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This is a list of open problems from the algebra workshop which was a
part of the Summer Thematic Program on the Mathematics of Constraint
Satisfaction held in the Fields Institute from July to August 2011.

The thematic program website is

http://www.fields.utoronto.ca/programs/scientific/11-12/constraint/index.html

The workshop website is

http://www.fields. . . . /constraint/algebra/index.html

It contains links to some papers and write-ups.
Finally, at

http://www.fields.utoronto.ca/audio/# algebra

you can find slides and audio for the lectures.

The list was extracted from the lectures and from the open problem ses-
sion. The parenthesis contains the name of the lecturer or the person(s) who
formulated the question.

1 CSPs over finite templates

In this section A denotes a finite relational structure and A denotes a finite
algebra.
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1.1 Dichotomy

An algebra is globally tractable, if CSP(Inv(A)) is tractable. An algebra is
locally tractable, if CSP(A) is tractable for every finite subset A of Inv(A).

Problem 1 (Algebraic Dichotomy Conjecture; Bulatov, Jeavons, Krokhin).
Let A be a finite algebra such that V (A) omits 1 (i.e. A is Taylor). Is
CSP(A) locally/globally tractable?

The following is an important special case:

Problem 2. Let A be a finite algebra such that V (A) is congruence modular.
Is A locally/globally tractable? (Interesting special case: V (A) is congruence
3-permutable.)

Positive answer to Valeriote’s conjecture (Problem 17) would provide an af-
firmative answer to the local version of this problem. The global case seems
to require a different algorithm for few subpowers. In particular:

Problem 3. Find a different algorithm for CSP(A) where A is of the type
“Maltsev over Maltsev”, i.e. A has a congruence α such that A/α is Maltsev
and all α-blocks are Maltsev.

Maróti (see his talk) provided an algorithm in the case that A is “Maltsev
over bounded width”. Can the previous problem be solved by some modifi-
cation of his algorithm? The following case is also of interest:

Problem 4 (Maróti). Can Maróti’s algorithm be modified for algebras of the
type “bounded width over bounded width”?

In the following problem, by a template we mean a set of idempotent
algebras closed under taking subalgebras and idempotent images. We say
that an algebra B can be eliminated if CSP(B) is tractable for all templates
B for which B \ B is also a template and CSP(B \ B) is tractable.

Maróti proved the following theorem (Elimination Theorem)

Theorem 5. Let B be an algebra and t(x, y) be a binary term such that the
unary maps y → t(b, y), b ∈ B, are idempotent and not surjective. Let C
be the set of elements c ∈ B for which x → t(x, c) is a permutation. If C
generates a proper subuniverse of B, then B can be eliminated.

Problem 6 (Maróti). Can we avoid the condition Sg(C) 6= B in the elimi-
nation theorem?
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1.2 Finer complexity classification

Problem 7 (Larose and Tesson). Let A be a relational structure such that
V (Pol(A)) is congruence join semi-distributive (omits 1, 2, 5). Is ¬CSP(A)
definable in linear datalog?

It is known to be true if A has a majority polymorphism (Dalmau, Krokhin),
and, more generally, if A has a near unanimity polymorphism (Barto, Kozik,
Willard, see Kozik’s talk).

Problem 8 (Larose and Tesson). Let A be a relational structure such that
V (Pol(A)) is n-permutable and SD(∨) (omits 1, 2, 4, 5). Is ¬CSP(A) defin-
able in symmetric datalog?

Known for n = 2 (Dalmau, Larose).

Problem 9 (Dalmau). Is it true that CSP(A) ∈ NL implies ¬CSP(A) in
linear datalog? (modulo some natural complexity-theoretic assumption)

Problem 10 (Dalmau). Is it true that CSP(A) ∈ L implies ¬CSP(A) in
Symmetric Datalog? (modulo some natural complexity-theoretic assumption)

Problem 11 (Krokhin). Assume A is a core such that V (Pol(A)) is n-
permutable. Can CSP(A) be put in a (potentially) smaller complexity class
than PTIME (e.g. ModpL for some p)?

This is known to be true for Boolean case. The case n = 2 (e.g. Maltsev) is
a good starting point.

1.3 Compact representations

Problem 12 (Maróti). Is there a polynomial time algorithm to compute a
compact representation of Sg(R∪S) from compact representations of R,S ≤
An, where A is an algebra with few subpowers?

Problem 13 (Dyer). What is the exact complexity of computing compact
representation of the set of solutions of an instance over a relational structure
with Maltsev polymorphism?

We know it is no worse than O(n5), where n is the number of variables in
the input (not necessarily distinct). This computation also dominates the
counting algorithm of Dyer and Richerby (see Dyer’s talk).
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1.4 Other complexity questions

Problem 14 (Bodirsky, Dalmau, Martin, Pinsker). Solve Problem 1 in the
case that unary term operations of A form a transitive permutation group.

Problem 15 (Hell). We say that A is hereditary tractable if A is tractable
and all its substructures are tractable as well. When is A hereditary tractable?

Problem 16 (Chen). Find an algebraic characterization of applicability of
SAC (singleton path consistency) and PAC (peek arc consistency)?

An instance is SAC if it is 1-minimal and when we fix the value of a variable
to an admissible element of the domain, the 1-minimality algorithm will still
succeed (i.e. will not return empty constraint relations). An instance is PAC
if it is 1-minimal and for any variable there exists an element of the domain
such that, when we fix the value of the variable to the chosen element, the
1-minimality algorithm will succeed.

2 Universal algebra

2.1 Collapses of Maltsev conditions

A general type of questions is of the form whether one Maltsev condition
implies another one when one restricts to

1. General clones (varieties)

2. Clones of ω-categorical structures

3. Locally closed clones

4. Locally finite clones

5. Clones on finite sets

6. Finitely related clones (polymorphisms of finite relational structures
of finite signature, or, without loss of generality, polymorphisms of
relational structures with at most binary relations)

7. Polymorphisms of digraphs (this is not too far from previous item by
a reduction by Delić, Jackson and Niven)
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8. Polymorphisms of special types of digraphs (like reflexive digraphs,
smooth digraphs, undirected graphs, oriented trees, etc.)

9. Conservative version of the previous items. It is known that for con-
servative binary relational structure A, Pol(A) is Taylor implies that
Pol(A) generates a meet semi-distributive variety (Hell, Rafiey and
Kazda, see his talk).

The most important problem is the following:

Problem 17 (Valeriote’s conjecture, Edinburgh conjecture). Does every
finitely related algebra in a congruence modular variety have few subpowers?
(Interesting special case: 3-permutable varieties.)

For a recent progress on this conjecture see McKenzie’s talk. A positive
answer would imply trichotomy for PPEQ and PPCON (see Chen’s talk).

Maróti and Zádori proved that for every reflexive digraph A, if A =
Pol(A) generates a congruence modular variety then A has a near unanimity
operation and also A has totally symmetric idempotent operations of all
arities (see Zádori’s talk). Can this be generalized to smooth digraphs? Or,
at least, to smooth digraphs of algebraic length one?

Problem 18. Let A be a smooth digraph (of algebraic length one) such that
the variety generated by A = Pol(A) is congruence modular. Does A always
have a near unanimity operation? Does A always have totally symmetric
idempotent operations of all arities?

The next two questions are motivated by the research on special triads and
polyads (Barto, Buĺın, Kozik, Maróti, Niven), where the answer is positive.

Problem 19. Let A be an oriented tree such that Pol(A) is a Taylor algebra.
Does Pol(A) generate a meet semi-distributive variety?

Problem 20. Let A be an oriented tree such that Pol(A) has a binary com-
muatative idempotent operation (wnu of arity 2). Does Pol(A) have totally
symmetric idempotent operations of all arities?
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2.2 Deciding Maltsev conditions

Problem 21. What is the computational complexity of deciding whether

1. V (A) is congruence permutable ( = A has a Maltsev operation),

2. V (A) is congruence singular,

3. V (A) is congruence uniform,

4. A has few subpowers,

5. A has totally symmetric operations (TSI) of all arities.

There are two versions of the problem. The input can either be an algebra
A, or a relational structure A (and the question is asked for the algebra
A = Pol(A)).

How does the complexity change if we assume that A is idempotent?

Many of similar questions are answered in a paper by Valeriote and Freese.
A polynomial time algorithm for deciding whether a finite idempotent

algebra has few subpowers was given in McKenzie’s talk. Dyer and Richerby
(see Dyer’s talk) have shown that deciding congruence uniformity for rela-
tional structures is reducible to the graph isomorphism problem. Relational
nonidempotent version of the TSI problem is known to be NP-hard (Larose,
Loten, Tardiff).

2.3 Absorption

Problem 22 (Barto). Is the following problem decidable? Input is a finite
algebra A and a subset B. Question is whether B ⊳ A.

During the summer program Horowitz and Valeriote has shown that the
answer is positive for |B| = 1. This generalizes Maróti’s result that near
unanimity is decidable. Both results provide very large upper bounds on the
arity of the operation providing the absorption.

Problem 23. Find a (better) upper bound on the arity of the operations
providing an absorption in an algebra A (in particular, near unanimity op-
eration).
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Problem 24 (Barto). Is the following problem decidable? Input is a rela-
tional structure A and a subset B. Question is whether B ⊳ Pol(A).

During the summer program Buĺın has shown (see his talk) that if Pol(A) is
in a meet semi-distributive variety, then every absorption is witnessed by a
term of arity bounded by a certain number depending on |A| and the maximal
arity k of relation in A (doubly exponential in |A|k).

Problem 25. Find a (better) upper bound on the arity of the operations
providing an absorption in Pol(A) for a relational structure A (in particular,
near unanimity operation).

The two simplified proofs of the dichotomy for conservative CSPs (see
Bulatov’s and Barto’s talks) are quite similar, but use different notions. Are
they somehow related?

Problem 26 (Bulatov). Is there a connection between as-components and
minimal absorbing subuniverses?

2.4 Other UA question

Problem 27 (Barto). Characterize finite algebras (or their clones) in the
variety generated by all conservative Taylor algebras of a given type.

Problem 28 (Maróti). Find obstructions for congruence modular structures.

See Larose’s talk for the definition of obstructions.

3 CSPs over infinite templates

In this section A is a countably infinite relational structure with finitely many
relations.

The main goal is to solve the following problem:

Problem 29 (Bodirsky). Prove the dichotomy for CSPs over reducts of
finitely bounded homogeneous structures assuming the dichotomy for finite
CSPs.

The following problems were proposed in the talks of Bodirsky and Pinsker
to attack the problem.
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Problem 30 (Bodirsky). Show that the complexity of CSP(A) only depends
on the variety generated by Pol(A), where A is finitely bounded homogeneous
relational structure. If not, is the complexity determined by the variety plus
the natural topology?

Problem 31 (Bodirsky). Do all finitely bounded homogeneous structures
have the Finite Dimension Property?

Problem 32 (Pinsker). Is every structure which is homogeneous and finitely
bounded a reduct of a structure which is ordered Ramsey, homogeneous, and
finitely bounded?

Problem 33 (Bodirsky). Let A be a reduct of a finitely bounded homogeneous
structure. Is CSP(A) necessarily in P when one of the following conditions
holds?

• For all n there is a canonical f ∈ Pol(A) such that for all π ∈ Sn there
is α ∈ Aut(A) satisfying

f(x1, . . . , xn) = αf(xπ(1) . . . , xπ(n)).

• There exists a ternary canonical f ∈ Pol(A) and α1, α2, α3 ∈ Aut(A)
such that

f(x, x, y) = α1f(x, y, x) = α2f(y, x, x) = α3x.

• There exists a ternary canonical f ∈ Pol(A) and α1, α2, α3 ∈ Aut(A)
such that

f(x, x, y) = α1f(x, y, x) = α2f(y, x, x) = α3y.

Bodirsky and Pinsker developed a rather general method to obtain classi-
fication results over nice templates and they proved a dichotomy for reducts
of the random graph (see Pinsker’s talk). Some other natural cases:

Problem 34 (Pinsker). Classify the complexity of CSP over reducts of the
random partial order, the random tournament, the random Kn-free graph,
the atomless Boolean algebra, the random lattice.

Problem 35 (Chen). Classify the complexity of PPEQ (equivalence problem
for primitive positive formulas, see Chen’s talk) and PPCON (containement
problem for pp-formulas) over infinite structures.
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4 Other variants of CSPs

4.1 Counting CSPs

Problem 36 (Dyer). Can the counting algorithm be made more efficient in
some natural special cases?

Most known special cases have O(n) counting algorithm, where n is the
number of variables.

Problem 37 (Dyer). What can be said about counting CSPs if restrictions
are placed on the instance? For example, if any variable can occur only a
bounded number of times in the constraints?

The dichotomy for counting CSPs (Bulatov; Dyer and Richerby) extends
to rational nonnegative weights (Bulatov, Dyer, Goldberg, Jalsenius, Jerrum,
Richerby) and to algebraic nonnegative weights (Cai, Chen, Lu).

Problem 38 (Dyer). Classify the complexity for counting CSPs with negative
or complex weights.

Problem 39 (Dyer). What is the complexity of approximate counting?

It seems unlikely that a simple dichotomy exists, but Goldberg and Jerrum
have given a trichotomy for the 2-element case. For recent progress see
Bulatov’s talk in the approximation workshop.

4.2 Valued CSP

Problem 40. Classify the computational complexity of valued CSPs.

There are two versions of this problem - we can allow infinite weights or not.
The first version is at least as hard as the CSP dichotomy. One of the special
cases is the following.

Problem 41 (Kolmogorov). What pairs of binary multimorphisms guarantee
tractability of valued CSPs?

Examples include join and meet on a distributive lattice, and on some non-
distributive lattices (Krokhin, Larose; Kuivinen), bisubmodular functions,
some tree-submodular functions (Kolmogorov).

It seems that idempotent commutative multimorphisms are especially
important (see Thapper’s talk).
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Problem 42 (Thapper). Find a general class C of binary idempotent com-
mutative multimorphisms such that a k-ary cost function h has the multi-
morphism (f, g) ∈ C iff every binary function obtained from h by replacing
any given k − 2 arguments by constants has the multimorphism (f, g).

Jeavons in his talk described a Galois correspondence for valued CSPs,
the algebraic objects are so-called weighted clones.

Problem 43 (Jeavons). Study the Boolean weighted clone lattice. As a first
step, find its cardinality.

Creed and Živný have found all the minimal weighted clones (there is 9 of
them).

Problem 44 (Jeavons). Study the weighted clone lattice for larger domains
(for instance minimal elements).

Problem 45. Find a useful notion of a core for valued CSPs.

4.3 Robust approximation of CSPs

Problem 46 (Dalmau). For which relational structures A does there exist a
robust approximation algorithm for MixedCSP(A) (the hard-soft constraints
version of MaxCSP(A))?

Problem 47 (Dalmau, Krokhin). Can we add equality to the template with-
out changing robust approximability? Can we go to powers?

Problem 48. How to approximate satisfiable NP-hard CSPs (i.e., study
(α, 1) approximation)?

Problem 49. Prove that

CSP(Q, Ra = {(x, y) : x − a = y}, a ∈ Q )

is not robustly approximable without assuming the Unique Games Conjecture.
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4.4 Other problems

Let Bn be the set of binary relations on the set {1, ..., n} considered as a
monoid with identity element {(1, 1), ..., (n, n)} and the natural relational
composition. Submonoids of Bn may require exponentially many generators,
as a function of n (indeed, Bn itself has this property (Devadze)). Now
restrict attention to relations E ∈ Bn satisfying the property

(∗) ∀x ∃y E(x, y) ∧ ∀y ∃x E(x, y).

Let the monoid of such relations be denoted Xn. We believe submonoids
of Xn may require exponentially many generators, as a function of n. Fi-
nally, consider monoids M whose elements come from Xn but which addi-
tionally enjoy the property of down-closure, i.e. if E ∈ M and F satisfies
∀x, y F (x, y) → E(x, y), then F ∈ M also (F must still satisfy property (*)).

Problem 50 (Martin). Imbued with down-closure, as well as composition,
do submonoids of Xn still require exponentially many generators, or is some
polynomial set sufficient (recall a linear number is sufficient for subgroups of
the symmetric group Sn)?

Let A be an ω-categorical structure, sPol(A) be its set of surjective poly-
morphisms and pH be the logic involving only both quantifiers, conjunction
and equality. (The logic pH is called “positive Horn” in Model Theory, but
has gone by various names in Computer Science, such as “few” and “con-
junctive positive”.)

Problem 51 (Bodirsky, Chen and Martin). Is it the case that Inv(sPol(A)) =
〈A〉pH, i.e. are the relations of A that are preserved by the surjective poly-
morphisms of A precisely the relations that are pH-definable in A?

Similar relationships are known to hold for most other fragments of first-order
logic (existential positive with endomorphisms, Σ1 with embeddings, first-
order with automorphisms, etc.) i.e. pH appears particularly challenging.
A weaker version of this connection has been given by Müller (unpublished)
involving periodic polymorphisms of infinite arity. The problem has a positive
answer in the case of finite structures.
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