Constraint Satisfaction Problems of Bounded Width

Libor Barto
joint work with Marcin Kozik

Department of Algebra
Faculty of Mathematics and Physics
Charles University
Czech Republic

ECC Třešt 2008

Relational structures and homomorphisms

Definition

Type is finite sequence of natural numbers
Relational structure of type r_{1}, \ldots, r_{n} is a tuple $\left(A, R_{1}, \ldots, R_{n}\right)$, where A is a finite set, R_{i} is a relation of arity r_{i}, i.e. $R_{i} \subseteq A^{r_{i}}$

Relational structures and homomorphisms

Definition

Type is finite sequence of natural numbers
Relational structure of type r_{1}, \ldots, r_{n} is a tuple $\left(A, R_{1}, \ldots, R_{n}\right)$, where A is a finite set, R_{i} is a relation of arity r_{i}, i.e. $R_{i} \subseteq A^{r_{i}}$

Definition

Let $\mathbb{X}=\left(X, S_{1}, \ldots, S_{n}\right)$ and $\mathbb{A}=\left(A, R_{1}, \ldots, R_{n}\right)$ be relational structures of the same type r_{1}, \ldots, r_{n}. A homomorphism $f: \mathbb{X} \rightarrow \mathbb{A}$ is a mapping $f: X \rightarrow A$ preserving all the relations, i.e. $\left(f\left(x_{1}\right), \ldots, f\left(x_{r_{i}}\right)\right) \in R_{i}$ for any $\left(x_{1}, \ldots, x_{r_{i}}\right) \in S_{i}$.

Relational structures and homomorphisms

Definition

Type is finite sequence of natural numbers
Relational structure of type r_{1}, \ldots, r_{n} is a tuple $\left(A, R_{1}, \ldots, R_{n}\right)$, where A is a finite set, R_{i} is a relation of arity r_{i}, i.e. $R_{i} \subseteq A^{r_{i}}$

Definition

Let $\mathbb{X}=\left(X, S_{1}, \ldots, S_{n}\right)$ and $\mathbb{A}=\left(A, R_{1}, \ldots, R_{n}\right)$ be relational structures of the same type r_{1}, \ldots, r_{n}.
A homomorphism $f: \mathbb{X} \rightarrow \mathbb{A}$ is a mapping $f: X \rightarrow A$ preserving all the relations, i.e. $\left(f\left(x_{1}\right), \ldots, f\left(x_{r_{i}}\right)\right) \in R_{i}$ for any $\left(x_{1}, \ldots, x_{r_{i}}\right) \in S_{i}$.

Example

Relational structures of type 2 are directed graphs. Homomorphism $=$ edge-preserving mapping

Constraint Satisfaction Problem (CSP)

Definition (CSP with fixed template)

Let $\mathbb{A}=\left(A, R_{1}, \ldots, R_{n}\right)$ be a relational structure (template).
$\operatorname{CSP}(\mathbb{A})$ is the following decision problem
INPUT $\quad A$ rel. structure $\mathbb{X}=\left(X, S_{1}, \ldots, S_{n}\right)$ of the same type as \mathbb{A} OUTPUT Is there a homomorphism $\mathbb{X} \rightarrow \mathbb{A}$?

Constraint Satisfaction Problem (CSP)

Definition (CSP with fixed template)

Let $\mathbb{A}=\left(A, R_{1}, \ldots, R_{n}\right)$ be a relational structure (template).
$\operatorname{CSP}(\mathbb{A})$ is the following decision problem
INPUT $\quad A$ rel. structure $\mathbb{X}=\left(X, S_{1}, \ldots, S_{n}\right)$ of the same type as \mathbb{A} OUTPUT Is there a homomorphism $\mathbb{X} \rightarrow \mathbb{A}$?

Example

planning and scheduling problems, queries to a database, 3-COL, 3-SAT, $\operatorname{SysLinEq}\left(\mathrm{p}^{\mathrm{k}}\right), \ldots$

Constraint Satisfaction Problem (CSP)

Definition (CSP with fixed template)

Let $\mathbb{A}=\left(A, R_{1}, \ldots, R_{n}\right)$ be a relational structure (template).
$\operatorname{CSP}(\mathbb{A})$ is the following decision problem
INPUT $\quad A$ rel. structure $\mathbb{X}=\left(X, S_{1}, \ldots, S_{n}\right)$ of the same type as \mathbb{A} OUTPUT Is there a homomorphism $\mathbb{X} \rightarrow \mathbb{A}$?

Example

planning and scheduling problems, queries to a database, 3-COL, 3-SAT, SysLinEq(p $\left.{ }^{\text {k }}\right), \ldots$

Question

For a fixed \mathbb{A}, what is the time complexity of $\operatorname{CSP}(\mathbb{A})$? (Clearly in NP)

k-coloring problem

Fix $k \in \mathbb{N}$
$\mathbb{A}=(\{1,2, \ldots, k\}, R) \quad$ type 2 , where
$(x, y) \in R$ iff $x \neq y$
$\mathbb{X}=\{X, E\}$.
A mapping $f: X \rightarrow\{1,2, \ldots, k\}$ is a homomorphism iff it is a k-coloring (if $(x, y) \in E$, then $f(x) \neq f(y)$)
$\operatorname{CSP}(\mathbb{A})=k-\mathrm{COL}$
Complexity:

- \mathbf{P} if $k \leq 2$
- NP-complete if $k \geq 3$

3-SAT

$$
\begin{aligned}
& \mathbb{A}=\left(\{0,1\}, R_{1}, R_{2}, R_{3}, R_{4}\right) \quad \text { type } 3,3,3,3, \text { where } \\
& (x, y, z) \in R_{1} \text { iff } x \vee y \vee z \\
& (x, y, z) \in R_{2} \text { iff } x \vee y \vee \neg z \\
& (x, y, z) \in R_{3} \text { iff } x \vee \neg y \vee \neg z \\
& (x, y, z) \in R_{4} \text { iff } \neg x \vee \neg y \vee \neg z \\
& \mathbb{X}=\left(\left\{x_{1}, \ldots, x_{4}\right\},\left\{\left(x_{1}, x_{2}, x_{4}\right),\left(x_{2}, x_{3}, x_{3}\right)\right\},\left\{\left(x_{4}, x_{3}, x_{1}\right),\left(x_{2}, x_{1}, x_{3}\right)\right\}, \emptyset, \emptyset\right)
\end{aligned}
$$

Consider the formula
$\left(x_{1} \vee x_{2} \vee x_{4}\right) \wedge\left(x_{2} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{4} \vee x_{3} \vee \neg x_{1}\right) \wedge\left(x_{2} \vee x_{1} \vee \neg x_{3}\right)$
A mapping $f: X \rightarrow A$ is a homomorphism, if it is an evaluation of variables x_{1}, \ldots, x_{4} which makes the formula above true
$\operatorname{CSP}(\mathbb{A})=3-S A T$
Complexity ... NP-complete

Systems of linear equations over $G F\left(p^{k}\right)$

```
\(\mathbb{A}=\left(G F\left(p^{k}\right), R, R_{i}\left(i \in G F\left(p^{k}\right)\right)\right)\) type \(3,1,1, \ldots, 1\), where
\((x, y, z) \in R_{1} \quad\) iff \(\quad x+y=z\)
\(R_{i}=\{i\}\)
\(\mathbb{X}=\left(\left\{x_{1}, \ldots, x_{5}\right\}, S, S_{i}\left(i \in G F\left(p^{k}\right)\right)\right)\), where
\(S=\left\{\left(x_{1}, x_{3}, x_{5}\right),\left(x_{2}, x_{5}, x_{4}\right)\right\}\)
\(S_{4}=\left\{x_{1}, x_{2}\right\}\)
\(S_{i}=\emptyset\), for \(i \neq 4\)
```

homomorphism $=$ solution of the following system of lin. eq. over $G F\left(p^{k}\right)$
$x_{1}+x_{3}=x_{5}, x_{2}+x_{5}=x_{4}, x_{1}=4, x_{2}=4$
$\operatorname{CSP}(\mathbb{A})=\operatorname{SysLinEq}\left(p^{k}\right)$
Complexity ... P

The dichotomy conjecture

The conjecture of Feder and Vardi 93
For every $\mathbb{A}, \operatorname{CSP}(\mathbb{A})$ is in P or it is $N P$-complete.

The dichotomy conjecture

The conjecture of Feder and Vardi 93
For every $\mathbb{A}, \operatorname{CSP}(\mathbb{A})$ is in P or it is $N P$-complete.

Ancient results:

- True, if $|A|=2$ (Schaefer 78)
- True, if $\mathbb{A}=(A, E)$ is a symmetric digraph (Nešetřil, Hell 90)

The dichotomy conjecture

The conjecture of Feder and Vardi 93
For every $\mathbb{A}, \operatorname{CSP}(\mathbb{A})$ is in P or it is $N P$-complete.

Ancient results:

- True, if $|A|=2$ (Schaefer 78)
- True, if $\mathbb{A}=(A, E)$ is a symmetric digraph (Nešetřil, Hell 90)

It is enough to look at digraphs (but it's not always a good idea)

The dichotomy conjecture

The conjecture of Feder and Vardi 93
For every $\mathbb{A}, \operatorname{CSP}(\mathbb{A})$ is in P or it is $N P$-complete.

Ancient results:

- True, if $|A|=2$ (Schaefer 78)
- True, if $\mathbb{A}=(A, E)$ is a symmetric digraph (Nešetřil, Hell 90)

It is enough to look at digraphs (but it's not always a good idea)
Theorem (Feder, Vardi 93)
For every \mathbb{A} there exists a directed graph \mathbb{A}^{\prime} such that $\operatorname{CSP}(\mathbb{A})$ has the same complexity as $\operatorname{CSP}\left(\mathbb{A}^{\prime}\right)$.

Towards the algebraic approach

WLOG

We can (and will) assume that \mathbb{A} contains all the singleton unary relations.

Towards the algebraic approach

WLOG

We can (and will) assume that \mathbb{A} contains all the singleton unary relations.

Definition

Let $R \subseteq A^{m}$. We say that an operation $f: A^{n} \rightarrow A$ is compatible with R (or R is compatible with f), if for every $\left(a_{i j}\right)_{i=1 \ldots m, j=1 \ldots n} a_{i j} \in A$ such that columns are in R, then $\left(f\left(a_{11}, \ldots a_{1 n}\right), \ldots f\left(a_{m 1}, \ldots, a_{m n}\right)\right) \in R$. We say that an operation $f: A^{n} \rightarrow A$ is a polymorphism of \mathbb{A}, if it is compatible with all the relations in \mathbb{A}.

Towards the algebraic approach

WLOG

We can (and will) assume that \mathbb{A} contains all the singleton unary relations.

Definition

Let $R \subseteq A^{m}$. We say that an operation $f: A^{n} \rightarrow A$ is compatible with R (or R is compatible with f), if for every $\left(a_{i j}\right)_{i=1 \ldots m, j=1 \ldots n} a_{i j} \in A$ such that columns are in R, then $\left(f\left(a_{11}, \ldots a_{1 n}\right), \ldots f\left(a_{m 1}, \ldots, a_{m n}\right)\right) \in R$.

We say that an operation $f: A^{n} \rightarrow A$ is a polymorphism of \mathbb{A}, if it is compatible with all the relations in \mathbb{A}.

Every polymorphism is idempotent, i.e. $f(a, a, \ldots, a)=a$ for all $a \in A$.

Towards the algebraic approach

WLOG

We can (and will) assume that \mathbb{A} contains all the singleton unary relations.

Definition

Let $R \subseteq A^{m}$. We say that an operation $f: A^{n} \rightarrow A$ is compatible with R (or R is compatible with f), if for every $\left(a_{i j}\right)_{i=1 \ldots m, j=1 \ldots n} a_{i j} \in A$ such that columns are in R, then $\left(f\left(a_{11}, \ldots a_{1 n}\right), \ldots f\left(a_{m 1}, \ldots, a_{m n}\right)\right) \in R$.

We say that an operation $f: A^{n} \rightarrow A$ is a polymorphism of \mathbb{A}, if it is compatible with all the relations in \mathbb{A}.

Every polymorphism is idempotent, i.e. $f(a, a, \ldots, a)=a$ for all $a \in A$.

Example

A projection is a polymorphism of every relational structure.

Polymorphism - a better example

malcev...

Bulatov, Jeavons, Krokhin 00

To every relational structure \mathbb{A} we assign an algebra $\mathbf{A}=(A$, all polymorphisms of $\mathbb{A})$

Bulatov, Jeavons, Krokhin 00

To every relational structure \mathbb{A} we assign an algebra $\mathbf{A}=(A$, all polymorphisms of $\mathbb{A})$

Theorem

The complexity of \mathbb{A} depends only on \mathbf{A} !

Bulatov, Jeavons, Krokhin 00

To every relational structure \mathbb{A} we assign an algebra $\mathbf{A}=(A$, all polymorphisms of $\mathbb{A})$

Theorem

The complexity of \mathbb{A} depends only on $\operatorname{HSP}(\mathbf{A})!!!$

Bulatov, Jeavons, Krokhin 00

To every relational structure \mathbb{A} we assign an algebra
$\mathbf{A}=(A$, all polymorphisms of $\mathbb{A})$

Theorem

The complexity of \mathbb{A} depends only on $\operatorname{HSP}(\mathbf{A})!!!$

Theorem
 If $\operatorname{HSP}(\mathbf{A})$ contains a trivial algebra (i.e. at least 2-element algebra such that every operation is a projection), then $\operatorname{CSP}(\mathbb{A})$ is NP-complete.

Algebraic dichotomy conjecture and some results

Conjecture (BJK 00)

If $\operatorname{HSP}(\mathbf{A})$ doesn't contain a trivial algebra, then $\operatorname{CSP}(\mathbb{A})$ is in P. Otherwise, it is NP-complete.

Algebraic dichotomy conjecture and some results

Conjecture (BJK 00)

If $\operatorname{HSP}(\mathbf{A})$ doesn't contain a trivial algebra, then $\operatorname{CSP}(\mathbb{A})$ is in P. Otherwise, it is NP-complete.

Some results

Algebraic dichotomy conjecture and some results

Conjecture (BJK 00)

If $\operatorname{HSP}(\mathbf{A})$ doesn't contain a trivial algebra, then $\operatorname{CSP}(\mathbb{A})$ is in P. Otherwise, it is NP-complete.

Some results

- True, if $|A|=3$ (Bulatov 05)

Algebraic dichotomy conjecture and some results

Conjecture (BJK 00)

If $\operatorname{HSP}(\mathbf{A})$ doesn't contain a trivial algebra, then $\operatorname{CSP}(\mathbb{A})$ is in P. Otherwise, it is NP-complete.

Some results

- True, if $|A|=3$ (Bulatov 05)
- True, if \mathbb{A} contains all unary relations (Bulatov 05)

Algebraic dichotomy conjecture and some results

Conjecture (BJK 00)

If $\operatorname{HSP}(\mathbf{A})$ doesn't contain a trivial algebra, then $\operatorname{CSP}(\mathbb{A})$ is in P. Otherwise, it is NP-complete.

Some results

- True, if $|A|=3$ (Bulatov 05)
- True, if \mathbb{A} contains all unary relations (Bulatov 05)
- True, if \mathbb{A} is a digraph such that all vertices have an incoming and an outgoing edge (Barto, Kozik, Niven 06)

Known algorithms

Basically two algorithms. It is believed that all CSPs in P can be solved by certain combination of these two.

Known algorithms

Basically two algorithms. It is believed that all CSPs in P can be solved by certain combination of these two.

- "Few subpowers." We want to describe all homomorphisms. We know precisely when we can do it

Berman, Bulatov, Dalmau, Idziak, Marković, Valeriote, Willard

Known algorithms

Basically two algorithms. It is believed that all CSPs in P can be solved by certain combination of these two.

- "Few subpowers." We want to describe all homomorphisms. We know precisely when we can do it

Berman, Bulatov, Dalmau, Idziak, Marković, Valeriote, Willard

- "Consistency checking." We didn't know when this algorithm gives a correct answer. Just some very special cases were known

Bulatov, Carvalho, Dalmau, Feder, Kiss, Marković, Maróti, Valeriote, Vardi

k-strategy

$\mathbb{X}, \mathbb{A} \ldots$ relational structures of the same type. $k \ldots$ a natural number.
Definition (k-strategy)
A collection $\mathcal{F}=\left\{\mathcal{F}_{K}: K \subseteq X,|K| \leq k\right\}$ is called a k-strategy for (\mathbb{X}, \mathbb{A}), if

k-strategy

$\mathbb{X}, \mathbb{A} \ldots$ relational structures of the same type. $k \ldots$ a natural number.
Definition (k-strategy)
A collection $\mathcal{F}=\left\{\mathcal{F}_{K}: K \subseteq X,|K| \leq k\right\}$ is called a k-strategy for (\mathbb{X}, \mathbb{A}), if

- For every $K,|K| \leq k, \mathcal{F}_{K}$ is a set of homomorphisms from $\mathbb{X} \mid K$ to \mathbb{A}.

k-strategy

$\mathbb{X}, \mathbb{A} \ldots$ relational structures of the same type. $k \ldots$ a natural number.
Definition (k-strategy)
A collection $\mathcal{F}=\left\{\mathcal{F}_{K}: K \subseteq X,|K| \leq k\right\}$ is called a k-strategy for (\mathbb{X}, \mathbb{A}), if

- For every $K,|K| \leq k, \mathcal{F}_{K}$ is a set of homomorphisms from $\mathbb{X} \mid K$ to \mathbb{A}.
- If $K \subseteq L,|L| \leq k, f \in \mathcal{F}_{L}$, then $f \mid K \in \mathcal{F}_{K}$.

k-strategy

$\mathbb{X}, \mathbb{A} \ldots$ relational structures of the same type. $k \ldots$ a natural number.

Definition (k-strategy)

A collection $\mathcal{F}=\left\{\mathcal{F}_{K}: K \subseteq X,|K| \leq k\right\}$ is called a k-strategy for (\mathbb{X}, \mathbb{A}), if

- For every $K,|K| \leq k, \mathcal{F}_{K}$ is a set of homomorphisms from $\mathbb{X} \mid K$ to \mathbb{A}.
- If $K \subseteq L,|L| \leq k, f \in \mathcal{F}_{L}$, then $f \mid K \in \mathcal{F}_{K}$.
- If $K \subseteq L,|L| \leq k, f \in \mathcal{F}_{K}$, then $\exists g \in \mathcal{F}_{L}$ such that $g \mid K=f$.

k-strategy

$\mathbb{X}, \mathbb{A} \ldots$ relational structures of the same type. $k \ldots$ a natural number.
Definition (k-strategy)
A collection $\mathcal{F}=\left\{\mathcal{F}_{K}: K \subseteq X,|K| \leq k\right\}$ is called a k-strategy for (\mathbb{X}, \mathbb{A}), if

- For every $K,|K| \leq k, \mathcal{F}_{K}$ is a set of homomorphisms from $\mathbb{X} \mid K$ to \mathbb{A}.
- If $K \subseteq L,|L| \leq k, \quad f \in \mathcal{F}_{L}$, then $f \mid K \in \mathcal{F}_{K}$.
- If $K \subseteq L,|L| \leq k, f \in \mathcal{F}_{K}$, then $\exists g \in \mathcal{F}_{L}$ such that $g \mid K=f$.

Observation

- The biggest k-strategy for (\mathbb{X}, \mathbb{A}) can be computed in poly-time (wrt. $|X|)$.

k-strategy

$\mathbb{X}, \mathbb{A} \ldots$ relational structures of the same type. $k \ldots$ a natural number.
Definition (k-strategy)
A collection $\mathcal{F}=\left\{\mathcal{F}_{K}: K \subseteq X,|K| \leq k\right\}$ is called a k-strategy for (\mathbb{X}, \mathbb{A}), if

- For every $K,|K| \leq k, \mathcal{F}_{K}$ is a set of homomorphisms from $\mathbb{X} \mid K$ to \mathbb{A}.
- If $K \subseteq L,|L| \leq k, f \in \mathcal{F}_{L}$, then $f \mid K \in \mathcal{F}_{K}$.
- If $K \subseteq L,|L| \leq k, f \in \mathcal{F}_{K}$, then $\exists g \in \mathcal{F}_{L}$ such that $g \mid K=f$.

Observation

- The biggest k-strategy for (\mathbb{X}, \mathbb{A}) can be computed in poly-time (wrt. $|X|)$.
- If there is a homomorphism $\mathbb{X} \rightarrow \mathbb{A}$, then there exists a nonempty k-strategy.
k-consistency algorithm, bounded width

Recall: We have fixed rel. str. \mathbb{A}. We are trying to solve $\operatorname{CSP}(\mathbb{A})$

k-consistency algorithm, bounded width

Recall: We have fixed rel. str. \mathbb{A}. We are trying to solve $\operatorname{CSP}(\mathbb{A})$
Algorithm (k-consistency)
We are given \mathbb{X} on input (and we are trying to decide whether $\mathbb{X} \rightarrow \mathbb{A}$).

k-consistency algorithm, bounded width

Recall: We have fixed rel. str. \mathbb{A}. We are trying to solve $\operatorname{CSP}(\mathbb{A})$
Algorithm (k-consistency)
We are given \mathbb{X} on input (and we are trying to decide whether $\mathbb{X} \rightarrow \mathbb{A}$).

- Find the biggest k-strategy for (\mathbb{X}, \mathbb{A})

k-consistency algorithm, bounded width

Recall: We have fixed rel. str. \mathbb{A}. We are trying to solve $\operatorname{CSP}(\mathbb{A})$
Algorithm (k-consistency)
We are given \mathbb{X} on input (and we are trying to decide whether $\mathbb{X} \rightarrow \mathbb{A}$).

- Find the biggest k-strategy for (\mathbb{X}, \mathbb{A})
- If it is nonempty, answer YES, otherwise NO

k-consistency algorithm, bounded width

Recall: We have fixed rel. str. \mathbb{A}. We are trying to solve $\operatorname{CSP}(\mathbb{A})$
Algorithm (k-consistency)
We are given \mathbb{X} on input (and we are trying to decide whether $\mathbb{X} \rightarrow \mathbb{A}$).

- Find the biggest k-strategy for (\mathbb{X}, \mathbb{A})
- If it is nonempty, answer YES, otherwise NO

We know that if it answers NO, then the answer is correct. What about YES?

k-consistency algorithm, bounded width

Recall: We have fixed rel. str. \mathbb{A}. We are trying to solve $\operatorname{CSP}(\mathbb{A})$
Algorithm (k-consistency)
We are given \mathbb{X} on input (and we are trying to decide whether $\mathbb{X} \rightarrow \mathbb{A}$).

- Find the biggest k-strategy for (\mathbb{X}, \mathbb{A})
- If it is nonempty, answer YES, otherwise NO

We know that if it answers NO, then the answer is correct. What about YES?

Definition

A relational structure \mathbb{A} has width k, if the k-consistency algorithm works correctly.

k-consistency algorithm, bounded width

Recall: We have fixed rel. str. \mathbb{A}. We are trying to solve $\operatorname{CSP}(\mathbb{A})$
Algorithm (k-consistency)
We are given \mathbb{X} on input (and we are trying to decide whether $\mathbb{X} \rightarrow \mathbb{A}$).

- Find the biggest k-strategy for (\mathbb{X}, \mathbb{A})
- If it is nonempty, answer YES, otherwise NO

We know that if it answers NO, then the answer is correct. What about YES?

Definition

A relational structure \mathbb{A} has width k, if the k-consistency algorithm works correctly.
A relational structure \mathbb{A} has bounded width, if it has width k for some k.

Bounded width is everywhere!

Bounded width has many equivalent formulation

- Combinatorics: bounded tree width duality
- Logic: via definability in certain infinitary logic
- Programming: solvability in Datalog (fragment of Prolog)
- Pebble games

Larose-Zádori conjecture

Theorem (Larose, Zádori 06)
Whether \mathbb{A} has bounded width or not depends only on $\operatorname{HSP}(\mathbf{A})$.

Larose-Zádori conjecture

Theorem (Larose, Zádori 06)
Whether \mathbb{A} has bounded width or not depends only on $\operatorname{HSP}(\mathbf{A})$.
Theorem (Bulatov, Larose, Zádori 06)
If $\operatorname{HSP}(\mathbf{A})$ contains a reduct of a module, then \mathbf{A} doesn't have bounded width.

Larose-Zádori conjecture

Theorem (Larose, Zádori 06)
Whether \mathbb{A} has bounded width or not depends only on $\operatorname{HSP}(\mathbf{A})$.
Theorem (Bulatov, Larose, Zádori 06)
If $\operatorname{HSP}(\mathbf{A})$ contains a reduct of a module, then \mathbf{A} doesn't have bounded width.

Conjecture (Larose, Zádori 06)
A has bounded width iff $\operatorname{HSP}(\mathbf{A})$ doesn't contain a reduct of a module.

Larose-Zádori conjecture

Theorem (Larose, Zádori 06)
Whether \mathbb{A} has bounded width or not depends only on $\operatorname{HSP}(\mathbf{A})$.
Theorem (Bulatov, Larose, Zádori 06)
If $\operatorname{HSP}(\mathbf{A})$ contains a reduct of a module, then \mathbf{A} doesn't have bounded width.

Conjecture (Larose, Zádori 06)
A has bounded width iff $\operatorname{HSP}(\mathbf{A})$ doesn't contain a reduct of a module.
Theorem (Barto, Kozik 08)
Yes!

Our basic tool

Theorem (No trivial algebras!)
Let \mathbb{A} be a relational structure. TFAE

- HSP(A) doesn't contain a trivial algebra

Our basic tool

Theorem (No trivial algebras!)
Let \mathbb{A} be a relational structure. TFAE

- HSP(A) doesn't contain a trivial algebra
- (Hobby, McKenzie 88) A has operations satisfying nontrivial identities

Our basic tool

Theorem (No trivial algebras!)
Let \mathbb{A} be a relational structure. TFAE

- HSP(A) doesn't contain a trivial algebra
- (Hobby, McKenzie 88) A has operations satisfying nontrivial identities
- (Maróti, McKenzie 06) A has an operation w (of some arity) satisfying

$$
w(b, a, \ldots, a)=w(a, b, a, \ldots, a)=\cdots=w(a, \ldots, a, b)
$$

(so called Weak-NU operation)

Our basic tool

Theorem (No trivial algebras!)
Let \mathbb{A} be a relational structure. TFAE

- HSP(A) doesn't contain a trivial algebra
- (Hobby, McKenzie 88) A has operations satisfying nontrivial identities
- (Maróti, McKenzie 06) A has an operation w (of some arity) satisfying

$$
w(b, a, \ldots, a)=w(a, b, a, \ldots, a)=\cdots=w(a, \ldots, a, b)
$$

(so called Weak-NU operation)

- ?????(BJK conjecture) $\operatorname{CSP}(\mathbb{A})$ is in P

Our basic tool II

Theorem (No modules!)
Let \mathbb{A} be a relational structure. TFAE

- HSP(A) doesn't contain a reduct of a module

Our basic tool II

Theorem (No modules!)

Let \mathbb{A} be a relational structure. TFAE

- $\operatorname{HSP}(\mathbf{A})$ doesn't contain a reduct of a module
- (Hobby, McKenzie 88) No algebra in $\operatorname{HSP}(\mathbf{A})$ has an abelian congruence

Our basic tool II

Theorem (No modules!)

Let \mathbb{A} be a relational structure. TFAE

- HSP(A) doesn't contain a reduct of a module
- (Hobby, McKenzie 88) No algebra in $\operatorname{HSP}(\mathbf{A})$ has an abelian congruence
- (Maróti, McKenzie 06) A has a Weak-NU operation of almost all arities

Our basic tool II

Theorem (No modules!)

Let \mathbb{A} be a relational structure. TFAE

- HSP (\mathbf{A}) doesn't contain a reduct of a module
- (Hobby, McKenzie 88) No algebra in $\operatorname{HSP}(\mathbf{A})$ has an abelian congruence
- (Maróti, McKenzie 06) A has a Weak-NU operation of almost all arities
- (BK 08) CSP (\mathbb{A}) has bounded width

