 0} (2.1.20)

and denote by V the closure of V in the space H1
0(Ω):

V = V
H

1
0(Ω)

. (2.1.21)

The space V is clearly a Hilbert one with the scalar product ((·, ·)).
Further, we put

L2
0(Ω) = L2(Ω)/R1 =

{
q ∈ L2(Ω);

∫

Ω

q dx = 0

}
. (2.1.22)

Lemma 2.1 Let ℓ ∈ (H1
0(Ω))⋆ and 〈ℓ,v〉 = 0 ∀v ∈ V. Then there exists a

function p ∈ L2
0(Ω) such that

〈ℓ,v〉 = −(p, div v) = −

∫

Ω

pdiv v dx ∀v ∈ H1
0(Ω).

It means that
〈ℓ,v〉 = 〈grad p,v〉 ∀v ∈ C∞

0 (Ω).

and ℓ = grad p in the sense of distributions.
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Proof is based on results from [De Rahm (1960)] and its sketch can be found
in [Temam (1977), Chap. I, Proposition 1.1]. Another proof is given in [Girault
– Raviart (1986), Chap. I, Lemma 2.1 and Theorem 2.3].

Lemma 2.2 The operator div is a mapping of H1
0(Ω) onto L2

0(Ω). More pre-
cisely, the operator div is an isomorphism of the orthogonal complement

V ⊥ =
{
u ∈ H1

0(Ω); ((u, v)) = 0 ∀v ∈ V
}

of the subspace V ⊂ H1
0(Ω) onto L2

0(Ω).

Proof See [Girault – Raviart (1986), Chap. I, Corollary 2.4].

The following characterization of the space V can be established on the basis
of Lemma 2.1:

Lemma 2.3 V =
{
u ∈ H1

0(Ω); divu = 0
}
.

Now let us set H = L2(Ω). Clearly, V ⊂ H. Moreover, theorem on the
compact imbedding of H1(Ω) into L2(Ω) implies that also the imbedding of the
space V into H is compact.

2.1.1 Inf-sup condition

By Lemma 2.2, for each q ∈ L2
0(Ω) there exists a unique function v ∈ V ⊥ such

that
divv = q, |||v||| ≤ c‖q‖,

where c > 0 is a constant independent of q. Hence, taking q 6= 0, we have v 6= 0
and

(q,div v)/|||v||| = ‖q‖2 / |||v||| ≥ ‖q‖/c.

This yields the inequality

sup
v∈H

1
0
(Ω)

v 6=0

(q,div v)

‖q‖ |||v|||
≥ γ, q ∈ L2

0(Ω), (2.1.23)

where γ = 1/c > 0. Condition (2.1.23) can be written in the equivalent form

inf
q∈L2

0
(Ω)

q 6=0

sup
v∈H

1
0
(Ω)

v 6=0

(q,div v)

‖q‖ |||v|||
≥ γ, (2.1.24)

and is called the inf-sup condition. Its discrete version plays an important role
in the analysis of numerical methods for Navier–Stokes problems.

2.2 The stationary Stokes problem

If the fluid viscosity is large (ν >> 1), the viscous term ν∆u dominates over the
convective term (u ·∇)u. This is the reason for ignoring the convective term and
obtaining a simplified linear system which together with the continuity equation
and boundary conditions form the so-called Stokes problem.
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2.2.1 Stokes problem with homogeneous boundary conditions

Let us consider the Stokes problem with homogeneous Dirichlet (i. e. no-slip)
boundary conditions:

divu = 0 in Ω, (2.2.1)

−ν∆u + grad p = f in Ω, (2.2.2)

u|∂Ω = 0. (2.2.3)

The velocity vector is denoted by u = (u1, . . . , uN ) here. We assume that the
kinematic viscosity ν = const > 0 and the density of external volume force
f : Ω → R

N are given.

Definition 2.4 A couple (u, p) is called the classical solution of the Stokes prob-
lem with homogeneous boundary conditions, if u ∈ C2(Ω) and p ∈ C1(Ω) satisfy
equations (2.2.1), (2.2.2) and condition (2.2.3).

Now the Stokes problem will be reformulated in a weak sense. Let (u, p) be
a classical solution of the Stokes problem. Multiplying equation (2.2.2) by an
arbitrary v ∈ V and integrating over Ω, we obtain

∫

Ω

−ν∆u · v dx+

∫

Ω

v · grad p dx =

∫

Ω

f · v dx. (2.2.4)

The integrals on the left-hand side can be transformed with the use of Green’s
theorem:

−ν

∫

Ω

∆u · v dx = −ν

∫

∂Ω

∂u

∂n
v dS + ν

∫

Ω

N∑

i,j=1

∂ui

∂xj

∂vi

∂xj
dx, (2.2.5)

∫

Ω

v · grad p dx =

∫

∂Ω

pv · n dS −

∫

Ω

pdiv v dx. (2.2.6)

(n denotes the unit outer normal to ∂Ω here and ∂/∂n is the derivative with
respect to the direction n.) Integrals along ∂Ω vanish, because v|∂Ω = 0. We
also have ∫

Ω

pdiv v dx = 0,

as div v = 0 for v ∈ V. Identity (2.2.4) can be rewritten in the form

ν

∫

Ω

N∑

i,j=1

∂ui

∂xj

∂vi

∂xj
dx =

∫

Ω

f · v dx ∀v ∈ V

or

ν((u,v)) = (f ,v) ∀v ∈ V. (2.2.7)

On the basis of this result and the density of V in the space V we introduce the
following generalization of the concept of the solution of the Stokes problem.
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Definition 2.5 Let ν > 0, f ∈ L2(Ω). We say that a vector function u :
Ω → R

N is the weak solution of the Stokes problem with homogeneous boundary
conditions, if

u ∈ V and ν((u,v)) = (f ,v) ∀v ∈ V . (2.2.8)

Let us notice that conditions (2.2.1) and (2.2.3) are already hidden in the
assumption u ∈ V . Conditions (2.2.8) form the weak formulation of the Stokes
problem.

Lemma 2.6 The mapping “v ∈ H1
0 (Ω) → (f ,v)” is a continuous linear func-

tional on H1
0(Ω), and a(u,v) = ν((u,v)) is a continuous H1

0(Ω)-elliptic bilinear
form on H1

0(Ω) × H1
0(Ω).

Proof The continuity of the functional (f , ·) is a consequence of the inequalities

|(f ,v)| ≤ ‖f‖L2(Ω)‖v‖L2(Ω) ≤ ‖f‖L2(Ω)‖v‖H1(Ω) ≤ (2.2.9)

≤ c ‖f‖L2(Ω)‖v‖H1
0(Ω) = c ‖f‖ |||v|||, v ∈ H1

0(Ω). (2.2.10)

(c is the constant from (2.1.17).) Its linearity is obvious. The properties of the
form a(·, ·) follow from the fact that a(·, ·) is a positive multiple of a scalar
product in the space H1

0(Ω).

Corollary 2.7 (f , ·) is a continuous linear functional on V and a(·, ·) is a con-
tinuous V -elliptic bilinear form on V × V .

Theorem 2.8 There exists exactly one weak solution of the Stokes problem with
homogeneous boundary conditions.

Proof Equation (2.2.8) can be written in the form

a(u,v) = (f ,v) ∀v ∈ V .

In virtue of 2.7, the existence and uniqueness of this problem is an immediate
consequence of the Lax–Milgram lemma.

There is a question how to introduce the pressure to the velocity satisfying
(2.2.8).

Theorem 2.9 Let u be a weak solution of the Stokes problem with homogeneous
boundary conditions. Then there exists a function p ∈ L2

0(Ω) such that

ν((u,v)) − (p, div v) = (f ,v) ∀v ∈ H1
0 (Ω). (2.2.11)

The couple (u, p) satisfies (2.2.2) in the sense of distributions.

Proof In virtue of Lemma 2.6 and condition (2.2.8), the mapping “v ∈ H1
0(Ω) →

ν((u,v)) − (f ,v)” is a continuous linear functional vanishing on V and, thus,
also on the set V. By Lemma 2.1, there exists p ∈ L2

0(Ω) such that

ν((u,v)) − (f ,v) = (p, div v) ∀v ∈ H1
0(Ω).

This proves identity (2.2.11). Further, we have

ν((u,v)) = −ν〈∆u,v〉, (2.2.12)
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(f ,v) = 〈f ,v〉, (2.2.13)

(p, div v) = −〈grad p,v〉, v ∈ C∞
0 (Ω). (2.2.14)

This and (2.2.11) already imply that u and p satisfy (2.2.2) in the sense of
distributions.

2.2.2 Stokes problem with nonhomogeneous boundary conditions

For a given constant ν > 0 and given functions f : Ω → R
N and ϕ : ∂Ω → R

N

we consider the problem

divu = 0 in Ω, (2.2.15)

−ν∆u + grad p = f in Ω, (2.2.16)

u|∂Ω = ϕ. (2.2.17)

The classical solution of this problem is defined analogously as in Definition 2.4.
Let us assume that f ∈ L2(Ω), ϕ ∈ H

1
2 (∂Ω) and

∫

∂Ω

ϕ · n dS = 0. (2.2.18)

Notice that provided a function u ∈ H1(Ω) satisfies conditions (2.2.15) and
(2.2.17) (in the sense of traces), then relation (2.2.18) is fulfilled. It means that
(2.2.18) is a necessary condition for the solvability of problem (2.2.15) – (2.2.17).

Lemma 2.10 Let the function ϕ ∈ H
1
2 (∂Ω) satisfy (2.2.18). Then there exists

g ∈ H1(Ω) such that

div g = 0 in Ω and (2.2.19)

g|∂Ω = ϕ (in the sense of traces).

Proof First, it is clear that there exists a function g1 ∈ H1(Ω) such that
g1|∂Ω = ϕ. Further,

∫

Ω

div g1 dx =

∫

∂Ω

g1 · n dS =

∫

∂Ω

ϕ · n dS = 0.

It means that div g1 ∈ L2
0(Ω). In virtue of Lemma 2.2, there exists g2 ∈ H1

0(Ω)
such that div g2 = div g1. Now it suffices to put g = g1 − g2. It is obvious
that g ∈ H1(Ω), div g = div g1 − div g2 = 0 and g|∂Ω = ϕ. Hence, g satisfies
conditions (2.2.19).

The weak formulation of the Stokes problem with nonhomogeneous boundary
conditions can be obtained similarly as in 2.2.1 with the use of Green’s theorem.
We again introduce the concept of a weak solution:
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Definition 2.11 Let f ∈ L2(Ω), ϕ ∈ H
1
2 (∂Ω) and let (2.2.18) hold. Supposing

that g is a function from Lemma 2.10, we call u a weak solution of the Stokes
problem (2.2.15) – (2.2.17), if

a) u ∈ H1(Ω), (2.2.20)

b) u − g ∈ V,

c) ν((u,v)) = (f ,v) ∀v ∈ V .

Condition (2.2.20), c) represents a weak version of equation (2.2.16) and
(2.2.20), a–b) guarantee that divu = 0 in Ω and that (2.2.17) is fulfilled in
the sense of traces.

Theorem 2.12 Problem (2.2.20), a)–c) has a unique solution which does not
depend on the choice of the function g from Lemma 2.10.

Proof In view of (2.2.20), b), the weak solution can be sought in the form
u = g + z where z ∈ V is a solution of the problem

a) z ∈ V , (2.2.21)

b) ν((z,v)) = (f ,v) − ν((g,v)) ∀v ∈ V .

We easily find that the right-hand side of (2.2.21), b) defines a continuous linear
functional on the space V . The function a(z,v) = ν((z,v)) is a continuous V -
elliptic bilinear form on V × V . The Lax–Milgram lemma implies that problem
(2.2.21) has a unique solution z ∈ V. It is obvious that u = g + z is a weak
solution of the Stokes problem. Now we show that u does not depend on the
choice of the function g. Let g1 and g2 be two functions associated with the
given ϕ by Lemma 2.10 and let u1 and u2 be the corresponding weak solutions.
Then, of course,

ν((ui,v)) = (f ,v) ∀v ∈ V , i = 1, 2.

By subtracting,

((u1 − u2,v)) = 0 ∀v ∈ V .

Let us substitute v := u1 − u2 (∈ V ). Then

0 = ((u1 − u2,u1 − u2)) = |||u1 − u2|||
2,

which immediately implies that u1 = u2.

Exercise 2.1 Similarly as in 2.9, prove the existence of a pressure function p ∈
L2

0(Ω) to a weak solution of the Stokes problem with nonhomogeneos boundary
conditions.
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2.3 The stationary Navier–Stokes equations

Now let us consider the boundary value problem for the stationary nonlinear
Navier–Stokes equations with homogeneous boundary conditions: we seek u, p
such that

divu = 0 in Ω, (2.3.1)

−ν∆u +

N∑

j=1

uj
∂u

∂xj
+ grad p = f in Ω, (2.3.2)

u|∂Ω = 0. (2.3.3)

The viscosity coefficient ν = const > 0 and the density f of volume force are
given; p denotes the kinematic pressure.

Definition 2.13 A couple (u, p) is called a classical solution of the Navier–
Stokes problem with homogeneous boundary conditions, if u ∈ C2(Ω) and p ∈
C1(Ω) satisfy (8.4.1) – (8.4.3).

We again pass to the weak formulation of problem (8.4.1) – (8.4.3). Let
(u, p) be its classical solution. Multiplying (8.4.2) by an arbitrary vector function
v = (v1, . . . , vN ) ∈ V, integrating over Ω and using Green’s theorem, we get the
identity

ν((u,v)) + b(u,u,v) = (f ,v) ∀v ∈ V, (2.3.4)

where

b(u,v,w) =

∫

Ω

N∑

i,j=1

uj
∂vi

∂xj
wi dx (2.3.5)

for u = (u1, . . . , uN ),v = (v1, . . . , vN ),

w = (w1, . . . , wN ) “sufficiently smooth” in Ω.

Lemma 2.14 The mapping “u, v, w → b(u,v,w)” is a continuous trilinear
form on H1(Ω) × H1(Ω) × H1(Ω).

Proof Let u, v, w ∈ H1(Ω), u = (u1, . . . , uN ), v = (v1, . . . , vN ), w = (w1, . . .
. . . , wN ). Then ui, vi, wi ∈ H1(Ω). Hence, ∂vi/∂xj ∈ L2(Ω). In virtue of the
continuous imbedding of H1(Ω) into L4(Ω) (take into account that N = 2 or
N = 3), we have uj , wi ∈ L4(Ω). This implies that ujwi∂vi/∂xj ∈ L1(Ω). It
means that the integral in (2.3.5) exists and is finite. The form b is thus defined
on H1(Ω)×H1(Ω)×H1(Ω). Its linearity with respect to the arguments u, v, w

is obvious.
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Let us prove the continuity of b. Due to the continuous imbedding of H1(Ω)
into L4(Ω), there exists a constant c4 such that

‖u‖L4(Ω) ≤ c4‖u‖H1(Ω) ∀u ∈ H1(Ω). (2.3.6)

Let u, v, w ∈ H1(Ω). The Cauchy inequality and (2.3.6) yield

∣∣∣∣
∫

Ω

uj
∂vi

∂xj
wi dx

∣∣∣∣ ≤
∫

Ω

∣∣∣∣uj
∂vi

∂xj
wi

∣∣∣∣ dx ≤

(∫

Ω

(ujwi)
2 dx

) 1
2

(∫

Ω

(
∂vi

∂xj

)2

dx

) 1
2

≤(2.3.7)

≤

(∫

Ω

u4
j dx

) 1
4
(∫

Ω

w4
i dx

) 1
4

(∫

Ω

(
∂vi

∂xj

)2

dx

) 1
2

≤ (2.3.8)

≤ ‖uj‖L4(Ω)‖wi‖L4(Ω)‖vi‖H1(Ω) ≤ (2.3.9)

≤ c24‖uj‖H1(Ω)‖wi‖H1(Ω)‖vi‖H1(Ω). (2.3.10)

Summing these inequalities for i, j = 1, . . . , N , we obtain

|b(u,v,w)| ≤ c̃‖u‖H1(Ω)‖v‖H1(Ω)‖w‖H1(Ω) ∀u,v,w ∈ H1(Ω), (2.3.11)

which we wanted to prove.

Corollary 2.15 The function b is a continuous trilinear form on V × V × V .
There exists a constant c⋆ > 0 such that

|b(u,v,w)| ≤ c⋆|||u||| |||v||| |||w||| ∀u, v, w ∈ V . (2.3.12)

Lemma 2.16 Let u ∈ H1(Ω), div u = 0 and v, w ∈ H1
0(Ω). Then

(i) b(u,v,v) = 0 (ii) b(u,v,w) = −b(u,w,v)

Proof Since b is a continuous trilinear form and C∞
0 (Ω) is dense in H1

0(Ω), it
is sufficient to prove assertion (i) for v, w ∈ C∞

0 (Ω). By Green’s theorem

b(u,v,v) =

N∑

i,j=1

∫

Ω

uj
∂vi

∂xj
vi dx =

∑

i,j=1

∫

Ω

uj
1

2

∂

∂xj
(v2

i ) dx = (2.3.13)

= −
N∑

i,j=1

1

2

∫

Ω

∂uj

∂xj
v2

i dx = −
N∑

i=1

1

2

∫

Ω

v2
i div u dx = 0.(2.3.14)

Assertion (ii) is obtained from (i) by substituting v + w for v:

0 = b(u,v + w,v + w) = (2.3.15)

= b(u,v,v) + b(u,v,w) + b(u,w,v) + b(u,w,w) = (2.3.16)

= b(u,v,w) + b(u,w,v). (2.3.17)
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The above considerations lead us to the following definition:

Definition 2.17 Let ν > 0 and f ∈ L2(Ω) be given. We say that u is a weak
solution of the Navier–Stokes problem with homogeneous boundary conditions, if

u ∈ V and ν((u,v)) + b(u,u,v) = (f ,v) ∀v ∈ V . (2.3.18)

It is obvious that any classical solution is a weak one. Similarly as in 2.9
we can prove that to the weak solution u there exists the pressure p ∈ L2

0(Ω)
satisfying the identity

ν((u,v)) + b(u,u,v) − (p, div v) = (f ,v) ∀v ∈ H1
0(Ω). (2.3.19)

Then the couple (u, p) satisfies equation (2.3.2) in the sense of distributions.

The following result will be helpful in the proof of the existence of a weak
solution of the Navier–Stokes problem.

Lemma 2.18 Let uα, u ∈ V , α = 1, 2, . . ., and uα → u in L2(Ω) as α→ +∞.
Then b(uα,uα,v) → b(u,u,v) for each v ∈ V.

Proof By assertion (ii) of Lemma 2.16,

b(uα,uα,v) = −b(uα,v,uα) = −
N∑

i,j=1

∫

Ω

uα
i u

α
j

∂vi

∂xj
dx.

The assumption that uα → u in L2(Ω) implies that
∫

Ω

∣∣uα
i u

α
j − uiuj

∣∣ dx→ 0 (2.3.20)

for all i, j = 1, . . .,N. Since v ∈ V, there exists c̃ > 0 such that
∣∣∣∣
∂vi

∂xj
(x)

∣∣∣∣ ≤ c̃ ∀x ∈ Ω, ∀ i, j = 1, . . . , N. (2.3.21)

From this and (2.3.20) for i, j = 1, . . . , N we have
∣∣∣∣
∫

Ω

(
uα

i u
α
j

∂vi

∂xj
− uiuj

∂vi

∂xj

)
dx

∣∣∣∣ ≤ c̃

∫

Ω

∣∣uα
i u

α
j − uiuj

∣∣ dx −→ 0

and thus ∫

Ω

uα
i u

α
j

∂vi

∂xj
dx −→

∫

Ω

uiuj
∂vi

∂xj
dx. (2.3.22)

Summing (2.3.22), we obtain

b(uα,uα,v) = −
N∑

i,j=1

∫

Ω

uα
i u

α
j

∂vi

∂xj
dx→ −

N∑

i,j=1

∫

Ω

uiuj
∂vi

∂xj
dx =(2.3.23)

= b(u,u,v), (2.3.24)

which concludes the proof.
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Theorem 2.19 . Theorem on the existence of a solution. There exists at least
one weak solution of the Navier–Stokes problem with homogeneous boundary con-
ditions.

Proof We shall use the Galerkin method. Since V is a separable Hilbert space,
there exists a sequence {vi}∞i=1 dense in V . By the definition of V , for each i
there exists a sequence {wi,α}∞α=1 ⊂ V such that wi,α → vi as α → ∞. If we
order all elements wi,α, i, α = 1, 2, . . ., into a sequence (and omit, if they occur,
the elements which can be written as linear combinations of the preceding ones),
we obtain a sequence {wi}∞i=1 ⊂ V of linearly independent elements such that

V =

∞⋃

k=1

Xk

H
1
0(Ω)

, (2.3.25)

where
Xk = [w1, . . . ,wk] (2.3.26)

is the linear space spanned over the set {w1, . . . ,wk}. Xk is a finite-dimensional
Hilbert space equipped with the scalar product ((·, ·)).

For any k = 1, 2, . . ., let uk ∈ Xk satisfy

ν((uk,wi)) + b(uk,uk,wi) = (f ,wi) ∀ i = 1, . . . , k. (2.3.27)

Since

uk =

k∑

j=1

ξk
j wj , ξk

j ∈ R
1, (2.3.28)

conditions (2.3.27) represent a system of k nonlinear algebraic equations with
respect to k unknowns ξk

1 , . . . , ξ
k
k .

Let us prove the existence of the solution uk. By 2.15, the mapping “v ∈
Xk → ν((u,v)) + b(u,u,v)− (f ,v)” is a continuous linear functional on Xk for
any u ∈ Xk. In virtue of the Riesz theorem, there exists Pk(u) ∈ Xk such that

((Pk(u),v)) = ν((u,v)) + b(u,u,v) − (f ,v) ∀v ∈ Xk.

Hence, Pk : Xk → Xk. Since the spaces Xk and R
k are isomorphic and the

quadratic functions “(ξ1, . . . , ξk) ∈ R
k → ν((u,wi))+b(u,u,wi)− (f ,wi) where

u =
∑k

j=1 ξjw
j” are obviously continuous for all i = 1, . . . , k, the mapping Pk

is also continuous.
By (2.1.17) and 2.16,

((Pk(u),u)) = ν|||u|||2 + b(u,u,u) − (f ,u) = (2.3.29)

= ν|||u|||2 − (f ,u) ≥ (2.3.30)

≥ ν|||u|||2 − c‖f‖|||u||| (2.3.31)

for any u ∈ Xk. (c > 0 is the constant from (2.1.17).) If u ∈ Xk and |||u||| = K >
0 with K sufficiently large, then ν|||u||| − c ‖f‖ > 0 and, thus, ((Pk(u),u)) > 0.
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This implies that for each k = 1, 2, . . . there exists at least one solution uk of
the equation Pk(uk) = 0, equivalent to system (2.3.27).

Further, we show that the sequence {uk}∞k=1 is bounded in the space V . By
(2.3.27),

ν((uk,v)) + b(uk,uk,v) = (f ,v) ∀v ∈ Xk.

Substituting v := uk, we have

ν|||uk|||2 = ν|||uk|||2 + b(uk,uk,uk) = (f ,uk) ≤ ‖f‖ ‖uk‖ ≤ c‖f‖ |||uk|||,

which immediately implies that

|||uk||| ≤
c ‖f‖

ν
∀ k = 1, 2, . . . . (2.3.32)

From the bounded sequence {uk}∞k=1 a weakly convergent subsequence {ukα}∞α=1

can be subtracted:

ukα → u weakly in V as α→ ∞. (2.3.33)

In virtue of the inclusion V ⊂ H1
0(Ω) and the compact imbedding H1

0(Ω) ⊂
L2(Ω),

ukα → u strongly in L2(Ω).

From (2.3.33) we obtain

((ukα ,wi)) → ((u,wi)) as α→ ∞ ∀ i = 1, 2, . . . .

Further, by Lemma 2.18, we have

b(ukα ,ukα ,wi) → b(u,u,wi) as α→ ∞ ∀ i = 1, 2, . . . .

In view of (2.3.27),

ν((ukα ,wi)) + b(ukα ,ukα ,wi) = (f ,wi) ∀ i = 1, . . . , kα, ∀α = 1, 2, . . . .

Passing to the limit as α→ ∞, we find from the above relations that

ν((u,wi)) + b(u,u,wi) = (f ,wi) ∀ i = 1, 2, . . .

Hence, by (2.3.25), we have

ν((u,v)) + b(u,u,v) = (f ,v) ∀v ∈ V ,

which means that u is a weak solution of the Navier–Stokes problem.

In the following we shall investigate the uniqueness of a weak solution of the
Navier–Stokes problem.
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Theorem 2.20 Let the condition

ν2 > c⋆c‖f‖ (2.3.34)

be fulfilled with the constants c⋆ and c from (2.3.12) and (2.1.17), respectively.
Then there exists exactly one weak solution of the Navier–Stokes problem with
homogeneous boundary conditions.

Proof Let u1, u2 be two solutions of (2.3.18). It means that for i = 1, 2,

ui ∈ V , ν((ui,v)) + b(ui,ui,v) = (f ,v) ∀v ∈ V . (2.3.35)

Substituting here v := ui, we easily find that

ν|||ui|||2 = (f ,ui) ≤ ‖f‖ ‖ui‖ ≤ c ‖f‖ |||ui|||

and, hence,

|||ui||| ≤
c ‖f‖

ν
. (2.3.36)

Let us set u = u1 − u2. Subtracting equations (2.3.35), i = 1, 2, and using the
properties of the form b, we obtain

0 = ν((u1,v)) + b(u1,u1,v) − ν((u2,v)) − b(u2,u2,v) = (2.3.37)

= ν((u,v)) + b(u1,u,v) + b(u,u2,v) (2.3.38)

for each v ∈ V . If we choose v = u, then, in view of Lemma 2.16,

ν((u,u)) = −b(u,u2,u),

from which, due to inequalities (2.3.12) and (2.3.36), we derive the estimate

ν|||u|||2 ≤ c⋆|||u|||2 |||u2||| ≤ cc⋆ν−1 ‖f‖ |||u|||2.

Thus,
|||u|||2

(
ν − cc⋆ν−1‖f‖

)
≤ 0.

This and (2.3.34) immediately imply that |||u||| = 0, which means that u1 = u2.

2.3.1 The Navier–Stokes problem with nonhomogeneous boundary conditions.

We seek u and p satisfying

a) divu = 0 in Ω, (2.3.39)

b) −ν∆u +

n∑

j=1

uj
∂u

∂xj
+ grad p = f in Ω,

c) u|∂Ω = ϕ.

The constant ν > 0 and the functions f and ϕ are given.
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Similarly as above we introduce the concept of a weak solution of problem
(2.3.39), a)–c): We assume that f ∈ L2(Ω), ϕ ∈ H

1
2 (∂Ω) satisfies condition

(2.2.18) and that g is a function from Lemma 2.10 with the properties

a) g ∈ H1(Ω), b) div g = 0 in Ω, c) g|∂Ω = ϕ. (2.3.40)

Then u is called a weak solution of problem (2.3.39), a)–c), if

a) u ∈ H1(Ω), (2.3.41)

b) u − g ∈ V ,

c) ν((u,v)) + b(u,u,v) = (f ,v) ∀v ∈ V .

It is obvious that the behaviour of the function g in Ω is not important in
formulation (2.3.41), a)–c). It is essential that g satisfies conditions (2.3.40), a)-
c).

Let us assume that ∫

Γ

ϕ · n dS = 0 (2.3.42)

for each component Γ of ∂Ω.

Theorem 2.21 Let f ∈ L2(Ω) and g satisfy (2.3.40), (2.3.42). Then problem
(2.3.41), a)-c) has at least one solution.

Proof The solution will be sought in the form u = û+g where û ∈ V and g is a
suitable function with properties (2.3.40), a)-c). Substituting this representation
into (2.3.41), we see that the unknown û is a solution of the problem

û ∈ V , (2.3.43)

ν((û,v)) + b(û, û,v) + b(û, g,v) + b(g, û,v) = 〈f̂ ,v〉 ∀v ∈ V .

f̂ is a continuous linear functional on V defined by the relation

〈f̂ ,v〉 = (f ,v) − ν((g,v)) − b(g, g,v), v ∈ V . (2.3.44)

The existence of the solution û of problem (2.3.43) will be proved in the same
way as in the case of the problem with homogeneous boundary conditions:
1. Consider such a sequence {wk}∞k=1 ⊂ V that

V =

∞⋃

k=1

Xk

H
1
0(Ω)

,

where Xk = [w1, . . . ,wk].
2. Prove the existence of a solution ûk ∈ Xk of the problem

ν((ûk,wj)) + b(ûk, ûk,wj) + b(ûk, g,wj) + b(g, ûk,wj) = (2.3.45)
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= 〈f̂ ,wj〉, j = 1, . . . , k .

3. On the basis of Lemma 2.16 derive from (2.3.45) the estimate

|||ûk||| ≤ c̃‖f̂‖V ⋆ ∀ k = 1, 2, . . . . (2.3.46)

4. From {ûk}, subtract a subsequence {ûkj} converging weakly in V and strongly
in L2(Ω) to some û ∈ V . Use the obvious limit passages

a) b(ûkj , g,v) → b(û, g,v) ∀v ∈ V , (2.3.47)

b) b(g, ûkj ,v) → b(g, û,v) ∀v ∈ V

and Lemma 2.18 to find that û is a solution of (2.3.41), a)–c).

In the above process the most difficult is the realization of the second and
third steps.

To prove that system (2.3.45) has a solution, it is sufficient to verify the
existence of a constant β > 0 such that

ν((v,v)) + b(v,v,v) + b(v, g,v) + b(g,v,v) ≥ β|||v|||2 ∀v ∈ V , (2.3.48)

or, in virtue of Lemma 2.16,

ν|||v|||2 + b(v, g,v) ≥ β|||v|||2 ∀v ∈ V .

This estimate will be true, if we succeed to find g (satisfying (2.3.40)) such that

|b(v, g,v)| ≤
ν

2
|||v|||2 ∀v ∈ V . (2.3.49)

Provided (2.3.49) holds, condition (2.3.48) is satisfied with β = ν/2. Then the
existence of a solution of problem (2.3.45) (for k = 1, 2, . . .) can be proved
analogously as in the proof of Theorem 2.19. Further, by (2.3.45), (2.3.49) and
2.16, we have

ν

2
|||ûk|||2 ≤ ν((ûk, ûk)) − |b(ûk, g, ûk)| ≤ (2.3.50)

≤ ν((ûk, ûk)) + b(ûk, g, ûk) = (2.3.51)

= 〈f̂ , ûk〉 ≤ ‖f̂‖v⋆ |||ûk|||, (2.3.52)

which proves (2.3.46).
The validity of (2.3.49) is a consequence of the following result:

Lemma 2.22 Let (2.3.42) be satisfied. Then for any γ > 0 there exists g satis-
fying the conditions

a) g ∈ H1(Ω), b) div g = 0 in Ω, c) g|∂Ω = ϕ (2.3.53)

and
|b(v, g,v)| ≤ γ|||v|||2 ∀v ∈ V . (2.3.54)
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Remark 2.23 In the case that the condition (2.3.42) is not satisfied (only the
weaker condition (2.2.18) holds), the existence of a weak solution can be estab-
lished only for ”small data”, i.e. for small ‖f‖, ‖ϕ‖H1/2(∂Ω) and large ν.

2.4 The Oseen problem

The solution of the Navier–Stokes problem is sometimes approximated by a
sequence of linear Stokes problems (see, e. g., [Glowinski (1984)]). Another often
more adequate linearization of the Navier–Stokes equations is the Oseen problem
(cf., e. g., [Crouzeix (1974)]), which is formulated in the following way:

Definition 2.24 Let w ∈ C1(Ω), divw = 0 in Ω, f : Ω → R
N and let

ϕ : ∂Ω → R
N fulfils (2.2.18). Then a classical solution of the Oseen problem is

defined as a couple (u, p) ∈ C2(Ω) × C1(Ω) satisfying

divu = 0 in Ω, (2.4.1)

−ν∆u +
N∑

j=1

wj
∂u

∂xj
+ grad p = f in Ω, (2.4.2)

and

u|∂Ω = ϕ. (2.4.3)

Quite analogously as in preceding paragraphs, the Oseen problem can be refor-
mulated in a weak sense.

Definition 2.25 Let w ∈ H1(Ω), div w = 0,f ∈ L2(Ω) and let g be a function
with properties (2.3.40), a)–c). We call u a weak solution of the Oseen problem
(2.4.1) – (2.4.3), if

a) u ∈ H1(Ω), b) u − g ∈ V , (2.4.4)

c) ν((u,v)) + b(w,u,v) = (f ,v) ∀v ∈ V .

Remark 2.26 On the basis of the properties of the form b and Lemma 2.1 it is
possible to prove the existence of a pressure function p ∈ L2

0(Ω) associated with
a weak solution u of the Oseen problem, so that

ν((u,v)) + b(w,u,v) − (p, div v) = (f ,v) ∀v ∈ H1
0(Ω). (2.4.5)

(Cf. Theorem 2.9 and (2.3.19).)

The solvability of the Oseen problem can be easily established on the basis
of the Lax–Milgram lemma:

Theorem 2.27 Problem (2.4.4), a)–c) has a unique solution.



FUNCTIONS WITH VALUES IN BANACH SPACES 25

Proof Put
aw(û,v) = ν((û,v)) + b(w, û,v) (2.4.6)

defined for all û, v ∈ V. The properties of b imply that aw is a continuous
bilinear form defined on V × V . Using Lemma 2.16, we can find that aw is
V -elliptic:

aw(û, û) = ν((û, û)) + b(w, û, û) = (2.4.7)

= ν((û, û)) = ν|||û|||2 ∀ û ∈ V . (2.4.8)

Let us seek a solution of problem (2.4.4), a)–c) in the form u = û + g where
û ∈ V is unknown. Then (2.4.4), c) is equivalent to the problem

û ∈ V , aw(û,w) = 〈ℓ,v〉 ∀ v ∈ V , (2.4.9)

where ℓ ∈ V ⋆ is given by

〈ℓ,v〉 = (f ,v) − ν((g,v)) − b(w, g,v), v ∈ V .

From the Lax–Milgram lemma we immediately obtain the unique solvability
of problem (2.4.9) with respect to û ∈ V and, thus, the unique solvability of
(2.4.4), a)–c).

The Oseen problem offers the following iterative process for the approximate
solution of the Navier–Stokes equations:

a) u0 ∈ H1(Ω),divu0 = 0, (2.4.10)

b) uk+1 ∈ H1(Ω), uk+1 − g ∈ V ,

ν((uk+1,v)) + b(uk,uk+1,v) = (f ,v) ∀v ∈ V , k ≥ 0.

2.5 Functions with values in Banach spaces

In the investigation of nonstationary problems we shall work with functions
which depend on time and have values in Banach spaces. If u(x, t) is a function
of the space variable x and time t, then it is sometimes suitable to separate
these variables and consider u as a function u(t) = u(·, t) which for each t in
consideration attains a value u(t) that is a function of x and belongs to a suitable
space of functions depending on x. It means that u(t) represents the mapping
“x→ [u(t)] (x) = u(x, t)”.

Let a, b ∈ R
1, a < b, and let X be a Banach space with a norm ‖·‖. By a

function defined on the interval [a, b] with its values in the spaceX we understand
any mapping u : [a, b] → X.

By the symbol C([a, b]; X) we shall denote the space of all functions contin-
uous on the interval [a, b] (i. e., continuous at each t ∈ [a, b]) with values in X.
The space C([a, b]; X) equipped with the norm

‖u‖C([a,b]; X) = max
t∈[a,b]

‖u(t)‖ (2.5.11)

is a Banach space.
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2.5.1 Lebesgue Spaces of Functions with Values in a Banach Space.

Let X be a Banach space. For p ∈ [1,∞] we denote by Lp(a, b;X) the space of
(equivalent classes of) strongly measurable functions u : (a, b) → X such that

‖u‖Lp(a,b;X) :=

[∫ b

a

‖u(t)‖p
X dt

]1/p

<∞, if 1 ≤ p <∞, (2.5.12)

and

‖u‖L∞(a,b;X) := ess sup
t∈(a,b)

‖u(t)‖X = (2.5.13)

inf
meas(N)=0

sup
t∈(a,b)−N

‖u(t)‖X < +∞, if p = ∞.

It can be proved that Lp(a, b;X) is a Banach space.

2.6 The nonstationary Navier–Stokes equations

In what follows we shall be concerned with the investigation of an initial-boundary
value problem describing nonstationary viscous incompressible flow. This prob-
lem consists in finding the velocity u(x, t) and pressure p(x, t) defined on the set
Ω × [0, T ] (T > 0) and satisfying the system of continuity equation and Navier–
Stokes equations to which we add boundary and initial conditions. For simplicity
we shall confine our consideration to the case of homogeneous Dirichlet boundary
conditions. We thus have the following problem:

Find u(x, t) : Ω × [0, T ] → R
N and p(x, t) : Ω × [0, T ] → R

1 such that

divu = 0 in Q = Ω × (0, T ), (2.6.1)

∂u

∂t
− ν∆u +

n∑

j=1

uj
∂u

∂xj
+ grad p = f in Q, (2.6.2)

u = 0 on ∂Ω × [0, T ], (2.6.3)

u(x, 0) = u0(x), in x ∈ Ω. (2.6.4)

We assume that the constants ν, T > 0 and the functions u0 : Ω → R
N and

f : Q→ R
N are prescribed.

Definition 2.28 We define a classical solution of the nonstationary Navier–
Stokes problem with homogeneous boundary conditions as functions u ∈ C2(Q)
and p ∈ C1(Q) satisfying (2.6.1) – (2.6.4).

In the study of problem (2.6.1) – (2.6.4) we shall need some fundamental
results concerning the imbedding of the spaces Lp(a, b;X). Let us consider three
Banach spaces X0,X and X1 such that

a) X0 ⊂ X ⊂ X1, (2.6.5)
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b) X0 and X1 are reflexive,

c) the imbeddings of X into X1 and of X0 into X are continuous,

d) the imbedding of X0 into X is compact.

Further, let 1 < α0, α1 < +∞, a, b ∈ R
1, a < b. By v′ we denote the generalized

derivative of a function v ∈ L1(a, b;X). We put

W = W (a, b;α0, α1;X0,X1) = (2.6.6)

= {v ∈ Lα0(a, b;X0); v
′ ∈ Lα1(a, b;X1)}

and define the norm in the space W by

‖v‖W = ‖v‖Lα0 (a,b;X0) + ‖v′‖Lα1 (a,b;X1).

The space W equipped with this norm is a Banach space.

Theorem 2.29 (Lions) Under the assumptions (2.6.5, a)–d) and 1 < α0, α1 <
+∞, a, b ∈ R

1, a < b, the imbedding of the space W into Lα0(a, b;X) is compact.

Now we come to the weak formulation of the nonstationary Navier–Stokes
problem. Let u, p form a classical solution of problem (2.6.1) - (2.6.4) in the sense
of Definition 2.28. Multiplying (2.6.2) by an arbitrary v ∈ V, integrating over
Ω and using Green’s theorem, we find similarly as in the preceding paragraphs
that the identity

(
∂u

∂t
(·, t),v

)
+ ν((u(·, t),v)) + (2.6.7)

+b(u(·, t),u(·, t),v) = 〈f(·, t),v〉 (:= (f(·, t),v)), ∀v ∈ V. (2.6.8)

is satisfied for each t ∈ (0, T ). It is obvious that u ∈ L2(0, T ;V ) and
(
∂u

∂t
,v

)
=

d

dt
(u,v).

(For simplicity we omit the argument t.) This leads us to the definition of a weak
solution.

Definition 2.30 Let ν, T > 0,

f ∈ L2(0, T ;V ⋆) (2.6.9)
and

u0 ∈ H (2.6.10)

be given. We say that a function u is a weak solution of problem (2.6.1) – (2.6.4),
if

u ∈ L2(0, T,V ) ∩ L∞(0, T ;H), (2.6.11)

d

dt
(u,v) + ν((u,v)) + b(u,u,v) = 〈f ,v〉 ∀v ∈ V (2.6.12)

and

u(0) = u0. (2.6.13)
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Let us remind that we use the notation H = L2(Ω). Equation (2.6.12) is
meant in the sense of scalar distributions on the interval (0, T ); i. e., (2.6.12) is
equivalent to the condition

−

∫ T

0

(u(t),v)ϕ′(t) dt+

∫ T

0

{ν((u(t),v)) + b(u(t),u(t),v)}ϕ(t) dt = (2.6.14)

=

∫ T

0

〈f(t),v〉ϕ(t) dt ∀ϕ ∈ C∞
0 (0, T ).

The assumption u ∈ L∞(0, T ;H) could seem unnatural, but under the mere
assumption u ∈ L2(0, T ;V ) condition (2.6.13) we would have difficulties.

The classical solution is obviously a weak one. On the other hand, by Lemma
2.1, a function p : Q → R

1 can be associated with a weak solution u, so that
(u, p) form a solution in the sense of distributions.

Let us define the mappings A : V → V ⋆, B : V → V ⋆ by

〈Au,v〉 = ((u,v)), u, v ∈ V , (2.6.15)

〈Bu,v〉 = b(u,u,v), u, v ∈ V . (2.6.16)

It is clear that A is a linear operator.

Lemma 2.31 Let u ∈ L2(0, T ;V). Then the functions Au and Bu are defined
for a. e. t ∈ (0, T ),Au ∈ L2(0, T ;V ⋆) and Bu ∈ L1(0, T ;V ⋆).

Proof 1. For each z ∈ V the mapping

v ∈ V → ((z,v)) (2.6.17)

defines a continuous linear functional A z ∈ V ⋆ as follows from the inequality
|((z,v))| ≤ |||z||| |||v|||. Hence, we write

〈A z,v〉 = ((z,v)), v ∈ V .

If u ∈ L2(0, T ;V ), then for a. e. t ∈ (0, T )

〈Au(t), v〉 = ((u(t),v)), u, v ∈ V ,

and, hence,

‖Au(t)‖V ⋆ ≤ |||u(t)|||.

This implies that

∫ T

0

‖Au(t)‖2
V ⋆ dt ≤

∫ T

0

|||u(t)|||2 dt < +∞,

which means that Au ∈ L2(0, T ;V⋆).
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2. In virtue of 2.15, the relation

〈B z,v〉 = b(z, z, v), z, v ∈ V , (2.6.18)

defines the mapping B : V → V ⋆. We have

|〈B z, v〉| ≤ c⋆|||z|||2|||v|||,

so that

‖Bz‖v⋆ ≤ c⋆|||z|||2, z ∈ V . (2.6.19)

Now, if u ∈ L2(0, T ;V ), then

‖Bu(t)‖V ⋆ ≤ c⋆|||u(t)|||2 for a. e. t ∈ (0, T ),

which yields ∫ T

0

‖Bu(t)‖V⋆ dt ≤ c

∫ T

0

|||u(t)|||2 dt < +∞.

Hence, Bu ∈ L1(0, T ;V ⋆).

Lemma 2.32 If u ∈ L2(0, T ;V) satisfies (2.6.12), then u has the derivative
u′(t) at a. e. t ∈ (0, T ) and u′ ∈ L1(0, T ;V ⋆).

Proof Let us put

g = f − νAu − Bu. (2.6.20)

We see that g ∈ L1(0, T ;V ⋆). Further, we have

d

dt
〈u,v〉 = 〈g,v〉 ∀v ∈ V . (2.6.21)

This implies that u ∈ L2(0, T ;V ) has the derivative u′ = g ∈ L1(0, T ;V ⋆).

Corollary 2.33 If u ∈ L2(0, T ;V ) satisfies (2.6.12), then u ∈ C([0, T ];V ⋆).
Hence, condition (2.6.13) makes sense.

The above results can still be strengthened, if we take into account the as-
sumption that u ∈ L2(0, T ;V ) ∩ L∞(0, T ;H).

Lemma 2.34 Let N = 2. Then

‖v‖L4(Ω) ≤ 2
1
4 ‖v‖

1
2

L2(Ω)‖v‖
1
2

H1
0 (Ω)

∀ v ∈ H1
0 (Ω). (2.6.22)

Lemma 2.35 If N = 2, then there exists c1 > 0 such that the inequality

|b(u,v,w)| ≤ c1‖u‖
1
2 |||u|||

1
2 |||v||| ‖w‖

1
2 |||w|||

1
2 (2.6.23)

holds for any u, v, w ∈ H1
0(Ω). If u ∈ L2(0, T ;V ) ∩ L∞(0, T ;H), then Bu ∈

L2(0, T ;V ⋆) and

‖Bu‖L2(0,T ;V ⋆
) ≤ c1‖u‖L∞(0,T ;H)‖u‖L2(0,T ;V ). (2.6.24)
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Theorem 2.36 Let N = 2. If u is a solution of problem (2.6.11) – (2.6.13)
with f satisfying (2.6.9), then the derivative u′(t) exists for a. e. t ∈ (0, T ) and
u′ ∈ L2(0, T ;V ⋆).

Proof is an immediate consequence of relations (2.6.20), (2.6.21) which imply
that u′ = f − νAu − Bu and of Lemmas 2.35 and 2.31.

Similar results hold also in the case N = 3 :

Lemma 2.37 If N = 3, then

‖v‖L4(Ω) ≤ 2
1
2 3

3
4 ‖v‖

1
4

L2(Ω)‖v‖
3
4

H1
0 (Ω)

∀ v ∈ H1
0 (Ω). (2.6.25)

Lemma 2.38 Let N = 3. Then there exists c1 > 0 such that

|b(u,v,w)| ≤ c1 |||v||| ‖u‖
1
4 |||u|||

3
4 ‖w‖

1
4 |||w|||

3
4 ∀u,v,w ∈ H1

0(Ω). (2.6.26)

For u ∈ L2(0, T ;V ) ∩ L∞(0, T ;H) we have Bu ∈ L4/3(0, T ;V ⋆).

As a consequence of the above results we obtain

Theorem 2.39 Let N = 3. If u is a solution of (2.6.11) – (2.6.13) with f

satisfying (2.6.9), then the derivative u′(t) exists for a. e. t ∈ (0, T ) and u′ ∈
L4/3(0, T ;V ⋆).

Remark 2.40 The above results, particularly Theorems 2.36 and 2.39, are of
fundamental importance in the investigation of the existence of a weak solution
of the nonstationary Navier–Stokes problem. Let us put a = 0, b = T, X0 =
V , X = H, X1 = V ⋆, α0 = 2. Further, we set α1 = 2 or α1 = 4

3 for N = 2 or
N = 3, respectively. We can see that assumptions (2.6.4), a)–d) are satisfied. In
virtue of Theorem 2.29, the imbedding of the space W = W (0, T ;α0, α1;V ,V ⋆),
defined by (2.6.6), into L2(0, T ;H) is compact:

W →֒→֒ L2(0, T ;H). (2.6.27)

If u is a weak solution of problem (2.6.1) – (2.6.4), then u ∈W , as follows from
Theorems 2.36 and 2.39.

2.7 Solvability of the nonstationary problem

In this paragraph we shall be concerned with the study of the existence, unique-
ness and regularity of a solution of the nonstationary Navier–Stokes problem.
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Our attention will be first paid to the existence of a weak solution defined in
2.30. It means we want to find

u ∈ L2(0, T ;V ) ∩ L∞(0, T ;H) (2.7.1)

satisfying the conditions

d

dt
(u,v) + ν((u,v)) + b(u,u,v) = 〈f ,v〉 ∀v ∈ V , (2.7.2)

u(0) = u0, (2.7.3)

with given

f ∈ L2(0, T ;V ⋆), (2.7.4)

u0 ∈ H (2.7.5)

and ν, T > 0. In Section 2.6 we showed that such a solution should be an element
of the space W = W (0, T ;α0, α1;V ,V ⋆), where α0 = 2 = α1 for N = 2 and
α0 = 2, α1 = 4

3 for N = 3, and, thus, u′ ∈ Lα1(0, T ;V ⋆). Condition (2.7.2) can
be written in the form

u′ + νAu + Bu = f . (2.7.6)

We shall now prove the following fundamental existence theorem for the
nonstationary Navier–Stokes problem.

Theorem 2.41 Let ν, T > 0 and let conditions (2.7.4) and (2.7.5) be satisfied.
Then there exists at least one solution of problem (2.7.1) – (2.7.3).

Proof will be carried out in several steps with the use of the semidiscretization
in time. This method (also known as the Rothe method) is extensively studied
in the monographs [Rektorys (1982)] and [Kačur (1985)], but the Navier–Stokes
problem is not treated there. The semidiscretization in time converts the non-
stationary equation into a sequence of stationary problems and allows us to
construct a sequence of approximate solutions from which we can extract a sub-
sequence weakly convergent to a weak solution of the original nonstationary
problem.

I) The construction of approximate solutions. For any integer n > 0
let us set τ = τn = T/n and consider the partition of the interval [0, T ] formed
by the points tk = kτ, k = 0, . . . , n. Let us find u0,u1, . . . ,un satisfying the
following conditions:

u0 = u0 ∈ H, (2.7.7)

a) uk ∈ V , (2.7.8)

b)

(
uk − uk−1

τ
,v

)
+ ν((uk,v)) + b(uk,uk,v) =

= 〈fk,v〉 ∀v ∈ V ,
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c) fk =
1

τ

∫ tk

tk−1

f(t) dt ∈ V ⋆, k = 1, . . . , n.

Writing (2.7.8), b) in the form

1

τ
(uk,v) + ν((uk,v)) + b(uk,uk,v) (2.7.9)

= 〈fk,v〉 +
1

τ
(uk−1,v) ∀v ∈ V ,

we see that we have a modified stationary Navier–Stokes problem. Similarly as
in Section 2.3 we can prove that (2.7.9) has at least one solution uk ∈ V .

Now, using uk, k = 0, . . . , n, we construct sequences of functions uτ :
[0, T ] → V and wτ : [0, T ] → H (τ = τn, n = 1, 2, . . .):

uτ (0) = u1, uτ (t) = uk for t ∈ (tk−1, tk], k = 1, . . . , n, (2.7.10)

and

wτ is continuous in [0, T ], linear on each interval [tk−1, tk], (2.7.11)

k = 1, . . . , n, and wτ (tk) = uk for k = 0, . . . , n.

Notice that wτ : [τ, T ] → V . As n→ +∞, we get the sequences {uτ}τ→0+ and
{wτ}τ→0+.

II) A priori estimates.

Lemma 2.42 Let fk, k = 1, . . . , n, be defined by (2.7.8), c). Then

τ
n∑

k=1

‖fk‖2
V ⋆ ≤

∫ T

0

‖f(t)‖2
V ⋆ dt.

Lemma 2.43 The following discrete estimates are valid:

max
k=0,...,n

‖uk‖ ≤ c1, (2.7.12)

τ

n∑

k=1

|||uk|||2 ≤ c2, (2.7.13)

n∑

k=1

‖uk − uk−1‖2 ≤ c3, (2.7.14)

τ

n∑

k=1

∥∥∥∥
uk − uk−1

τ

∥∥∥∥
α1

V ⋆
≤ c4, (2.7.15)

where c1, . . . , c4 are constants independent of τ .

This implies:
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Lemma 2.44 The sequences uτ and wτ (τ = τn = T/n, n = 1, 2, . . .) are
bounded in the space L∞(0, T ;H),

the sequences uτ and w̃τ are bounded in L2(0, T ;V ),
the sequence dwτ/dt is bounded in Lα1(0, T ;V⋆) (α1 = 2 for N = 2 and

α1 = 4
3 for N = 3).

Further,
uτ − wτ → 0 in L2(0, T ;H) as τ → 0 + . (2.7.16)

III) Passage to the limit as τ → 0+ (i. e., n→ +∞).
It is possible to show that there exist sequences uτ ,wτ (τ > 0) and a function

u such that

uτ → u weakly in L2(0, T ;V ), (2.7.17)

uτ → u weak-⋆ in L∞(0, T ;H), (2.7.18)

wτ → u weak-⋆ in L∞(0, T ;H), (2.7.19)

dwτ

dt
→

du

dt
weakly in Lα1(0, T ;V ⋆), (2.7.20)

wτ → u weakly in L2(ε, T ;V ) for each ε > 0. (2.7.21)

Using Theorem 2.29 and (2.7.18), we can show that

wτ → u strongly in L2(0, T ;H). (2.7.22)

Taking into account (2.7.10) and (2.7.11), we can interptret equation (2.7.8), b)
as

(
dwτ

dt
,v) + ν((uτ ,v)) + b(uτ ,uτ ,v) = 〈fτ ,v〉 ∀v ∈ V (2.7.23)

or

dwτ

dt
+ νAuτ + Buτ = fτ , (2.7.24)

where

fτ : (0, T ] → V ⋆, (2.7.25)

fτ |(tk−1, tk] = fk, k = 1, . . . , n.

It is possible to show that f τ → f in L2(0, T ;V ∗). Using the compactness
of the imbedding (2.6.27), we get the strong convergence

uτ , wτ → u in L2(0, T ;H).

This and (2.7.17) – (2.7.21) allow us to pass now to the limit in (2.7.24). Using
the above results, we obtain the identity

du

dt
+ νAu + Bu = f . (2.7.26)

It means that u satisfies (2.7.1) and (2.7.2).
Finally one shows that u(0) = u0, which concludes the proof of Theorem

2.41.
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2.7.1 Uniqueness

Further, we shall briefly touch the problem of the uniqueness of the weak solution
of the nonstationary Navier–Stokes problem. First we shall deal with the case
N = 2. Then the weak solution u satisfies the conditions u ∈ L2(0, T ;V ), u′ ∈
L2(0, T ;V ⋆), which implies, as can be shown, that

u ∈ C([0, T ];H) (2.7.27)

and
d

dt
(u(t),u(t)) = 2〈u′(t),u(t)〉 (2.7.28)

in the sense of distributions on (0, T ). (For the proof, see [Temam (1977), Chap.
III, Lemma 1.2] or [Girault–Raviart (1979)].)

Theorem 2.45 (Lions – Prodi (1959)). Let us assume that N = 2 and that con-
ditions (2.7.4), (2.7.5) are satisfied. Then problem (2.7.1) – (2.7.3) has exactly
one solution.

The situation is essentially more complicated in the case of three-dimensional
flow. If N = 3, then the solution u of problem (2.7.1) – (2.7.3) satisfies u′ ∈
L4/3(0, T ;V ⋆) (see Theorem 2.39). We find that

u ∈ L
8
3 (0, T ;L4(Ω)). (2.7.29)

Actually, by Lemma 2.37,

‖u(t)‖L4(Ω) ≤ c‖u(t)‖
1
4 |||u(t)|||

3
4 , t ∈ (0, T ). (2.7.30)

In virtue of (2.7.1), the right-hand side is an element of the space L
8
3 (0, T ) so

that the same is true for the left-hand side, which proves (2.7.29).
In the three-dimensional case the attempts to prove the uniqueness of the

solution in the class of functions satisfying (2.7.1), in which the existence was
established, have not been successful. The uniqueness was obtained in a smaller
class:

Theorem 2.46 If N = 3 and (2.7.4) – (2.7.5) hold, then problem (2.7.1) –
(2.7.3) has at most one solution satisfying the condition

u ∈ L8(0, T ;L4(Ω)). (2.7.31)

From the above results we conclude that in the case N = 3 there is a close
relation between the uniqueness and regularity of a weak solution. There are two
fundamental problems:

— the uniqueness of weak solutions (i. e., solutions of (2.7.1) – (2.7.3)) whose
existence is guaranteed by Theorem 2.41,

— the existence of the strong solutions of (2.7.1) – (2.7.3) satisfying condition
(2.7.31), for which the uniqueness holds.

UP TO NOW, THE ANSWER TO THESE QUESTIONS REMAINS OPEN.
There exists the Prize of the Clay Institute – 106 US $ for the solution
of this problem.
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FINITE ELEMENT SOLUTION OF INCOMPRESSIBLE

VISCOUS FLOW

3.1 Continuous problem

3.1.1 Stokes problem

Let ϕ ∈ H1/2(∂Ω),

∫

∂Ω

ϕ · n ds = 0, g ∈ H1(Ω), div g = 0 in Ω, g|∂Ω = ϕ,

f ∈ L2(Ω),u∗ ∈ H1(Ω), u∗|∂Ω = ϕ and consider the Stokes problem to find u

such that

u − g ∈ V , (3.1.1)

ν((u,v)) = (f ,v) ∀v ∈ V (3.1.2)

This can be reformulated with the aid of the pressure: Find u, p such that

u − u∗ ∈ H1
0(Ω), p ∈ L2

0 =

{
q ∈ L2(Ω);

∫

Ω

q dx = 0

}
, (3.1.3)

ν((u,v)) − (p,div v) = (f ,v) ∀v ∈ H1
0(Ω), (3.1.4)

−(q,div u) = 0 ∀ q ∈ L2
0(Ω). (3.1.5)

Exercise 3.1 Let u ∈ H1(Ω), u|∂Ω = ϕ,

∫

∂Ω

ϕ ·n dS = 0. Prove that div u = 0

⇔

— (q,div u) = 0 ∀ q ∈ L2(Ω) (+) ⇔

— (q,div u) = 0 ∀ q ∈ L2
0(Ω). (∗)

Proof The implication ⇒ is obvious.
The implication ⇐: Let (∗) hold. Then we can write

q ∈ L2(Ω) → q̃ = q −
1

|Ω|

∫

Ω

q dx ∈ L2
0(Ω) ⇒ (3.1.6)

⇒ 0 = (q̃,div u) = (q,div u) −
1

|Ω|

∫

Ω

q dx(1,div u) (3.1.7)

(1,div u) =

∫

Ω

div udx =

∫

∂Ω

u · n dS =

∫

∂Ω

ϕ · n dS = 0

(+) ⇒ div u = 0 — clear.

35
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3.1.2 Navier-Stokes problem

Find u such that

u − g ∈ V (3.1.8)

ν((u,v)) + b(u,u,v) = (f ,v) ∀v ∈ V . (3.1.9)

The formulation with pressure reads

u − u∗ ∈ H1
0(Ω), (3.1.10)

ν((u,v)) + b(u,u,v) − (p,div v) = (f ,v) ∀ v ∈ H1
0(Ω) (3.1.11)

−(q,div u) = 0 ∀ q ∈ L2
0(Ω). (3.1.12)

3.2 Discrete problem

For simplicity we assume that N = 2, Ω is a polygonal domain, Th is a tri-
angulation of Ω with standard properties. This means that K ∈ Th are closed
triangles,

Ω = ∪K ∈ ThK (3.2.13)

and two elements K1,K2 ∈ Th,K1 6= K2 are either disjoint or K1 ∩K2 is formed
by a vertex of K1 and K2 or a side of K1 and K2.

Over Th we construct finite dimensional spaces and consider approximations

Xh ≈ H1(Ω), Xh0 ≈ H1
0 (Ω), V h ≈ V , (3.2.14)

Xh ≈ H1(Ω), Xh0 ≈ H1
0(Ω) (3.2.15)

Mh ≈ L2(Ω), Mh0 ≈ L2
0(Ω), (3.2.16)

Xh, V h, . . . ⊂ L2(Ω), Mh ⊂ L2(Ω),Mh0 ⊂ L2
0(Ω), (3.2.17)

((·, ·))h ≈ ((·, ·)), ||| · |||h ≈ ||| · |||, gh ≈ g, u∗
h ≈ u∗, (3.2.18)

div h ≈ div , bh(·, ·, ·) ≈ b(·, ·, ·) (3.2.19)

We assume that ||| · |||h = ((·, ·))1/2 is a norm in Xh0, |||v|||h = |||v||| for v ∈
H1(Ω), divh : Xh0 → Mh0 is a linear continuous operator and bh is a trilinear
continuous form on Xh0 such that bh(u,vw) = b(u,v,w) for u ∈ H1(Ω),divu =
0,v,w ∈ H1

0 (Ω).

3.2.1 Discrete Stokes problem

Let us set

V h := {vh ∈ Xh0; (qh,div h vh) = 0 ∀ qh ∈Mh0} (3.2.20)

Then we define an approximate velocity uh as a function satisfying

uh − gh ∈ V h (3.2.21)

ν((uh,vh))h = (f ,vh) ∀vh ∈ V h (3.2.22)

The discrete problem with the pressure reads: Find uh, ph such that

uh − u∗
h ∈ Xh0, ph ∈Mh0 (3.2.23)
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ν((uh,vh))h − (ph,div h vh) = (f ,vh) ∀vh ∈ Xh0 (3.2.24)

−(qh,div h uh) = 0 ∀ qh ∈Mh0 (3.2.25)

Similarly we can introduce the discrete versions of the Navier-Stokes prob-
lems.

3.3 Choice of the finite element spaces

We define Xh, Mh as spaces of piecewise polynomial functions. However, they
cannot be chosen in an arbitrary way.

Example 3.1 Let

Xh =
{
vh ∈ C(Ω); vh|K ∈ P 1(K) ∀K ∈ Th

}
, (3.3.26)

Xh0 = {vh ∈ Xh; vh|∂Ω = 0} (3.3.27)

Xh = Xh ×Xh (3.3.28)

Xh0 = Xh0 ×Xh0 (3.3.29)

V h = {vh ∈ Xh0; div (vh|K) = 0 ∀K ∈ Th} (3.3.30)

This is in agreement with the above definition of V h, provided

Mh =
{
q ∈ L2(Ω); q is constant on each K ∈ Th

}
, (3.3.31)

Mh0 =

{
q ∈Mh;

∫

Ω

q dx = 0

}
.

In this case we have

((·, ·))h = ((·, ·)), ||| · |||h = ||| · ||| (3.3.32)

bh = b, div h = div (3.3.33)

Let Ω = (0, 1)2, uh ∈ V h. Then

uh|∂Ω = 0, div (vh|K) = 0 ∀K ∈ Th.

Let us consider a uniform triangulation of Ω obtained in such a way that Ω
is split in n2 squares with sides of the length h = 1/n and then each square
is divided in two triangles by the diagonal going right up. Then any function
uh ∈ V h is determined by 2(n− 1)2 degrees of freedom. On the other hand, the
number of conditions div (vh|K) = 0 ∀K ∈ Th is 2n2. It is possible to show
that in this case Vh = {0}. Thus, the above choice of the finite element spaces
does not make sense.

3.4 Babuška–Brezzi condition

It appears that the spaces Xh0 and Mh0 have to satisfy the discrete inf-sup
condition, called the Babuška-Brezzi condition (BB condition): There exists a
constant β > 0 independent of h such that

inf
0 6=qh∈Mh0

sup
0 6=vh∈ Xh0

(qh,div h vh)

‖qh‖ |||vh|||h
≥ β. (3.4.34)
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3.4.1 Verification of the validity of the BB condition

Theorem 3.2 Let there exist an interpolation operator Ih : H1
0(Ω) → Xh0 with

the following properties:

a) Ih is a linear mapping,

b) Ih is uniformly continuous: there exists a constant C > 0 independent of
h such that

|||Ih v|||h ≤ C|||v||| ∀v ∈ H1
0(Ω),

c) (qh, divh(v − Ih v)) = 0 ∀ qh ∈Mh0, ∀v ∈ H1
0(Ω).

Then there exists β > 0 independent of h such that the BB condition is satisfied.

Proof We start from the inf-sup condition: there exists γ > 0 such that

sup
0 6=v∈ H

1
0(Ω)

(q,div v)

|||v|||
≥ γ‖q‖ ∀ q ∈ L2

0(Ω).

Let qh ∈Mh0. Then qh ∈ L2
0(Ω). Thus, in view of assumption c), we can write

γ‖qh‖ ≤ sup
∂ 6=v∈ H

1
0(Ω)

(qh,div v)

|||v|||
= (3.4.35)

= sup
0 6=v∈ H

1
0(Ω)

(qh,div h(Ihv))

|||v|||
=: (∗∗) (3.4.36)

If Ihv = 0, then the expression behind sup vanishes and need not be considered.
Hence,

(∗∗) = sup
0 6=v∈ H

1
0(Ω)

Ihv 6=0

(qh,div h(Ihv))

|||v|||

b)
≤ (3.4.37)

≤ C sup
0 6=v∈ H

1
0(Ω)

(qh,div h(Ihv))

|||Ih v|||h

Ih( H
1
0(Ω))⊂ XH0

≤ (3.4.38)

≤ C sup
0 6=vh∈ Xh0

(qh,div h vh)

|||vh|||h
(3.4.39)

⇒ sup
0 6=vh∈ Xh0

(qh,div h vh)

|||vh|||h
≥ β‖qh‖ ∀ qh ∈Mh0 (3.4.40)

with β = γ/C (3.4.41)

⇒ BB condition. (3.4.42)
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3.4.2 Examples

3.4.2.1 Conforming finite elements: We set

Xh =
{
ϕh ∈ C(Ω);ϕh|K ∈ P 2(K) ∀K ∈ Th

}
(⊂ H1(Ω)) (3.4.43)

Mh =
{
qh ∈ C(Ω); qh|K ∈ P 1(K) ∀K ∈ Th

}
(3.4.44)

We speak about the Taylor-Hood P 2/P 1 elements. It is a special case of the
conforming P k+1/P k elements, where k ≥ 1.

Another possibility is to use the so-called 4P 1/P 1, i.e. isoP 2/P 1 elements. In
this case the pressure is approximated by continuous piecewise linear functions
over the mesh Th, whereas the velocity is approximated by continuous piecewise
linear vector functions on the mesh Th/2, obtained by dividing any element K ∈
Th in 4 equal triangles.

In the case of conforming finite elements we have

Xh ⊂ H1(Ω), Xh0 ⊂ H1
0(Ω), Mh ⊂ L2(Ω), Mh0 ⊂ L2

0(Ω),

divh = div, ((·, ·))h = ((·, ·)), ||| · |||h = ||| · |||, bh = b,

u∗
h = Ihu∗ = Lagrange interpolation,V h is defined by (3.2.20).

3.4.2.2 Nonconforming finite elements: We speak about nonconforming finite
elements, if Xh is not a subspace of H1(Ω). A typical example of nonconforming
finite elements for the solution of viscous incompressible flow are the Crouzeix-
Raviart elements:

Xh = {vh ∈ L2(Ω);vh|K ∈ P 1(K)∀K ∈ Th,

vh is continuous at all midpoints of sides of all K ∈ Th},

Mh = {qh ∈ L2(Ω); qh is constant on each K ∈ Th}.

In this case we define

divhuh ∈ L2(Ω) : (divhuh)|K = div(uh|K), K ∈ Th, (3.4.45)

|||uh|||
2
h =

∑

K∈Th

2∑

i,j=1

∫

K

(
∂uhi

∂xj

)2

dx, (3.4.46)

bh(uh,vh,wh) =
1

2

∑

K∈Th

2∑

i,j=1

∫

K

(
uhj

∂vhi

∂xj
whi − uhj

∂whi

∂xj
vhi

)
dx.(3.4.47)

3.5 Existence of an approximate solution

Now we shall be concerned with the existence of a solution to the discrete Stokes
problem. For simplicity we consider the case with zero boundary condition.

Theorem 3.3 Let us assume that
1. ((vh,vh))

1/2
h = |||vh|||h is a norm in Xh0,
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2. BB condition holds:

sup
vh∈Xh0

(qh,div h vh)

|||vh|||h
≥ γ‖qh‖ ∀ qh ∈Mh0

Then the discrete Stokes problem has a unique solution uh, ph.

Proof We want to find uh ∈ Xh0, ph ∈Mh0 satisfying

(+) ν((uh,vh))h − (ph,div h vh) = (f ,vh) ∀vh ∈ Xh0

(∗) −q(h,div h uh) = 0 ∀ qh ∈Mh0.

We define

V h = {vh ∈ Xh0; (qh,div h vh) = 0 ∀ qh ∈Mh0}

a) Obviously, (∗) ⇒ uh ∈ V h

and
(+) ⇒ ν((uh,vh))h = (f ,vh) ∀vh ∈ V h

Using the Lax-Milgram lemma, we see that there exists a unique solution
uh ∈ V h of this problem.

b) Now we shall prove the existence of the pressure ph. Let us set
F (vh) = −ν((uh,vh))h + (f ,vh), vh ∈ Xh0.
Thus, F ∈ (Xh0)

∗.

By the Riesz theorem, there exists exactly one F̃ ∈ Xh0 such that
((F̃ ,vh))h = F (vh) ∀vh ∈ Xh0.

We see that F (vh) = 0 ∀vh ∈ V h ⇔ ((F̃ ,vh))h = 0 ∀vh ∈ V h.
Hence, F̃ ∈ V ⊥

h .
Let qh ∈Mh0. Then the mapping

“vh ∈ Xh0 → (qh,div h vh) ∈ IR”

is a continuous linear functional on Xh0 and there exists B̃qh ∈ Xh0 such that

((B̃qh,vh))h = (qh,div h vh) ∀vh ∈ Xh0. (3.5.48)

By the BB condition,

sup
0 6=vh∈Xh0

((B̃qh,vh))h

|||vh|||h
≥ γ‖qh‖ ∀ qh ∈Mh0.

We see that

B̃ : Mh0 → Xh0 is a linear operator and

|||B̃qh|||h ≥ γ‖qh‖ ∀ qh ∈Mh0.

This implies that B̃ is a one-to-one mapping of Mh0 onto the range of B̃, R(B̃) ⊂
Xh0. It is possible to show that R(B̃) = V ⊥

h , which follows from (3.5.48). Hence,
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for F̃ there exists a unique ph ∈ Mh0 such that B̃ph = F̃ . This is equivalent to
the relation

((B̃ph,vh))h = ((F̃ ,vh))h ∀vh ∈ Xh0,

which means that

(ph,div h vh) = −F (vh) = +ν((uh,vh))h − (f ,vh) ∀vh ∈ Xh0,

and, thus,

ν((uh,vh))h − (ph,div hvh) = (f ,vh) ∀vh ∈ Xh0,

which we wanted to prove.

3.6 Error estimates

3.6.1 Abstract error estimate for the velocity

Let us again consider zero boundary conditions. We shall be first concerned with
the estimate of the error |||u − uh|||h.

We have

ν((uh,vh))h = (f ,vh) ∀vh ∈ V h (3.6.49)

ν((u,vh))h = (f ,vh) + ℓh(vh) ∀vh ∈ V h. (3.6.50)

The second identity was obtained by substituting the exact solution u in the
discrete problem. The functional ℓh represents here the fact that V h is not in
general a subspace of V from the continuous problem. Then we get

ν((u − uh,vh))h = ℓh(vh) ∀vh ∈ V h.

For any ϕh ∈ V h we have

|||u − uh|||h ≤ |||u − ϕh|||h + |||uh − ϕh|||h,

ν((u − uh,uh − ϕh))h = ℓh(uh − ϕh),

ν|||uh − ϕh|||
2 = ν((uh − ϕh,uh − ϕh))h

= ν((u − ϕh,uh − ϕh))h + ν((uh − u,uh − ϕh))h︸ ︷︷ ︸
=−ℓh(uh−ϕh)

≤ ν|||u − ϕh|||h |||uh − ϕh|||h + ‖ℓh‖
∗ |||uh − ϕh|||h.

This implies that

|||uh − ϕh|||h ≤ |||u − ϕh|||h +
1

ν
‖ℓh‖

∗,

where

‖ℓh‖
∗ = sup

vh∈ Xh0

|ℓh( vh)|

||| vh|||h

and, hence,
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|||u − uh|||h ≤ 2|||u − ϕh|||h +
1

ν
‖ℓh‖

∗ ∀ϕh ∈ V h,

which is the abstract error estimate of the velocity. The first term represents the
error of the approximation of functions from the space V by functions from V h.
The expression ‖ℓh‖

∗ represents the error caused by the fact that V h is not a
subspace of V .

3.6.2 Abstract error estimate for the pressure

Theorem 3.4 Let the functions u ∈ H1
0(Ω), p ∈ L2(Ω), uh ∈ Xh0 and ph ∈

Mh0 satisfy the identities

ν((uh,vh))h − (ph,div h(vh)) = (f ,vh), ∀vh ∈ Xh0 (3.6.51)

ν((u,vh))h − (p,div h(vh)) = (f ,vh) + ℓ∗h(vh), ∀vh ∈ Xh0, (3.6.52)

and let the BB condition be satisfied. Then

‖p− ph‖L2(Ω) ≤ c

(
|||u − uh|||h + inf

qh∈Mh0

‖p− qh‖L2 + sup
vh∈ Xh0

|ℓ∗h( vh)|

||| vh|||h

)
.

(3.6.53)

Proof Subtracting equations (3.6.51) and (3.6.52), we get

ν((u − uh,vh))h − (p− ph,div h(vh)) = ℓ∗h(vh).

Adding and subtracting a function qh ∈Mh0 in the second term yields

(qh − ph,div h(vh)) = ν((u − uh,vh))h − (p− qh,div h(vh)) − ℓ∗h(vh). (3.6.54)

By the (BB) condition,

β‖qh − ph‖L2(Ω) ≤ sup
vh∈ Xh0

(qh − ph,div h( vh))

||| vh|||h
.

Using (3.6.54) and the Cauchyho inequality, we get

β‖qh − ph‖L2(Ω) ≤ ν|||u − uh|||h + c‖p− qh‖L2(Ω) + sup
vh∈ Xh0

ℓ∗h( vh)

||| vh|||h
.

The triangle inequality implies that

‖p− ph‖L2(Ω)

≤ ‖p− qh‖L2(Ω) + ‖qh − ph‖L2(Ω)

≤
ν

β
|||u − uh|||h +

(
1 +

c

β

)
‖p− qh‖L2(Ω) +

1

β
sup

vh∈ Xh0

ℓ∗h( vh)

||| vh|||h
.

This inequality holds for all qh ∈ Mh0. Passing to infimum, we obtain estimate
(3.6.53), which we wanted to prove.
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3.7 Numerical realization of the discrete problem

Let us consider the discrete Stokes problem for the velocity and pressure. Since
Xh0 and Mh0 are finite dimensional spaces, we can choose bases in these spaces.

In the space Xh0 we proceed in such a way that we construct a simple basis

wk, k = 1, . . . ,m, in Xh0

and then use the system (wk, 0), (0, wk), k = 1, . . . ,m, as a basis in Xh0. We
denote these basis functions by w∗

i , i = 1, . . . , ℓ = 2m.
In the space Mh0 we shall consider a basis formed by functions q∗j , j =

1, . . . , n.
Then we can express the approximate solution in the form

uh = u∗
h +

ℓ∑

j=1

Uj w∗
j , (3.7.55)

ph =
n∑

j=1

Pj q
∗
j , (3.7.56)

where u∗
h ∈ Xh is a function satisfying (approximately) Dirichlet boundary

conditions. Substituting this representation to the discrete Stokes problem

ν((uh, ph))h − (ph,div h vh) = (f , vh) ∀ vh ∈ Xh0 (3.7.57)

−(qh,div h uh) = 0 ∀ qh ∈Mh0, (3.7.58)

and using test functions vh := w∗
i , i = 1, . . . , ℓ, qh := q∗i , i = 1, . . . , n, we

get

ν

ℓ∑

j=1

Uj ((w∗
j ,w

∗
i ))h︸ ︷︷ ︸

aij

−
m∑

j=1

Pj (q∗j ,div h w∗
i )︸ ︷︷ ︸

−bij

= (f , w∗
i ) − ν((u∗h,w

∗
i ))h︸ ︷︷ ︸

Fi

(3.7.59)

i = 1, . . . , ℓ,

−
ℓ∑

j=1

Uj (q∗i ,div h w∗
j )︸ ︷︷ ︸

−bji

= (q∗i ,div h u∗
h)︸ ︷︷ ︸

Gi

i = 1, . . . , n.

These equations can be rewritten in the matrix form. We set

U = (U1, . . . , Uℓ)
T , P = (P1, . . . , Pn)T ,

A = (aij)
ℓ
i,j=1 , B = (bij) i=1,...,ℓ

j=1,...,n
,

F = (F1, . . . , Fℓ)
T , G = (G1, . . . , Gn)T ,

and have the system
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(
A, B

B
T , ∅

)(
U
P

)
=

(
F
G

)
.

Here A is a symmetric positive definite matrix and

A =

(
A, B

B
T , ∅

)

is a symmetric, nonsingular matrix. The above system is a saddle-point system.

3.7.1 Solution of the saddle point system

There are various possibilities how to solve the algebraic system equivalent to
the discrete Stokes problem:

1. Direct method: multifrontal elimination - possible to use the package UMF-
PACK)

2. Iterative solvers:

a) CG with preconditioning.
b) Uzawa algorithm:

Choose P 0; then compute

AUk+1 = G− BP k (3.7.60)

P k+1 = P k + ρ(F − B
T Uk+1), k ≥ 0, with 0 < ρ < 2ν.

3.8 Discrete Navier-Stokes problem

We want to find uh, ph such that

uh = u∗
h + zh, zh ∈ Xh0, ph ∈Mh0, (3.8.61)

ν((uh,vh))h + bh(uh,uh,vh) − (ph,div h vh) = (f ,vh) (3.8.62)

∀vh ∈ Xh0
,

−(qh,div h uh) = 0 ∀ qh ∈Mh0 (3.8.63)

3.8.1 Iterative processes

3.8.1.1 Stokes iterations

(i) Choose u0
h, p0

h.

(ii) Find uk+1
h = u∗

h + zk+1
h , zk+1

h ∈ Xh0, p
k+1
h ∈Mh0:

ν((uk+1
h ,vh))h + bh(uk

h,u
k
h,vh) − (pk+1

h ,div h vh) = (f , vh)(3.8.64)

∀vh ∈ Xh0

−(qh, div h uk+1
h ) = 0 ∀ qh ∈Mh0, (3.8.65)

k = 0, 1, . . . .
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3.8.1.2 Oseen iterations We use the iterative process given by the formula

ν((uk+1
h ,vh))h + bh(uk

h,u
k+1
h ,vh) − (pk+1

h ,div h vh) = (f ,vh) (3.8.66)

∀vh ∈ Xh0,

−(qh, div h uk+1
h ) = 0 ∀ qh ∈Mh0.

This process requires the solution of a nonsymmetric system in each iteration:

(
A + IN(uk

h), B

B
T , ∅

)(
Uk+1

P k+1

)
=

(
F (uk

h)
G

)
.

The matrix IN is nonsymmetric. This system can be solved by UMFPACK or
iteratively with the aid of Krylov subspace methods, e.g. GMRES, BiCGStab,
ORTODIR, ORTOMIN,...

3.8.1.3 The Newton method The nonlinear discrete Navier-Stokes problem can
be written in the form

φ

(
U
P

)
:=

(
A + IN(U), B

B
T ∅

)(
U
P

)
−

(
F
G

)
= 0.

(For simplicity we consider zero boundary conditions for the velocity.) The New-

ton method allows us to compute the vector

(
Uk+1

P k+1

)
provided the vector

(
Uk

P k

)

is known:

Dφ

(
Uk

P k

)

D

(
U
P

)
((

Uk+1

P k+1

)
−

(
Uk

P k

))
= −φ

(
Uk

P k

)
,

where

Dφ

(
U
P

)

D

(
U
P

) =

(
A + D(IN(U) U)

DU , B

B
T , ∅

)
,

D(IN(U)U)

DU
= (βij(U)) nonsymmetric matrix,

βij(U) = bh(w∗
j ,uh,w

∗
i ) + bh(uh,w

∗
j ,w

∗
i )

All these methods converge only provided ν >> 1, i.e. the Reynolds number
Re = UL

ν is sufficiently small. (Here U and L denote the characteristic velocity
and the characteristic length, respectively.) This is caused by the fact that sta-
tionary solutions are unstable for large Reynolds numbers Re. In this case, it is
necessary to use the nonstationary Navier-Stokes problem.
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3.8.2 Discretization of the nonstationary Navier-Stokes problem

We proceed in such a way that we construct a partition of the time interval (0, T ):
0 = t0 < t1 < . . . , τk = tk+1 − tk, and the exact solution u(tk), p(tk) is approxi-
mated by the approximate solution uk, pk, obtained by the semidiscretization in
time:

div uk+1 = 0, (3.8.67)

uk+1 − uk

τk
+ (uk+1 · ∇)uk+1 − ν∇uk+1 = fk+1, (3.8.68)

& with a given initial condition u0 and prescribed boundary conditions.

This fully implicit nonlinear Navier-Stokes problem is linearized with the aid of
the Oseen method. In this way we get the modified Oseen problem on each time
level: Find uk+1

h , pk+1
h such that

div uk+1 = 0, (3.8.69)

uk+1 − uk

τk
+ (uk · ∇)uk+1 − ν∇uk+1 + ∇pk+1 = fk+1

& with a given initial condition u0 and prescribed boundary conditions.

Finally, problem (3.8.69) is discretized by the finite element method and
converted to the solution of a linear algebraic system on each time level.

Remark 3.5 In the case of large Reynolds numbers, the Navier-Stokes problem
is singularly perturbed with dominating convection. Then the described numer-
ical methods produce approximate solutions with nonphysical spurious oscilla-
tions. In order to avoid this effect, called Gibbs phenomenon, it is necessary to
apply a suitable stabilization technique, as, e.g. streamline diffusion method also
called streamline upwind Petrov-Galerkin (SUPG) method. We refer the reader,
for example, to the works (Franca et al., 1986), (Lube and Weiss, 1995).
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COMPRESSIBLE FLOW

4.1 Results for the full system of compressible Navier–Stokes
equations

The full system of compressible Navier–Stokes equations for a heat-conductive
gas in a bounded domain Ω with Dirichlet boundary conditions and initial data
reads

ρt + div (ρv) = 0, x ∈ Ω ⊂ IRN , t ∈ (0, T ) (N = 1, 2, 3),

(ρv)t + div (ρv ⊗ v) − div (µ∇v) −∇
(
(µ+ λ)div v

)
+ ∇p(ρ, θ) = ρf(x, t),

cvρ(θt + v · ∇θ) − k∆θ + p(ρ, θ) div v − 2µ(D(v) · D(v)) − λ(div v)2 = 0,

D(v) =
(
dij(v)

)N
i,j=1

, dij(v) :=
1

2

(
∂ivj + ∂jvi

)
, (4.1.1)

p(ρ, θ) = θq(ρ), q = q(ρ) > 0 (ρ > 0, θ > 0),

(ρ,v, θ)(x, 0) = (ρ0,v0, θ0)(x), x ∈ Ω, inf
x
{ρ0, θ0} > 0,

v(x, t) = 0, θ(x, t) = θ(x, t), x ∈ ∂Ω, t ≥ 0.

We make the following assumptions.

(i) 3λ+ 2µ ≥ 0, µ > 0, k > 0 and λ are constants;

(ii) e = cvθ, where cv = const > 0 is the specific heat at constant volume;

(iii) q′(ρ) > 0 for ρ > 0.

Let us now formulate the following global existence result.

Theorem 4.1 Let Ω ⊂ IR3 be a bounded domain of class C2,α (α ∈ (0, 1]) and let
assumptions (i),(ii),(iii) hold. Let f = ∇F , F ∈ H4(Ω), (ρ0,v0, θ0) ∈ H3(Ω)5,
v0|∂Ω = 0, θ0|∂Ω = θ, vt(0)|∂Ω = 0, θt(0)|∂Ω = 0, where vt(x, 0) and θt(x, 0)
are computed from the partial differential equations in (4.1.1), in which we put
ρ := ρ0, θ := θ0,v := v0. In addition, we assume that there is a rest state (ρ̂, 0, θ)
with θ = const > 0.

Then there exist positive constants ε0, β and C0 = C0(ρ, θ, ‖F‖H4(Ω)) (where

ρ := 1
|Ω|

∫
Ω
ρ0 dx) such that if

‖(ρ0 − ρ̂,v0, θ0 − θ)‖H3(Ω)5 ≤ ε0, (4.1.2)

then the initial-boundary value problem (4.1.1) has a unique solution (ρ,v, θ)
global in time satisfying

(ρ,v, θ) ∈
(
C0 ∩ L∞

)
([0,∞);H3(Ω))5 ∩ C1(0,∞;H2(Ω) ×H1(Ω)4),

47
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inf
x,t
ρ(x, t) > 0, inf

x,t
θ(x, t) > 0,

and

sup
x∈Ω

|(ρ(x, t) − ρ̂(x),v(x, t), θ(x, t) − θ)| ≤ C0 exp (−βt).

The proof of Theorem 4.1 can be found in (Matsumura and Padula, 1992).
The solution from Theorem 4.1 is a strong solution with smooth first order

partial derivatives because of the Sobolev imbedding H3(Ω) →֒ C1(Ω).
Note that the existence of a regular solution on some maximal time interval

(0, Tmax) can be proven even without the assumption that ε0 in (4.1.2) is small
enough. However, we do not a priori know how large or small Tmax can be and
the lower estimate of Tmax in terms of the data is very pesimistic.

4.2 Results for equations of barotropic flow

Since no results on the global solvability of problem (4.1.1) with completely
large data have been obtained up to now, we restrict ourselves to equations of
barotropic flow.

(ρv)t + div(ρv ⊗ v) − µ∆v − (λ+ µ)∇div v + ∇p(ρ) = ρf ,

ρt + div(ρv) = 0, x ∈ Ω ⊂ IRN , t ∈ (0, T ) (T > 0). (4.2.3)

We impose the initial conditions

ρ|t=0 = ρ0, (ρv)|t=0 = m0, (4.2.4)

where

ρ0 ≥ 0 a.e. in Ω, ρ0 ∈ L∞(Ω),

|m0|2

ρ0
∈ L1(Ω) (we set |m0(x)|2/ρ0(x) = 0, if ρ0(x) = 0),

and the Dirichlet boundary condition

v(x, t) = 0, x ∈ ∂Ω, t > 0. (4.2.5)

The unknown functions are v = v(x, t) = (v1(x, t), . . . , vN (x, t))T (or m = ρv)
and ρ = ρ(x, t).

For large data the existence of a global smooth solution is not known. Never-
theless, when we restrict ourselves to weak solutions, recent developments yield
important global existence results.
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Definition 4.2 By a weak solution of (4.2.3)–(4.2.5) we call a couple (v, ρ) such
that

ρ, p(ρ), ρ|v|2, |∇v| ∈ L1
loc(Ω × (0,∞))

and, putting QT = Ω × (0, T ), for any T > 0 and any ϕ ∈ C1(0, T ;C∞
0 (Ω))N ,

ψ ∈ C1(0, T ;C∞(Ω)) such that ϕ(x, T ) ≡ 0, ψ(x, T ) ≡ 0, the following integral
identities hold:∫

QT

(
ρv · ϕt + ρ

(
(v · ∇)ϕ · v

)
− µ∇v · ∇ϕ − (λ+ µ)div v div ϕ

+ p(ρ)div ϕ + ρf · ϕ
)
(x, t) dx dt+

∫

Ω

ρ0(x)v0(x)ϕ(x, 0) dx = 0, (4.2.6)

∫

QT

(
ρψt + ρ(v · ∇)ψ

)
dx dt+

∫

Ω

ρ0(x)ψ(x, 0) dx = 0.

Theorem 4.3 Let µ > 0, λ ≥ − 2
3µ be constants, Ω ⊂ IRN (N ≤ 3) a bounded

domain with ∂Ω ∈ C2,α (α > 0), p(ρ) = κργ , κ > 0, γ > 3/2.
Then, for any

ρ0 ∈ Lγ(Ω), ρ0 ≥ 0,
|m0|2

ρ0
∈ L1(Ω), f ∈ L∞(Ω × (0,∞))N ,

there exists a weak solution to (4.2.3)–(4.2.5) such that

ρ ∈ L∞(0,∞;Lγ(Ω)) ∩ L
5
3 γ−1(Ω × (0, T ))

∩C([0, T ];Lγ
weak(Ω)) ∩ C([0, T ];Lβ(Ω)),

for any T > 0 and β ∈ [1, γ),

v ∈ L2(0,∞;W 2,1
0 (Ω))N , ρ|v|2 ∈ L∞(0,∞;L1(Ω)),

ρv ∈ C([0, T ];L
2γ

γ+1

weak(Ω))N ,

and, in the sense of distributions on (0, T ), the energy inequality

d

dt

∫

Ω

(
1

2
ρ|v|2 +

κ

γ − 1
ργ

)
dx+

∫

Ω

(
µ|∇v|2 + (λ+ µ)|div v|2

)
dx ≤ 0

holds true. In addition, the so-called renormalized continuity equation

b(ρ)t + div (b(ρ)v) +
(
ρb′(ρ) − b(ρ)

)
div v = 0

holds in the sense of distributions, i.e. in D′(QT ), for any function b ∈ C1(IR).
Here Lδ

weak(Ω) means the linear space Lδ(Ω) endowed with the weak topology
of Lδ(Ω), induced by the usual Lδ-norm.

A strategy for the proof of Theorem 4.3, in a slightly weaker form, was first
given in (Lions, 1993). Complete proof was then published in the monograph
(Lions, 1998). The result of the present Theorem 4.3 is proven in (Feireisl et al.,
2001). A detailed proof elaborated for a wider readership is presented in the
recent monograph (Novotný and Straškraba, 2003).
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4.3 Basic properties of the Euler equations

Neglecting viscosity, heat conduction and outer volume force, we get a system
of the Euler equations. Let us consider adiabatic flow of an inviscid perfect gas
in a bounded domain Ω ⊂ IRN and time interval (0, T ) with T > 0. Here N = 2
or 3 for 2D or 3D flow, respectively. Then the Euler equations can be written in
the form

∂w

∂t
+

N∑

s=1

∂fs(w)

∂xs
= 0 in QT = Ω × (0, T ). (4.3.1)

They are equipped with the initial condition

w(x, 0) = w0(x), x ∈ Ω, (4.3.2)

with a given vector function w0 and suitable boundary conditions.
The state vector w = (ρ, ρv1, . . . , ρvN , E)T ∈ IRm, m = N + 2 (i.e. m = 4 or

5 for 2D or 3D flow, respectively), the fluxes fs, s = 1, . . . , N , are m-dimensional
mappings defined by

fs(w) = (fs1(w), . . . , fsm(w))
T

(4.3.3)

= (ρvs, ρv1vs + δ1sp, . . . , ρvNvs + δNsp, (E + p)vs)
T

is the flux of the quantity w in the direction xs. The domain of definition of the
vector-valued functions fs is the open setD ⊂ IRm of vectors w = (w1, . . . , wm)T

such that the corresponding density and pressure are positive. Let us denote

As(w) = Dfs(w)/Dw = Jacobi matrix of fs s = 1, ldots,N, w ∈ D.
(4.3.4)

Then for each w ∈ D and n = (n1, . . . , nN )T ∈ IRN with |n| = 1 the mapping

P(w,n) =

N∑

s=1

nsfs(w) (4.3.5)

has the Jacobi matrix

P(w,n) = DP(w,n)/Dw =

N∑

s=1

nsAs(w), (4.3.6)

with eigenvalues λi = λi(w,n):

λ1 = v · n − a, λ2 = · · · = λm−1 = v · n, λm = v · n + a, (4.3.7)

where v = (v1, . . . , vN )T is the velocity and a =
√
γp/ρ is the local speed

of sound. The matrix P(w,n) is diagonalizable with the aid of the matrices
T = T(w,n) and T−1 = T−1(w,n):

P(w,n) = TΛ\T−1, Λ\ = diag(λ1, . . . , λm). (4.3.8)

The mapping P(w,n) is called the flux of the quantity w in the direction n.
The above results imply that the Euler equations form a diagonally hyperbolic
system.
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In the sequel, for simplicity we shall consider two-dimensional flow (i.e. N =
2, m = 4).

A further interesting property is the rotational invariance of the Euler equa-
tions, represented by the relations

P(w,n) =
2∑

s=1

fs(w)ns = Q−1(n)f1(Q(n)w), (4.3.9)

P(w,n) =
2∑

s=1

As(w)ns = Q−1(n)A1(Q(n)w)Q(n),

n = (n1, n2) ∈ IR2, |n| = 1,w ∈ D,

where

Q(n) =





1 0 0 0
0 n1 n2 0
0 −n2 n1 0
0 0 0 1



 . (4.3.10)

This allows us to transform the Euler equations to rotated coordinate system
x̃1, x̃2 by (

x̃1

x̃2

)
= Q0(n)

(
x1

x2

)
+ σ̃, (4.3.11)

where σ̃ ∈ IR2 and

Q0(n) =

(
n1 n2

−n2 n1

)
. (4.3.12)

Then the transformation of the state vector w yields the state vector

q = Q(n)w. (4.3.13)

We consider the transformed state vector q as a function of x̃ = (x̃1, x̃2) and
time t:

q = q(x̃, t) = Q(n)w(Q−1
0 (n)(x̃− σ̃), t). (4.3.14)

Then the function q = q(x̃, t) satisfies the transformed system of the Euler
equations

∂q

∂t
+

N∑

s=1

∂fs(q)

∂x̃s
= 0. (4.3.15)

Finally, let us note that fluxes fs and P homogeneous mappings of order one:
e.g.,

fs(αw) = αfs(w), α > 0. (4.3.16)

This implies that

fs(w) = As(w)w. (4.3.17)
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Di Dj
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Fig. 4.1. Neighbouring finite volumes in 2D, Γij =
⋃4

α=1 Γα
ij

4.4 The finite volume method for the Euler equations

Now let us deal with the finite volume (FV) discretization of system (4.3.1).
The finite volume method is very popular in computational fluid dynamics. For
a survey of various techniques and results from the FV method, we refer the
reader to the excellent monograph (Eymard et al., 2000).

4.4.1 Finite volume mesh

Let Ω ⊂ IR2 be a domain occupied by the fluid. By Ωh we denote a polygonal
approximation of Ω. This means that the boundary ∂Ωh of Ωh consists of a finite
number of closed simple piecewise linear curves. The system Dh = {Di}i∈J ,
where J ⊂ Z+ = {0, 1, . . .} is an index set and h > 0, will be called a finite
volume mesh in Ωh, if Di, i ∈ J , are closed polygons with mutually disjoint
interiors such that

Ωh =
⋃

i∈J

Di. (4.4.18)

The elements Di ∈ Dh are called finite volumes. Two finite volumes Di, Dj ∈ Dh

are either disjoint or their intersection is formed by a common part of their
boundaries ∂Di and ∂Dj . If ∂Di and ∂Dj contains a nonempty straight segment,
we call Di and Dj neighbours and set

Γij = Γji = ∂Di ∩ ∂Dj . (4.4.19)

Obviously, we can write

Γij =

βij⋃

α=1

Γα
ij , (4.4.20)

where Γα
ij are straight segments. See Fig. 4.1. We will call Γα

ij faces of Di.
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Further, we introduce the following notation:

|Di| = area of Di (4.4.21)

|Γα
ij | = length of Γα

ij

nα
ij = ((nα

ij)1, . . . , (n
α
ij)N )T = unit outer normal to ∂Di on Γα

ij ,

hi = diam(Di),

h = supi∈J hi,

|∂Di| = (N − 1)length of ∂Di,

s(i) = {j ∈ J ; j 6= i,Dj is a neighbour of Di}.

Clearly, nα
ij = −nα

ji.
The straight segments that form the intersections of ∂Ωh with finite volumes

Di adjacent to ∂Ωh will be denoted by Sj and numbered by negative indexes
j forming an index set JB ⊂ Z− = {−1,−2, . . .}. Hence, J ∩ JB = ∅ and
∂Ωh =

⋃
j∈JB

Sj . For a finite volume Di adjacent to the boundary ∂Ωh, i.e. if
Sj ⊂ ∂Ωh ∩ ∂Di for some j ∈ JB, we set

γ(i) = {j ∈ JB ;Sj ⊂ ∂Di ∩ ∂Ωh}, (4.4.22)

Γij = Γ1
ij = Sj , βij = 1 for j ∈ γ(i).

If Di is not adjacent to ∂Ωh, then we put γ(i) = ∅. By nα
ij we again denote the

unit outer normal to ∂Di on Γα
ij . Then, putting

S(i) = s(i) ∪ γ(i), (4.4.23)

we have

∂Di =
⋃

j∈S(i)

βij⋃

α=1

Γα
ij , (4.4.24)

∂Di ∩ ∂Ωh =
⋃

j∈γ(i)

βij⋃

α=1

Γα
ij ,

|∂Di| =
∑

j∈S(i)

βij∑

α=1

|Γα
ij |.

4.4.1.1 Examples of finite volumes in 2D In practical computations one uses
several types of finite volume meshes:

a) Triangular mesh In this case Dh is a triangulation of the domain Ωh

with the usual properties from the finite element method Then, under the above
notation, Γij consists of only one straight segment and, thus, we have βij = 1
and simply write ∂Di =

⋃
j∈S(i) Γij .

b) Quadrilateral mesh Now Dh consists of closed convex quadrilaterals Di.

c) Dual finite volume mesh over a triangular grid

d) Barycentric finite volumes over a triangular grid
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a) Triangular mesh

b) Quadrilateral mesh

c) Dual mesh over a triangular grid

d) Barycentric mesh over a triangular grid

Fig. 4.2. Finite volume meshes in 2D

4.4.2 Derivation of a general finite volume scheme

In order to derive a finite volume scheme, we can proceed in the following way.
Let us assume that w : Ω×[0, T ] → IRm is a classical (i.e. C1-) solution of system
(4.3.1), Dh = {Di}i∈J is a finite volume mesh in a polygonal approximation Ωh

of Ω. Let us construct a partition 0 = t0 < t1 < . . . of the time interval [0, T ]
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and denote by τk = tk+1 − tk the time step between tk and tk+1. Integrating
equation (4.3.1) over the set Di × (tk, tk+1) and using Green’s theorem on Di,
we get the identity

∫

Di

w(x, t) dx

∣∣∣∣
tk+1

t=tk

+

∫ tk+1

tk

(∫

∂Di

N∑

s=1

fs(w)ns dS

)
dt = 0.

Moreover, taking into account (4.4.24), we can write
∫

Di

(w(x, tk+1) − w(x, tk)) dx (4.4.25)

+

∫ tk+1

tk




∑

j∈S(i)

βij∑

α=1

∫

Γα
ij

N∑

s=1

fs(w)ns dS



dt = 0.

Now we shall approximate the integral averages
∫

Di
w(x, tk)dx/|Di| of the quan-

tity w over the finite volume Di at time instant tk by wk
i :

wk
i ≈

1

|Di|

∫

Di

w(x, tk) dx, (4.4.26)

called the value of the approximate solution on Di at time tk. Further, we ap-
proximate the flux

∑N
s=1 fs(w)(nα

ij)s of the quantity w through the face Γα
ij in

the direction nα
ij with the aid of a numerical flux H(wk

i ,w
k
j ,n

α
ij). In this way

we obtain the following explicit formula

wk+1
i = wk

i −
τk
|Di|

∑

j∈S(i)

βij∑

α=1

H(wk
i ,w

k
j ,n

α
ij)|Γ

α
ij |, (4.4.27)

Di ∈ Dh, tk ∈ [0, T ).

for the computation of wk+1
i from the known values wk

i , i ∈ J .
The FV method is equipped with initial conditions w0

i , i ∈ J , defined by

w0
i =

1

|Di|

∫

Di

w0(x) dx, (4.4.28)

under the assumption that the function w0 from (4.3.2) is locally integrable:
w0 ∈ L1

loc(Ω)m.

4.4.3 Properties of the numerical flux

In what follows, we shall assume that the numerical flux H has the following
properties:

1. H(u,v,n) is defined and continuous on D×D×S1, where D is the domain
of definition of the fluxes fs and S1 is the unit sphere in IRN : S1 = {n ∈
IRN ; |n| = 1}.
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2. H is consistent:

H(u,u,n) = P(u,n) =

N∑

s=1

fs(u)ns, u ∈ D, n ∈ S1. (4.4.29)

3. H is conservative:

H(u,v,n) = −H(v,u,−n), u,v ∈ D, n ∈ S1. (4.4.30)

If H satisfies conditions (4.4.29) and (4.4.30), the method is called consistent and
conservative, respectively. (Note that the conservativity of the scheme means that
the flux from the finite volume Di into Dj through Γα

ij has the same magnitude,
but opposite sign, as the flux from Dj into Di.)

4.4.4 Examples of numerical fluxes

Taking into account that the matrix P is diagonalizable, i.e.

P(w,n) = TΛ\T−1, Λ\ = diag(λ1, . . . , λm),

we define the matrices P
± and |P| by

P
± = TΛ\± T−1, Λ\± = diag(λ±1 , . . . , λ

±
4 ), λ+ = max(λ, 0), λ− = min(λ, 0),

|P| = T |Λ\|T−1, |Λ\| = diag(|λ1|, . . . , |λ4|).

a) The Lax–Friedrichs numerical flux is defined by

HLF(u,v,n) =
1

2

(
P(u,n) + P(v,n) −

1

λ
(v − u)

)
, u,v ∈ D, n ∈ S1.

(4.4.31)
Here λ > 0 is independent of u,v, but depends, in general, on Γα

ij in the scheme.

b) The Steger–Warming scheme has the numerical flux

HSW(u,v,n) = P
+(u,n)u + P

−(v,n)v, u,v ∈ D, n ∈ S1. (4.4.32)

c) The Vijayasundaram scheme:

HV(u,v,n) = P
+

(
u + v

2
,n

)
u + P

−

(
u + v

2
,n

)
v. (4.4.33)

d) The Van Leer scheme:

HVL(u,v,n) =
1

2

{
P(u,n) + P(v,n) −

∣∣∣∣P
(

u + v

2
,n

)∣∣∣∣ (v − u)

}
. (4.4.34)
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4.4.5 Boundary conditions

Let Di ∈ Dh be a finite volume adjacent to the boundary ∂Ωh, i.e. ∂Di is
formed by faces Γ = Γ1

ij ⊂ ∂Ωh (j ∈ γ(i)) and let n = n1
ij be a unit outer

normal to ∂Di on Γ. (See Section 4.4.1.) In order to be able to compute the
numerical flux H(wk

i ,w
k
j ,n), it is necessary to specify the value wk

j . The choice
of boundary conditions for nonlinear hyperbolic problems is a difficult question.
One possibility is to use approach described in the monograph by M. Feistauer,
J. Felcman and I. Straškraba - see Preface, based on the linearization and the
use of the method of characteristics. In this way we get the following result:

On Γ = Γα
ij ⊂ ∂Ωh (i.e. i ∈ J, j ∈ γ(i), α = 1) with normal n = nα

ij , we have
to prescribe npr quantities characterizing the state vector w, where npr is the
number of negative eigenvalues of the matrix P(wk

i ,n), whereas we extrapolate
nex quantities to the boundary, where nex is the number of nonnegative eigen-
values of P(wk

i ,n). The extrapolation of a quantity q to the boundary means in
this case to set qk

j := qk
i . On the other hand, if we prescribe the boundary value

of q, we set qk
j := qk

Bj with a given value qk
Bj , determined by the user on the

basis of the physical character of the flow.
We present here one possibility, which is often used in practical computations.

It is suitable to distinguish several cases given in Table 4.1 (for 2D flow, N =
2, m = 4).

4.4.6 Stability of the finite volume schemes

Let wk = {wk
i }i∈J be an approximate solution on the k-th time level obtained

with the aid of the finite volume method. By ‖wk‖ we denote a norm of the
approximation wk. We call the scheme stable, if there exists a constant c > 0
independent of τ, h, k such that

‖wk‖ ≤ c‖w0‖, k = 0, 1, . . . . (4.4.35)

The stability conditions of schemes for the solution of the Euler equations
is usually obtained by a heuristic extension of the stability conditions for the
finite volume schemes applied to simple scalar equations. Let us consider Vijaya-
sundaram and Steger–Warming schemes applied to the following scalar linear
equation

∂w

∂t
+

N∑

s=1

as
∂w

∂xs
= 0, (4.4.36)

where as ∈ IR. Let us denote a = (a1, . . . , aN )T. It is easy to see that the Vi-
jayasundaram and Steger–Warming schemes applied to equation (4.4.36) become
identical. The flux of the quantity w has the form

P(w,n) = w

N∑

s=1

asns = w(a · n), n = (n1, . . . , nN )T ∈ S1, w ∈ IR,

and the corresponding numerical flux becomes
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Table 4.1 Boundary conditions for 2D flow

Type of Character The sign of Quantities Quantities
boundary of the flow eigenvalues extrapolated prescribed

npr and nex

λ1 < 0
supersonic flow λ2 = λ3 < 0
(−v · n > a) λ4 < 0 — ρ, v1, v2, p

INLET npr = 4, nex = 0
(v · n < 0) λ1 < 0

subsonic flow λ2 = λ3 < 0
(−v · n ≤ a) λ4 ≥ 0 p ρ, v1, v2

npr = 3, nex = 1

λ1 ≥ 0
supersonic flow λ2 = λ3 > 0
(v · n ≥ a) λ4 > 0 ρ, v1, v2, p —

OUTLET npr = 0, nex = 4
(v · n > 0) λ1 < 0

subsonic flow λ2 = λ3 > 0
(v · n < a) λ4 > 0 ρ, v1, v2 p

npr = 1, nex = 3

SOLID λ1 < 0
IMPER- λ2 = λ3 = 0 p
MEABLE v · n = 0 λ4 > 0 (ρ, vt) v · n = 0
BOUNDARY npr = 1, nex = 3

H(u, v,n) = (a · n)+u+ (a · n)−v, u, v ∈ IR, n ∈ S1. (4.4.37)

It is possible to show that the mentioned methods are L∞-stable under the
stability condition

τ |a||∂Di|/|Di| ≤ 1, i ∈ J. (4.4.38)

4.4.7 Extension of the stability conditions to the Euler equations

In the above example, the vector a represents the characteristic speed of propaga-
tion of disturbances in the quantity w. For the Euler equations, we can consider 4
characteristic directions (in the 2D case) given by the eigenvectors of the matrix
P(w,n) and the characteristic speeds are given by the corresponding eigenval-
ues λs(w,n), s = 1, . . . , 4. We generalize the stability condition (4.4.38) to the
Euler equations in such a way that the speed |a| is replaced by the magnitudes
of the eigenvalues λs(w,n), s = 1, . . . , 4. In this heuristic way we arrive at the
CFL-stability condition of the form

τk max
j∈S(i)

α=1,...,βij

max
r=1,...,4

∣∣λr(w
k
i ,n

α
ij)
∣∣ |∂Di|/|Di| ≤ CFL, i ∈ J, (4.4.39)

where CFL is a positive constant. Usually we choose CFL < 1, e.g. CFL=0.85.
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FINITE ELEMENT METHODS FOR COMPRESSIBLE FLOW

5.1 Combined finite volume–finite element method for viscous
compressible flow

The finite volume method (FVM) represents an efficient and robust method for
the solution of inviscid compressible flow. On the other hand, the finite element
method (FEM) is suitable for the approximation of elliptic or parabolic prob-
lems. The use of advantages of both FE and FV techniques leads us to the
combined FV - FE method. It is applied in such a way that the FVM is used
for the discretization of inviscid Euler fluxes, whereas the FEM is applied to the
approximation of viscous terms.

For simplicity we assume that volume force and heat sources are equal to
zero. Then the complete system describing viscous compressible flow in a domain
Ω ⊂ IRN with Lipschitz-continuous boundary Γ = ∂Ω and in a time interval
(0, T ) can be written in the form

∂w

∂t
+

N∑

i=1

∂f i(w)

∂xi
=

N∑

i=1

∂Ri(w,∇w)

∂xi
in QT , (5.1.1)

where QT = Ω × (0, T ) and

w = (ρ, ρv1, . . . , ρvN , E)T ∈ IRm, (5.1.2)

m = N + 2, w = w(x, t), x ∈ Ω, t ∈ (0, T ),

f i(w) = (fi1, . . . , fim)T

= (ρvi, ρv1vi + δ1ip, . . . , ρvNvi + δNip, (E + p)vi)
T

Ri(w,∇w) = (Ri1, . . . , Rim)T

= (0, τi1, . . . , τiN , τi1v1 + · · · + τiNvN + k∂θ/∂xi)
T
,

τij = λdivvδij + 2µdij(v), dij(v) =
1

2

(
∂vi

∂xj
+
∂vj

∂xi

)
.

(5.1.3)

To system (5.1.1) we add the thermodynamical relations valid for a perfect gas:

p = (γ − 1)(E − ρ|v|2/2), θ =

(
E

ρ
−

1

2
|v|2

)/
cv. (5.1.4)

As usual, we use the following notation: v = (v1, . . . , vN )T – velocity vector,
ρ – density, p – pressure, θ – absolute temperature, E – total energy, γ – Poisson

59
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adiabatic constant, cv – specific heat at constant volume, µ, λ – viscosity coeffi-
cients, k – heat conduction coefficient. We assume µ, k > 0, 2µ+3λ ≥ 0. Usually
we set λ = −2µ/3. By τij we denote here the of the viscous part of the stress
tensor.

The system is equipped with initial conditions written in the form

w(x, 0) = w0(x), x ∈ Ω, (5.1.5)

where w0(x) is a given vector-valued function defined in Ω.

5.1.0.1 Boundary conditions We write ∂Ω = ΓI∪ΓO∪ΓW , where ΓI represents
the inlet through which the gas enters the domain Ω, ΓO is the outlet through
which the gas should leave Ω and ΓW represents impermeable fixed walls.

On ΓI one can prescribe the conditions

a) ρ
∣∣
ΓI×(0,T )

= ρD, b) v
∣∣
ΓI×(0,T )

= vD = (vD1, . . . , vDN )T, (5.1.6)

c) θ
∣∣
ΓI×(0,T )

= θD

with given functions ρD,vD, θD. The inlet ΓI is characterized, of course, by the
condition vD · n < 0 on ΓI , where n is the unit outer normal to ∂Ω.

On ΓW we use the no-slip boundary conditions. Moreover, we use here the
condition of adiabatic wall with zero heat flux. Hence,

a) v
∣∣
ΓW ×(0,T )

= 0, (5.1.7)

b)
∂θ

∂n

∣∣
ΓW ×(0,T )

= 0.

Finally on the outlet ΓO we consider “natural boundary conditions”

N∑

i=1

τijni = 0, j = 1, . . . , N, (5.1.8)

∂θ

∂n
= 0.

The Dirichlet boundary conditions can be expressed in terms of the conservative
variables in the form

w1 = ρD, (w2, . . . , wm−1)
T = ρDvD, wm = ED on ΓI × (0, T ), (5.1.9)

w2 = . . . = wm−1 = 0 on ΓW × (0, T ).

This is reflected in the definition of the space of test functions

V =
{
ϕ = (ϕ1, . . . , ϕm)T;ϕi ∈ H1(Ω), i = 1, . . . ,m, (5.1.10)
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ϕ1, ϕ2, . . . , ϕm = 0 on ΓI , ϕ2, . . . , ϕm−1 = 0 on ΓW

}
.

We shall express the Dirichlet boundary conditions with the aid of a func-
tion w∗ satisfying these condition. Then the fact that a solution w satisfies the
Dirichlet conditions can be expressed as the condition

w(t) − w∗(t) ∈ V , t ∈ (0, T ).

Now, assuming that w is a classical solution of problem (CFP), we multiply
equation (5.1.1) by any ϕ ∈ V , integrate over Ω and apply Green’s theorem to
viscous terms. We obtain the identity

∫

Ω

∂w

∂t
· ϕdx+

∫

Ω

N∑

i=1

∂f i(w)

∂xi
· ϕ dx (5.1.11)

+

∫

Ω

N∑

i=1

Ri(w,∇w) ·
∂ϕ

∂xi
dx

−

∫

∂Ω

N∑

i=1

niRi(w,∇w) · ϕdS = 0.

From the representation of Ri in (5.1.2), boundary conditions and the definition
of the space V we find that

∫

∂Ω

N∑

i=1

niRi(w,∇w) · ϕ dS = 0. (5.1.12)

Let us introduce the notation

(w,ϕ) =

∫

Ω

w · ϕ dx, (5.1.13)

a(w,ϕ) =

∫

Ω

N∑

i=1

Ri(w,∇w) ·
∂ϕ

∂xi
dx,

b(w,ϕ) =

∫

Ω

N∑

i=1

∂f i(w)

∂xi
· ϕ dx.

Obviously, the forms given in (5.1.13). are linear with respect to ϕ and make
sense for functions w with weaker regularity than that of the classical solution.
We shall not specify it here. From the point of view of the FE solution, it is
sufficient to write the weak formulation of problem (CFP) as the conditions

a) w(t) − w∗(t) ∈ V , t ∈ (0, T ), (5.1.14)

b)

(
∂w(t)

∂t
,ϕ

)
+ a(w(t),ϕ) + b(w(t),ϕ) = 0,
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∀ϕ ∈ V , t ∈ (0, T ),

c) w(0) = w0.

A function w for which the individual terms in (5.1.14), b) make sense, satisfy-
ing conditions (5.1.14), a)-c) is called a weak solution of the compressible flow
problem (CFP).

5.1.1 Computational grids

By Ωh we denote a polygonal approximation of the domain Ω. In the combined
FV–FE method we work with two meshes constructed in the domain Ωh: a finite
element mesh Th = {Ki}i∈I and a finite volume mesh Dh = {Dj}j∈J . Here, I
and J ⊂ Z+ are suitable index sets.

The FE mesh Th satisfies the standard properties from the FEM. It is formed
by a finite number of closed triangles covering the closure of Ωh,

Ωh =
⋃

K∈Th

K. (5.1.15)

By σh we denote the set of all vertices of all elements K ∈ Th and assume that
σh ∩ ∂Ωh ⊂ ∂Ω. Moreover, let the common points of sets ΓI ,ΓW and ΓO belong
to the set σh. The symbol Qh will denote the set of all midpoints of sides of
all elements K ∈ T . By |K| we denote the area of K ∈ Th hK = diam(K) and
h = maxK∈Th

hK .
We shall also work with an FV mesh Dh in Ωh, formed by a finite number of

closed polygons such that

Ωh =
⋃

D∈Dh

D. (5.1.16)

Various types of FV meshes were introduced in Section 4.3.
We use the same notation as in Section 4.4.1. The boundary ∂Di of each

finite volume Di ∈ Dh can be expressed as

∂Di =
⋃

j∈S(i)

βij⋃

α=1

Γα
ij , (5.1.17)

where Γα
ij are straight segments, called faces of Di, Γα

ij = Γα
ji, which either form

the common boundary of neighbouring finite volumes Di and Dj or are part of
∂Ωh. We denote by |Di| the area of Di, |Γ

α
ij |− the length of Γα

ij , nα
ij – the unit

outer normal to ∂Di on Γα
ij . Clearly, nα

ij = −nα
ji. S(i) is a suitable index set

written in the form

S(i) = s(i) ∪ γ(i), (5.1.18)

where s(i) contains indexes of neighbours Dj of Di and γ(i) is formed by indexes
j of Γ1

ij ⊂ ∂Ωh (in this case we set βij = 1). For details see Section 4.4.1.
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5.1.2 FV and FE spaces

The FE approximate solution will be sought in a finite dimensional space

Xh = Xm
h , (5.1.19)

called a finite element space. We shall consider two cases of the definition of Xh:

Xh =
{
ϕh ∈ C(Ωh);ϕh|K ∈ P 1(K) ∀K ∈ Th

}
(5.1.20)

(conforming piecewise linear elements) and

Xh =
{
ϕh ∈ L2(Ω);ϕh|K ∈ P 1(K), ϕh are continuous (5.1.21)

at midpoints Qj ∈ Q of all faces of all K ∈ Th

}

(nonconforming Crouzeix–Raviart piecewise linear elements – they were origi-
nally proposed for the approximation of the velocity of incompressible flow, see
the previous chapter.

The finite volume approximation is an element of the finite volume space

Zh = Zm
h , (5.1.22)

where
Zh =

{
ϕh ∈ L2(Ω);ϕh|D = const ∀D ∈ Dh

}
. (5.1.23)

One of the most important concepts is a relation between the spaces Xh and
Zh. We assume the existence of a mapping Lh : Xh → Zh, called a lumping
operator.

In practical computations we use several combinations of the FV and FE
spaces (see, for example, (Feistauer and Felcman, 1997), (Feistauer et al., 1995),
(Feistauer et al., 1996), (Doleǰśı et al., 2002)).

Let us mention, for example conforming finite elements combined with dual
finite volumes In this case the FE space Xh is defined by (5.1.19) – (5.1.20).
The mesh Dh is formed by dual FVs Di constructed over the mesh Th, associated
with vertices Pi ∈ σh = {Pi}i∈J , defined in Sections 4.4.1.1, c). In this case, the
lumping operator is defined as such a mapping Lh : Xh → Zh that for each
ϕh ∈ Xh

Lhϕh ∈ Zh, Lhϕh|Di
= ϕh(Pi) ∀i ∈ J. (5.1.24)

Obviously, Lh is a one-to-one mapping of Xh onto Zh.
Another possibility is the combination of nonconforming finite elements com-

bined with barycentric finite volumes.

5.1.3 Space semidiscretization of the problem

We use the following approximations: Ω ≈ Ωh, ΓI ≈ ΓIh ⊂ ∂Ωh, ΓW ≈ ΓWh ⊂
∂Ωh, ΓO ≈ ΓOh ⊂ ∂Ωh, w(t) ≈ wh(t) ∈ Xh, ϕ ≈ ϕh ∈ V h ≈ V , where

V h =
{

ϕh = (ϕh1, . . . , ϕhm) ∈ Xh;ϕ(Pi) = 0 (5.1.25)
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at Pi ∈ ΓIh, ϕhn(Pi) = 0 for n = 2, . . . ,m− 1 at Pi ∈ ΓWh

}
.

Here Pi denote nodes, i.e. vertices Pi ∈ σh or midpoints of faces Pi ∈ Qh in the
case of conforming or nonconforming finite elements, respectively.

The form a(w,ϕ) defined in (5.1.13) is approximated by

ah(wh,ϕh) =
∑

K∈Th

∫

K

N∑

s=1

Rs(wh,∇wh) ·
∂ϕh

∂xs
dx, wh,ϕh ∈ Xh. (5.1.26)

In order to approximate the nonlinear convective terms containing inviscid
fluxes fs, we start from the analogy with the form b from (5.1.13) written as∫
Ω

∑N
s=1(∂fs(w)/∂xs) ·ϕ dx, where we use the approximation ϕ ≈ Lhϕh. Then

Green’s theorem is applied and the flux
∑N

s=1 fs(w)ns is approximated with the
aid of a numerical flux H(w,w′,n) from the FVM treated in Section 4.3:

∫

Ω

N∑

s=1

∂fs(w)

∂xs
· ϕdx ≈

∑

i∈J

∫

Di

N∑

s=1

∂fs(w)

∂xs
· Lhϕh dx

=
∑

i∈J

Lhϕh|Di
·

∫

Di

N∑

s=1

∂fs(w)

∂xs
dx

=
∑

i∈J

Lhϕh|Di
·

∫

∂Di

N∑

s=1

fs(w)ns dS (5.1.27)

=
∑

i∈J

Lhϕh|Di
·
∑

j∈S(i)

βij∑

α=1

∫

Γα
ij

N∑

s=1

fs(w)ns dS

≈
∑

i∈J

Lhϕh|Di
·
∑

j∈S(i)

βij∑

α=1

H(Lhwh|Di
, Lhwh|Dj ,n

α
ij)|Γ

α
ij |.

Hence, we set

bh(wh,ϕh) =
∑

i∈J

Lhϕh|Di
·
∑

j∈S(i)

βij∑

α=1

H(Lhwh|Di
, Lhwh|Dj

,nα
ij)|Γ

α
ij |. (5.1.28)

If Γα
ij ⊂ ∂Ωh, it is necessary to give an interpretation of Lhwh|Dj

using inviscid
boundary conditions – see Section 5.1.5.

Definition 5.1 We define a finite volume–finite element approximate solution
of the viscous compressible flow as a vector-valued function wh = wh(x, t) defined
for (a.a) x ∈ Ωh and all t ∈ [0, T ] satisfying the following conditions:

a) wh ∈ C1([0, T ];Xh), (5.1.29)
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b) wh(t) − w∗
h(t) ∈ V h,

c)

(
∂wh(t)

∂t
,ϕh

)
+ bh(wh(t),ϕh)

+ ah(wh(t),ϕh) = 0

∀ϕh ∈ V h, ∀t ∈ (0, T ),

d) wh(0) = w0
h.

5.1.4 Time discretization

Problem (5.1.29) is equivalent to a large system of ordinary differential equations
which is solved with the aid of a suitable time discretization. It is possible to use
Runge–Kutta methods.

The simpliest possibility is the Euler forward scheme. Let 0 = t0 < t1 < t2 . . .
be a partition of the time interval and let τk = tk+1 − tk. Then in (5.1.29), b), c)
we use the approximations wk

h ≈ wh(tk) and (∂wh/∂t)(tk) ≈ (wk+1
h − wk

h)/τk
and obtain the scheme

a) wk+1
h − w∗

h(tk+1) ∈ V h, (5.1.30)

b) (wk+1
h ,ϕh) = (wk

h,ϕh) − τkah(wk
h,ϕh)

− τkbk(wk
h,ϕh) ∀ϕh ∈ V h, k = 0, 1, . . . .

5.1.5 Realization of boundary conditions in the convective form bh

If Γα
ij ⊂ ∂Ωh (i.e. j ∈ γ(i), α = 1), then there is no finite volume adjacent to Γα

ij

from the opposite side to Di and it is necessary to interpret the value Lhwh|Dj

in the definition (5.1.28) of the form bh. This means that we need to determine
a boundary state w̃j which will be substituted for Lhwh|Dj

in (5.1.28).
We apply the approach used in the FVM and explained in Section 4.4.5.

5.1.5.1 Stability of the combined FV–FE methods Since scheme (5.1.30) is
explicit, it is necessary to apply some stability condition. Unfortunately, there is
no rigorous theory for the stability of schemes applied to the complete compress-
ible Navier–Stokes system. We proceed heuristically. By virtue of the explicit
FV discretization of inviscid terms, we apply the modification of the stability
condition derived in Section 4.4.7 for the explicit FVM for the solution of the
Euler equations:

τk
|Di|

max
j∈S(i)

α=1,...,βij

max
ℓ=1,...,m

{|∂Di||λℓ(w
k
i ,n

α
ij)| + µ} ≤ CFL ≈ 0.85, i ∈ J, (5.1.31)

where λℓ(w
k
i ,n

α
ij) are the eigenvalues of the matrix P(wk

i ,n
α
ij) – see (4.3.6).

5.2 Discontinuous Galerkin finite element method

This section is concerned with the discontinuous Galerkin finite element method
(DGFEM) for the numerical solution of compressible inviscid as well as viscous
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flow. The DGFEM is based on the use of piecewise polynomial approximations
without any requirement on the continuity on interfaces between neighbouring
elements. It uses advantages of the FVM and FEM.

5.2.1 DGFEM for conservation laws

In this section we shall discuss the discontinuous Galerkin finite element dis-
cretization of multidimensional initial-boundary value problems for conservation
law equations and, in particular, for the Euler equations. Let Ω ⊂ IRN be a
bounded domain with a piecewise smooth Lipschitz-continuous boundary ∂Ω
and let T > 0. In the space-time cylinder QT = Ω× (0, T ) we consider a system
of m first order hyperbolic equations

∂w

∂t
+

N∑

s=1

∂fs(w)

∂xs
= 0. (5.2.1)

This system is equipped with the initial condition

w(x, 0) = w0(x), x ∈ Ω, (5.2.2)

where w0 is a given function, and with boundary conditions

B(w) = 0, (5.2.3)

where B is a boundary operator. The choice of the boundary conditions is carried
out similarly as in Section 4.4.5 in the framework of the discrete problem for the
Euler equations describing gas flow.

5.2.1.1 Discretization Let Ω be a polygonal or polyhedral domain, if N = 2
or N = 3, respectively. Let Th (h > 0) denote a partition of the closure Ω of the
domain Ω into a finite number of closed convex polygons (if N = 2) or polyhedra
(if N = 3)K with mutually disjoint interiors. We call Th a triangulation of Ω, but
do not require the usual conforming properties from the FEM. In 2D problems
we usually choose K ∈ Th as triangles or quadrilaterals, in 3D, K ∈ Th can be,
for example, tetrahedra, pyramids or hexahedra, but we can allow even more
general convex elements K.

We set hK = diam(K), h = maxK∈Th
hK . By |K| we denote the N -dimen-

sional Lebesgue measure of K. All elements of Th will be numbered so that
Th = {Ki}i∈I , where I ⊂ Z+ = {0, 1, 2, . . .} is a suitable index set. If two
elements Ki, Kj ∈ Th contain a nonempty open face which is a part of an
(N − 1)-dimensional hyperplane (i.e. straight line in 2D or plane in 3D), we call
them neighbouring elements or neighbours. In this case we set Γij = ∂Ki ∩ ∂Kj

and assume that the whole set Γij is a part of an (N−1)-dimensional hyperplane.
For i ∈ I we set s(i) = {j ∈ I;Kj is a neighbour of Ki}. The boundary ∂Ω is
formed by a finite number of faces of elements Ki adjacent to ∂Ω. We denote
all these boundary faces by Sj , where j ∈ Ib ⊂ Z− = {−1,−2, . . .}, and set
γ(i) = {j ∈ Ib;Sj is a face of Ki},Γij = Sj for Ki ∈ Th such that Sj ⊂ ∂Ki, j ∈
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K

K

Γ

j

n
i

ij

ij

Fig. 5.1. Neighbouring elements Ki, Kj

Ib. For Ki not containing any boundary face Sj we set γ(i) = ∅. Obviously,
s(i) ∩ γ(i) = ∅ for all i ∈ I. Now, if we write S(i) = s(i) ∪ γ(i), we have

∂Ki =
⋃

j∈S(i)

Γij , ∂Ki ∩ ∂Ω =
⋃

j∈γ(i)

Γij . (5.2.4)

Furthermore, we use the following notation: nij = ((nij)1, . . . , (nij)N ) is the
unit outer normal to ∂Ki on the face Γij (nij is a constant vector on Γij),
d(Γij) = diam(Γij), and |Γij | is the (N − 1)-dimensional Lebesgue measure of
Γij . See Fig. 5.1.

Over the triangulation Th we define the broken Sobolev space

Hk(Ω, Th) = {v; v|K ∈ Hk(K) ∀K ∈ Th}. (5.2.5)

For v ∈ H1(Ω, Th) we introduce the following notation:

v|Γij
− the trace of v|Ki

on Γij , (5.2.6)

v|Γji
− the trace of v|Kj

on Γji = Γij .

The approximate solution of problem (5.2.1)–(5.2.3) is sought in the space of
discontinuous piecewise polynomial vector-valued functions Sh defined by

Sh = [Sh]m, (5.2.7)

Sh = Sr,−1(Ω, Th) = {v; v|K ∈ P r(K) ∀K ∈ Th},

where r ∈ Z+ and P r(K) denotes the space of all polynomials on K of degree
≤ r.

Let us assume that w is a classical C1-solution of system (5.2.1). As usual,
by w(t) we denote a function w(t) : Ω → IRm such that w(t)(x) = w(x, t) for
x ∈ Ω. In order to derive the discrete problem, we multiply (5.2.1) by a function
ϕ ∈ H1(Ω, Th)m and integrate over an elementKi, i ∈ I. With the use of Green’s
theorem, we obtain the integral identity

d

dt

∫

Ki

w(t) · ϕdx −

∫

Ki

N∑

s=1

fs(w(t)) ·
∂ϕ

∂xs
dx (5.2.8)
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+
∑

j∈S(i)

∫

Γij

N∑

s=1

fs(w(t)) · ϕns dS = 0.

Summing (5.2.8) over all Ki ∈ Th, we obtain the identity

d

dt

∑

i∈I

∫

Ki

w(t) · ϕdx −
∑

i∈I

∫

Ki

N∑

s=1

fs(w(t)) ·
∂ϕ

∂xs
dx (5.2.9)

+
∑

i∈I

∑

j∈S(i)

∫

Γij

N∑

s=1

fs(w(t)) · ϕns dS = 0.

Under the notation

(w,ϕ) =
∑

i∈I

∫

Ki

w · ϕ dx =

∫

Ω

w · ϕdx (5.2.10)

([L2]m-scalar product) and

b(w,ϕ) = −
∑

i∈I

∫

Ki

N∑

s=1

fs(w) ·
∂ϕ

∂xs
dx (5.2.11)

+
∑

i∈I

∑

j∈S(i)

∫

Γij

N∑

s=1

fs(w) · ϕns dS,

(5.2.8) can be written in the form

d

dt
(w(t),ϕ) + b(w(t),ϕ) = 0. (5.2.12)

This equality represents a weak form of system (5.2.1) in the sense of the broken
Sobolev space H1(Ω, Th).

5.2.1.2 Numerical solution Now we shall introduce the discrete problem ap-
proximating identity (5.2.12). For t ∈ [0, T ], the exact solution w(t) will be
approximated by an element wh(t) ∈ Sh. It is not possible to replace w for-
mally in the definition (5.2.11) of the form b, because wh is discontinuous on Γij

in general. Similarly as in the FVM we use here the concept of the numerical
flux H = H(u,v,n) and write

∫

Γij

N∑

s=1

fs(w(t))ns · ϕ dS ≈

∫

Γij

H(wh|Γij
(t),wh|Γji

(t),nij) · ϕ|Γij dS.

(5.2.13)
We assume that the numerical flux has the properties formulated in Section 4.4.3:
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1) H(u,v,n) is defined and continuous on D×D×S1, where D is the domain
of definition of the fluxes fs and S1 is the unit sphere in IRN : S1 = {n ∈
IRN ; |n| = 1}.

2) H is consistent:

H(u,u,n) = P(u,n) =
N∑

s=1

fs(u)ns, u ∈ D, n ∈ S1. (5.2.14)

3) H is conservative:

H(u,v,n) = −H(v,u,−n), u, v ∈ D, n ∈ S1. (5.2.15)

The above considerations lead us to the definition of the approximation bh
of the convective form b:

bh(w,ϕ) = −
∑

i∈I

∫

Ki

N∑

s=1

fs(w) ·
∂ϕ

∂xs
dx (5.2.16)

+
∑

i∈I

∑

j∈S(i)

∫

Γij

H(w|Γij
,w|Γji

,nij) · ϕ|Γij
dS, w,ϕ ∈ H1(Ω, Th)m.

By w0
h we denote an Sh-approximation of w0, e.g. the [L2]m-projection on

Sh.
Now we come to the formulation of the discrete problem.

Definition 5.2 We say that wh is an approximate solution of (5.2.12), if it
satisfies the conditions

a) wh ∈ C1([0, T ];Sh), (5.2.17)

b)
d

dt
(wh(t),ϕh) + bh(wh(t),ϕh) = 0 ∀ϕh ∈ Sh,∀ t ∈ (0, T ),

c) wh(0) = w0
h.

The discrete problem (5.2.17) is equivalent to an initial value problem for a
system of ordinary differential equations which can be solved by a suitable time
stepping numerical method.

Remark 5.3 If we set r = 0, then the DGFEM for reduces to the FV method.

5.2.1.3 Treatment of boundary conditions If Γij ⊂ ∂Ωh, then there is no neigh-
bour Kj of Ki adjacent to Γij and the values of w|Γij

must be determined on
the basis of boundary conditions. We use the same approach as in the FVM,
explained in Section 4.4.5.

5.2.2 Limiting of the order of accuracy

In the DGFEM with r ≥ 1, similarly as in other higher-order methods, we
can observe the Gibbs phenomenon, manifested in approximate solutions by
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Fig. 5.2. Exact solution of the problem from Example 5.4 plotted at t = 0.45

nonphysical overshoots and undershoots near discontinuities. In order to avoid
this effect, it is necessary to apply a suitable limiting (or stabilization) in the
vicinity of discontinuities or steep gradients.

Example 5.4 In order to demonstrate the applicability of the described limiting
procedure, let us consider the scalar 2D Burgers equation

∂u

∂t
+ u

∂u

∂x1
+ u

∂u

∂x2
= 0 in Ω × (0, T ), (5.2.18)

where Ω = (−1, 1) × (−1, 1), equipped with initial condition

u0(x1, x1) = 0.25 + 0.5 sin(π(x1 + x2)), (x1, x2) ∈ Ω, (5.2.19)

and periodic boundary conditions. The exact entropy solution of this problem
becomes discontinuous for t ≥ 0.3 In Fig. 5.2, the graph of the exact solution at
time t = 0.45 is plotted. If we apply scheme our method to this problem on the
mesh from Fig. 5.3, with time step τ = 2.5 · 10−4, we obtain the numerical solu-
tion shown in Fig. 5.4. It can be seen here that the numerical solution contains
spurious overshoots and undershoots near discontinuities. The application of the
described limiting procedure avoids them, as shown in Fig. 5.5.

5.2.3 Approximation of the boundary

In the FVM applied to conservation laws or in the FEM using piecewise linear
approximations applied to elliptic or parabolic problems, it is sufficient to use a
polygonal or polyhedral approximation Ωh of the 2D or 3D domain Ω, respec-
tively. However, numerical experiments show that in some cases the DGFEM
does not give a good resolution in the neighbourhood of curved parts of the
boundary ∂Ω, if the mentioned approximations of Ω are used. The quality of
approximate solutions near curved boundaries approximated in a piecewise lin-
ear way may lead to a bad quality of the numerical solution. This effect can be
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Fig. 5.3. Triangulation used for the numerical solution

avoided by the use of the so-called isoparametric elements. For example, if we
use piecewise linear elements, then one must use a bilinear transformation of a
reference element on a curved boundary element, see Fig. 5.6 and Fig. 5.7.

Then triangles Ki, i ∈ Ic, are replaced by the curved triangles and integrals
are evaluated on the reference triangle with the aid of a substitution theorem.

5.2.4 DGFEM for convection–diffusion problems and viscous flow

5.2.4.1 Example of a scalar problem First let us consider a simple scalar non-
stationary nonlinear convection-diffusion problem to find u : QT = Ω× (0, T ) →
IR such that

a)
∂u

∂t
+

N∑

s=1

∂fs(u)

∂xs
= ν∆u+ g in QT , (5.2.20)

b) u
∣∣
ΓD×(0,T )

= uD, c) ν
∂u

∂n

∣∣
ΓN×(0,T )

= gN ,

d) u(x, 0) = u0(x), x ∈ Ω.

We assume that Ω ⊂ IRN is a bounded polygonal domain, ifN = 2, or polyhedral
domain, if N = 3, with a Lipschitz boundary ∂Ω = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅,
and T > 0. The diffusion coefficient ν > 0 is a given constant, g : QT → IR,
uD : ΓD × (0, T ) → IR, gN : ΓN × (0, T ) → IR and u0 : Ω → IR are given
functions, fs ∈ C1(IR), s = 1, . . . , N , are given inviscid fluxes.

We define a classical solution of problem (5.2.20) as a sufficiently regular
function in QT satisfying (5.2.20), a)–d) pointwise.
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Fig. 5.4. Numerical solution of the problem from Example 5.4 computed by
DGFEM, plotted at t = 0.45

We leave to the reader the definition of a weak solution to problem (5.2.20)
as an exercise.

5.2.4.2 Discretization The discretization of convective terms is carried out in
the same way as in Section 5.2.1.1. There are several approaches to the dis-
cretization of the diffusion term. We shall apply here the technique, used, for
example, in (Oden et al., 1998), (Babuška et al., 1999).

We use the notation from Section 5.2.1.1. Moreover, for i ∈ I, by γD(i) and
γN (i) we denote the subsets of γ(i) formed by such indexes j that the faces Γij

approximate the parts ΓD and ΓN , respectively, of ∂Ω. Thus, we suppose that

γ(i) = γD(i) ∪ γN (i), γD(i) ∩ γN (i) = ∅. (5.2.21)

For v ∈ H1(Ω, Th) we set

〈v〉Γij
=

1

2

(
v
∣∣
Γij

+ v
∣∣
Γoj

)
, (5.2.22)
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Fig. 5.5. Numerical solution of the problem from Example 5.4 computed by
DGFEM with limiting, plotted at t = 0.45
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K

K

i

P0 P1

iP12

P2

Pi
1

Pi
12

Pi
2

Pi
0

F

Fig. 5.7. Bilinear mapping Fi : K̂ → Ki
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[v]Γij
= v

∣∣
Γij

− v
∣∣
Γji
,

denoting the average and jump of the traces of v on Γij = Γji defined in (5.2.6).
The approximate solution as well as test functions are supposed to be elements
of the space Sh = Sp,−1(Ω, Th) introduced in (5.2.7). Obviously, 〈v〉Γij

= 〈v〉Γji
,

[v]Γij
= −[v]Γji

and [v]Γij
nij = [v]Γji

nji.
In order to derive the discrete problem, we assume that u is a classical solution

of problem (5.2.20). The regularity of u implies that u(·, t) ∈ H2(Ω) ⊂ H2(Ω, Th)
and

〈u(·, t)〉Γij
= u(·, t)|Γij

, [u(·, t)]Γij
= 0, (5.2.23)

〈∇u(·, t)〉Γij
= ∇u(·, t)|Γij

= ∇u(·, t)|Γji
,

for each t ∈ (0, T ).

We multiply equation (5.2.20), a) by any ϕ ∈ H2(Ω, Th), integrate over Ki ∈ Th,
apply Green’s theorem and sum over all Ki ∈ Th. After some manipulation we
obtain the identity

∫

Ω

∂u

∂t
ϕdx+

∑

i∈I

∑

j∈S(i)

∫

Γij

N∑

s=1

fs(u) (nij)s ϕ|Γij
dS (5.2.24)

−
∑

i∈I

∫

Ki

N∑

s=1

fs(u)
∂ϕ

∂xs
dx+

∑

i∈I

∫

Ki

ν∇u · ∇ϕdx

−
∑

i∈I

∑

j∈s(i)
j<i

∫

Γij

ν〈∇u〉 · nij [ϕ] dS

−
∑

i∈I

∑

j∈γD(i)

∫

Γij

ν∇u · nij ϕdS

=

∫

Ω

g ϕdx+
∑

i∈I

∑

j∈γN (i)

∫

Γij

ν∇u · nij ϕdS.

To the left-hand side of (5.2.24) we now add the terms

±
∑

i∈I

∑

j∈s(i)
j<i

∫

Γij

ν〈∇ϕ〉 · nij [u] dS = 0, (5.2.25)

as follows from (5.2.23). Further, to the left-hand side and the right-hand side
we add the terms

±
∑

i∈I

∑

j∈γD(i)

∫

Γij

ν∇ϕ · nij u dS

and
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±
∑

i∈I

∑

j∈γD(i)

∫

Γij

ν∇ϕ · nij uD dS,

respectively, which are identical by the Dirichlet condition (5.2.20), b). We can
add these terms equipped with the + sign (the so-called nonsymmetric DG dis-
cretization of diffusion terms) or with the − sign (symmetric DG discretization
of diffusion terms). Both possibilities have their advantages and disadvantages.
Here we shall use the nonsymmetric discretization.

In view of the Neumann condition (5.2.20), c), we replace the second term on
the right-hand side of (5.2.24) by

∑

i∈I

∑

j∈γN (i)

∫

Γij

gN ϕdS. (5.2.26)

Because of the stabilization of the scheme we introduce the interior penalty

∑

i∈I

∑

j∈s(i)
j<i

∫

Γij

σ[u] [ϕ] dS (5.2.27)

and the boundary penalty

∑

i∈I

∑

j∈γD(i)

∫

Γij

σ uϕ dS =
∑

i∈I

∑

j∈γD(i)

∫

Γij

σuDϕdS (5.2.28)

where σ is a weight defined by

σ|Γij
= CW ν/d(Γij), (5.2.29)

where CW > 0 is a suitable constant. In the considered nonsymmetric formula-
tion we can set CW = 1. (In the case of the symmetric formulation, the choice
of CW follows from a detailed theoretical analysis.)

On the basis of the above considerations we introduce the following forms
defined for u, ϕ ∈ H2(Ω, Th):

ah(u, ϕ) =
∑

i∈I

∫

Ki

ν∇u · ∇ϕdx (5.2.30)

−
∑

i∈I

∑

j∈s(i)
j<i

∫

Γij

ν〈∇u〉 · nij [ϕ] dS

+
∑

i∈I

∑

j∈s(i)
j<i

∫

Γij

ν〈∇ϕ〉 · nij [u] dS

−
∑

i∈I

∑

j∈γD(i)

∫

Γij

ν∇u · nij ϕdS
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+
∑

i∈I

∑

j∈γD(i)

∫

Γij

ν∇ϕ · nij u dS

(nonsymmetric variant of the diffusion form - it is obvious what form would have
the symmetric variant),

Jh(u, ϕ) =
∑

i∈I

∑

j∈s(i)
j<i

∫

Γij

σ[u] [ϕ] dS (5.2.31)

+
∑

i∈I

∑

j∈γD(i)

∫

Γij

σ uϕ dS

(interior and boundary penalty jump terms),

ℓh(ϕ)(t) =

∫

Ω

g(t)ϕdx+
∑

i∈I

∑

j∈γN (i)

∫

Γ

gN (t)ϕdS (5.2.32)

+
∑

i∈I

∑

j∈γD(i)

∫

Γij

ν∇ϕ · nij uD(t) dS +
∑

i∈I

∑

j∈γD(i)

∫

Γij

σ uD(t)ϕdS

(right-hand side form).

Finally, the convective terms are approximated with the aid of a numerical
fluxH = H(u, v,n) by the form bh(u, ϕ) defined analogously as in Section 5.2.1.2:

bh(u, ϕ) = −
∑

i∈I

∫

K

N∑

s=1

fs(u)
∂ϕ

∂xs
dx (5.2.33)

+
∑

i∈I

∑

j∈S(i)

∫

Γij

H
(
u|Γij

, u|Γji
,nij

)
ϕ|Γij

dS, u, ϕ ∈ H2(Ω, Th).

We assume that the numerical fluxH is (locally) Lipschitz-continuous, consistent
and conservative – see Section 5.2.1.2.

Now we can introduce the discrete problem.

Definition 5.5 We say that uh is a DGFE solution of the convection-diffusion
problem (5.2.20), if

a) uh ∈ C1([0, T ];Sh), (5.2.34)

b)
d

dt
(uh(t), ϕh) + bh(uh(t), ϕh) + ah(uh(t), ϕh) + Jh(uh(t), ϕh) = ℓh(ϕh) (t)

∀ϕh ∈ Sh, ∀ t ∈ (0, T ),

c) uh(0) = u0
h.

By u0
h we denote an Sh-approximation of the initial condition u0.
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This discrete problem has been obtained with the aid of the method of lines,
i.e. the space semidiscretization. In practical computations suitable time dis-
cretization is applied (Euler forward or backward scheme, Runge–Kutta meth-
ods or discontinuous Galerkin time discretization) and integrals are evaluated
with the aid of numerical integration. Let us note that we do not require here
that the approximate solution satisfies the essential Dirichlet boundary condition
pointwise, e.g. at boundary nodes. In the DGFEM, this condition is represented
in the framework of the ‘integral identity’ (5.2.34), b).

The above DGFE discrete problem was investigated theoretically in (Doleǰśı
et al., 2002) and (Doleǰśı et al., 2005), where error estimates were analysed.

5.2.4.3 DGFE discretization of the Navier–Stokes equations Similarly as above,
one can proceed in the case of the compressible Navier-Stokes equations, but the
situation is much more complicated, because the diffusion, i.e. viscous terms, are
nonlinear. Therefore, we shall treat the discretization of the viscous terms in a
special way, as described in (Doleǰśı, 2004) or (Feistauer et al., 2005). To this
end, we shall linearize partially the viscous terms Rs(w,∇w) in a suitable way.
From (5.1.2) we obtain

R1(w,∇w) (5.2.35)

=





0
2
3

µ
w1

[
2
(

∂w2

∂x1
− w2

w1

∂w1

∂x1

)
−
(

∂w3

∂x2
− w3

w1

∂w1

∂x2

)]

µ
w1

[(
∂w3

∂x1
− w3

w1

∂w1

∂x1

)
+
(

∂w2

∂x2
− w2

w1

∂w1

∂x2

)]

w2

w1
R

(2)
1 + w3

w1
R

(3)
1 + k

cvw1

[
∂w4

∂x1
− w4

w1

∂w1

∂x1

− 1
w1

(
w2

∂w2

∂x1
+ w3

∂w3

∂x1

)
+ 1

w2
1

(w2
2 + w2

3)
∂w1

∂x1

]





,

R2(w,∇w)

=





0
µ

w1

[(
∂w3

∂x1
− w3

w1

∂w1

∂x1

)
+
(

∂w2

∂x2
− w2

w1

∂w1

∂x2

)]
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µ
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2
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∂w3

∂x2
− w3
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∂x2

)
−
(

∂w2

∂x1
− w2

w1

∂w1

∂x1

)]

w2

w1
R

(2)
2 + w3

w1
R

(3)
2 + k

cvw1

[
∂w4

∂x1
− w4

w1

∂w1

∂x2

− 1
w1

(
w2

∂w2

∂x2
+ w3

∂w3

∂x2

)
+ 1

w2
1

(w2
2 + w2

3)
∂w1

∂x2

]





,

where R(r)
s = R(r)

s (w,∇w) denotes the r-th component of Rs (s = 1, 2, r =
2, 3). Now for w = (w1, . . . , w4)

T and ϕ = (ϕ1, . . . , ϕ4)
T we define the vector-

valued functions

D1(w,∇w,ϕ,∇ϕ) (5.2.36)
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=





0
2
3

µ
w1

[
2
(

∂ϕ2

∂x1
− ϕ2

w1

∂w1

∂x1

)
−
(

∂ϕ3

∂x2
− ϕ3

w1

∂w1

∂x2

)]

µ
w1

[(
∂ϕ3

∂x1
− ϕ3

w1

∂w1

∂x1

)
+
(

∂ϕ2

∂x2
− ϕ2

w1

∂w1

∂x2

)]

w2

w1
D

(2)
1 + w3

w1
D

(3)
1 + k

cvw1

[
∂ϕ4

∂x1
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∂w1

∂x1
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w1

(
w2
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∂x1
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∂ϕ3

∂x1

)

+ 1
w2

1
(w2ϕ2 + w3ϕ3)

∂w1

∂x1
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,

D2(w,∇w,ϕ,∇ϕ)

=





0
µ

w1
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∂ϕ3

∂x1
− ϕ3

w1

∂w1

∂x1

)
+
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∂ϕ2

∂x2
− ϕ2

w1

∂w1
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∂x2
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∂w1

∂x2

)
−
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∂ϕ2

∂x1
− ϕ2

w1

∂w1

∂x1
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w2

w1
D

(2)
2 + w3

w1
D

(3)
2 + k

cvw1

[
∂ϕ4

∂x2
− ϕ4

w1

∂w1

∂x2

− 1
w1

(
w2
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∂x2
+ w2

∂ϕ3

∂x2

)

+ 1
w2

1
(w2ϕ2 + w3ϕ3)

∂w1
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]





,

where D(r)
s denotes the r-th component of Ds (s = 1, 2, r = 2, 3). Obviously,

D1 and D2 are linear with respect to ϕ and ∇ϕ and

Ds(w,∇w,w,∇w) = Rs(w,∇w), s = 1, 2. (5.2.37)

Now we introduce the following forms defined for functions wh,ϕh ∈ Sh:

(wh,ϕh)h =

∫

Ωh

wh · ϕh dx (5.2.38)

(L2(Ωh)-scalar product),

ah(wh,ϕh) =
∑

i∈I

∫

Ki

2∑

s=1

Rs(wh,∇wh) ·
∂ϕh

∂xs
dx (5.2.39)

−
∑

i∈I

∑

j∈s(i)
j<i

∫

Γij

2∑

s=1

〈Rs(wh,∇wh)〉 (nij)s · [ϕh] dS

+
∑

i∈I

∑

j∈s(i)
j<i
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∫

Γij

2∑

s=1

〈Ds(wh,∇wh,ϕh,∇ϕh)〉 (nij)s · [wh] dS

−
∑

i∈I

∑

j∈γD(i)

∫

Γij

2∑

s=1

Rs(wh,∇wh) (nij)s · ϕh dS

+
∑

i∈I

∑

j∈γD(i)

∫

Γij

2∑

s=1

Ds(wh,∇wh,ϕh,∇ϕh) (nij)s · wh dS

(nonsymmetric version of the diffusion form). The use of the above special ap-
proach does not yield some additional terms in the discrete analogy to the con-
tinuity equation. This appears important for a good quality of the approximate
solution.

Further, we introduce the following forms:

Jh(wh,ϕh) =
∑

i∈I

∑

j∈s(i)
j<i

∫

Γij

σ[wh] · [ϕh] dS (5.2.40)

+
∑

i∈I

∑

j∈γD(i)

∫

Γij

σwh · ϕh dS

with
σ|Γij

= µ/d(Γij) (5.2.41)

(interior and boundary penalty terms),

βh(wh,ϕh) =
∑

i∈I

∑

j∈γD(i)

∫

Γij

(
σwB · ϕh (5.2.42)

+

2∑

s=1

Ds(wh,∇wh,ϕh,∇ϕh) (nij)s · wB

)
dS

(right-hand side form). The boundary state wB will be defined later. Finally, we
define the form approximating viscous terms:

Ah(wh,ϕh) (5.2.43)

= ah(wh,ϕh) + Jh(wh,ϕh) − βh(wh,ϕh).

The convective terms are represented by the form bh defined by (5.2.16).
Now the discrete problem reads: Find a vector-valued function wh such that

a) wh ∈ C1([0, T ];Sh), (5.2.44)
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b)
d

dt
(wh(t),ϕh)h + bh (wh(t),ϕh) +Ah (wh(t),ϕh)

= 0 ∀ϕh ∈ Sh, t ∈ (0, T ),

c) wh(0) = w0
h,

where w0
h is an Sh-approximation of w0.

5.2.4.4 Boundary conditions If Γij ⊂ ∂Ωh, i.e. j ∈ γ(i), it is necessary to
specify boundary conditions.

The boundary state wB = (wB1, . . . , wB4)
T is determined with the aid of the

prescribed Dirichlet conditions and extrapolation:

wB = (ρij , 0, 0, cvρijθij) on Γij approximating ΓW , (5.2.45)

wB =

(
ρDh, ρDhvDh1, ρDvDh2, cvρDhθDh +

1

2
ρDh|vDh|

2

)

on Γij approximating ΓI ,

where ρDh and vDh = (vDh1, vDh2) are approximations of the given density and
velocity from the boundary conditions and ρij , θij are the values of the density
and absolute temperature extrapolated from Ki onto Γij .

The boundary state w|Γji
appearing in the form bh is defined in the same

way as in Section 5.2.1.3 above.

5.2.5 Numerical examples

In the DGFE solution of problems presented here, the forward Euler time dis-
cretization was used.

5.2.5.1 Application of the DGFEM to the solution of inviscid compressible flow
The first numerical example deals with inviscid transonic flow through the GAMM
channel with inlet Mach number = 0.67. In order to obtain a steady-state solu-
tion, the time stabilization method for t→ ∞ is applied.

We demonstrate the influence of the use of superparametric elements at the
curved part of ∂Ω, explained in Section 5.2.3. The computations were performed
on a coarse grid shown in Fig. 5.8 having 784 triangles. Figures 5.9 and 5.10 show
the density distribution along the lower wall obtained by the DGFEM without
and with the use of a bilinear mapping, respectively. One can see a difference in
the quality of the approximate solutions.

Figure 5.11 shows the computational grid constructed with the aid of the
anisotropic mesh adaptation (AMA) technique ((Doleǰśı, 1998), (Doleǰśı, 2001)).
Figure 5.12 shows the density distribution along the lower wall obtained with
the aid of the bilinear mapping on a refined mesh. As we can see, a very sharp
shock wave and the so-called Zierep (small local maximum behind the shock
wave) singularity were obtained.

In the above examples, the forward Euler time stepping and limiting of the
order of accuracy from Section 5.2.2 were used. This method requires to satisfy
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Fig. 5.8. Coarse triangular mesh (784 triangles) in the GAMM channel
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Fig. 5.9. Density distribution along the lower wall in the GAMM channel with-
out the use of a bilinear mapping at ∂Ω

the CFL stability condition representing a severe restriction of the time step.
In (Doleǰśı and Feistauer, 2003), an efficient semi-implicit time stepping scheme
was developed for the numerical solution of the Euler equations, allowing to use
a long time step in the DGFEM.

5.2.5.2 Application of the DGFEM to the solution of viscous compressible flow
We present here results from (Doleǰśı, 2004) on the numerical solution of the
viscous flow past the airfoil NACA 0012 by the DGFEM. The computation was
performed for the solution of viscous compressible supersonic flow past the profile
NACA0012 with far field Mach number M∞ = 2 and Reynolds number Re =
1000. In Fig. 5.13 we see the mesh obtained by the with the aid of the anisotropic
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Fig. 5.10. Density distribution along the lower wall in the GAMM channel with
the use of a bilinear mapping at ∂Ω

Fig. 5.11. Adapted triangular mesh (2131 triangles) in the GAMM channel

mesh adaptation (AMA) technique. Fig. 5.14 shows the Mach number isolines.
Here we see a shock wave in front of the profile, wake and a shock wave leaving
the profile.
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Fig. 5.12. Density distribution along the lower wall in the GAMM channel with
the use of a bilinear mapping on an adapted mesh
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Fig. 5.13. Viscous supersonic flow past the profile NACA 0012: triangulation
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-1  0  1  2  3  4

Fig. 5.14. Viscous supersonic flow past the profile NACA 0012: Mach number
isolines
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