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Relational structures and homomorphisms

Definition

Type is finite sequence of natural numbers

Relational structure of type r1, . . . , rn is a tuple (A,R1, . . . ,Rn), where
A is a finite set, Ri is a relation of arity ri , i.e. Ri ⊆ Ari

Definition

Let X = (X ,S1, . . . ,Sn) and A = (A,R1, . . . ,Rn) be relational structures
of the same type r1, . . . , rn.
A homomorphism f : X → A is a mapping f : X → A preserving all the
relations, i.e. (f (x1), . . . , f (xri )) ∈ Ri for any (x1, . . . , xri ) ∈ Si .

Example

Relational structures of type 2 are directed graphs. Homomorphism =
edge-preserving mapping
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Constraint Satisfaction Problem (CSP)

Definition (CSP with fixed template)

Let A = (A,R1, . . . ,Rn) be a relational structure (template).
CSP(A) is the following decision problem

INPUT A rel. structure X = (X ,S1, . . . ,Sn) of the same type as A
OUTPUT Is there a homomorphism X → A?

Example

planning and scheduling problems, queries to a database, 3-COL, 3-SAT,
SysLinEq(pk), . . .

Question

For a fixed A, what is the time complexity of CSP(A)? (Clearly in NP)
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k-coloring problem

Fix k ∈ N

A = ({1, 2, . . . , k},R) type 2, where
(x , y) ∈ R iff x 6= y

X = {X ,E}.

A mapping f : X → {1, 2, . . . , k} is a homomorphism iff it is a k-coloring
(if (x , y) ∈ E , then f (x) 6= f (y))

CSP(A) = k-COL

Complexity:

I P if k ≤ 2

I NP-complete if k ≥ 3
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3-SAT

A = ({0, 1},R1,R2,R3,R4) type 3, 3, 3, 3, where
(x , y , z) ∈ R1 iff x ∨ y ∨ z
(x , y , z) ∈ R2 iff x ∨ y ∨ ¬z
(x , y , z) ∈ R3 iff x ∨ ¬y ∨ ¬z
(x , y , z) ∈ R4 iff ¬x ∨ ¬y ∨ ¬z

X = ({x1, . . . , x4}, {(x1, x2, x4), (x2, x3, x3)}, {(x4, x3, x1), (x2, x1, x3)}, ∅, ∅)

Consider the formula

(x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x2 ∨ x3) ∧ (x4 ∨ x3 ∨ ¬x1) ∧ (x2 ∨ x1 ∨ ¬x3)

A mapping f : X → A is a homomorphism, if it is an evaluation of
variables x1, . . . , x4 which makes the formula above true

CSP(A) = 3− SAT

Complexity ... NP-complete
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Systems of linear equations over GF (pk)

A =
(
GF (pk), R, Ri (i ∈ GF (pk))

)
type 3, 1, 1, . . . , 1, where

(x , y , z) ∈ R1 iff x + y = z
Ri = {i}

X =
(
{x1, . . . , x5}, S , Si (i ∈ GF (pk))

)
, where

S = {(x1, x3, x5), (x2, x5, x4)}
S4 = {x1, x2}
Si = ∅, for i 6= 4

homomorphism = solution of the following system of lin. eq. over GF (pk)

x1 + x3 = x5, x2 + x5 = x4, x1 = 4, x2 = 4

CSP(A) = SysLinEq(pk)

Complexity ... P
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The dichotomy conjecture

The conjecture of Feder and Vardi 93

For every A, CSP(A) is in P or it is NP-complete.

Ancient results:

I True, if |A| = 2 (Schaefer 78)

I True, if A = (A,E ) is a symmetric digraph (Nešeťril, Hell 90)

It is enough to look at digraphs (but it’s not always a good idea)

Theorem (Feder, Vardi 93)

For every A there exists a directed graph A′ such that CSP(A) has the
same complexity as CSP(A′).
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Towards the algebraic approach

WLOG

We can (and will) assume that A contains all the singleton unary relations.

Definition

Let R ⊆ Am. We say that an operation f : An → A is compatible with R
(or R is compatible with f ), if for every (aij)i=1...m,j=1...n aij ∈ A such that
columns are in R, then (f (a11, . . . a1n), . . . f (am1, . . . , amn)) ∈ R.

We say that an operation f : An → A is a polymorphism of A, if it is
compatible with all the relations in A.

Every polymorphism is idempotent, i.e. f (a, a, . . . , a) = a for all a ∈ A.

Example

A projection is a polymorphism of every relational structure.
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Polymorphism - a better example

malcev...
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Bulatov, Jeavons, Krokhin 00

To every relational structure A we assign an algebra
A = (A, all polymorphisms of A)

Theorem

If HSP(A) contains a trivial algebra (i.e. at least 2-element algebra such
that every operation is a projection), then CSP(A) is NP-complete.
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Bulatov, Jeavons, Krokhin 00

To every relational structure A we assign an algebra
A = (A, all polymorphisms of A)

Theorem

The complexity of A depends only on HSP(A)!!!

Theorem

If HSP(A) contains a trivial algebra (i.e. at least 2-element algebra such
that every operation is a projection), then CSP(A) is NP-complete.

L. Barto (MFF UK) Bounded Width CSPs ECC Třeš̌t 2008 10 / 18



Algebraic dichotomy conjecture and some results

Conjecture (BJK 00)

If HSP(A) doesn’t contain a trivial algebra, then CSP(A) is in P.
Otherwise, it is NP-complete.

Some results

I True, if |A| = 3 (Bulatov 05)

I True, if A contains all unary relations (Bulatov 05)

I True, if A is a digraph such that all vertices have an incoming and an
outgoing edge (Barto, Kozik, Niven 06)
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Algebraic dichotomy conjecture and some results

Conjecture (BJK 00)

If HSP(A) doesn’t contain a trivial algebra, then CSP(A) is in P.
Otherwise, it is NP-complete.

Some results

I True, if |A| = 3 (Bulatov 05)

I True, if A contains all unary relations (Bulatov 05)

I True, if A is a digraph such that all vertices have an incoming and an
outgoing edge (Barto, Kozik, Niven 06)

L. Barto (MFF UK) Bounded Width CSPs ECC Třeš̌t 2008 11 / 18
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Known algorithms

Basically two algorithms. It is believed that all CSPs in P can be solved by
certain combination of these two.

I ”Few subpowers.” We want to describe all homomorphisms. We
know precisely when we can do it

Berman, Bulatov, Dalmau, Idziak, Marković, Valeriote, Willard

I ”Consistency checking.” We didn’t know when this algorithm gives
a correct answer. Just some very special cases were known

Bulatov, Carvalho, Dalmau, Feder, Kiss, Marković, Maróti, Valeriote,
Vardi
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k-strategy

X, A . . . relational structures of the same type. k . . . a natural number.

Definition (k-strategy)

A collection F = {FK : K ⊆ X , |K | ≤ k} is called a k-strategy for (X, A),
if

I For every K, |K | ≤ k, FK is a set of homomorphisms from X|K to A.

I If K ⊆ L, |L| ≤ k, f ∈ FL, then f |K ∈ FK .

I If K ⊆ L, |L| ≤ k, f ∈ FK , then ∃g ∈ FL such that g |K = f .

Observation

I The biggest k-strategy for (X, A) can be computed in poly-time (wrt.
|X |).

I If there is a homomorphism X → A, then there exists a nonempty
k-strategy.
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k-consistency algorithm, bounded width

Recall: We have fixed rel. str. A. We are trying to solve CSP(A)

Algorithm (k-consistency)

We are given X on input (and we are trying to decide whether X → A).

I Find the biggest k-strategy for (X, A)

I If it is nonempty, answer YES, otherwise NO

We know that if it answers NO, then the answer is correct. What about
YES?

Definition

A relational structure A has width k, if the k-consistency algorithm works
correctly.

A relational structure A has bounded width, if it has width k for some k.
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Definition

A relational structure A has width k, if the k-consistency algorithm works
correctly.

A relational structure A has bounded width, if it has width k for some k.
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Bounded width is everywhere!

Bounded width has many equivalent formulation

I Combinatorics: bounded tree width duality

I Logic: via definability in certain infinitary logic

I Programming: solvability in Datalog (fragment of Prolog)

I Pebble games

I . . .
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Larose-Zádori conjecture

Theorem (Larose, Zádori 06)

Whether A has bounded width or not depends only on HSP(A).

Theorem (Bulatov, Larose, Zádori 06)

If HSP(A) contains a reduct of a module, then A doesn’t have bounded
width.

Conjecture (Larose, Zádori 06)

A has bounded width iff HSP(A) doesn’t contain a reduct of a module.

Theorem (Barto, Kozik 08)

Yes!
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Our basic tool

Theorem (No trivial algebras!)

Let A be a relational structure. TFAE

I HSP(A) doesn’t contain a trivial algebra

I (Hobby, McKenzie 88) A has operations satisfying nontrivial identities

I (Maróti, McKenzie 06) A has an operation w (of some arity)
satisfying

w(b, a, . . . , a) = w(a, b, a, . . . , a) = · · · = w(a, . . . , a, b)

(so called Weak-NU operation)

I ?????(BJK conjecture) CSP(A) is in P
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Our basic tool II

Theorem (No modules!)

Let A be a relational structure. TFAE

I HSP(A) doesn’t contain a reduct of a module

I (Hobby, McKenzie 88) No algebra in HSP(A) has an abelian
congruence

I (Maróti, McKenzie 06) A has a Weak-NU operation of almost all
arities

I (BK 08) CSP(A) has bounded width
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I (Maróti, McKenzie 06) A has a Weak-NU operation of almost all
arities

I (BK 08) CSP(A) has bounded width

L. Barto (MFF UK) Bounded Width CSPs ECC Třeš̌t 2008 18 / 18


